
oblig1.md 1/30/2023

1 / 14

Group 45 DCSG2003 Oblig 1
Raphael Storm Larsen, Sara Stentvedt Luggenes

Task 1

Task 2

Task 3
To install apache and php on the two webservers, the following commands is executed as the root user.

Installing apache webserver
apt-get update

oblig1.md 1/30/2023

2 / 14

apt-get install apache2
Installing php and mysql support
apt-get install libapache2-mod-php php-mysql php-pgsql net-tools
apt-get install mysql-client

At the time of writing this documentation we no longer have the logs after installing apache and php, but the
snippet below shows that the apache webserver is installed and running on webserver 1. The same has been
completed on webserver 2.

ubuntu@ww1:~$ service apache2 status
● apache2.service - The Apache HTTP Server
 Loaded: loaded (/lib/systemd/system/apache2.service; enabled; vendor preset:
enabled)
 Active: active (running) since Tue 2023-01-17 10:16:31 UTC; 5h 2min ago
 Docs: https://httpd.apache.org/docs/2.4/
 Process: 10363 ExecStart=/usr/sbin/apachectl start (code=exited,
status=0/SUCCESS)
 Main PID: 10368 (apache2)
 Tasks: 7 (limit: 1116)
 Memory: 14.6M
 CPU: 2.043s
 CGroup: /system.slice/apache2.service
 ├─10368 /usr/sbin/apache2 -k start
 ├─10369 /usr/sbin/apache2 -k start
 ├─10370 /usr/sbin/apache2 -k start
 ├─10371 /usr/sbin/apache2 -k start
 ├─10372 /usr/sbin/apache2 -k start
 ├─10373 /usr/sbin/apache2 -k start
 └─10439 /usr/sbin/apache2 -k start

Jan 17 10:16:31 ww1 systemd[1]: Starting The Apache HTTP Server...
Jan 17 10:16:31 ww1 systemd[1]: Started The Apache HTTP Server.

Another option is to use ps aux | grep apache to check if apache2 webserver is running.

To confirm that apache2 is listening to port 80, use netstat -anltp. If everything went right, the output
should be a single line listed as "apache2".

Task 4
Using the manager VM, we can cURL the HTML from /var/www/html/index.html on www1 using internal
openstack IP addresses.

ubuntu@manager:~$ curl http://192.168.131.189
<!DOCTYPE html>
<html>
 <head>
 <title>Gruppe 45 - WWW1</title>
 </head>

oblig1.md 1/30/2023

3 / 14

 <body style="background-color: yellow; font-family: Arial, Helvetica, sans-
serif;display:flex;flex-flow:column;align-items: center;">
 <h1>Gult er kult!</h1>
 <h3>Fra Gruppe 45 www1</h3>
 </body>
</html>

And the same for www2:

ubuntu@manager:~$ curl http://192.168.131.231
<!DOCTYPE html>
<html>
 <head>
 <meta charset="UTF-8">
 <title>Gruppe 45 - WWW2</title>
 </head>
 <body style="color:white;background-color: blue; font-family: Arial,
Helvetica, sans-serif;display:flex;flex-flow:column;align-items: center;">
 <h1>Blått er rått!</h1>
 <h3>Fra Gruppe 45 www2</h3>
 </body>
</html>

Task 5
To install haproxy on the balancer VM, we use the following commands:

sudo add-apt-repository -y ppa:vbernat/haproxy-1.8
apt-get update
apt-get install haproxy socat

We then use the command nano /etc/haproxy/haproxy.cfg to open the haproxy config file. This is our
current config file:

global
 log /dev/log local0
 log /dev/log local1 notice
 chroot /var/lib/haproxy
 stats socket /run/haproxy/admin.sock mode 660 level admin expose-fd
listeners
 stats timeout 30s
 user haproxy
 group haproxy
 daemon

 # Default SSL material locations
 ca-base /etc/ssl/certs

oblig1.md 1/30/2023

4 / 14

 crt-base /etc/ssl/private

 # See: https://ssl-config.mozilla.org/#server=haproxy&server-
version=2.0.3&config=intermediate
 ssl-default-bind-ciphers ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-RSA-AES128-
GCM-SHA256:ECDHE-ECDSA-AES256-GCM-SHA384:ECDHE-RSA-AES256-GCM-SHA384:ECDHE-ECDSA-
CHACHA20-POLY1305:ECDHE-RSA-CHACHA20-POLY1305:DHE-RSA-AES128-GCM-SHA256:DHE-RSA-
AES256-GCM-SHA384
 ssl-default-bind-ciphersuites
TLS_AES_128_GCM_SHA256:TLS_AES_256_GCM_SHA384:TLS_CHACHA20_POLY1305_SHA256
 ssl-default-bind-options ssl-min-ver TLSv1.2 no-tls-tickets

defaults
 log global
 mode http
 option httplog
 option dontlognull
 timeout connect 5000
 timeout client 50000
 timeout server 50000
 errorfile 400 /etc/haproxy/errors/400.http
 errorfile 403 /etc/haproxy/errors/403.http
 errorfile 408 /etc/haproxy/errors/408.http
 errorfile 500 /etc/haproxy/errors/500.http
 errorfile 502 /etc/haproxy/errors/502.http
 errorfile 503 /etc/haproxy/errors/503.http
 errorfile 504 /etc/haproxy/errors/504.http

frontend AETA
 bind *:80
 mode http
 default_backend nodes

backend nodes
 mode http
 balance roundrobin
 server ww1 192.168.131.189:80 check weight 75
 server ww2 192.168.131.231:80 check weight 25

listen stats
 bind *:1936
 stats enable
 stats uri /
 stats hide-version
 stats auth raphaesl:boing
 stats auth saraslu:boing

Other useful commands are:

To check for syntax errors in the config file
 haproxy -c -f /etc/haproxy/haproxy.cfg
To perform actions on the haproxy service

oblig1.md 1/30/2023

5 / 14

 service haproxy start
 service haproxy restart
 service haproxy status

Challenge: Canary Releases

Using the weight keyword at the end of the server lines in the haproxy config file, we can allocate the amount
of traffic to either server. Right now, 75% of traffic is routed to server 1, while 25% is routed to server 2. This
was changed back to 50-50 before launching the bookface service.

Security Groups

We have opened port 22, 80 and 1936 in the openstack default security groups. This is to allow for http, ssh
and access to the statistics report site.

In the browser

Now that the load balancer is online, we can access the website on our personal computers while connected
to NTNU vpn. The blue website is only shown on every 4th refresh.

oblig1.md 1/30/2023

6 / 14

Task 7

A-D) Service Account

We retrieve the password and username for our service account, log on to openstack and download the
openrc script.

Username: DCSG2003_V23_group45_service
Password: lATJUZekWli6

We then send the script to our manager VM using this command:

scp DCSG2003_V23_group45-openrc.sh ubuntu@10.212.173.5:~/

On the VM, we change the password in the file to correspond to the password of our service account.

ubuntu@manager:~$ cat ./DCSG2003_V23_group45-openrc.sh
#!/usr/bin/env bash
To use an OpenStack cloud you need to authenticate against the Identity
service named keystone, which returns a **Token** and **Service Catalog**.
The catalog contains the endpoints for all services the user/tenant has
access to - such as Compute, Image Service, Identity, Object Storage, Block
Storage, and Networking (code-named nova, glance, keystone, swift,
cinder, and neutron).

NOTE: Using the 3 *Identity API* does not necessarily mean any other
OpenStack API is version 3. For example, your cloud provider may implement

oblig1.md 1/30/2023

7 / 14

Image API v1.1, Block Storage API v2, and Compute API v2.0. OS_AUTH_URL is
only for the Identity API served through keystone.
export OS_AUTH_URL=https://api.skyhigh.iik.ntnu.no:5000
With the addition of Keystone we have standardized on the term **project**
as the entity that owns the resources.
export OS_PROJECT_ID=4661480d37154198b27092c5c15a765c
export OS_PROJECT_NAME="DCSG2003_V23_group45"
export OS_USER_DOMAIN_NAME="Default"
if [-z "$OS_USER_DOMAIN_NAME"]; then unset OS_USER_DOMAIN_NAME; fi
export OS_PROJECT_DOMAIN_ID="cb782810849b4ce8bce7f078cc193b19"
if [-z "$OS_PROJECT_DOMAIN_ID"]; then unset OS_PROJECT_DOMAIN_ID; fi
unset v2.0 items in case set
unset OS_TENANT_ID
unset OS_TENANT_NAME
In addition to the owning entity (tenant), OpenStack stores the entity
performing the action as the **user**.
export OS_USERNAME="DCSG2003_V23_group45_service"
With Keystone you pass the keystone password.
echo "Please enter your OpenStack Password for project $OS_PROJECT_NAME as user
$OS_USERNAME: "
read -sr OS_PASSWORD_INPUT
export OS_PASSWORD="lATJUZekWli6"
If your configuration has multiple regions, we set that information here.
OS_REGION_NAME is optional and only valid in certain environments.
export OS_REGION_NAME="SkyHiGh"
Don't leave a blank variable, unset it if it was empty
if [-z "$OS_REGION_NAME"]; then unset OS_REGION_NAME; fi
export OS_INTERFACE=public
export OS_IDENTITY_API_VERSION=3

E-G) Openstack Client

We add this line to the end of the .bashrc file in the user and root user home directories. This will automaticly
run the script on the start of every session.

source /home/ubuntu/DCSG2003_V23_group45-openrc.sh

We run the script, and install the OpenStack client.

sudo apt-get update
sudo apt-get install python3-openstackclient

To make sure the installation was successful, we run the openstack server list command.

ubuntu@manager:~$ openstack server list
+--------------------------------------+----------+--------+----------------------
------------------+---+----------+

oblig1.md 1/30/2023

8 / 14

| ID | Name | Status | Networks
| Image | Flavor |
+--------------------------------------+----------+--------+----------------------
------------------+---+----------+
| 09422067-d0a3-4fe6-845e-84d66022a442 | balancer | ACTIVE |
imt3003=10.212.169.121, 192.168.132.36 | Ubuntu Server 22.04 LTS (Jammy Jellyfish)
amd64 | gx1.1c1r |
| d4af6822-0c05-4935-a834-285b42cdd51f | ww2 | ACTIVE |
imt3003=192.168.131.231 | Ubuntu Server 22.04 LTS (Jammy Jellyfish)
amd64 | gx1.1c1r |
| 7530e313-4683-4d76-9a4e-bdb91f49cb8e | ww1 | ACTIVE |
imt3003=192.168.131.189 | Ubuntu Server 22.04 LTS (Jammy Jellyfish)
amd64 | gx1.1c1r |
| 781264fd-f153-45d2-bee5-980703505d55 | manager | ACTIVE | imt3003=10.212.173.5,
192.168.130.103 | Ubuntu Server 22.04 LTS (Jammy Jellyfish) amd64 | gx1.2c2r |
+--------------------------------------+----------+--------+----------------------
------------------+---+----------+

Creating the database and launching bookface service

Create the virtual machine instance for the database

Downloading the database

wget https://binaries.cockroachdb.com/cockroach-v22.2.3.linux-amd64.tgz
tar xzf cockroach-v22.2.3.linux-amd64.tgz
cp cockroach-v22.2.3.linux-amd64/cockroach /usr/local/bin

To make sure the code above works, we run the command cockroach version. This should give an output
that verify the program is installed on the machine

oblig1.md 1/30/2023

9 / 14

We then make a directory at the top of the hierarchy(right below the root), with the name bfdata. Each
CockroachDB node contains at least one store, specified when the node starts, which is where the cockroach
process reads and writes its data on disk. In our case, bfdata will be this store.

Starting the database

cockroach start --insecure --store=/bfdata --listen-addr=0.0.0.0:26257 --http-
addr=0.0.0.0:8080 --background --join=localhost:26257

Initializing the database

We only have to do this once. We chose username AETAadmin for our Cockroach database.

cockroach init --insecure --host=localhost:26257

To see whether the database is up and running, we use the command ps aux | grep cockroach, which
should give a line as output corresponding to the running database.

When this is complete, we need to log in and create the user, tables and permissions. We use the cockroach
command to open an SQL-session.

cockroach sql --insecure --host=localhost:26257

#In SQL shell, creates database and defines a user.
CREATE DATABASE bf;
CREATE USER AETAadmin;
GRANT ALL ON DATABASE bf TO AETAadmin;

#In SGL shell, these commands will set up the tables.
USE bf;
CREATE table users (userID INT PRIMARY KEY DEFAULT unique_rowid(), name
STRING(50), picture STRING(300), status STRING(10), posts INT, comments INT,
lastPostDate TIMESTAMP DEFAULT NOW(), createDate TIMESTAMP DEFAULT NOW());
CREATE table posts (postID INT PRIMARY KEY DEFAULT unique_rowid(), userID INT,
text STRING(300), name STRING(150), image STRING(32), postDate TIMESTAMP DEFAULT
NOW());
CREATE table comments (commentID INT PRIMARY KEY DEFAULT unique_rowid(), postID
INT, userID INT, text STRING(300), postDate TIMESTAMP DEFAULT NOW());
CREATE table pictures (pictureID STRING(300), picture BYTES);
GRANT SELECT,UPDATE,INSERT on TABLE bf.* to AETAadmin;

Viewing the cockroach dashboard

We use FoxyProxy to view the CockroachDB dashboard in the browser on our private computers. FoxyProxy
can be installed as an extension directly on Google Chrome. After installing, we add a proxy for localhost with
port 5000.

oblig1.md 1/30/2023

10 / 14

By using port 5000 with FoxyProxy while connected to the manager-vm over ssh, we can connect to the
Cockroach dashboard by using the internal IP address on the database VM. When we connect to the manager
with SSH, we must use this option for it to work with FoxyProxy: ssh -D 5000 ubuntu@10.212.173.5.

We can then connect to http://192.168.130.219:8080 in the browser, where the ip address is the database's
internal address. The cockroach dashboard use port 8080, which we add at the end of the address.

oblig1.md 1/30/2023

11 / 14

Setting up the webservers for bookface

The steps below are completed on both webservers. The additional packs php-pgsql and net-tools required for
this step was also added to the previous installation documentation under the Task 3 subtitle. The commands
below are thus redundant.

apt-get update
apt-get install apache2 libapache2-mod-php php-pgsql net-tools

Next, download the bookface-code from the git-repository, and cd into the bookface directory. We used the
/home/ubuntu/ home folder as the destination for the repository.

git clone https://github.com/hioa-cs/bookface.git
cd bookface

Remove the default index.html file in the html folder and move the main PHP files into apache's document
root:

rm /var/www/html/index.html
cp code/* /var/www/html/

Next, we make a copy of the example configuration file in the bookface directory with the name config.php,
and put it in the /var/html/ directory:

cp config.php /var/www/html/config.php

oblig1.md 1/30/2023

12 / 14

Then we can edit this config-file:

nano /var/www/html/config.php

The configuration file for bookface now looks like this, where dbhost is the ip address for the database(db2),
and webhost is the ip address for the loadbalancer.

<?php
$dbhost = "192.168.130.246";
$dbport = "26257";
$db = "bf";
$dbuser = "AETAadmin";
$dbpassw = '';
$webhost = '10.212.169.121';
$weburl = 'http://' . $webhost ;
$frontpage_limit = "1000";
?>

Testing the setup

While connected to the NTNU network, we can enter the loadbalancers floating ip address into the browser,
and verify that BookFace is indeed running:

Additions

How to remove userers with no images:

First, go to your database and start the console:

cockroach sql --insecure --host=localhost:26257

oblig1.md 1/30/2023

13 / 14

Inside the console run each of these commands (each of these is a single long line):

use bf;

delete from comments where exists (select postid from posts where postid =
comments.postid and exists (select * from users where posts.userid = users.userid
and not exists (select * from pictures where pictureid = users.picture)));

delete from comments where exists (select * from users where comments.userid =
users.userid and not exists (select * from pictures where pictureid =
users.picture));

delete from posts where exists (select * from users where posts.userid =
users.userid and not exists (select * from pictures where pictureid =
users.picture));

delete from users where not exists (select * from pictures where pictureid =
users.picture);

Regarding db1/db2

The db1 virtual machine was created using a gx3.4c4r flavor, as was proposed in the tutorial. However, upon
reaching about 500 users our database would start crashing due to a shortage of memory. Even with a script
that automaticly restarted cockroach we could barely get 50% uptime. So instead of wasting more time trying
to improve the situation, we decided to instead scale vertically. We created a new database: db2, in the
sx3.8c16r flavor. With 4 times the memory of db1, we are now well above 1000 users with a 97,5% uptime. Not
ideal but drastically improved. This is why you will see the ip of both db1 and db2 in this report. Db1 is
currently shut down.

Useful notes on databases

This is the error-code that occurs when the database is offline: "SQLSTATE[08006] [7] connection to
server at "192.168.130.219", port 26257 failed: ERROR: server is not accepting clients, try another node"
The database log files can be found at /bfdata/logs#

Our .bashrc file additions

The following lines are added at the end of the ~/.bashrc file. This makes our aliases persist over multiple
sessions.

source /home/ubuntu/DCSG2003_V23_group45-openrc.sh

Aliaser for å koble til webservere
alias www1="ssh ubuntu@192.168.131.189"
alias www2="ssh ubuntu@192.168.131.231"
alias balancer="ssh ubuntu@192.168.132.36"
alias db1="ssh ubuntu@192.168.130.219"
alias db2="ssh ubuntu@192.168.130.246"

oblig1.md 1/30/2023

14 / 14

Crontab

We utilize crontab to automatically check the status of our database. We use crontab -e while on the root
user to edit the file.

Every 15 minutes, this script is executed. The scripts checks if cockroach is
down, in which case it is restarted.
0,15,30,45 * * * * bash /home/ubuntu/checkDbStatus.sh

