oblig2.md 3/17/2023

Group 45 DCSG2003 Oblig 2

Raphael Storm Larsen, Sara Stentvedt Luggenes | 17.03.2023

Week 5 - Docker

1) Docker Installation

We create a new virtual machine "www3", and install docker on it. We run the following commands, wich are
also added to the script "initWorker.sh", a script that automaticly downloads and installs all nessecary software
used by any type of worker.

Docker Installation taken from initWorker.sh

Older versions of Docker went by the names of docker, docker.io, or docker-
engine. Uninstall any such older versions before attempting to install a new
version:

sudo apt-get -y remove docker docker-engine docker.io containerd runc

Update the apt package index and install packages to allow apt to use a
repository over HTTPS:
sudo apt-get -y update
sudo apt-get -y install \
ca-certificates \
curl \
gnupg \
lsb-release \

Add Docker’s official GPG key:

sudo apt-get -y update

sudo mkdir -p /etc/apt/keyrings

curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo gpg --dearmor -o
/etc/apt/keyrings/docker.gpg

Use the following command to set up the repository:
echo \

"deb [arch=$(dpkg --print-architecture) signed-by=/etc/apt/keyrings/docker.gpg]
https://download.docker.com/linux/ubuntu \

$(1sb_release -cs) stable" | sudo tee /etc/apt/sources.list.d/docker.list >
/dev/null

Update the apt package index:
sudo apt-get -y update

Fix potentially broken mask
sudo chmod a+r /etc/apt/keyrings/docker.gpg
sudo apt-get -y update

Install Docker Engine, containerd, and Docker Compose.
sudo apt-get -y install docker-ce docker-ce-cli containerd.io docker-compose-

1/20

oblig2.md 3/17/2023
plugin

Fix potentially broken docker build
sudo echo "{ \"insecure-registries\" : [\"192.168.128.23:5000\"] }" >
/etc/docker/daemon. json

2) Bookface optimization

By giving the tables indexes, we can optimize the database for faster lookups. We do this by running this
command in cockroachDB sql-shell:

By running the code

we now see that the database only searched for 1 row to find
the picture with this id. This is because this picture-id is the first picture in the database. Without indexes in
the database, running the code above would take longer time and give the output "FULL SCAN" instead of "1
row" in the "estimated row count” line.
root@localhost:26257/defaultdb> use bf;
SET
Time: 2ms total (execution 1ms / network 1ims)

root@localhost:26257/bf> select picture from users limit 1;
picture

gqYez99UZC4y1kIF59r5MIFBWmMz6SpPE . jpg
(1 row)

Time: Sms total (execution 1ms / network 4ms)

root@localhost:26257/bf> explain SELECT picture FROM pictures WHERE pictureid = 'qYez99UZC4ylkIF59r5SMIFBWmz6SpE.Jjpg';

distribution: local
vectorized: true

* index join
estimated row count: 1
table: pictures@pictures_pkey

* scan
estimated row count: 1 (<©.91% of the table; stats collected 1 day ago; using stats forecast for 5 hours in the future)
table: pictures@picturesindex
spans: [/'QYez99UZC4ylkIF59r5MIFBWmz6SPE.jpg' - /'qYez99UzC4ylkIF59r5MIFBWmz6SPE . jpg']

index recommendations: 1
1. type: index replacement
SQL commands: CREATE INDEX ON pictures (pictureid) STORING (picture); DROP INDEX pictures@picturesindex;
(15 rows)

Time: 31ms total (execution 2ms / network 29ms)

We also run this commands for indexing the other tables in the database as well:

create index on users (name);

create index on users (userid);
create index on users (lastpostdate);
create index on posts (userid);
create index on posts (postdate);

2120

oblig2.md 3/17/2023

create index on comments (postid,postdate);
create index on comments (postid);

3) Docker image for webserver

We make our docker file with all configs integrated, mainly because we couln't figure out how shared volumes
worked. This is our dockerfile as of 13.13.2023:

FROM 192.168.128.23:5000/ubuntu:20.04
MAINTAINER raphaesl@stud.ntnu.no
MAINTAINER saraslu@stud.ntnu.no

ENV DEBIAN_FRONTEND=noninteractive

ARG fpLimit
ENV BF_FRONTPAGE_LIMIT=$fpLimit

Install Apache
RUN apt-get update && apt-get install -y apache2 libapache2-mod-php php-pgsql net-
tools php-memcache

Configure files for apache
RUN rm /var/www/html/index.html
RUN mkdir /var/www/html/images
Add content to apache folder
ADD code/* /var/www/html/

ADD config.php /var/www/html

Misc
EXPOSE 80

ENTRYPOINT ["/usr/sbin/apache2ctl"”,"-D","FOREGROUND","-k","start"]

In order to easily change the frontpage limit, we have added is as an enviorment variable, wich can be set as a
command line parameter when running the docker instance.

To build our image we use the command below. Set the desired number of frontpage posts with the

parameter.

Use while in same directory as dockerfile
docker build -t "webserver:latest" --build-arg fpLimit=<frontpagelLimit> .

4+10) Launch bookface webservers

To launch our bookface webserver instances, we use the following commands:

3/20

oblig2.md

3/17/2023

docker run -P --name "dwwwl" --restart unless-stopped -p 32768:80 -d
webserver:latest

docker run -P --name "dwww2" --restart unless-stopped -p 32769:80 -d
webserver:latest

docker run -P --name "dwww3" --restart unless-stopped -p 32770:80 -d
webserver:latest

docker run -P --name "dwwwFallback" --restart unless-stopped -p 32771:80 -d
fallbackwebserver:v$fversion

We have four webservers, where three of them are bookface webservers, and one of them is a fallback

webserver, wich has it's own docker image. The purpose of this instance is to display a "Bookface is down"

message in the case that bookface is down(wich happens quite a lot). All instances have the option "restart”

set to "unless-stopped". This makes the instances restart automaticly after a reboot, wich is not the default

behaviour. We have also decided on some standardized ports that'l work with our haproxy configuration. This

is neccecary as docker instances use randomized ports if not manually set.

5) Balancer configuration for docker

Our current haProxy configuration file is pasted below. Under the "docker" backend you will find connections

to all docker instances.

global

log /dev/log locale

log /dev/log locall notice

chroot /var/lib/haproxy

stats socket /run/haproxy/admin.sock mode 660 level admin expose-fd
listeners

stats timeout 30s
user haproxy
group haproxy
daemon

Default SSL material locations
ca-base /etc/ssl/certs

crt-base /etc/ssl/private

See: https://ssl-config.mozilla.org/#server=haproxy&server-

version=2.0.3&config=intermediate

ssl-default-bind-ciphers ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-RSA-AES128-

GCM-SHA256 : ECDHE -ECDSA-AES256-GCM-SHA384 : ECDHE-RSA-AES256-GCM-SHA384 : ECDHE - ECDSA -
CHACHA20-POLY1305 : ECDHE -RSA-CHACHA20-POLY1305 :DHE-RSA-AES128-GCM-SHA256 : DHE -RSA-
AES256-GCM-SHA384

ssl-default-bind-ciphersuites

TLS_AES_128 GCM_SHA256:TLS_AES_256_GCM_SHA384:TLS_CHACHA20 POLY1305 SHA256

defaults

ssl-default-bind-options ssl-min-ver TLSv1l.2 no-tls-tickets

log global
mode http
option httplog
4720

oblig2.md 3/17/2023

option dontlognull

timeout connect 56000

timeout client 50000

timeout server 50000

errorfile 400 /etc/haproxy/errors/400.http
errorfile 403 /etc/haproxy/errors/403.http
errorfile 408 /etc/haproxy/errors/408.http
errorfile 500 /etc/haproxy/errors/500.http
errorfile 502 /etc/haproxy/errors/502.http
errorfile 503 /etc/haproxy/errors/503.http
errorfile 504 /etc/haproxy/errors/504.http

frontend AETA
bind *:80
mode http
default backend docker

backend docker
mode http
balance roundrobin
server dwwwl 192.168.130.6:32768 weight 1
server dwww2 192.168.130.6:32769 weight 1
server dwww3 192.168.130.6:32770 weight 1

listen stats
bind *:1936
stats enable
stats uri /
stats hide-version
stats auth raphaesl:boing
stats auth saraslu:boing

6) Topology Map
12) Docker Swarm Definition

Docker swarm is a technology integrated into the docker software. A docker swarm let's you make an
abstraction of multiple physical servers, or in our case, openstack virtual machines. All of these "workers"
included in the swarm will act sort of like a cloud. Instead of pushing docker instances on a single machine, it's
pushed to the swarm. This swarm of workers will automaticly balance load amongst each other, and will keep
redundancy even if one of the workers goes down.

13) Cloud initialization script

The download instructions stated above are already ripped straight from our finished cloud initialization script
called "initWorker". However, in later weeks we have added more functionality to the script. Because the parts
of the script related to docker was already listed above, we will just dump the rest of the script here:

5/20

oblig2.md 3/17/2023

#!/bin/bash

crVersion="22.2.5" #Cockroach database version

Older versions of Docker went by the names of docker, docker.io, or docker-
engine. Uninstall any such older versions before attempting to install a new
version:

sudo apt-get -y remove docker docker-engine docker.io containerd runc

Update the apt package index and install packages to allow apt to use a
repository over HTTPS:
sudo apt-get -y update
sudo apt-get -y install \
ca-certificates \
curl \
gnupg \
1lsb-release \
git

Add Docker’s official GPG key:

sudo apt-get -y update

sudo mkdir -p /etc/apt/keyrings

curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo gpg --dearmor -o
/etc/apt/keyrings/docker.gpg

Use the following command to set up the repository:
echo \

"deb [arch=$(dpkg --print-architecture) signed-by=/etc/apt/keyrings/docker.gpg]
https://download.docker.com/linux/ubuntu \

$(1sb_release -cs) stable" | sudo tee /etc/apt/sources.list.d/docker.list >
/dev/null

Update the apt package index:
sudo apt-get -y update

Fix potentially broken mask
sudo chmod a+r /etc/apt/keyrings/docker.gpg
sudo apt-get -y update

Install Docker Engine, containerd, and Docker Compose.
sudo apt-get -y install docker-ce docker-ce-cli containerd.io docker-compose-
plugin

Add to docker swarm cluster as worker

docker swarm join --token SWMTKN-1-
owljbwbmék4zd2yqtypryuébus24jvnfg231j3ztnpy24u9uv3s-496ykadlsirmhbjaq895yy8xq
192.168.130.103:2377

Fix potentially broken docker build

sudo echo "{ \"insecure-registries\" : [\"192.168.128.23:5000\"] }" >
/etc/docker/daemon.json

6/20

oblig2.md 3/17/2023

Sync time using NTP
apt-get install -y ntpdate
ntpdate -b ntp.justervesenet.no

Set correct timezone
timedatectl set-timezone Europe/Oslo

Authenticate manager for root user

echo "ssh-rsa
AAAAB3NzaClyc2EAAAADAQABAAABEQDPU7c1M98QrF5D52HBMBHDaiDVTFEVA6Sdonl40gqCn3NavjmCM5P
ZBk4No7z8H4SX3P6VU98RE7pb/Xug5EMa9AQImMWTRZzausAShtx0L9yGoXz0XZjctFcTDoN60OjV2/Bc8ai8
e48A7x1Zt89Hcvc+ktESXd1GUXVXrTK26IPHWN5SEKEti4rX1hTf42jIwYGS97vgil xQG1lTRs5/5e4d9zj2
iwAb5m/m13TxsBpnauTcCeIYTN2R8b6C16DIWRFiYFW+1A0R395vrDayD+VPjUS9S1Gqfn73deV39vx0OKz
qoroKuA2kqL5N2YMXwMP31T0ek98hJuFURO1bfQIkc4kINIfumka82NIwwNIsIIITci/+pNgqiWHhTyPcF
MsFNFKJoQf51idNYT6PAGZmcsMOqqonTXfd65Pn91qeiq25I3cpgXZ/Z4S5VmjR20a0roTed003sho726fz
AThKTNhcE/zDjBntkKwRH8n73RpyFNO8zYXCa41lRn8YSmtwfTMFk= ubuntu@manager" >
/root/.ssh/authorized_keys

Download and install cockroach database

wget https://binaries.cockroachdb.com/cockroach-v$crVersion.linux-amdé64.tgz
tar xzf cockroach-v$crVersion.linux-amdé4.tgz

cp cockroach-v$crVersion.linux-amd64/cockroach /usr/local/bin

mkdir /bfdata

Download and install glusterFS

apt-get -y install glusterfs-server glusterfs-client
systemctl enable glusterd

systemctl start glusterd

Make brick directories for glusterfs
mkdir /bf_brick
mkdir /config brick

Make brick mounting directories
mkdir /bf_images
mkdir /bf_config

Clone git repository

git clone https://glpat-yEr3xU4 23z-
jJI6UGC29@gitlab.stud.idi.ntnu.no/raphaesl/dcsg2003.git /home/ubuntu/dcsg2003
git config --global --add safe.directory /home/ubuntu/dcsg2003

sudo chown -R ubuntu:ubuntu /home/ubuntu/dcsg2003

Make Scripts Executable
chmod +x /users/ubuntu/dcsg2003/configuration/chmodder.sh

bash /users/ubuntu/dcsg2003/configuration/chmodder.sh

Set crontab file
crontab < /home/ubuntu/dcsg2003/configuration/worker/cron

7120

oblig2.md 3/17/2023

In order to create a new worker, we use command below. Set the name of the virtual machine in place of
serverName. This will create one with a medium large flavor, this can also be swapped for something more or
less powerful. Also, always remember to run the script before using
openstack commands, as they will not function without it. It must also be included in any script using these

commandes.

openstack server create --image dblbc18e-81e3-477e-9067-eecaad59ec33 --flavor
gx3.4cdr --security-group default --user-data
"/home/ubuntu/dcsg2003/configuration/initWorker.sh" --key-name "manager"
<serverName>

14) Docker swarm set up
Partially Done
This task is only partially done, as we have only set up the swarm, and not yet used it for anything.

To create the swarm we need one manager and some workers. We obviously want our manager VM to be the
manager of the swarm, so we run the command below on it. The ip is the internal ip of manager. This
command will also output a token: SWMTKN-1-Owljbwbm6k4zd2yqtypryubus24jvnfg231j3ztnpy24u9uv3s-
496ykad1sirmhbjaq895yy8xq wich we save for later use.

docker swarm init --advertise-addr 192.168.130.103
Then we must add our worker VM's to the swarm. Included in the initWorker script is a line:

docker swarm join --token SWMTKN-1-
owljbwbmék4zd2yqtypryubus24jvnfg231j3ztnpy24udSuv3s-496ykadlsirmhbjaq895yy8xq
192.168.130.103:2377

This command makes the worker join the swarm using the token and ip of manager.

Week 6 - Shell Scripting

1) Base Script

a) We make our base script, and paste the color commands into it. We then make our color test script:

#!/bin/bash

source ~/dcsg2003/configurations/manager/base.sh
info "Dette er en infotekst"

error "Dette er en feilmelding"

warn "Dette er en advarsel”

ok "Her er alt OK"

81/20

oblig2.md 3/17/2023

E¥ ubuntu@manager: ~

3foblig2/farg

When we run the script, this is our output:

b) No, the script and base.sh are not required to be in the same folder if an absolute path is used with the
source command.

2) Count database users script

Below is the code copy pasted from the script /configuration/database/countDbEntries.sh

#!/bin/bash

userCount=$(cockroach --insecure --host=localhost sql --execute="use bf;SELECT
COUNT(userid) FROM users;" | head -3 | tail -1)

postCount=$(cockroach --insecure --host=localhost sql --execute="use bf;SELECT
COUNT(postid) FROM posts;" | head -3 | tail -1)

commentCount=$(cockroach --insecure --host=localhost sql --execute="use bf;SELECT
COUNT(commentid) FROM comments;" | head -3 | tail -1)

echo "Users: $userCount Posts: $postCount Comments: $commentCount"

This is the output of the script when run on the database VM:

ubuntu@db2:~$ bash ./dcsg2003/configuration/database/countDbEntries.sh
Users: 25266 Posts: 11507 Comments: 10296

4) Exit Values

An exit value is sort of a "status code" for a command. After every linux command has been run, the variable
$? is filled with a number representing a specific error. 0 means no error, while 1-255 signifies an error. The
exit value variable is overwritten after every command, so it's important to use it immediatly if you wish to
utelize it in a script. Below is an edited snippet from our "downDetector" script, wich tests if a virtual machine
is online by attempting an SSH connection. If there is an error with the connection, it is registered as a
downed VM and immediatly restarted.

9/20

oblig2.md

ip=<ip of server>
ssh -o "StrictHostKeyChecking no" -q
if [$? -ne 0]
then
#Restart VM
done

7) Openstack commands

3/17/2023

ubuntu@$ip exit

In our script "production", we move a floating IP back and fourth between our balancer and our fallback

webserver, depending on the argument given. As always with openstack commands, it's critical to source the

openrc file in the script.

#!/bin/bash

source /home/ubuntu/DCSG2003_ V23 group45-openrc.sh
source /home/ubuntu/dcsg2003/configuration/base.sh

floatingIp="10.212.169.121"
fallBackName="www3"
fallBackPort="32771"

if [[$1 == "up" 1]

then
openstack server remove floating
openstack server add floating ip

echo "Bookface has succcessfully
elif [[$1 == "down"]]
then
openstack server remove floating
openstack server add floating ip

echo "Bookface has succcessfully
else
echo "Error: Invalid argument \"$1\""
fi

8) Mise en place

ip www3 $floatingIp
balancer $floatingIp

reinstated production”

ip balancer $floatingIp
$fallBackName $floatingIp

closed production”

Our procedure for closing and opening production can be found under /prosedyrer in our gitlab repo. It's

extremely simple thanks to the script "production”

Prosedyre for starting/stopping av produksjon

previously shown.

1. P& manager VM'en, bruk kommando production down. Dette vil redirekte trafikk til en alternativ host,

og frigjere bookface for store konfigurasjonsendringer.

2. Nar du er ferdig, kjgr kommandoen production up. Dette vil apne trafikk tilbake til bookface.

10/20

oblig2.md

Week 7 - Memcache

Alternative 2, Docker Method

3/17/2023

To install memcache, we used the 2. alternative, by installing a memcache docker image on our webserver,

www3. By running this command, we create and starts the officiall memcache image:

docker run --name=memcache -p 11211:11211 -d 192.168.130.6:5000/memcached

memcached -m 1g

The ip-adress is the webservers ip-adress. We give the image 1 GB RAM to use.

First we need to install this library:

. Without this library, we will get an

error when we make changes to the config.php file in bookface. We install this library in the Dockerfile, not on

the webserver. Then we add these lines to the config.php:

$memcache server = "192.168.130.6:11211";

$memcache_enabled = 1;
$memcache_enabled pictures = 1;

The ip-adress in the code above is webserver.

These lines is added to the config.php in all of the webserver images(we have three). The output of the docker

ps command will now look like this:

root@www3:/# docker ps

CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES
ed5e6c6f6adc webserver:latest "/usr/sbin/apache2ct.." 2 weeks
ago Up 18 hours ©.0.0.0:32770->80/tcp, :::32770->80/tcp dwww3
414c47dad476 webserver:latest "/usr/sbin/apache2ct..” 2 weeks
ago Up 18 hours 0.0.0.0:32769->80/tcp, :::32769->80/tcp dwww?2
367938a83d1b webserver:latest "/usr/sbin/apache2ct..” 2 weeks
ago Up 18 hours ©.0.0.0:32768->80/tcp, :::32768->80/tcp dwwwl
6ddbo327815d fallbackwebserver:v4 "/usr/sbin/apache2ct..” 2 weeks
ago Up 18 hours ©.0.0.0:80->80/tcp, :::80->80/tcp dwwwFallback2
659d225688ac webserver:v18 "/usr/sbin/apache2ct.." 3 weeks
ago Up 18 hours ©.0.0.0:32772->80/tcp, :::32772->80/tcp CWww
d8d7el61a78a 192.168.128.23:5000/memcached "docker-entrypoint.s.." 4 weeks

ago Up 18 hours 0.0.0.0:11211->11211/tcp, :::11211->11211/tcp memcache

We can, by looking at the picture, verify that the docker memcache instance is indeed running.

Check whether the memcache setup works:

By running this command, we get the following output:

oblig2.md 3/17/2023

ubuntu@manager:~$ curl -s http://10.212.169.121 | grep -i memcache
<! Memcache is enabled !><! using memcache for randomized users !>
<! using memcache for randomized posters !>

<! Using memcache to display counters !>

This verify that memcache is indeed working as excpected.

Week 8 - backup
1) Backup VM

First, we create our new backup VM: "backup”. We also attach our newly created openstack volume to it. As
for SSH, we decide to use an alternative solution to the one proposed in the assignment. We give the
manager ssh key to the backup VM, so that it might contact the database.

3) Backup Script

Then to make a working backup solution. There are four components to our system. On manager, you have
the script "backupDatabase.sh”. On the backup VM, there is "backup.sh”, and "restore.sh". And on database,
there is "checkDbStatus.sh”, wich is a script that was written for a previous assignment. The purpose of the
script is to check the status of cockroach, and restart it if it's down.

The first step in the backup process is to run backupDatabase.sh on manager. This can safely be done with the
database running and backup VM shut off. We use crontab to automaticly backup each morning 08:00, when
our bookface has the least visitors.

backupDatabase.sh will first exit bookface production, and reroute visitors to our fallback webserver. Then, the
backup VM is started using an openstack command. The script will then repeatedly attempt an SSH
connection towards backup until it succeeds. Once in, it will run "backup.sh" and exit. Once this script is done,
the backup is complete. The backup VM is turned back off, and production is reinstated.

backupDatabase.sh

#!bin/bash

source /home/ubuntu/DCSG2003 V23 group45-openrc.sh
source /home/ubuntu/dcsg2003/configuration/base.sh

name="backup"
ip=$(openstack server list --name $name | tail -2 | head -1 | cut -d'|' -f5 |
grep -o -P '(?<=192.168.).*%(?=)' | awk '{print "192.168."$0}' | xargs)

discord_log "Initiating daily backup..."

Turn production off
bash /home/ubuntu/dcsg2003/configuration/manager/production.sh down

Start backup server
openstack server start $name

Wait for valid ssh connection

12/20

oblig2.md 3/17/2023

until ssh root@$ip exit
do

sleep 5
done

Execute backup script
ssh root@$ip bash /home/ubuntu/dcsg2003/configuration/backupServer/backup.sh

Turn off backup server
openstack server stop $name

Restore Production status
bash /home/ubuntu/dcsg2003/configuration/manager/production.sh up

Once the "backup.sh" script is run on the backup server, it will first mount the volume. Then it will make an
SSH connection towards the database VM, use it to kill the cockroach process. With the database down, it will
start copying all the content of /bf_data to a local temporary folder. Once the download is complete,
"checkDbStatus.sh" is run via SSH on the database VM, wich will detect the DB as down, and immediatly
restart it. Meanwhile, the copied files are compressed into a tarball, wich is then moved to the backup volume.
We also have a mechanism in place that deletes all but the three newest backups on every backup. This frees
up a lot of space, but makes our backups have a three day expiration date.

Once the backup is done, the script exits. The script on manager will continue, and the VM will be shut down

until it is run again the next morning.

backup.sh
#!/bin/bash
source /home/ubuntu/dcsg2003/configuration/base.sh

dbIp="192.168.130.246"
ssh -0 "StrictHostKeyChecking no" ubuntu@$dbIp exit

Manager turns on backup-server.

Mount volume to backup
mount /dev/vdb /backup

Deletes all but the 3 newests backups
1ls -t bfdata* | tail -n +4 | xargs rm -f

Turn off cockroach database

pid=$(ssh root@$dbIp ps aux | grep "cockroach" | grep -v "grep" | awk '{print $2}'
| head -1)

ssh root@$dbIp kill $pid

Delete temporary folder
rm -r /tmp/bfdata

Copy bfdata to /tmp/bfdata
scp -r root@$dbIp:/bfdata /tmp/bfdata/
13/20

oblig2.md 3/17/2023

if [$? -ne 0]

then

discord_log "There was an error when copying database files."

ssh root@$dbIp bash /home/ubuntu/dcsg2003/configuration/database/checkDbStatus.sh
exit

done

Turn on cockroach database
ssh root@$dbIp bash /home/ubuntu/dcsg2003/configuration/database/checkDbStatus.sh

Archive bfdata to zip

tar cvzf bfdata_backup_$(date +'%d-%m-%y_%H-%M').tgz -C /tmp/ bfdata/
if [$? -ne 0]

then

discord_log "There was an error when compressing database files."
exit

done

Copy zip file to volume /backup

cp ./bfdata_backup_ * /backup

if [$? -ne 0]

then

discord_log "There was an error when sending the backup tarball to volume storage.
Check storate capacity."

exit

done

If we need to restore the database back to an earlier state, we have to use the restore.sh script. This script is
run on the backupserver. First, open the volume where the backups are stored. When you call the restore
script, you must include the timestamp of your chosen backup as a parameter in the exact format as it is
written in the backup filenames. Once started, the script will first unzip the data(because the backup-data is
already in zipped state and need to be unzipped for the database to use it), wich is the backup that will be
restored. The script assumes that the volume is already mounted. The backup-server then ssh into the
database and kills the cockroachdb process. The backup-data is copied from the backup-server to the
database. When this is done, cockroach is restarted, and checkDbStatus.sh is called. This will turn on the

cockroach-database, if it is not already up.

restore.sh

#!/bin/bash

dbIp="192.168.130.246"

ssh -0 "StrictHostKeyChecking no" ubuntu@$dbIp exit

Unzip data
rm -r /tmp/bfdata
tar xvzf /backup/bfdata_backup $1.tgz -C /tmp

Turn off cockroach database
pid=$(ssh root@$dbIp ps aux | grep "cockroach" | grep -v "grep" | awk '{print $2}'

14/20

oblig2.md 3/17/2023

| head -1)
ssh root@$dbIp kill $pid

Copy Data to database
scp -r /tmp/bfdata root@$dbIp:/bfdata

Turn on cockroach database
ssh -q root@$dbIp bash
/home/ubuntu/dcsg2003/configuration/database/checkDbStatus.sh

Manager back up list

We have multiple scripts and important files on manager. Most of these is already in a manager-folder in our
Git-repo for the course. This files include:

® aliasSetter.sh

* backupDatabase.sh

* cron (a file for managing what to add in the servers crontab)
* dbClusterSize.sh

e downDetector.sh

* getlplList.sh

* makeClusterCommands.sh

* pollGit.sh

® production.sh

In addition to this, we also have DCSG2003_V23_group45-openrc.sh and a ./ssh folder with the managers ssh-
keys. These are currently not in our git-repo.

Week 9 - Database Clusters

1) Clusters vs Replicas
The difference between a databasecluster and a replicated database is the servers role.

With replication, we have typical one main-databaseserver(master), and multiple worker-
databaseservers(slaves). The webserver is able to read and write to the main-server, but will only be able to
read the workers. The main will push updates to the workers regulary. This will make a robust setup, where the
workers can be read even though main is down. We will also get increased performance, since we distribute
the load between multiple servers. Backup can also be runned on a worker.

The negative aspects by using this setup, is the fact that all writing have to be done at the same place(main-
databaseserver). The workers also have to be constantly synchronized with main, to make sure of always up-
to-date information at bookface.

The databasecluster-setup will consist of multiple, equal databaseservers. Each of these will look like a "main”
from the outside, but there will be one intern boss anyway. This group of equal servers is called a cluster. It is
this setup we have on bookface. Databaseclusters have higher requirements for response time than
replication. Clusters also has greater availability, since the webserver is able to write to all the databases, not
just one.

15/20

oblig2.md 3/17/2023
2) Start new bookface architechture
Prework) Create new VM's

We start by creating three servers, which will be our databasecluster:

These servers are now our "Docker swarm". We have to synchronuize the clocks on the servers regulary,

because cluster is very vulnerable to time difference. We do this by installing NTP:

apt-get install -y ntpdate

Then we can sync the clocks with a sentral server, like justervesenet.no. We put this code in the servers
crontab

*/10 * * * * root ntpdate -b ntp.justervesenet.no

1) Install cockroach

We install cockroackDB on all the servers:

wget https://binaries.cockroachdb.com/cockroach-v22.2.5.1inux-amd64.tgz
tar xzf cockroach-v22.2.5.1linux-amd64.tgz

cp cockroach-v22.2.5.1linux-amd64/cockroach /usr/local/bin

mkdir /bfdata

2) Start database cluster

We start cockroach on all the three servers:

#Server 1

cockroach start --insecure --store=/bfdata --listen-addr=0.0.0.0:26257 --http-
addr=0.0.0.0:8080 --background --
join=192.168.133.95:26257,192.168.130.160:26257,192.168.134.43:26257 --advertise-
addr=192.168.133.95:26257 --max-offset=1500ms

#Server 2

cockroach start --insecure --store=/bfdata --listen-addr=0.0.0.0:26257 --http-
addr=0.0.0.0:8080 --background --
join=192.168.133.95:26257,192.168.130.160:26257,192.168.134.43:26257 --advertise-
addr=192.168.130.160:26257 --max-offset=1500ms

#Server 3
cockroach start --insecure --store=/bfdata --listen-addr=0.0.0.0:26257 --http-

16/20

oblig2.md 3/17/2023

addr=0.0.0.0:8080 --background --
join=192.168.133.95:26257,192.168.130.160:26257,192.168.134.43:26257 --advertise-
addr=192.168.134.43:26257 --max-offset=1500ms

The difference between the three codes above, is the advertise-adress. This ip-adress is the adress to the
server where the code is running. The max-offset option is for increased tolerance for time offset between the
databases. The default is 500ms.

3) Initialize database cluster

Then we initialize the cluster, by running this command on server 1:

cockroach init --insecure --host=192.168.133.95:26257

We verify that the database is initialized, by watching the cockroachDB dashboard:

€« C A Ikkesikker | 192.168.13395:8080/#/overview/list B e v & 02

® CockroachDB B insecuremode

Cluster id: 5d41eb5d-56fb-4f78-bfba-b73adff21c05 viz2s

M Keep up-to-date with CockroachDB software releases and best practices.

Activ
. Capacity Usage Node Status Replication Status

Netw

1.1% ' ‘ : : 3 0 0 60 0 0
Hot Ran oais e 0GB
obs) . e

11GiB USABLE 97.2GiB

Schedules
Advanced Debug

NodelList ¥

Nodes (3)

nodes Uptime Replicas Capacity Usage Memory Use VCPUS Version status

257 (n2) 32 minutes 60 1% 9% 4 V2225 LIvE

The ip-adress in the picture is for server 1, but all of them will work. We can see that all of the nodes in the

cluster is alive.
4) Create the bookface database with the new design

First, we start a sql session on server 1:

cockroach sgql --insecure --host=localhost:26257

Then we run following sqgl code:

17120

oblig2.md 3/17/2023

CREATE DATABASE bf;
CREATE USER AETAadmin;
GRANT ALL ON DATABASE bf TO AETAadmin;

USE bf;

CREATE TABLE users (

userid INT NOT NULL DEFAULT unique_rowid(),

name STRING(50) NULL,

picture STRING(300) NULL,

status STRING(10) NULL,

posts INT NULL,

comments INT NULL,

lastpostdate TIMESTAMP NULL DEFAULT now():::TIMESTAMP,
createdate TIMESTAMP NULL DEFAULT now():::TIMESTAMP,
FAMILY "primary" (userid, posts, comments, lastpostdate),
FAMILY "secondary" (name, picture,status, createdate)

)5

CREATE TABLE posts (

postid INT NOT NULL DEFAULT unique_ rowid(),

userid INT NOT NULL,

text STRING(300) NULL,

name STRING(150) NULL,

postdate TIMESTAMP NULL DEFAULT now():::TIMESTAMP,
INDEX posts auto_index_posts users fk (userid ASC),
FAMILY "primary" (postid, userid, text, name, postdate)

)5

CREATE TABLE comments (

commentid INT NOT NULL DEFAULT unique_rowid(),

userid INT NOT NULL,

postid INT NOT NULL,

text STRING(300) NULL,

postdate TIMESTAMP NULL DEFAULT now():::TIMESTAMP,

INDEX comments userid idx (userid ASC),

INDEX comments_postid_idx (postid ASC),

FAMILY "primary" (commentid, userid, postid, text, postdate)
)s

CREATE table config (key STRING(100), value STRING(500));
create index on users (name);

create index on users (userid);

create index on users (lastpostdate);

create index on posts (userid);

create index on posts (postdate);

create index on comments (postid,postdate);

create index on comments (postid);

18/20

oblig2.md 3/17/2023
5) Configure auto-start on reboot

To make sure the databases starts automaticly when one or multiple of the servers is rebooting, we have a
boot.sh script whcich will run every time the server is rebooting, by using crontab, like this:

Crontab file for worker nodes, is automaticly updated

¥ ¥ ¥ x ¥ crontab < /home/ubuntu/dcsg2003/configuration/worker/cron
@reboot bash /home/ubuntu/dcsg2003/configuration/worker/boot.sh
*/10 * * * * poot ntpdate -b ntp.justervesenet.no

Boot.sh look like this:

#!/bin/bash
source /home/ubuntu/dcsg2003/configuration/base.sh

ownIp=$(hostname -I | awk '{ print $1 }' | xargs)

Mount volume if not already
mount -t glusterfs $ownIp:bf config /bf_config
mount -t glusterfs $ownIp:bf_images /bf_images

chmod 777 /bf_config
chmod 777 /bf_images

sleep 5

Check if mount is successful
diskImages="bf_images"
diskConfig="bf_config"

if [$(df -h | grep "$diskImages" | wc -1) -ne @]
then
echo "$diskImages is mounted"
else
echo "$diskImages is not mounted"
discord_log "Failed to mount disk."
exit
fi

if [$(df -h | grep "$diskConfig" | wc -1) -ne @]
then
echo "$diskConfig is mounted"
else
echo "$diskConfig is not mounted"
discord_log "Failed to mount disk."
exit
fi

Start cockroach db

19/20

oblig2.md 3/17/2023
bash /home/ubuntu/startdb.sh

Start Docker
systemctl start docker

This script starts cockroachdb, by running another script we have in another path of the file-system. The
startdb.sh script is executed at the end of the script above.

The startdb.sh script consist of this code, where the advertise-address is different for each server:

cockroach start --insecure --store=/bfdata --listen-addr=0.0.0.0:26257 --http-
addr=0.0.0.0:8080 --background --
join=192.168.133.95:26257,192.168.130.160:26257,192.168.134.43:26257 --advertise-
addr=192.168.134.43:26257 --max-offset=1500ms

NOTE: The right privilegies for boot.sh and startdb.sh is already given in another script we have;
chmodder.sh. This script look like this, and is run for every knew instance we create:

#!/bin/bash
files=¢$(find ../ -name "*.sh")

for file in $files
do

chmod +x $file

echo "Updated permission for $file"
done

This will make every .sh file executable on the system.

20/20

