Skip to content
Snippets Groups Projects
Commit 2393a0cf authored by Dilawar Mahmood's avatar Dilawar Mahmood
Browse files

update model analysis

parent c533912b
No related branches found
No related tags found
No related merge requests found
Pipeline #137215 passed
%% Cell type:code id: tags:
```
PATH = "/home/federated/history/logdir/experiment_name" # Absolute path to the experiment folder
```
%% Cell type:code id: tags:
```
import tensorflow as tf
import sys
import os
sys.path.append("../")
from federated.data.data_preprocessing import load_data
import numpy as np
from matplotlib import pyplot as plt
import itertools
from sklearn.metrics import classification_report, roc_auc_score, roc_curve, auc, confusion_matrix
from tensorflow.python.summary.summary_iterator import summary_iterator
from collections import defaultdict
import pandas as pd
pd.options.plotting.backend = "plotly"
%matplotlib inline
```
%% Cell type:code id: tags:
```
import nest_asyncio
nest_asyncio.apply()
```
%% Cell type:code id: tags:
```
"""
Function that evaluates the model.
Prints accuracy and loss value
"""
def evaluation(X, y, model):
scores = model.evaluate(X, y, verbose=0)
print(f"Accuracy: {scores[1]*100}%, Loss: {scores[0]}")
```
%% Cell type:code id: tags:
```
LABELS = ["N", "S", "V", " F", "U"]
```
%% Cell type:code id: tags:
```
"""
Function that creates confusion matrix based upon the dataset and the model.
Displays the confusion matrix.
"""
def make_confusion_matrix(X,y, model):
y_pred = model.predict(X)
y_test = np.argmax(y, axis=1)
y_pred = np.argmax(y_pred, axis=1)
cnf_matrix = confusion_matrix(y_test, y_pred)
plt.figure(figsize=(5,5))
cnf_matrix = cnf_matrix.astype('float') / cnf_matrix.sum(axis=1)[:, np.newaxis]
plt.imshow(cnf_matrix, interpolation='nearest', cmap=plt.cm.Blues)
plt.colorbar()
ticks = np.arange(len(LABELS))
plt.xticks(ticks, LABELS, rotation=45)
plt.yticks(ticks, LABELS)
for i, j in itertools.product(range(cnf_matrix.shape[0]), range(cnf_matrix.shape[1])):
plt.text(j,i,format(cnf_matrix[i,j], '.2f'), horizontalalignment="center",
color="white" if cnf_matrix[i, j] > cnf_matrix.max()/2 else "black")
plt.tight_layout()
plt.ylabel("True label")
plt.xlabel("Predicted label")
plt.savefig(f"{PATH}/images/confusion_matrix.pdf", bbox_inches='tight')
plt.show()
return y_test, y_pred
```
%% Cell type:code id: tags:
```
"""
Function that loads model and dataset for analysis
Returns x_test, y_test and model
"""
def load(name):
model = tf.keras.models.load_model(PATH)
X_test, y_test = load_data(data_analysis=True)
X_test = X_test.reshape(len(X_test), X_test.shape[1],1)
evaluation(X_test, y_test, model)
return X_test, y_test, model
```
%% Cell type:code id: tags:
```
def dataframe_from_event(path, type, moments=False):
path += f"/{type}/"
event_files = [f for f in os.listdir(path) if os.path.isfile(os.path.join(path, f))]
event_files = list(filter(lambda f: "empty" not in f, event_files))
event_files_ids = [int(event.split(".")[-2]) for event in event_files]
index = event_files_ids.index(max(event_files_ids))
path += event_files[index]
if moments:
condition = lambda x : "privacy_loss" in x
else:
condition = lambda x : "loss" in x or "accuracy" in x
metrics = defaultdict(list)
for e in summary_iterator(path):
for v in e.summary.value:
if isinstance(v.simple_value, float) and condition(v.tag):
if v.simple_value == 0.0:
metrics[f"{v.tag}_{type}"].append(tf.make_ndarray(v.tensor))
else:
metrics[f"{v.tag}_{type}"].append(v.simple_value)
metrics_df = pd.DataFrame({k: v for k,v in metrics.items()})
return metrics_df
```
%% Cell type:code id: tags:
```
def plot_graph(type, moments=False):
if type not in ["accuracy", "loss", "moments_accountant"]:
raise ValueError(f"type must be accuracy or loss, not {type}")
path = PATH
if moments:
moments_df = dataframe_from_event(path, type)
moments_df= moments_df.rename(columns={"cumulative_privacy_loss_moments_accountant": "cumulative_privacy_loss"})
return moments_df
else:
train_df = dataframe_from_event(path, "train")
validation_df = dataframe_from_event(path, "validation")
cols = list(train_df.columns) + list(validation_df.columns)
return pd.concat([train_df, validation_df], axis=1)[[col for col in cols if type in col]]
```
%% Cell type:code id: tags:
```
X_test, y_test, model_centralized = load(PATH)
```
%% Cell type:code id: tags:
```
model_centralized.summary()
```
%% Cell type:code id: tags:
```
y_test, y_pred = make_confusion_matrix(X_test, y_test, model_centralized)
```
%% Cell type:code id: tags:
```
print(classification_report(y_test, y_pred, target_names=LABELS))
```
%% Cell type:code id: tags:
```
metrics_df = plot_graph("accuracy")
metrics_df = metrics_df.copy()
for col in metrics_df.columns:
if "validation" in col:
metrics_df.rename(columns={col: 'Validation Accuracy'}, inplace=True)
else:
metrics_df.rename(columns={col: 'Training Accuracy'}, inplace=True)
fig = metrics_df.plot(labels=dict(index="Epoch", value="Accuracy"))
fig.show()
fig.write_image(f"{PATH}/images/accuracy.pdf")
```
%% Cell type:code id: tags:
```
metrics_df = plot_graph("loss")
metrics_df = metrics_df.copy()
for col in metrics_df.columns:
if "validation" in col:
metrics_df.rename(columns={col: 'Validation Loss'}, inplace=True)
else:
metrics_df.rename(columns={col: 'Training Loss'}, inplace=True)
metrics_df.index += 1
fig = metrics_df.plot(labels=dict(index="Epoch", value="Loss", variable=""))
fig.show()
fig.write_image(f"{PATH}/images/loss.pdf")
```
%% Cell type:code id: tags:
```
try:
metrics_df = plot_graph("moments_accountant", moments=True)
metrics_df = metrics_df.copy()
metrics_df.rename(columns={"cumulative_privacy_loss": "Privacy Loss"}, inplace=True)
fig = metrics_df.plot(labels=dict(index="Epoch", value="ε", variable=""))
fig.show()
fig.write_image(f"{PATH}/images/moments_accountant.pdf")
except:
print("No moments accountant.")
```
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment