| HRNetV2-W48 | Train | Val | No | No | No | 80.9 | [GoogleDrive](https://drive.google.com/file/d/15DCds5j95hI-nsjg4eBM1G3sIUWR9tmf/view?usp=sharing)/[BaiduYun(Access Code:pmix)](https://pan.baidu.com/s/1KyiOUOR0SYxKtJfIlD5o-w)|
| HRNetV2-W48 + OCR | Train | Val | No | No | No | 81.6 | [GoogleDrive](https://drive.google.com/file/d/1QDxjWQhkBX_B3qVJykmtYUC3KkXVZIzT/view?usp=sharing)/[BaiduYun(Access Code:fa6i)](https://pan.baidu.com/s/1BGNt4Xmx3yfXUS8yjde0hQ)|
| HRNetV2-W48 + OCR | Train + Val | Test | No | Yes | Yes | 82.3 | [GoogleDrive](https://drive.google.com/file/d/1HiB3pdFhhTtQnrM-zuKrNTmexz_7WmQa/view?usp=sharing)/[BaiduYun(Access Code:ycrk)](https://pan.baidu.com/s/16mD81UnGzjUBD-haDQfzIQ)|
2. Performance on the LIP dataset. The models are trained and tested with the input size of 473x473.
| model |#Params | GFLOPs | OHEM | Multi-scale| Flip | mIoU | Link |
| model |#Params | Multi-scale| Flip | mIoU | Link |
1. For LIP dataset, install PyTorch=0.4.1 following the [official instructions](https://pytorch.org/). For other datasets, either PyTorch 0.4.1 or 1.1.0 is OK.
1. For LIP dataset, install PyTorch=0.4.1 following the [official instructions](https://pytorch.org/). For Cityscapes and PASCAL-Context, we use PyTorch=1.1.0.
Just specify the configuration file for `tools/train.py`.
...
...
@@ -195,6 +202,6 @@ If you find this work or code is helpful in your research, please cite:
[1] Deep High-Resolution Representation Learning for Human Pose Estimation. Ke Sun, Bin Xiao, Dong Liu, and Jingdong Wang. CVPR 2019. [download](https://arxiv.org/pdf/1902.09212.pdf)
## Acknowledgement
We adopt sync-bn implemented by [InplaceABN](https://github.com/mapillary/inplace_abn).
We adopt sync-bn implemented by [InplaceABN](https://github.com/mapillary/inplace_abn) for PyTorch 0.4.1 experiments.
We adopt data precosessing on the PASCAL-Context dataset, implemented by [PASCAL API](https://github.com/zhanghang1989/detail-api).