
PROG2053: Project description

Deadline: The deadline for the project is the 26th of November (11:59 PM).
Where and what to deliver: You deliver the project as a .zip (package) file in Blackboard on the
Assignment page. Include the link to a 2 min. video of your application in a submission.txt
file included in your project. NOTE: Only the third part of the project will be delivered for
evaluation.
For submission details see the Section “Submitting the Project for Grading” on page 15 of this
document.

Description: The project consists of three component parts. The first two give you the skills and
knowledge required to complete the third one which is the one that you will be delivering for
evaluation.

The project is taken from the Stanford course, CS142, with the permission of the course leader
Mendel Rosenblum.

Installing MERN Software
The programming projects for this class require you to install Node.js and MongoDB. Follow the
instructions below to install them.

Installing Node.js

Install the latest "Long Term Support (LTS)" version of Node.js (currently version 14.16.1). It can
be downloaded from the URL https://nodejs.org/en/download. To verify you have Node.js and its
package manager (npm), try running the commands:

node -v

and:

npm -v

which should run and print out the version numbers of your node and npm programs.

Installing MongoDB

Install the MongoDB Community Edition from the website
https://docs.mongodb.com/manual/administration/install-community/.

Once you start the MongoDB server using the command

mongod (the exact arguments depend on where you placed the database)

you should be able to directly interact with the MongoDB database by running the command:

mongo

1

https://docs.mongodb.com/manual/administration/install-community/
https://www.mongodb.com/what-is-mongodb
https://nodejs.org/en/download

Type help at the command prompt to see the available commands.

For Windows users, you may need to add the location of where MongoDB was installed to your
environment path variable in order to run the commands. This is usually located at

C:\Program Files\MongoDB\Server\<version_number>\bin

Project – First Part

Setup

Install Node.js and the npm package manager on your system, following the installation instructions
above.

Create a directory projectFirstPart and extract the contents of the attached zip file

firstPart_projectFiles.zip into the directory. The zip file contains the starter files for

this assignment.

This assignment requires many node modules that contain the tools (e.g. Webpack, Babel, ESLint)
needed to build a ReactJS web application as well as a simple Node.js web server (ExpressJS) to
serve it to your browser. These modules can be fetched by running the following command in the
projectFirstPart directory:

npm install

That command will fetch around 650 node modules using around 150 megabytes of space into the
subdirectory node_modules.

We can use npm to run the various tools we had it fetch. As can be seen in the "scripts" property of
the package.json file, the following run commands are available:

• npm run lint - Runs ESLint on all the project's JavaScript files. Your code should run

ESLint without warnings.
• npm run build - Runs Webpack using the configuration file webpack.config.js

to package all of the projects JSX files into a single JavaScript bundle in the directory
compiled.

• npm run build:w - Runs Webpack like the "run build" command except it invokes

webpack with --watch so it will monitor the React components and regenerates the bundle if
any of them change. This option is useful for development so changes made to components
can be picked up by simply refreshing the browser to load the newly updated bundle.
Otherwise you need to remember to run "npm run build" after every change. You might get a
deprecation warning [DEP_WEBPACK_WATCH_WITHOUT_CALLBACK] that you can
safely ignore.

Your solutions for all of the problems below should be implemented in the projectFirstPart

directory.

2

https://webpack.js.org/api/cli/#watch-options
https://webpack.js.org/
https://webpack.js.org/
http://expressjs.com/
https://reactjs.org/
https://eslint.org/
https://babeljs.io/
https://webpack.js.org/

This project uses ReactJS, a popular framework for building web applications. The project's goal is
to get you enough up to speed with ReactJS and the course's coding conventions that you will be
able to build a web application with it in the next part of the project.

In order to fetch our web app via the HTTP protocol, we use a simple Node.js web server that can
be started with the command from the projectFirstPart directory:

node webServer.js

All the files in the projectFirstPart can be fetched using an URL starting with

http://localhost:3000. Click on http://localhost:3000 to verify your web server is running. It should
serve the file index.html to your browser.

We recommend you configure your development environment to run webpack in watch mode so
you will need to run the node webserver and webpack when building and testing your project. You
could do this by running the programs in different command line windows. Syntax errors get
detected and reported by Babel so the output of webpack is useful. If you are running on a system
with a unix-like shell like MacOS. The command:

node webServer.js & npm run build:w

runs the web server in background and the webpack in foreground within a single window.

On Windows you can start the web server in background and webpack in foreground with the two
Windows commands:

start /B node webServer.js
npm run build:w

You can stop the background webserver with the command:

taskkill /IM node.exe /F

Getting Started

In this part of the project we require that you use the model, view, controller pattern described in
class. There are many ways of organizing code under this pattern so we provide an example that
both demonstrates some basic ReactJS features as well as showing the file system layout and
module pattern we would like you to follow in your projects.

You should start by opening the example in your browser by navigating to the URL
http://localhost:3000/getting-started.html. The page displays examples of ReactJS in action. The
HTML in getting-started.html provides a div for ReactJS to draw the app into and a script

tag include the app's JavaScript bundle compiled/gettingStarted.bundle.js. The

webpack config file webpack.config.js directs that this bundle be created from the ReactJS

file gettingStarted.jsx, a JSX program that renders the ReactJS component named

Example into the div in getting-started.html.

To support reusable components, we adopt a file organization that co-locates the ReactJS
component and its associated CSS stylesheet in a subdirectory of a directory named components.

3

http://localhost:3000/webpack.config.js
http://localhost:3000/getting-started.html
http://localhost:3000/
http://localhost:3000/
https://reactjs.org/

The Example component is located in the files

components/example/{Example.jsx,Example.css}.

You should look through the files invoked in the getting-started.html view (getting-

started.html, gettingStarted.jsx, components/example/{Example.jsx)

since it shows the JavaScript and JSX statements needed to run an ReactJS web application along
with explanatory comments. You should use this pattern and file naming convention for the other
components you build for the class.

Model data is typically fetched from the webserver which retrieves the data from a database. To
avoid having to set up a database for this project we will give you an HTML script tag to load the
model data directly into the browser's DOM from the local file system. The models will appear in
the DOM under the property name cs142models. You will be able to access it under the name

window.cs142models in a ReactJS component.

Problem 1: Understand and update the example view

You should look through and understand the getting-started.html view and the Example

component. To demonstrate your understanding do the following:

1. Update the model data for the Example component to use your name rather than "Unknown
name". You should find where "Unknown name" is and replace it.

2. Replace the contents of the div region with the class motto-update in the Example

component with some JSX statements that displays your name and a short (up to 20
characters) motto. Like the user's name, the initial value for motto should come in with the
model data. You must include some styling for this display in Example.css.

3. Extend the display you did in the previous step so it allows the user to update the motto
being displayed. The default value should continue to be retrieved from the model data.

Problem 2: Create a new component – US states view

Create a new component view that will display the names of all US states containing a given
substring. Your view must implement an input field that accepts a substring. The view will display
in alphabetical order a list of all states whose names contain the given substring (ignoring
differences in case). For example, the view for the substring of "al" should list the states Alabama,
Alaska, and California. The page should also display the substring that was used to filter the states.
If there are no matching states then the web page should display a message indicating that fact
(rather than just showing nothing). All states should be displayed when the substring is empty.

As in Problem #1 we provide you the model data with states. It can be accessed via
window.cs142models.states after it is included with:

<script src="modelData/states.js"></script>

See states.js for a description of the format of the states data.

To help you get started and guide you to the file naming conventions we want you to use we
provided a file p2.html that will load and display the bundle compiled/p2.bundle.js

4

which is generated by webpack from p2.jsx which displays the React component States. You

can open this file in your browser via the URL http://localhost:3000/p2.html.

The files you will need to implement are:

• components/states/States.jsx - The ReactJS Component of your states

component.
• components/states/States.css - Any CSS styles your component needs. Include

some styling for your state list here.

Problem 3: Personalizing the Layout

Create a ReactJS component named Header that will display a personalized header at the top of a

view. Add this header to all ReactJS web apps in your assignment (gettingStarted.jsx,

p2.jsx, p4.jsx, p5.jsx). Note that you should not replace the section from part 1 (your name

and motto). That section should be separate from your header. Use your imagination and creativity
to create a header that is "uniquely you". This can include additional images, graphics, whatever
you like. You can extend the JSX/JavaScript in the components but you should rather not use
external ReactJS Components or JavaScript libraries such as JQuery. Be creative!

The files you will need to implement are:

• components/header/Header.jsx - The ReactJS Component of your header

component. This is defined as a class Header of type React.Component.
• components/header/Header.css - Any CSS styles your component needs. Include

some styling for your header here.

Note: gettingStarted.jsx should have a personalized header from Problem 3 at the top of

the page and the section with the motto from Problem 1.2 right below it. All other page views
(p2.html, p4.html and p5.html) should have your personalized header from Problem 3.

Problem 4: Add dynamic switching of the views

Create a p4.html and a corresponding JSX file p4.jsx that includes both view components (the

Example and States components). The p4.jsx needs to implement an ability to switch

between the display of the two components. When a view is displayed there should be a button
above it that switches to display the other view. For example, when the States view is displayed

the button above it should read "Switch to Example," and when pushed the States should

disappear and the Example view should be displayed.

For this problem you will need to create the files above as well as modify the webpack
configuration file webpack.config.js to build a file compiled/p4.bundle.js that you

can uses in p4.html file. Note that if you are using Webpack with --watch (i.e. npm run build:w),

you will need to restart it after changing code>webpack.config.js.

5

https://reactjs.org/docs/react-component.html
http://localhost:3000/p2.html

Problem 5: Single page app

Although the approach taken in Problem 4 allows you to switch between the two views, it does not
allow you to bookmark or share a URL pointing at a particular view. Even doing a browser refresh
event causes the app to lose track of which view was being displayed.

We can address this deficiency by storing the view information into the URL. React Router
provides this functionality for ReactJS. For this problem make a copy of your p4.html solution

into a file named p5.html and copy your p4.jsx into a file named p5.jsx. Convert the code

to use React Router to switch between the two component views. You may style your toolbar-like
control (not just simple plain text links) that will allow the user to switch between the example and
states component views.

Since this is the first extension from the core ReactJS we import, we're providing you with step-by-
step instructions.

1. The project's package.json specifies react-router so the npm install command already

fetched it for us. We do need to explicitly import it into our p5.jsx file. Add the following

import line:

import { HashRouter, Route, Link } from "react-router-dom";

The line uses the JavaScript import statement to bring in the ReactJS components from
React Router: HashRouter , Route , and Link . The HashRouter module of React Router uses
the fragment portion of the URL for storing information. So we can make
p5.html#/states mark showing the States view while p5.html#/example

specifies the Example component view.
2. The most common way of using React Router is to conditionally render the view we want

based on the current URL. It is the Route component that implements this condition
rendering when placed inside a HashRouter element like:

 <HashRouter>
 ...
 <Route path="/states"
component={States} />
 <Route path="/example" component={Example}
/>
 ...
 </HashRouter>

which would render the States component if the URL had #/states and the Example

component if the URL had #/example.

3. Although we could use hyperlinks (i.e. <a tags) to switch views react-router recommends
using the Link component to generated the hyperlinks.

 <Link to="/states">States</Link>

generates a hyperlink with href="#/states" and the strings "States" in it.

6

https://github.com/ReactTraining/react-router/blob/master/packages/react-router/docs/api/Route.md
https://github.com/ReactTraining/react-router/blob/master/packages/react-router-dom/docs/api/Link.md
https://github.com/ReactTraining/react-router/blob/master/packages/react-router/docs/api/Route.md
https://github.com/ReactTraining/react-router/blob/master/packages/react-router-dom/docs/api/HashRouter.md
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/importinport
https://reacttraining.com/react-router/
https://reacttraining.com/react-router/

Style

Your solutions should have proper MVC decomposition and should be styled as well. Note that
you should not directly manipulate the DOM in your code. In addition, your code and templates
must be clean and readable. Remember to run ESLint on your code. ESLint should raise no errors.

Project – Second Part
In this project you will use ReactJS with Material-UI to create the beginnings of a photo-sharing
web application. In the third part of this project, you'll also explore retrieving data from a server.

Setup

You should already have installed Node.js and the npm package manager to your system. If not,
follow the instructions at the start of this documet (Installing MERN Software section).

Create a directory projectSecondPart and extract the contents of the attached file

secondPart_projectFiles.zip into the directory. The zip file contains the starter files for

this assignment.

This assignment requires many node modules that contain the tools (e.g. Webpack, Babel, ESLint)
needed to build a ReactJS web application as well as a simple Node.js web server (ExpressJS) to
serve it to your browser. It also fetches Material-UI which contain the React components and style
sheets we will be using. These modules can be fetched by running the following command in the
projectSecondPart directory:

npm install

ReactJS and Material-UI are fetched into the node_modules subdirectory even though we will

be loading it into the browser rather than Node.js.

Like the previous assignment, we can use npm to run the various tools we had it fetch. The
following npm scripts are available in the package.json file:

• npm run lint - Runs ESLint on all the project's JavaScript files. Your code should run

ESLint without warnings.
• npm run build - Runs Webpack using the configuration file webpack.config.js

to package all of the projects JSX files into a single JavaScipt bundle in the directory
compiled.

• npm run build:w - Runs Webpack like the "run build" command except it invokes

webpack with --watch so it will monitor the React components and regenerates the bundle if
any of them change.

Your solutions for all of the problems below should be implemented in the
projectSecondPart directory. As was done with on the previous project you will need to run a

web server we provide for you by running a command in your projectSecondPart directory:

7

https://webpack.js.org/api/cli/#watch-options
https://webpack.js.org/
https://webpack.js.org/
https://material-ui.com/
https://reactjs.org/
https://material-ui.com/
http://expressjs.com/
https://reactjs.org/
https://eslint.org/
https://babeljs.io/
https://webpack.js.org/
https://material-ui.com/
https://reactjs.org/

node webServer.js

As in the previous project, you can use the command:

node webServer.js & npm run build:w

to run the web server and webpack within a single command line window.

Problem 1: Create the Photo Sharing Application

As starter code for your PhotoApp we provide you a skeleton (photo-share.html which loads

photoShare.jsx) that can be started using the URL "http://localhost:3000/photo-

share.html". The skeleton:

• Loads a ReactJS web application that uses Material-UI to layout a Master-Detail pattern. It
has a header made from a Material-UI App Bar accross the top, places a UserList

component along the side, and has a content area beside it with either a UserDetail or

UserPhotos components.

• Uses the React Router to enable deep linking for our single page application by configuring
routes to three stubbed out components:

1. /users is routed to the component UserList in components/userList/

2. /users/:userId is routed to the component UserDetail in

components/userDetail/

3. /photos/:userId is routed to the component UserPhotos in

components/userPhotos/

See the use of HashRouter , and Route in photoShare.jsx for details. For the stubbed

out components in components/*, we provide an empty CSS file and a simple render

function that includes some description of what it needs to do and the model data to use.

For this problem, we will continue to use our magic cs142models hack to provide the model

data so we display a pre-entered set of information. As before, the models can be accessed using
window.cs142Models. The schema of the model data is defined below.

Your assignment is to extend the skeleton into a working web app operating on the fake model data.
Since the skeleton is already wired to either display components UserList, UserDetail, and

UserPhotos with the appropriate parameters passed by React Router, most of the work will be

implementing the stubbed out components. They should be filled in so that:

• components/userList component should provide navigation to the user details of all

the users in the system. The component is embedded in the side bar and should provide a list
of user names so that when a name is clicked, the content view area switches to display the
details of that user.

• components/userDetail component is passed a userId in the props.match by

React Router. The view should display the details of the user in a pleasing way along with a
link to switch the view area to the photos of the user using the UserPhotos component.

• components/userPhotos component is passed a userId, and should display all the

photos of the specified user. It must display all of the photos belonging to that user. For each

8

https://github.com/ReactTraining/react-router/blob/master/packages/react-router/docs/api/Route.md
https://github.com/ReactTraining/react-router/blob/master/packages/react-router-dom/docs/api/HashRouter.md
https://reacttraining.com/react-router/
https://material-ui.com/demos/app-bar
https://material-ui.com/
https://reactjs.org/
http://localhost:3000/photo-share.html
http://localhost:3000/photo-share.html

photo you must display the photo itself, the creation date/time for the photo, and all of the
comments for that photo. For each comment you must display the date/time when the
comment was created, the name of the user who created the comment, and the text of the
comment. The creator for each comment should be a link that can be clicked to switch to the
user detail page for that user.

Besides these components, you need to update the TopBar component in components/topBar
as follows:

• The left side of the TopBar should have your name.

• The right side of the TopBar should provide app context by reflecting what is being shown

in the main content region. For example, if the main content is displaying details on a user
the toolbar should have the user's name. If it is displaying a user's photos it should say
"Photos of " and the user's name.

The use of ReactRouter in the skeleton we provide allows for deep-linking to the different views of
the application. Make sure the components you build do not break this capability. It should be
possible to do a browser refresh on any view and have it come back as before. Our standard
approach to building components handles deep-linking automatically. Care must be taken when
doing things like sharing objects between components. A quick browser refresh test on each view
will show when you broke something.

Although you don't need to spend a lot of time on the appearance of the app, it should be neat and
understandable. The information layout should be clean (e.g., it should be clear which photo each
comment applies to).

Photo App Model Data

For this problem we keep the magic DOM loaded model data we used in the previous project. The
model consists of four types of objects: user, photo, comment, and SchemaInfo types.

• Photos in the photo-sharing site are organized by user. We will represent users as an object

user with the following properties:

_id: The ID of this user.
first_name: First name of the user.
last_name: Last name of the user.
location: Location of the user.
description: A brief user description.
occupation: Occupation of the user.
The DOM function window.cs142models.userModel(user_id) returns the

user object of the user with id user_id. The DOM function

window.cs142models.userListModel() returns an array with all user objects,

one for each the users of the app.
• Each user can upload multiple photos. We represent each photo by a photo object with the

following properties:

_id: The ID for this photo.

9

user_id: The ID of the user who created the photo.

date_time: The date and time when the photo was added to the database.

file_name:
Name of a file containing the actual photo (in the directory
projectSecondPart/images).

comments:
An array of the comment objects representing the comments made on this
photo.

The DOM function window.cs142models.photoOfUserModel(user_id)

returns an array of the photo objects belonging to the user with id user_id.

• For each photo there can be multiple comments (any user can comment on any photo).

comment objects have the following properties:

_id: The ID for this comment.

photo_id: The ID of the photo to which this comment belongs.

user: The user object of the user who created the comment.

date_time The date and time when the comment was created.
comment The text of the comment.

• For testing purposes we have SchemaInfo objects have the following properties:

_id: The ID for this SchemaInfo.
__v: Version number of the SchemaInfo object.
load_date_time: The date and time when the SchemaInfo was loaded. A string.

Problem 2: Fetch model data from the web server

After doing Problem 1, our photo sharing app front-end is looking like a real web application. The
big barrier to be considered real is the fakery we are doing with the model data loaded as JavaScript
into the DOM. In this Problem we remove this hack and have the app fetch models from the web
server as would typically be done in a real application.

The webServer.js given out with this project reads in the cs142Models we were loading into

the DOM in Problem 1 and makes them available using ExpressJS routes. The API exported by
webServer.js uses HTTP GET requests to particular URLs to return the cs142Models

models. The HTTP response to these GET requests is encoded in JSON. The API is:

• /test/info - Returns cs142models.schemaInfo(). This URL is useful for testing

your model fetching method.
• /user/list - Returns cs142models.userListModel().

• /user/:id - Returns cs142models.userModel(id).

• /photosOfUser/:id - Returns cs142models.photoOfUserModel(id).

You can see the APIs in action by pointing your browser at above URLs. For example, the links
"http://localhost:3000/test/info" and

"http://localhost:3000/user/list" will return the JSON-encoded model data in the

browser's window.

To convert your app to fetch models from the web server you should implement a FetchModel
function in lib/fetchModelData.js. The function should be declared as follows:

10

http://localhost:3000/user/list
http://localhost:3000/test/info
http://expressjs.com/

 /*
 * FetchModel - Fetch a model from the web server.
 * url - string - The URL to issue the GET request.
 * Returns: a Promise that should be filled
 * with the response of the GET request parsed
 * as a JSON object and returned in the property
 * named "data" of an object.
 * If the requests has an error the promise should be
 * rejected with an object contain the properties:
 * status: The HTTP response status
 * statusText: The statusText from the xhr request
 */

Although there many modules that would make implementing this function trivial, we want you to
learn about the low-level details of AJAX. You may not use other libraries to implement
FetchModel; you must write Javascript code that creates XMLHttpRequest DOM objects and
responds to their events.

Your solution needs to be able to handle multiple outstanding FetchModel requests. To demonstrate
your FetchModel routine works, your web application should work so that visiting
http://localhost:3000/photo-share.html displays the version number returned by

sending an AJAX request to the http://localhost:3000/test/info URL. The version

number should be displayed in the TopBar component of your app.

After successfully implementing the FetchModel function in lib/fetchModelData.js, you

should modify the code in

• components/userDetail/UserDetail.jsx

• components/userList/UserList.jsx

• components/userPhotos/UserPhotos.jsx

to use the FetchModel function to request the data from the server. There should be no accesses to
window.cs142models in your code and your app should work without the line in photo-

share.html:

<script src="modelData/photoApp.js"><script>

Style

Your problem solutions should have proper MVC decomposition. In addition, your code and
components should be clean and readable, and your app must be at least "reasonably nice" in
appearance and convenience.

Note that we are using Material-UI, React components that implement Google's Material Design.
We have used Material-UI's Grid component to layout the Master-Detail pattern, and a App Bar
header for you. Although you don't need to build a fully Material Design compatible app, we
recommend you to use Material-UI components when possible.

In addition, remember to run ESLint before submitting. ESLint should raise no errors.

11

https://material-ui.com/
https://material-ui.com/demos/app-bar
https://material-ui.com/layout/grid
https://material.io/
https://material-ui.com/

Extra problems

The userPhotos component specifies that the display should include all of a user's photos along

the photos' comments. This approach doesn't work well for users with a large numbers of photos. As
an extra challenge, you can implement a photo viewer that only shows one photo at a time (along
with the photo's comments) and provides a mechanism to step forward or backward through the
user's photos (i.e. a stepper).

If you would like to challenge yourself, your solution should:

• Introduce the concept of "advanced features" to your photo app. On app startup "advanced
features" is always disabled. The toolbar on the app should have a checkbox labelled
"Enable Advanced Features" that displays the current state of "advanced features" (checked
meaning advanced features is enabled) and supports changing the enable/disable state of the
advanced features.

• Your app should use the original photo view unless the "advanced features" have been
enabled by the checkbox. If enabled, viewing the photos of a user should use the single
photo with stepper functionality.

• The user interface for stepping should be something obvious and the mechanism should
indicate (e.g. a disabled button) if stepping is not possible in a direction because the user is
at the first (for backward stepping) or last photo (for forward stepping).

• Your app should allow individual photos to be bookmarked and shared by copying the URL
from the browser location bar. The browser's forward and back buttons should do what
would be expected. When entering the app using a deep linked URL to individual photos the
stepper functionality should operate as expected.

Project – Third Part (to be delivered)
In this project you will start up a database system and convert your Photo Sharing App you built in
the Second Part of the Project to fetch the views' models from it. We provide you a new
webServer.js supporting the same interface as the Second Part of the Project's web server but it

also establishes a connection to a database. This allows you to make your app into a legitimate full
stack application.

Setup

You should have MongoDB and Node.js installed on your system. If not, follow the instructions at
the start of this documet (Installing MERN Software section).

IMPORTANT!

The setup for this Third Part is different from the previous parts. You start by making a copy of your
projectSecondPart directory files into a directory named projectThirdPart. Into the

projectThirdPart directory extract the contents of the attached filed

thirdPart_projectFiles.zip. This zip file will overwrite the files package.json,

webServer.js, .eslintrc.json, and index.html and add several new files and

12

directories. In the unlikely event you had made necessary changes in any of these files in your
projectSecondPart directory you will need to reapply the changes after doing the unzip.

Once you have the projectThirdPart files, fetch the dependent software using the command:

npm install

For this we will be running all three tiers of the web application (browser, web server, database) on
your local machine.

Start and initialize the MongoDB database

Once you have installed MongoDB and created the directory for the database as described in the
instructions at the start of this document (Installing MERN Software section), you can start
MongoDB by running the command:

mongod (the exact arguments depend on where you placed the database)

Since this command doesn't return until the database is shutdown you will want to either run it in a
separate window or as a background process (e.g. mongod (args) & on Linux/MacOS).

Once the MongoDB server is started you can load the photo app data set by running the command:

node loadDatabase.js

This program loads the fake model data from previous projects (i.e.
modelData/photoApp.js) into the database. Since our app currently doesn't have any support

for adding or updating things you should only need to run loadDatabase.js once. The

program erases whatever is in the database before loading the data set so it is safe to run multiple
times.

We use the MongooseJS Object Definition Language (ODL) to define a schema to store the photo
app data in MongoDB. The schema definition files are in the directory schema:

• schema/user.js - Defines the User collection containing the objects describing each

user.
• schema/photo.js - Defines the Photos collection containing the objects describing each

photo. It also defines the objects we use to store the comments made on the photo.
• schema/schemaInfo.js - Defines the SchemaInfo collection containing the object

describing the schema version.

These files are loaded both into the loadDatabase.js program where they are used to create

the database and the webServer.js where they are used to access the database. Note: The object

schema stored in the database is similar to but necessarily different from the cs142models

JavaScript objects used in the previous assignment. Familiarize yourself with these schema
definitions.

13

http://mongoosejs.com/docs/guide.html
http://mongoosejs.com/

Start the Node.js web server

Once you have the database up and running you will need to start the web server. This can be done
with the same command as the previous assignments (e.g. node webServer.js). Start your

web server with the command from your projectThirdPart directory:

node webServer.js

If you use the above command, remember to restart the web server after each change you make
to the server code. You can also use nodemon, which will watch for any changes to the server

code and automatically restart the web server:

nodemon webServer.js

After updating your Photo Share App with the new files from projectThirdPart and starting

the database and web server make sure the app is still working before continuing on to the
assignment.

Problem 1: Convert the web server to use the database (40 points)

The webServer.js we give you in this project is like the one in the Second Part of the Project

webServer.js in that the app's model fetching routes use the magic cs142models rather than

a database. Your job is to convert all the routes to use the MongoDB database. There should be no
accesses to cs142models in your code and your app should work without the line:

var cs142models = require('./modelData/photoApp.js').cs142models;

in webServer.js. Note that any console.log statements in webServer.js will print to

the terminal rather than the browser.

Web Server API

As in the Second Part of the Project the web server will return JSON encoded model data in
response to HTTP GET requests to specific URLs. We provide the following specification of what
URLs need to be supported and what they should return. Your web server should support the
following model fetching API:

• /test - Return the schema info (/test/info) and object counts (/test/counts) of

the database. This interface is for testing and as an example for you, we provide an
implementation that fetches the information from the database. You will not have to change
this one.

• /user/list - Return the list of users' models appropriate for the navigation sidebar list.

Since we anticipate a large numbers of users, this API should only return an array of the user
properties needed by the navigation side bar (_id, first_name, last_name). It

replaces the cs142models.userListModel() call in the provided code.

• /user/:id - Return the detail information of the user with _id of id. This should return

the information we have on the user for the detail view (_id, first_name,

last_name, location, description, occupation) and replaces the

14

cs142models.userModel() call. If something other than the id of a User is provided

the response should be an HTTP status of 400 and an informative message.
• /photosOfUser/:id - Return the photos of the user with _id of id. This call generates

all the model data needed for the photos view including all the photos of the user as well as
the comments on the photos. The photos properties should be (_id, user_id,

comments, file_name, date_time) and the comments array elements should have

(comment, date_time, _id, user) and only the minimum user object

information (_id, first_name, last_name). This replaces the

cs142models.photoOfUserModel() call. If something other than the id of a User is

provided the response should be an HTTP status of 400 and an informative message. Note
this API will need some assembling from multiple different objects in the database. The
assignment's package.json file fetches the async module to make the assembling the

multiple photos easier.

To help you make sure your web server conforms to the proper API we provide a test suite in the
sub-directory test. Please make sure that all of the tests in the suite pass before submitting.

See the Testing section below for details.

Your GET requests do not return exactly the same thing that the cs142models functions return

but they do need to return the information needed by your app so that the model data of each view
can be displayed with a single FetchModel call. You will need to do subsetting and/or

augmentation of the objects coming from the database to build your response to meet the needs of
the UI. For this assignment you are not allow to alter the database schema in anyway.

IMPORTANT!

Implementing these Express request handlers requires interacting with two different "model" data
objects. The Mongoose system returns models from the objects stored in MongoDB while the
request itself should return the data models needed by the Photo App views. Unfortunately since the
Mongoose models are set by the database schema and front end models are set by the needs of the
UI views they don't align perfectly. Handling these requests will require processing to assemble the
model needed by the front end from the Mongoose models returned from the database.

Care needs to be taken when doing this processing since the models returned by Mongoose are
JavaScript objects but have special processing done on them so that any modifications that do not
match the declared schema are tossed. This means that simply updating a Mongoose model to have
the properties expected by the front end doesn't work as expected. One way to work around this is
to create a copy of the Mongoose model object. A simple way of doing the copy is to translate the
model into JSON and back to an JavaScript objects. The following code fragment does this object
cloning:

JSON.parse(JSON.stringify(modelObject));

by taking modelObject converting into a JSON string and then converting it back to a JavaScript

object, this time without the methods and special handling done on Mongoose models.

15

http://mongoosejs.com/docs/models.html
https://github.com/caolan/async/blob/v1.5.2/README.md

Testing

Testing a full web application is challenging. In the directory test we provide a test of just the

backend portion of your application. The test uses Mocha, a popular framework for writing Node.js
tests. To setup the test environment, from inside the test subdirectory do an npm install to

fetch Mocha and all the related dependencies. Once you have done this, you can run the test by
running the command inside the test directory: npm test.

The npm test command runs the file test/serverApiTest.js which is a program written

in the Mocha language (e.g. describe() and it()) testing the three Photo App backend URLs

(/user/list, /user/ID, /photosOfUser/ID). In order to be reasonably sure that

the functionality of the backend routes conforms to spec, please check that all our provided
tests pass before submitting.

Style

Your project should have proper MVC decomposition. In addition, your code and templates must be
clean and readable, and your app must be at least "reasonably nice" in appearance and convenience.

In addition, your code and templates must be clean and readable. Remember to run npm run

lint before submitting. The linter should raise no errors.

Deliverables

Use the standard class submission mechanism to submit the entire projectThirdPart

directory.

Submitting the Project for Grading

TL;DR

Upload your project as a zip file containing your cleaned project directory on the Assignment page
in Blackboard. The zip file should contain a single directory named projectN where N is the

group number.

Cleaning up before submitting

Please delete any unnecessary files from your project directory before submitting. The web tools
used by the projects can generate hundreds of megabytes worth of files in your project directory that
we don't want and you won't be able to submit. The contents of the following directories contain
generated files that can safely be deleted since we can regenerate them while evaluating your
project:

• node_modules - Contains the modules fetched by npm based the specification in

package.json file.

• compiled - Contains the bundled JavaScript product by the React.js tool chain.

16

https://en.wikipedia.org/wiki/Zip_(file_format)
https://web.stanford.edu/class/cs142/submit.html
https://mochajs.org/

Zip your project directory

By having you submit the entire project directory we can be sure to get all the files and
subdirectories you add or modify when building your project. This includes the multiple hidden
files (i.e. files that start with a period) that are not normally displayed. You can create a zip file of
the project directory either from the graphical user interface or a terminal using the zip command.

From the Finder program on MacOS you can control-click on the project folder and select the
"Compress" option on the pop-up menu. On Windows, you can right click on the folder, select
"Send to..." and "Compressed (zipped) folder."

From a shell running in a terminal program with the current working directory being the
directory/folder containing your project directory, run the command:

zip -r projectN.zip projectN

where projectN is the name of your project directory.

Both of the above approached generated a ".zip" file you can upload into Canvas.

IMPORTANT: For a PASS grade you will also need to make sure your code is free of any lint
warnings and passes the provided test suite.

Video

In addition you must submit a short video tour of your photo app you implemented in the last part
of the project. The video length should be no longer 2 minutes. This should be a simple screen
recording with audio. On Mac OSX you can use Quicktime and on Windows/Linux you can use
VLC to take screen recordings. Please do not spend too much time creating the video. You will not
be graded on production quality.

Videos will likely be too large for our submission process so we need you to provide us a link in a
submission.txt file (that you include in your project directory). Uploading the video to a
video sharing website such as YouTube or Vimeo is an easy way of getting such a link.

17

https://www.youtube.com/
https://vimeo.com/

