diff --git a/Dimensionality_reduction_and_noise_removal_of_face_images_with_Non-Negative_Matrix_Factorization.ipynb b/Dimensionality_reduction_and_noise_removal_of_face_images_with_Non-Negative_Matrix_Factorization.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..2f6ef39023bb1e6248bebfd941a4dcebe0ad5f8e
--- /dev/null
+++ b/Dimensionality_reduction_and_noise_removal_of_face_images_with_Non-Negative_Matrix_Factorization.ipynb
@@ -0,0 +1 @@
+{"cells":[{"cell_type":"markdown","source":"TMA4320, spring 2022: Industrial mathematics project","metadata":{"tags":[],"cell_id":"984561f5dddb47ed833bb90a02f8d2b6","is_collapsed":false,"formattedRanges":[],"deepnote_app_coordinates":{"h":2,"w":8,"x":0,"y":1},"deepnote_cell_type":"text-cell-p"}},{"cell_type":"markdown","source":"Group: 1881","metadata":{"tags":[],"cell_id":"7a730eecc13c43ca98b7765f17cc3bcc","is_collapsed":false,"formattedRanges":[],"deepnote_app_coordinates":{"h":2,"w":8,"x":0,"y":4},"deepnote_cell_type":"text-cell-p"}},{"cell_type":"markdown","source":"# Dimensionality reduction and noise removal of face images with Non-Negative Matrix Factorization","metadata":{"tags":[],"cell_id":"4c6dce0491ae428b9d264d3882e648d5","is_collapsed":false,"formattedRanges":[],"deepnote_app_coordinates":{"h":5,"w":12,"x":0,"y":7},"deepnote_cell_type":"text-cell-h1"}},{"cell_type":"markdown","source":"Non-negative matrix factorization (NMF) is designed to extract alternative structures inherent in a given dataset. The method has a vast variety of applications, a few of which will be examined in this project. Digital images can be represented as matrices of which the elements represent each discernible pixel constituating the complete image. As was first discovered by Daniel D. Lee and H. Sebastian Seung, the inherit non-negativity of the NMF-method is a particularly powerful property when it comes to representing digital images, because colours are handily represented as positive numbers. In this project said property will be used in order to decompose the famous Cryptopunk-dataset - an algoritmically generated dataset consisting of characters randomly generated as sums of special features, i.e. hair, glasses, plain faces, etc. The factorization method will be conducted in according to the Lee and Seung's multiplicative update rule for NMF, and NMF will hereafter implicitly refer to this method, however other NMF-algorithms, such as Sequential NMF and Exact NMF, do exist. \n\nIn a broad scheme of things the NMF works in the way that it decomposes an arbitrary, non-negative, non-zero matrix $A$ into two matrices $W$ and $H$, such that $WH \\approx A$. In this way, the size of the rows and the size of the columns of $W$ and $H$, respectively, are fixed, equalling the size of the constituating matrix $A$. However, the size of the rows and the size of the columns of $W$ and $H$, respectively, are free to have any arbitrary positive whole number value. The consequence of changing this value, which will be called \"d\" or the \"$\\text{rank}$\" of the reconstruction, has great consequence for $\\textbf{I)}$ the size of the dataset, and $\\textbf{II)}$ the resemblance between the original and the reconstructed matrix. For:\n\n$\\textbf{I)}$: The rank (d) of the factorization should generally be chosen to be smaller than $n$ and $m$, so that $nd + md < nm$, i.e. so that the size of $W$ plus the size of $H$ is less than the size of $A$, making the factorization a compression of $A$. \n\n$\\textbf{II)}$: In some cases datasets can be polluted with noise or other errors. In such cases an imperfect reconstruction, meaning a reconstruction where $WH = A_{\\text{rec}} \\neq A_{\\text{original}}$, can be advantageous, and used to remove such unwanted irregularities. Noise reduction from a polluted dataset will further be examined in this project, as static noise is manually added to the Cryptopunk-dataset.\n\nThe discreprency between the original matrix and the reconstructed matrix can be measured as a norm of the difference between the two matrices. In this project the Frobenius norm, being an extension of the eucledian norm for higher dimensions, is used to calculate this norm, and \"norm\" will hereafter implicitly refer to the Frobenius norm.\n\nThe code in this project is written in Python 3.7.X and is run in notebook-format, however it is compatible with later versions of Python. Modelling is concluded using matrices, matrix-operations and special algorithms. The imported libraries are numpy, used for generating random numbers and speeding up the code, os, used for importing the Cryptopunk dataset, cv2, used for formatting said dataset, as well as matplotlib.pyplot used for formatted plotting. Numpy is also used for seeding the random numbers used in this project. In order to keep the number of global variables as low as possible, dedicated plotting functions without input nor output will be utilized, and these functions will therefore not have any content description, unlike other functional functions.","metadata":{"tags":[],"cell_id":"84cf9085aa4244f69faa763ccc23904d","deepnote_app_coordinates":{"h":5,"w":12,"x":0,"y":13},"deepnote_cell_type":"markdown"}},{"cell_type":"code","source":"\"\"\" Imported libraries \"\"\"\nimport numpy as np\nimport numpy.random as npr\nimport matplotlib.pyplot as plt\nimport os\n\n\"\"\" In order to make cv2 work: \"\"\"\n!apt update\n!apt install ffmpeg libsm6 libxext6 -y\n!pip install opencv-python\n!pip install --upgrade pip \nimport cv2\n\n\"\"\" Print options for numpy arrays, set to 3 decimals \"\"\"\nnp.set_printoptions(precision=3)\n\n\"\"\" Seeding \"\"\"\nnpr.seed(1)","metadata":{"tags":[],"cell_id":"90936e47e1dd421cbf2afeab298f3e73","source_hash":"4cf314c1","execution_start":1649447194005,"execution_millis":14714,"deepnote_app_coordinates":{"h":5,"w":12,"x":0,"y":19},"deepnote_to_be_reexecuted":false,"deepnote_cell_type":"code"},"outputs":[{"name":"stdout","text":"Hit:1 http://security.debian.org/debian-security buster/updates InRelease\nHit:2 http://deb.debian.org/debian buster InRelease\nHit:3 http://deb.debian.org/debian buster-updates InRelease\n\n\n\n29 packages can be upgraded. Run 'apt list --upgradable' to see them.\n\n\n\nffmpeg is already the newest version (7:4.1.8-0+deb10u1).\nlibsm6 is already the newest version (2:1.2.3-1).\nlibxext6 is already the newest version (2:1.3.3-1+b2).\n0 upgraded, 0 newly installed, 0 to remove and 29 not upgraded.\nRequirement already satisfied: opencv-python in /root/venv/lib/python3.9/site-packages (4.5.5.64)\nRequirement already satisfied: numpy>=1.14.5 in /shared-libs/python3.9/py/lib/python3.9/site-packages (from opencv-python) (1.22.3)\nRequirement already satisfied: pip in /root/venv/lib/python3.9/site-packages (22.0.4)\n","output_type":"stream"}],"execution_count":null},{"cell_type":"markdown","source":"## Task 1","metadata":{"tags":[],"cell_id":"a7b7c41a15004239a72f284b212ca573","is_collapsed":false,"formattedRanges":[],"deepnote_app_coordinates":{"h":5,"w":12,"x":0,"y":25},"deepnote_cell_type":"text-cell-h2"}},{"cell_type":"markdown","source":"### Non-negativity of the update algorithm\n\nIn the following section some matrix-properties will be examined - and proven. In order to prove said properties, a couple of, rather obvious, results from the axioms for the real numbers must be stated and declared. These are: $\\textbf{I) The product}$ of two non-negative numbers is a non-negative number, $\\textbf{II) the sum}$ of two non-negative numbers is a non-negative number, and finally, because the tranposed-operator does not change values, only indices, $\\textbf{III) the transposed}$ matrix of a matrix with non-negative entries produces a transposed matrix, still exclusively containing non-negative elements.\n\nThe matrix multiplication between the matrices $A$ and $B$, resulting in the matrix $C$, is the sum of the product of the respective elements of the constituating matrices. In other words, the matrix multiplication between the matrices $A$ and $B$ equals the matrix $C$, s.t.:\n\n$$\nc_{ij} = \\sum_{k=1}^n a_{ik}b_{kj}.\n$$ \n\nBy I) and II), $c_{ij}$ must be a positive number if matrix $A$ and matrix $B$ are positive matrices. \n\n\nAn analogue argument can be ascertained for the Hadamard product and the Hadamard division, where the Hadamard product and division between two matrices consisting of non-negative elements also produces a matrix exclusively consisting of non-negative elements. The Hadamard product between the matrices $A$ and $B$ equals the matrix $C$, s.t.:\n\n$$\nc_{ij} = \\sum_{i=1}^n a_{ij} b_{ij}.\n$$\n\nBy I) and II), $c_{ij}$ must be a positive number if matrix $A$ and matrix $B$ are positive matrices. \n\n\nHence, for the iterates of the multiplicative update rule:\n\n$\\hspace{5mm}$\n\n$$\nH_{k+1} = H_k \\odot (W_k^T A) \\oslash (W_k^T W_k H_k),\n$$\n\nwhere $H_k$, $W_k$ and $A$, and by III) $W_K^T$, are matrices consisting only of non-negative elements. Since all matrices in the equation consist exclusively of non-negative elements, and since the operators in the equation produce non-negative matrices when the factors are non-negative, this implies that the right hand side, and by extension the left hand side must be non-negative. Hence all iterates of $H_k$ must be non-negative. Equally, for:\n\n$$\nW_{k+1} = W_k \\odot (A H_{k+1}^T) \\oslash (W_k H_k H_{k+1}^T),\n$$\n\nwhere $W_k$, $H_k$, $H_{k+1}$ and $A$, and by III) $H_{k+1}^T$, are matrices consisting only of non-negative elements. Since all matrices consist exclusively of non-negative elements, and since all associated operators produce non-negative matrices when the factors are non-negative, this implies that the right hand side, and by extension the left hand side must be non-negative. Hence all iterates of $W_k$ must be non-negative. QED.","metadata":{"tags":[],"cell_id":"f17872c70a384db3aba49461d2950aac","deepnote_app_coordinates":{"h":5,"w":12,"x":0,"y":31},"deepnote_cell_type":"markdown"}},{"cell_type":"markdown","source":"### Convergence and matrix of ones\n\nThe multiplicative update algorithm for the matrix $H$ is as follows:\n\n$$\nH_{k+1} = H_k \\odot (W_k^T A) \\oslash (W_k^T W_k H_k).\n$$\n\nIn order to prove that $H_{k+1} = H_k$ when $(W_k^T A) \\oslash (W_k^T W_k H_k)$ is a matrix of ones, it is necessary to examine the dimensions of the matrix quotient of the Hadamard division, i.e. $(W_k^T A) \\oslash (W_k^T W_k H_k)$. If the dimension of the resulting matrix is equal to the dimension of $H$, it is obvious that a Hadamard multiplication with $H$ will return the same $H$ if all the elements in the quotient are ones. \n\nThe multiplication between a matrix with size $m \\times d$ and a matrix with size $d \\times n$ yields a matrix of dimensions $m \\times n$, i.e. the same number of rows as the first matrix, and the same number of columns as the second matrix. The dimensions of the matrices in the update algorithm are:\n\n$$ \nA: m \\times n \n$$\n$$ \nW: m \\times d \n$$\n$$\nH: d \\times n\n$$\n\nThis means that $W^T$ is a $d \\times m$ matrix. The matrix product $W_k^T A$, hence, is a multiplication of a $(d \\times n)$-matrix with an $(m \\times n)$-matrix, which produces a $(d \\times n)$-matrix. For the product between $W_k^T W_k H_k$, it is split into two products. The first, $W_k^T W_k$, produces a $(d \\times d)$-matrix. This $(d \\times d)$-matrix is then multiplied with the $(d \\times n)$-matrix, $H$, to finally produce a $(d \\times n)$-matrix. The Hadamard quotient $(W_k^T A) \\oslash (W_k^T W_k H_k)$ is then an elementwise division of two $(d \\times n)$-matrices, which produces a $(d \\times n)$-matrix, with the same dimensions as $H$. If this matrix contains only ones, an elementwise multiplication with $H$ must mean that all the elements in $H$ are multiplied by $1$. The product of this Hadamard multiplication is therefore $H$, and for the update algorithm, this means that when the Hadamard quotient $(W_k^T A) \\oslash (W_k^T W_k H_k)$, returns a matrix of ones, the algorithm has converged to a fixed point, so that $H_k = H_{k+1}$. \n\nIf the matrix product between $WH$ is equal to $A$, then the Hadamard quotient is simply a matrix divided elementwise by itself. This means that every element in the quotient are equal to 1, and the update algorithm has therefore converged.\n","metadata":{"tags":[],"cell_id":"d0deee6777084505be7069b217b637f5","deepnote_app_coordinates":{"h":5,"w":12,"x":0,"y":37},"deepnote_cell_type":"markdown"}},{"cell_type":"markdown","source":"### Zero-matrix\n\nMultiplying two numbers that are equal to zero is trivial, however dividing a number by zero will render the quotient undefined. If an initial matrix is a matrix consisting of only zero-elements a zero over zero-case will occur and the operation will produce a quotient containing undefined elements. This is a problem. In addition, it is crucial to have at least one non-negative, non-zero element in order to get the algorithm running, because when all elements are zero, every product will return zeros and the algorithm will have converged before it even began, i.e. doing nothing.\n\nIn order to fix this issue, which is necessary because matrix entries may be zero, a machine epsilon (machin error), $\\delta$ can be added, so that division by zero then becomes division by $\\delta$, which a computer can handle. The value of the machine epsilon should be as little as possible in order not to pollute the algorithm, but high enough, so that the precision of the computer can handle them. An implementation should take into consideration the bit-size of the computer, being the floating-point number precision, and use this value as a guideline to the value of $\\delta$. Hence, for a $64$-bit computer the $\\delta$-value should be somewhere around $2^{-52} \\approx 10^{-15}$, and for $32$-bit, the $\\delta$-value should be somewhere around $2^{-23} \\approx 10^{-7}$.","metadata":{"tags":[],"cell_id":"076c61f149f54d869aea21fe62bcac21","deepnote_app_coordinates":{"h":5,"w":12,"x":0,"y":43},"deepnote_cell_type":"markdown"}},{"cell_type":"markdown","source":"Throughout the rest of task 1, the following four matrices are investigated:\n\n$$ A_1 = \\begin{bmatrix} 1 & 0 \\\\ 0 & 1 \\end{bmatrix}, \\quad A_2 = \\begin{bmatrix} 1 & 2 \\\\ 1 & 1 \\\\ 1 & 2 \\end{bmatrix}, \\quad A_3 = \\begin{bmatrix} 2 & 1 & 1 \\\\ 2 & 1 & 1 \\\\ 1 & 1 & 2 \\end{bmatrix}, \\quad A_4 = \\begin{bmatrix} 2 & 1 & 0 \\\\ 1 & 2 & 3 \\\\ 0 & 3 & 3 \\end{bmatrix} $$.","metadata":{"tags":[],"cell_id":"b8d289394009462cbe1abfd3837ebb9d","deepnote_app_coordinates":{"h":5,"w":12,"x":0,"y":49},"deepnote_cell_type":"markdown"}},{"cell_type":"code","source":"def NMF(V, d, maxIterations, H = None, W = None, seed = None):\n    \"\"\"\n    Multiplicative update algorithm in according to Lee and Seung's update rule.\n    Input:\n        V:               Numpy array, Matrix (M x N) which is factorized.\n        d:               Integer, Number of columns in W and rows in H.\n        maxIterations:   Integer, Maximum number of iterations of the multiplicative update algorithm.\n    Return:\n        W:               Numpy array, Factorized matrix (M x d). \n        H:               Numpy array, Factorized matrix (d x N).\n        normsList:       Numpy array, array containing the norm for every iteration.\n    \"\"\"\n    \n    \"\"\" Setting the machine error \"\"\"\n    import struct; numberBits = 8 * struct.calcsize(\"P\")\n    if numberBits >= 64:\n        machineError = 1E-15 # 64 bit precision\n    else:\n        machineError = 1E-7  # 32 bit precision is = 1E-7\n\n    M, N = V.shape\n\n    \"\"\" Random initialization of W and H \"\"\"\n    if seed != None:\n        np.random.seed(seed)\n    if W is None:\n        W = np.random.rand(M, d) * np.sqrt(np.mean(V) / d)\n    if H is None:\n        H = np.random.rand(d, N) * np.sqrt(np.mean(V) / d)\n\n    normsList = np.zeros(maxIterations)\n\n    \"\"\" The multiplicative update algorithm \"\"\"\n    for n in range(maxIterations):\n        H_next = H * (W.T @ V)        /   (W.T @ W @ H + machineError)\n        W_next = W * (V @ H_next.T)   /   (W @ H_next @ H_next.T + machineError)\n\n        H = H_next\n        W = W_next\n        \n        normsList[n] = np.linalg.norm(V - W @ H, 'fro')\n\n\n    assert not np.min(H) < 0 or not np.min(W) < 0, \"Negative numbers in NMF\"\n\n    return W, H, normsList","metadata":{"tags":[],"cell_id":"fe25b1ada8f54f9ea4ad0cafcf7fcee8","source_hash":"724746da","execution_start":1649447208733,"execution_millis":5,"deepnote_app_coordinates":{"h":5,"w":12,"x":0,"y":55},"deepnote_to_be_reexecuted":false,"deepnote_cell_type":"code"},"outputs":[],"execution_count":null},{"cell_type":"code","source":"def ex1d():\n\n    A1 = np.array([[1, 0], [0, 1]])\n    A2 = np.array([[1, 2], [1, 1], [1, 2]])\n    d = 1\n    maxIterations = 1000\n\n    seeds = [1,2,3]\n    matrixLabel = ['A1', 'A2']\n    i = 0    # For plot titles\n\n    print(\"------------------------------------------------------------------\")\n    print(\"------------------------------------------------------------------\")\n    print(\"------------------------------------------------------------------\\n\")\n    \n    for A in [A1, A2]:\n        print(f\"A = {matrixLabel[i]}: \\n\", A, '\\n')\n\n        for seed in seeds:\n            print(f\"------ Seed = {seed} ------\")\n            W, H = NMF(A, d, maxIterations, seed = seed)[0], NMF(A, d, maxIterations, seed = seed)[1]\n            norm = np.linalg.norm(A - W @ H, 'fro')\n\n            print(\"H:  \\n\", H, '\\n')\n            print(\"W:  \\n\", W, '\\n')\n            print(\"WH: \\n\", W @ H, '\\n')\n            print(\"Norm: \", f\"{norm:1.3f}\", '\\n')          \n\n        print(\"------------------------------------------------------------------\")\n        print(\"------------------------------------------------------------------\")\n        print(\"------------------------------------------------------------------\\n\")\n        i += 1\n\n    \"\"\" Find rank of matrices, used in discussion \"\"\"\n    eigValsA1 = np.around(np.linalg.eig(A1)[0], 8)\n    eigValsA2 = np.around(np.linalg.svd(A2)[1], 8)\n\n    print(r\"Singular values (eigenvalues) of A_1: \", eigValsA1)\n    print(r\"Singular values of A_2: \", eigValsA2)\n\n    print(\"Rank of A1: \", len(eigValsA1[eigValsA1 != 0]))\n    print(\"Rank of A2: \", len(eigValsA2[eigValsA2 != 0]))\nex1d();","metadata":{"tags":[],"cell_id":"dc928a91db49404cac1821f0a5c4f8fb","source_hash":"73c89f0f","execution_start":1649447208976,"execution_millis":795,"deepnote_app_coordinates":{"h":5,"w":12,"x":0,"y":61},"deepnote_to_be_reexecuted":false,"deepnote_cell_type":"code"},"outputs":[{"name":"stdout","text":"------------------------------------------------------------------\n------------------------------------------------------------------\n------------------------------------------------------------------\n\nA = A1: \n [[1 0]\n [0 1]] \n\n------ Seed = 1 ------\nH:  \n [[0.851 1.47 ]] \n\nW:  \n [[0.295]\n [0.509]] \n\nWH: \n [[0.251 0.434]\n [0.434 0.749]] \n\nNorm:  1.000 \n\n------ Seed = 2 ------\nH:  \n [[3.232 0.192]] \n\nW:  \n [[0.308]\n [0.018]] \n\nWH: \n [[0.996 0.059]\n [0.059 0.004]] \n\nNorm:  1.000 \n\n------ Seed = 3 ------\nH:  \n [[0.968 1.244]] \n\nW:  \n [[0.389]\n [0.501]] \n\nWH: \n [[0.377 0.485]\n [0.485 0.623]] \n\nNorm:  1.000 \n\n------------------------------------------------------------------\n------------------------------------------------------------------\n------------------------------------------------------------------\n\nA = A2: \n [[1 2]\n [1 1]\n [1 2]] \n\n------ Seed = 1 ------\nH:  \n [[1.194 2.109]] \n\nW:  \n [[0.921]\n [0.562]\n [0.921]] \n\nWH: \n [[1.1   1.943]\n [0.671 1.186]\n [1.1   1.943]] \n\nNorm:  0.411 \n\n------ Seed = 2 ------\nH:  \n [[1.94  3.427]] \n\nW:  \n [[0.567]\n [0.346]\n [0.567]] \n\nWH: \n [[1.1   1.943]\n [0.671 1.186]\n [1.1   1.943]] \n\nNorm:  0.411 \n\n------ Seed = 3 ------\nH:  \n [[1.369 2.419]] \n\nW:  \n [[0.803]\n [0.49 ]\n [0.803]] \n\nWH: \n [[1.1   1.943]\n [0.671 1.186]\n [1.1   1.943]] \n\nNorm:  0.411 \n\n------------------------------------------------------------------\n------------------------------------------------------------------\n------------------------------------------------------------------\n\nSingular values (eigenvalues) of A_1:  [1. 1.]\nSingular values of A_2:  [3.44  0.411]\nRank of A1:  2\nRank of A2:  2\n","output_type":"stream"}],"execution_count":null},{"cell_type":"code","source":"def ex1e():\n    A1 = np.array([[1, 0], [0, 1]])\n    A2 = np.array([[1, 2], [1, 1], [1, 2]])\n    d = 2\n    \n    maxIterationsList = [10, 100, 1000]\n    seeds = [1,2,3]\n\n    print(\"------------------------------------------------------------------\")\n    print(\"------------------------------------------------------------------\")\n    print(\"------------------------------------------------------------------\\n\")\n\n    matrixLabel = ['A1', 'A2']\n    i = 0    # For plot titles\n\n    for A in [A1, A2]:\n        print(f\"A = {matrixLabel[i]}: \\n\", A, '\\n')\n        for maxIterations in maxIterationsList:\n            print(\"------------------------------------------------------------------\")\n            print(\" Max iterations = \", maxIterations)\n            print(\"------------------------------------------------------------------ \\n\")\n            for seed in seeds:\n                print(f\"------ Seed = {seed} ------\")\n                W, H = NMF(A, d, maxIterations, seed = seed)[0], NMF(A, d, maxIterations, seed = seed)[1]\n                norm = np.linalg.norm(A - W @ H, 'fro')\n                #norm = A W @ H\n\n                print(\"H: \\n\", H, '\\n')\n                print(\"W: \\n\", W, '\\n')\n                print(\"WH: \\n\", W @ H, '\\n')\n                print(\"Norm: \", f\"{norm:1.3}\", '\\n')\n        \n        print(\"------------------------------------------------------------------\")\n        print(\"------------------------------------------------------------------\")\n        print(\"------------------------------------------------------------------\\n\")\n        i += 1\n\n    \"\"\" Check rank of matrices, for discussion \"\"\"\n    eigValsA1 = np.around(np.linalg.eig(A1)[0], 8)\n    eigValsA2 = np.around(np.linalg.svd(A2)[1], 8)\n\n    print(r\"Singular values (eigenvalues) of A_1: \", eigValsA1)\n    print(r\"Singular values of A_2: \", eigValsA2)\n\n    print(\"Rank of A1: \", len(eigValsA1[eigValsA1 != 0]))\n    print(\"Rank of A2: \", len(eigValsA2[eigValsA2 != 0]))\nex1e()","metadata":{"tags":[],"cell_id":"28a433db55bb45b2b63e9f790ec7a72e","source_hash":"63a9d785","execution_start":1649447209894,"execution_millis":1682,"deepnote_app_coordinates":{"h":5,"w":12,"x":0,"y":67},"deepnote_to_be_reexecuted":false,"deepnote_cell_type":"code"},"outputs":[{"name":"stdout","text":"------------------------------------------------------------------\n------------------------------------------------------------------\n------------------------------------------------------------------\n\nA = A1: \n [[1 0]\n [0 1]] \n\n------------------------------------------------------------------\n Max iterations =  10\n------------------------------------------------------------------ \n\n------ Seed = 1 ------\nH: \n [[2.632e+00 0.000e+00]\n [1.573e-03 2.193e+00]] \n\nW: \n [[3.800e-01 2.022e-04]\n [0.000e+00 4.561e-01]] \n\nWH: \n [[1.000e+00 4.434e-04]\n [7.175e-04 1.000e+00]] \n\nNorm:  0.000843 \n\n------ Seed = 2 ------\nH: \n [[2.117e+00 3.276e-04]\n [0.000e+00 3.441e+00]] \n\nW: \n [[4.724e-01 0.000e+00]\n [4.518e-05 2.906e-01]] \n\nWH: \n [[1.000e+00 1.548e-04]\n [9.564e-05 1.000e+00]] \n\nNorm:  0.000182 \n\n------ Seed = 3 ------\nH: \n [[2.913e+000 5.378e-004]\n [4.239e-117 1.016e+000]] \n\nW: \n [[3.433e-001 1.105e-186]\n [3.917e-005 9.838e-001]] \n\nWH: \n [[1.000e+00 1.846e-04]\n [1.141e-04 1.000e+00]] \n\nNorm:  0.000217 \n\n------------------------------------------------------------------\n Max iterations =  100\n------------------------------------------------------------------ \n\n------ Seed = 1 ------\nH: \n [[2.632 0.   ]\n [0.    2.193]] \n\nW: \n [[0.38  0.   ]\n [0.    0.456]] \n\nWH: \n [[1. 0.]\n [0. 1.]] \n\nNorm:  6.47e-16 \n\n------ Seed = 2 ------\nH: \n [[2.117 0.   ]\n [0.    3.441]] \n\nW: \n [[0.472 0.   ]\n [0.    0.291]] \n\nWH: \n [[1. 0.]\n [0. 1.]] \n\nNorm:  5.55e-16 \n\n------ Seed = 3 ------\nH: \n [[2.913 0.   ]\n [0.    1.016]] \n\nW: \n [[0.343 0.   ]\n [0.    0.984]] \n\nWH: \n [[1. 0.]\n [0. 1.]] \n\nNorm:  1.13e-15 \n\n------------------------------------------------------------------\n Max iterations =  1000\n------------------------------------------------------------------ \n\n------ Seed = 1 ------\nH: \n [[2.632 0.   ]\n [0.    2.193]] \n\nW: \n [[0.38  0.   ]\n [0.    0.456]] \n\nWH: \n [[1. 0.]\n [0. 1.]] \n\nNorm:  7.11e-16 \n\n------ Seed = 2 ------\nH: \n [[2.117 0.   ]\n [0.    3.441]] \n\nW: \n [[0.472 0.   ]\n [0.    0.291]] \n\nWH: \n [[1. 0.]\n [0. 1.]] \n\nNorm:  4.97e-16 \n\n------ Seed = 3 ------\nH: \n [[2.913 0.   ]\n [0.    1.016]] \n\nW: \n [[0.343 0.   ]\n [0.    0.984]] \n\nWH: \n [[1. 0.]\n [0. 1.]] \n\nNorm:  1.16e-15 \n\n------------------------------------------------------------------\n------------------------------------------------------------------\n------------------------------------------------------------------\n\nA = A2: \n [[1 2]\n [1 1]\n [1 2]] \n\n------------------------------------------------------------------\n Max iterations =  10\n------------------------------------------------------------------ \n\n------ Seed = 1 ------\nH: \n [[0.553 2.258]\n [2.079 2.621]] \n\nW: \n [[3.280e-01 4.530e-01]\n [9.370e-05 4.199e-01]\n [5.111e-01 3.289e-01]] \n\nWH: \n [[1.123 1.928]\n [0.873 1.101]\n [0.967 2.016]] \n\nNorm:  0.219 \n\n------ Seed = 2 ------\nH: \n [[1.424 3.327]\n [1.761 1.107]] \n\nW: \n [[0.596 0.044]\n [0.2   0.362]\n [0.503 0.23 ]] \n\nWH: \n [[0.928 2.033]\n [0.922 1.066]\n [1.122 1.928]] \n\nNorm:  0.192 \n\n------ Seed = 3 ------\nH: \n [[1.369 0.91 ]\n [0.497 2.107]] \n\nW: \n [[0.479 0.737]\n [0.583 0.253]\n [0.502 0.721]] \n\nWH: \n [[1.022 1.989]\n [0.924 1.065]\n [1.045 1.976]] \n\nNorm:  0.115 \n\n------------------------------------------------------------------\n Max iterations =  100\n------------------------------------------------------------------ \n\n------ Seed = 1 ------\nH: \n [[0.365 2.573]\n [2.3   2.3  ]] \n\nW: \n [[4.529e-01 3.629e-01]\n [4.400e-05 4.348e-01]\n [4.529e-01 3.629e-01]] \n\nWH: \n [[1. 2.]\n [1. 1.]\n [1. 2.]] \n\nNorm:  1.28e-05 \n\n------ Seed = 2 ------\nH: \n [[1.47  3.357]\n [1.716 1.014]] \n\nW: \n [[0.568 0.094]\n [0.164 0.442]\n [0.565 0.101]] \n\nWH: \n [[0.996 2.002]\n [1.    1.   ]\n [1.004 1.998]] \n\nNorm:  0.00596 \n\n------ Seed = 3 ------\nH: \n [[1.421 0.868]\n [0.451 2.142]] \n\nW: \n [[0.467 0.744]\n [0.637 0.208]\n [0.467 0.744]] \n\nWH: \n [[1. 2.]\n [1. 1.]\n [1. 2.]] \n\nNorm:  2.33e-09 \n\n------------------------------------------------------------------\n Max iterations =  1000\n------------------------------------------------------------------ \n\n------ Seed = 1 ------\nH: \n [[0.365 2.573]\n [2.3   2.3  ]] \n\nW: \n [[4.529e-01 3.629e-01]\n [4.400e-05 4.348e-01]\n [4.529e-01 3.629e-01]] \n\nWH: \n [[1. 2.]\n [1. 1.]\n [1. 2.]] \n\nNorm:  8.31e-16 \n\n------ Seed = 2 ------\nH: \n [[1.47  3.357]\n [1.715 1.014]] \n\nW: \n [[0.566 0.098]\n [0.164 0.442]\n [0.566 0.098]] \n\nWH: \n [[1. 2.]\n [1. 1.]\n [1. 2.]] \n\nNorm:  1.23e-15 \n\n------ Seed = 3 ------\nH: \n [[1.421 0.868]\n [0.451 2.142]] \n\nW: \n [[0.467 0.744]\n [0.637 0.208]\n [0.467 0.744]] \n\nWH: \n [[1. 2.]\n [1. 1.]\n [1. 2.]] \n\nNorm:  1.31e-15 \n\n------------------------------------------------------------------\n------------------------------------------------------------------\n------------------------------------------------------------------\n\nSingular values (eigenvalues) of A_1:  [1. 1.]\nSingular values of A_2:  [3.44  0.411]\nRank of A1:  2\nRank of A2:  2\n","output_type":"stream"}],"execution_count":null},{"cell_type":"markdown","source":"NMF is performed for matrices $A_1$ and $A_2$, with three different seeds in order to explore whether the algorithm returns different results for different initializations. It is clear to see that the elements in $W$ and $H$ change for different seeds for both matrices. For $A_1$, even the matrix product $WH$ vary, meaning that convergence does not imply a unique solution, $WH$. For $A_2$, however, the NMF returns the same matrix $WH$ for each seed, meaning that the solution might be unique. This means that the norm only has a global minimum, not any locals, so that it converges to the same minimum for every initialization. \n\nFor both matrices, the norm converges to the same value for all three initializations, so this quantity is unique for a rank 1 approximation for both matrices.\n\nNMF for $A_1$ and $A_2$ yield different results with regards to the norm. The NMF is conducted using $d=1$, i.e. a rank 1 approximation. Matrix $A_1$ is recreated with a resulting norm of 1, while matrix $A_2$ is recreated with a resulting norm of 0.41. To understand why $A_2$ is reconstructed with higher precision, despite it having more elements than $A_1$, it is necessary to examine the singular values of the different matrices. $A_1$ has two singular values (equal to eigenvalues since the matrix is square), both 1. This means that both singular vectors (eigenvectors) are equally important in constructing the matrix. A rank 1 approximation, meaning that $W$ contains at most one basis vector, is therefore not sufficient to give a good reconstruction of $A_1$. $A_2$ also has two singular values, one equal to 3.44 and one equal to 0.41. Since one is much larger than the other, more information of the matrix is contained in the subspace spanned by a singular vector associated with the larger singular value. Therefore, a rank 1 approximation produces a better reconstruction for $A_2$ than for $A_1$. ","metadata":{"tags":[],"cell_id":"b470dfead1d2445b9c4898a498ca5dca","deepnote_app_coordinates":{"h":5,"w":12,"x":0,"y":73},"deepnote_cell_type":"markdown"}},{"cell_type":"markdown","source":"For $d=2$, the norm converges to (practically) zero for both matrices given enough iterations (~$10^{-15}$ is the machine zero). This is to be expected, as both matrices is of rank 2. However, different seeds return different $W$ and $H$, so the initialization might influnce the rate at which the algorithm converges.","metadata":{"tags":[],"cell_id":"4799b8b8da7e4a9baec468cfe0ee5587","deepnote_app_coordinates":{"h":5,"w":12,"x":0,"y":79},"deepnote_cell_type":"markdown"}},{"cell_type":"code","source":"def ex1f():\n    A3 = np.array([[2, 1, 1], [2, 1, 1], [1, 1, 2]])\n    A4 = np.array([[2, 1, 0], [1, 2, 3], [0, 3, 3]])\n\n    eigValsA3 = np.around(np.linalg.eig(A3)[0], 8)\n    eigValsA4 = np.around(np.linalg.eig(A4)[0], 8)\n\n    eigVecsA3 = np.linalg.eig(A3)[1]\n    eigVecsA4 = np.linalg.eig(A4)[1]\n\n    print(f\"Eigenvalues of A3: \\n {eigValsA3} \\n\")\n    print(\"Rank of A3: \\n      \", len(eigValsA3[eigValsA3 != 0]), '\\n')\n    print(f\"Eigenvectors of A3: \\n {eigVecsA3}\", '\\n')\n\n    print(f\"Eigenvalues of A4: \\n {eigValsA4}, \\n\")\n    print(\"Rank of A4: \\n      \", len(eigValsA4[eigValsA4 != 0]), '\\n')\n    print(f\"Eigenvectors of A4: \\n {eigVecsA4}\")  \nex1f()","metadata":{"tags":[],"cell_id":"50728ea9e20b4b37bea5f4aed47bb44b","source_hash":"5cb68295","execution_start":1649447211471,"execution_millis":110,"deepnote_app_coordinates":{"h":5,"w":12,"x":0,"y":85},"deepnote_to_be_reexecuted":false,"deepnote_cell_type":"code"},"outputs":[{"name":"stdout","text":"Eigenvalues of A3: \n [ 4.  1. -0.] \n\nRank of A3: \n       2 \n\nEigenvectors of A3: \n [[ 0.577  0.408  0.302]\n [ 0.577  0.408 -0.905]\n [ 0.577 -0.816  0.302]] \n\nEigenvalues of A4: \n [-0.758  2.099  5.659], \n\nRank of A4: \n       3 \n\nEigenvectors of A4: \n [[-0.273 -0.945  0.178]\n [ 0.752 -0.094  0.653]\n [-0.6    0.312  0.736]]\n","output_type":"stream"}],"execution_count":null},{"cell_type":"markdown","source":"Matrix $A_3$ has 2 non-zero eigenvalues, hence it is of rank 2, and $A_4$ has 3 non-zero eigenvalues, so it is of rank 3.\n\nAs discussed in the project description, a rank $d$ matrix is in general expected to be perfectly recreated by an NMF with $d$ components. Although this does not always hold true, and we cannot say with certainty when it does, the rank does gives some indication of which $d$ is required in the NMF to yield a perfect reconstruction, where the norm converges to zero. Fundamentally, the rank of a matrix tells us how many linearly independent vectors are needed to construct the matrix by linear combinations of (singular) vectors. In the case of NMF, the rank of the matrix therefore gives some indication of how many basis vectors are needed in $W$ to reconstruct the original matrix.\n\nWe found that $A_3$ is a rank $2$ matrix, while $A_4$ is of rank $3$. It is therefore to be expected that the NMF yields better approximations for $d=2$ than for $d=1$ for both matrices, and a perfect reconstruction for $A_3$. For $d=3$, a perfect reconstruction is expected for both matrices, however, for $A_3$ it is unnecessary to further increase $d$ if the reconstruction is already perfect for $d=2$. For $d=2$ the norm will probably converge faster as it requires less operations and thus less computational power. \n\nIn addition to the rank, it is of interest to examine whether the matrices have negative eigenvalues or negative elements in its eigenvectors. As NMF is a method that enforces non-negativity on the matrices it attempts to reconstruct, it might fail if some key features of the matrices are represented by negative eigenvalues or negative elements in their eigenvectors, meaning the construction of the matrix by linear combinations of eigenvectors is not only additive but also subtractive. This will be further discussed in later sections when working with images, as it is easier to grasp the concept with a practical example at hand. We found that $A_4$ has four negative elements in its eigenvectors, as well as one negative eigenvalue. It is therefore a risk that a perfect reconstruction by NMF is not possible. ","metadata":{"tags":[],"cell_id":"da131e76cb02496bbd9aec9898241930","deepnote_app_coordinates":{"h":5,"w":12,"x":0,"y":91},"deepnote_cell_type":"markdown"}},{"cell_type":"code","source":"def ex1g():\n    A3 = np.array([[2, 1, 1], [2, 1, 1], [1, 1, 2]])\n    A4 = np.array([[2, 1, 0], [1, 2, 3], [0, 3, 3]])\n\n    dList = [1,2,3]\n\n    maxIterations = 1000\n    kArray = np.arange(0, maxIterations, 1)\n\n    plotTitles = ['A3', 'A4']\n    i = 0    # For plot titles\n\n    for A in [A3, A4]:\n        plt.figure(figsize=(10, 5))\n        plt.axes([0, 0, 1.4, 0.8])\n        for d in dList:\n            norm = NMF(A, d, maxIterations, seed = 4)[2]\n            plt.plot(kArray, norm, label = f'd = {d}') \n        plt.legend(fontsize = 14)\n        plt.title(f'A = {plotTitles[i]}', fontsize = 18)\n        plt.xlabel('Number of iterations, k', fontsize = 16)\n        plt.ylabel(r'$||A - W_k H_k||_F$', fontsize = 16)\n        plt.semilogy()\n        plt.grid()\n        plt.show()\n        i += 1\nex1g()","metadata":{"tags":[],"cell_id":"f8fe39d3a68845fc80aee2de4f4b96a3","source_hash":"8f7aeade","execution_start":1649447211493,"execution_millis":2654,"deepnote_app_coordinates":{"h":5,"w":12,"x":0,"y":97},"deepnote_to_be_reexecuted":false,"deepnote_cell_type":"code"},"outputs":[{"data":{"text/plain":"<Figure size 720x360 with 1 Axes>","image/png":"iVBORw0KGgoAAAANSUhEUgAABDoAAAFmCAYAAACMWfqSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAB7rklEQVR4nOzdd3iUVf7+8feZ9B7SM0PovZOEkpmIASzgolgoumJX7HXddauu7m/X9StrW1cUFRF0FQQLtlXWpZgJ0lFBEAQRSaiK9Jqc3x8TRkQ6SZ5kcr+uay6YZ55yTzyMySef5xxjrUVEREREREREJBS4nA4gIiIiIiIiIlJVVOgQERERERERkZChQoeIiIiIiIiIhAwVOkREREREREQkZKjQISIiIiIiIiIhQ4UOEREREREREQkZKnSIiIiIiIiISMhQoUNERERqnDGmgTFmlzHGGmMuczrPwYwxbStzWWPMaUfYJ8IY87QxZp4xZpMxZo8x5mtjzHhjTNeaziwiIiI/UqFDREREnHApEAV8DVztcJZDXQNsAzZw5GyRQD7gB/4fcBMwFigAZhlj+tRAThERETkMY611OoOIiIjUM8aYBcD3wFvAY0ALa+1KR0MR6NQA1gDvAFuA4UC2tXbbcR6fDawGplhrz6m2oCIiInJE6ugQERGRGmWMyQW6AC8C/wb2U3u6Os4FMghkGwPEAUNP4PgNwG6gQZUnExERkeOijg4RERGpUcaYfwGXA1nW2h3GmNeBbkBja23FcZ4j7QQuucVau+84z/su0BZobq21xpj5wG5rrfcI+4cRKGqEAznA3cAQ4F5r7V9OIKOIiIhUEXV0iIiISI0xxkQDvwQmWWt3VG5+EWgInH0Cp9p4Ag/fcWZzV2YYa3/8TdCLQIExpu0RDmtbeY21wOzK4x+sfIiIiIgDwp0OICIiIvXKhUAygQLCAe8RKBZcDbx/nOc58wSu+elx7nclgV8CjT1o28vAwwSy/fowx3xdmSUSaAEMA5IITLS6/wQyioiISBXRrSsiIiJSY4wxHwEdCXRZHPxNyJ+BwYDHWrvJgVwGWA5sBwYd8vKzBDo3Glprj1q8MMbEA/OBldbaftWRVURERI5OhQ4RERGpEcaYpsAKwBxltzuttY8dx7myTuDS31tr9x7jfEXA1GOc5wJr7ZvHupgx5u/APQRWkllxnBlFRESkiujWFREREakpVxEoclwH/HCY1/8fgVtEHjuOc609gev2BqYdY5+rgT0EJkk93ISozwDXAG8ex/ViKv9MIVDYERERkRqkjg4RERGpdsYYF7AK+MFa2+kI+9xH4BaW7tbaOcc43xkncPl51trNRzlXEoHCyX+ttecdYZ8XgMuAHGvtWmNMOvDdoavEVHaazAcSgExr7c4TyCkiIiJVQB0dIiIiUhPOIrD86vNH2WcSgULHNcBRCx3W2v9WWTK4hEAXxqSj7DOJwGSlVwB/By4F7jDGvEFgQtK9QKvK1xsA16rIISIi4gx1dIiIiEi1M8a8RmCSz07W2s+Pst+XQCaQba3dVUPZ5gBdgIwjdX4YY6KoXEbWWtvaGJMH3An0ALIJrLqyHigBHrfWltREdhEREfk5FTpEREREREREJGS4nA4gIiIiIiIiIlJVVOgQERERERERkZChQoeIiIiIiIiIhAwVOkREREREREQkZKjQISIiIiIiIiIhI9zpALVJWlqabdKkidMxTtiOHTuIi4tzOoZItdD4llClsS2hTONbQpXGtoSquji2582bt8lam36411ToOEiTJk2YO3eu0zFO2LRp0ygqKnI6hki10PiWUKWxLaFM41tClca2hKq6OLaNMd8c6TXduiIiIiIiIiIiIUOFDhEREREREREJGSp0iIiIiIiIiEjIUKFDREREREREREKGCh0iIiIiIiIiEjJU6BARERERERGRkKFCh4iIiIiIiIiEDBU6RERERERERCRkqNAhIiIiIiIiIiEj3OkA1ckYEwc8BewFpllrX3Y4UtUr3w/WOp1CREREREREpFaoc4UOY8xoYACwwVrb4aDt/YDHgTDgOWvt34ELgYnW2reNMeOBkCt0fPPO32mx+A0WbLyI8ugUyiPiKA+LotwVRUVYdODvYVHsD49jb2QKGON0ZJET8kXZfrYsLHU6hkiV09iWUKbxLaFKY1tCVcXuCqcjVKk6V+gAxgBPAmMPbDDGhAH/As4E1gBzjDGTgYbA55W7lddszJox6/s48ndvp+sXDx1z3z02glKbygrrYXZFa/5X0ZUV1lMDKUVO0WcLnU4gUj00tiWUaXxLqNLYlhB0R26U0xGqVJ0rdFhrZxhjmhyyuTvwlbV2JYAx5lVgIIGiR0NgIUeYj8QYMxwYDpCZmcm0adOqJXd1+TqtnLejfAyOG0DY/h2El+8mrGJv4GEr/6zYQ0T5LmL3biRuz0Z67PyaM/fM4w/8m01xrfgqoz/fpBRiXXVuOEg9sGPnTuJiY52OIVLlNLYllGl8S6jS2JZQFbF/Z537WfhoQuUnWw/w7UHP1wA9gCeAJ40xvwDePtyB1tpRwCiA/Px8W1RUVL1Jq9iKz1ewcP4cfuO9k47pHY//wK1lsOh10uaPJe3rx+n53UToeSPkXgHRidUXWOQETZs2jbr271LkeGhsSyjT+JZQpbEtoSrUxnZIr7pird1hrb3KWntjSE5EClzc5mJiXbGM/HTkiR2Y6AbvLXDzLPjla5DSDD78IzzaAabcB1vXVk9gERERERERkWoUKoWOUiDnoOcNK7eFvLiIOM5MPJOPSz9mxpoZJ34CY6DVWXDlO3Dd/6B5byh5Ah7rCG/cAN/M1KouIiIiIiIiUmeESqFjDtDSGNPUGBMJXAxMdjhTjSlKLKJpUlP+Nutv7N6/++RP5MmDIS/CrfMg70pY8ja80A/+mQcfP6IuDxEREREREan16lyhwxjzCjATaG2MWWOMucZaux+4BfgAWAJMsNYudjJnTQo34fyxxx8p3V7Kc58/d+onTGkGvxgBv/oSBj4F8Znw0f3waDt4eQh89ZG6PERERERERKRWqnOTkVprLznC9veA92o4Tq3RPbs7/Zv0Z8ziMQxqNYisuKxTP2lUPHS9NPD4bgUsfBkWvAwvXQjuXDjzAWh62qlfR0RERERERKSK1LmODjmyO/LuwFrLE/OfqPqTpzaHvvfCHZ/BuY/Djo3w4gB47UrYsanqryciIiIiIiJyElToCCHueDfD2g3j7ZVvs/i7arpzJzwqMH/HzbOh6Hew9F0Y6YWv/ls91xMRERERERE5ASp0hJhrO15Lg6gG/GPuP7DVOY9GZCwU/RaumwoxKfDSIPA/obk7RERERERExFEqdISYhMgEbuxyI3PWzWHat9Oq/4JZHQLL0rY7D6b8Cd65Eyoqqv+6IiIiIiIiIoehQkcIGtRqEE0Sm/DIvEfYV7Gv+i8YGQuDxoDvDpj3Aky+VcUOERERERERcYQKHSEowhXBr/J/xaqtq3jty9dq5qIuF5zxZzj9Hlj4Eky+BSrKa+baIiIiIiIiIpVU6AhRpzc8ne5Z3Rn56Ui27t1aMxc1Bnr/PjBJ6cKXA7exaM4OERERERERqUEqdIQoYwx359/N1r1beXjOwzV78aLfQuFdMP9FmP5/NXttERERERERqddU6AhhbVPbck2Ha3jzqzd5d+W7NXvxvvdC50tg2t9g/tiavbaIiIiIiIjUWyp0hLgbu9xIXmYe95XcxydrP6m5CxsD5/0TmveFt++Ar/5bc9cWERERERGRekuFjhAX4Yrg0aJHaZTYiJv/ezMTvpxAha2hFVHCImDIWMhoC69dDZuW18x1RUREREREpN5SoaMeaBDdgNFnjSYvM4+/fPIXfvnuLykpLamZgkdUPFzySqDo8e+hsGtz9V9TRERERERE6i0VOuqJ5Ohknj7zaf5W+Dc27trI9f+9nv6T+jNy4UhWbVlVzRdvBENfgh9Ww2tXQvn+6r2eiIiIiIiI1FsqdNQjLuPi3Obn8t6F7/F/vf6PRomNGPnpSM5981zOe/M8Hp33KAs3LKyeTo/GBTDgUVg5DT78Q9WfX0RERERERAQIdzqA1LyosCj6N+1P/6b9WbdjHR+t/oip305l7OKxjF40mtToVIpyijit4Wn0zO5JXERc1Vw49zLYsAQ++Vdg3o68K6vmvCIiIiIiIiKVVOio57Lisri07aVc2vZStuzZQnFpMVO/ncp/Vv2HScsnEe4KJy8zj9M8p3Faw9NomtgUY8zJX/DMB2DjUnj3bshoBzndq+7NiIiIiIiISL2nQocEJUUl8Ytmv+AXzX7Bvop9LNywkI/XfMzHpR8zYu4IRswdgSfeEyx6dMvqRkx4zIldJCwcBj0Po3rD+Mvg+umQkFU9b0hERERERETqHRU65LAiXBF0y+pGt6xu3JV/F2XbyyguLebjNR/z1oq3ePXLV4kKi6JbVrdg4SMnIef4Th7TAC5+GZ47AyZcAVe8DeGR1fuGREREREREpF5QoUOOizvezZDWQxjSegh7yvcwb/08Pl7zMcWlxTw4+0EenP0gTRKbcFrD0zjNcxp5mXlEhh2leJHZHs77J0y6Bj74PfxiRM29GREREREREQlZKnTICYsKi8Lr9uJ1e7mHe1i9dTUflwZucRm/dDzjvhhHTHgMPbJ7UOguxOfx0TCh4c9P1HEQlC2AmU+CJxe6/LLm34yIiIiIiIiEFBU65JQ1SmzEpYmBCU137d/FnHVzmLFmBsWlxUz7dhoATRKb4PP48Ll95Gfl/zi3xxn3w7rP4O07AiuxuLs69TZEREREREQkBKjQIVUqJjyGXg170athL6y1rN62muLSYopLi5m0bBIvL3mZSFck+Vn5+Nw+Cj2FNL1oNObZ3vDqsMDkpHFpTr8NERERERERqaNU6JBqY4yhcWJjGic25tK2l7J7/27mr59PcVkx/lI/D899mIfnPkx2XDa+jn0oXPgGPSZeQfywtwKrs4iIiIiIiIicIP00KTUmOjwar8eL1+OFblC2vQx/mZ+S0hL+s/YTJqYnE26/ofP4MyjsOAyf20frlNa4jMvp6CIiIiIiIlJHhHShwxhzPvALIBF43lr7obOJ5GDueDeDWw1mcKvB7KvYx2cbP8M//QGKf1jK4/Mf5/H5j5ManRqc26PAXUCD6AZOxxYREREREZFarNYWOowxo4EBwAZrbYeDtvcDHgfCgOestX8/0jmstW8CbxpjGgAjABU6aqkIVwR5mXnkXfgat714LpvKPmfm2X+iePsqZqyZweQVkzEYOqR1wOv2UugppENaB8JdtXYIi4iIiIiIiANq80+JY4AngbEHNhhjwoB/AWcCa4A5xpjJBIoeDx5y/NXW2g2Vf/9j5XFS24VHwpCxpD3Ti3M/fppzr5tKeXQSX3z3RXBuj2c/f5ZnPnuGhMgECrILKPQU4nV7yYzLdDq9iIiIiIiIOKzWFjqstTOMMU0O2dwd+MpauxLAGPMqMNBa+yCB7o+fMMYY4O/A+9ba+dUcWapKQiYMHQcvnAOvX0fYLyfQMb0jHdM7cmPnG9myZwsz186kpLQEf6mfD78JNOq0bNCSQnchPo+PrhldiQyLdPiNiIiIiIiISE0z1lqnMxxRZaHjnQO3rhhjBgH9rLXXVj6/DOhhrb3lCMffBlwBzAEWWmufPsw+w4HhAJmZmXmvvvpqdbyVarV9+3bi4+OdjlHl3KXv02r506xqPIRVTS897D7WWtbuW8sXu75gye4lrNi9gnLKiTSRtIpuRduYtrSLbkdahJasratCdXyLaGxLKNP4llClsS2hqi6O7d69e8+z1uYf7rVa29FRFay1TwBPHGOfUcAogPz8fFtUVFQDyarWtGnTqIu5j8meDm9to8nCl2nivRBa9z/mITv37WT2utkUlxZTXFrMa9+/BkDjxMb43D58Hh/dsroREx5T3emlioTs+JZ6T2NbQpnGt4QqjW0JVaE2tutaoaMUyDnoecPKbRKKjIFf/APWL4LXh8PwaZDa/KiHxEbEUpRTRFFOEdZaVm9bHSx6vL78df699N9EuiLJy8wLrubSPLk5gbucREREREREpK6ra4WOOUBLY0xTAgWOi4FfOhtJqlVEDAwZB6NOh/HD4Nr/QmTccR1qjKFxYmMaJzbm0raXsqd8D/PWz6O4tJiS0hJGzB3BCEaQGZsZLHr0yO5BUlRSNb8pERERERERqS61ttBhjHkFKALSjDFrgPustc8bY24BPiCw0spoa+1iB2NKTWjQGC56Hl66CCbfGvj7SXRgRIVF4XV78bq90A3W7ViHv9SPv8zPlFVTeH3567iMi05pnYKFj3ap7QhzhVXDmxIREREREZHqUGsLHdbaS46w/T3gvRqOI05r0Rf6/BH+9xfw5EPBTad8yqy4LC5qdREXtbqI/RX7+XzT58Fuj6cWPsW/Fv6L5KhkCrIL8Hl8eN1e0mPTq+DNiIiIiIiISHWptYUOkZ8pvAvKFsCHf4TsTtCksMpOHe4Kp2tGV7pmdOXWrreyefdmZpbNxF/mx1/q5/1V7wPQukHrYLdH14yuRIRFVFkGEREREREROXUqdEjd4XLB+SPh2d7w2pVw/QxIdFfLpRpEN+CcZudwTrNzqLAVLNu8jOLSYvylfsYuHsvoRaOJDY+le1b3QOHD4yMnIefYJxYREREREZFqpUKH1C3RiTD0ZXi2D0y4HK58D8Ijq/WSLuOiTUob2qS04dqO17J973Zmr5tNSVkJxaXFTFszDYBGCY3weXwUegrJz8wnNiK2WnOJiIiIiIjIz6nQIXVPRhs4/1+Bro4PfhdYgrYGxUfG06dRH/o06oO1lm+2fhO8xeWN5W/wytJXiHBFkJuZi88d6PZomdxSS9iKiIiIiIjUABU6pG5qfwGUzoOSf4InD7o4s8qwMYYmSU1oktQkuITt/PXzg6u5PDLvER6Z9wgZMRl4PV58Hh8F2QVawlZERERERKSaqNAhdVffP0PZQnjnTshsD9mdnU5EVFgUBe4CCtwF3M3drNuxjpllMykuLeaj1R/x5ldv4jIuOqR1oNBdiNfjpUNqBy1hKyIiIiIiUkVU6JC6KywcBr0Ao06H8cNg+HSITXE61U9kxWVxQcsLuKDlBeyv2M+iTYuCt7mM/HQkT336FImRiRS4C4K3uWTEZjgdW0REREREpM5SoUPqtvh0GDIWXugPk66FS1+DWtodEe4Kp0tGF7pkdOHmLjfzw+4fmLl2ZvA2lw9WfQBAywYtKXQX4vMElrCNDKveyVZFRERERERCiQodUvc1zIf+DwVuYZn2IPT5o9OJjktydDL9m/anf9P+WGtZtnlZsNtj3JJxvLD4BWLCY+ie1R2v20uhp5BGiY2cji0iIiIiIlKrqdAhoSHvqsDkpDMeBncutDnH6UQnxBhD65TWtE5pzdUdrmbnvp3MXjeb4tJi/KV+pq+ZDkBOQk6w6NE9q7uWsBURERERETmECh0SGoyBc/4B6xbBG9fDdVMhrYXTqU5abEQsRTlFFOUUAbB66+pgt8fkFZMZ/+V4wl3h5Gbk4vP48Ll9tGrQSkvYioiIiIhIvadCh4SOiGgYOg6eqZyc9Nr/QlS806mqRKPERjRKbMQlbS5hb/leFmxYgL/UT3FZMY/Oe5RH5z1Kekw6Be4CCj2FFGQXkByd7HRsERERERGRGqdCh4SW5EYw6Hl46SKYfCsMGh3o9gghkWGR9MjuQY/sHtzFXazfsZ6SshJKykqY9u00Jq+YjMHQIa1DsNujQ1oHwl365y4iIiIiIqFPP/lI6GneB/r8CT66PzBRacHNTieqVplxmcElbMsryln03SJKSksoLitm1GejePrTp0mITKAguwCfx4fX7SUrLsvp2CIiIiIiItVChQ4JTYV3BiYn/fBPkNUJmp7mdKIaEeYKo3N6Zzqnd+bGLjeyZc8WZq6dSUlpCf5SPx9+8yEALZJb4HP78Hl85GbmEhUW5XByERERERGRqqFCh4QmY+D8kfBsH5h4FQyfDkkep1PVuKSoJPo16Ue/Jv2w1rL8h+XBbo9/L/03L37xItFh0XTL6ha8zaVxYmNNaioiIiIiInWWCh0SuqITYehLgWLHa1fAle9CeP3tXDDG0KpBK1o1aMWVHa5k576dzF0/l+LSYkrKSvh49scAeOI9wW6PHtk9iIuIczi5iIiIiIjI8VOhQ0JbRhs4/6lAoeM/v4MBjzidqNaIjYilV8Ne9GrYC4Bvt34bWMK2zM/bK99mwrIJhJtwumR0CXZ7tE5pjcu4HE4uIiIiIiJyZCp0SOhrfz6U3gYlT4AnD7pe6nSiWiknMYeLEy/m4jYXs698X2AJ2zI//lI/j89/nMfnP05qdGpwQtMCdwEp0SlOxxYREREREfkJFTqkfuh7H5QtgHfuhMz24O7idKJaLSIsgu7Z3eme3Z078+5k486NlJSV4C/zM2PNjOAStu1S2+Hz+Cj0FNIxraOWsBUREREREcfppxKpH8LCYdALMOp0GH8ZXD8dYtWNcLzSY9MZ2GIgA1sMpLyinC+++yLY7fHc588x6rNRJEQk0NPdE6/bi8/tIzs+2+nYIiIiIiJSD6nQIfVHfDoMGQcv9INJ18ClE8EV5nSqOifMFUbH9I50TO/IDZ1vYMueLcxaOytY+JjyzRQAmic1x+vxUuguJC8rT0vYioiIiIhIjVChQ+qXhnlwzsPw9u0w9W/Q909OJ6rzkqKSOKvJWZzV5Cystaz4YUWw6DF+6XjGfTGO6LBo8rLyKHQX4vV4aZrYVEvYioiIiIhItVChQ+qfvCthzVz4eAR4cqHNL5xOFDKMMbRo0IIWDVpwRfsr2LV/F3PXzQ0WPh6a8xDMAXecO7iSS4/sHsRHxjsdXUREREREQkTIFzqMMXHAdODP1tp3nM4jtcQ5I2D9InjjBrhuKqS1cDpRSIoJj+G0hqdxWsPTAFizbU1gUtNSP++ufJfXlr1GuAmnU3onCj2F+Dw+2qS00RK2IiIiIiJy0mptocMYMxoYAGyw1nY4aHs/4HEgDHjOWvv3Y5zqHmBCtQWVuikiGoaMhWdOh/GXwrUfQZS6Cqpbw4SGDGk9hCGth7CvfB8LNy4MFj6eWPAETyx4gpToFLxub/AhIiIiIiJyImptoQMYAzwJjD2wwRgTBvwLOBNYA8wxxkwmUPR48JDjrwY6A18A0TWQV+qa5EYwaDS8dCFMviWwKovmjagxEWERdMvqRresbtyeezubdm1iZtlMikuL8Zf6eWdloAErJzKHz+Z/hs/jo1N6JyJcEQ4nFxERERGR2qzWFjqstTOMMU0O2dwd+MpauxLAGPMqMNBa+yCB7o+fMMYUAXFAO2CXMeY9a21FdeaWOqZ5b+h7L/z3z+DJB+8tTieqt9Ji0ji3+bmc2/xcKmwFS75bQnFpMe8teY/Ri0bz7OfPEh8RT4/sHsH5Pdzxbqdji4iIiIhILWOstU5nOKLKQsc7B25dMcYMAvpZa6+tfH4Z0MNae9SfTo0xVwKbDjdHhzFmODAcIDMzM+/VV1+t0vdQE7Zv3058vG67OGnW0n7xQ6RtmsWnnR/ghwYdnU4kB9m+fTuuWBfLdi9jya4lLNm1hM3lmwHIDM+kbUxb2sa0pUVUCyJdkQ6nFTl++uyWUKbxLaFKY1tCVV0c2717955nrc0/3Gv1otBxvPLz8+3cuXOr4lQ1atq0aRQVFTkdo27bvRWe6ws7v4frZ0CSx+lEUunQ8W2t5estX1NcWkxJWQlz1s1hb8VeosKiyMvMw+f24fP4aJbUTEvYSq2mz24JZRrfEqo0tiVU1cWxbYw5YqGj1t66cgSlQM5BzxtWbhM5NdGJMPQleLYPTLgcrnoPwqOcTiWHYYyhWXIzmiU34/L2l7Nr/y7mrZ+Hv9SPv8zPw3Mf5uG5D5MVlxUsevTI7kFiZKLT0UVEREREpAbUtULHHKClMaYpgQLHxcAvnY0kISO9NZz/VKDQ8Z/fwoBHnU4kxyEmPIZCTyGFnkIAyraX4S/z4y/188GqD5i0fBJhJozO6Z3xur0Uegppm9pWS9iKiIiIiISoWlvoMMa8AhQBacaYNcB91trnjTG3AB8QWGlltLV2sYMxJdS0Gwi+28H/OHjyoOswpxPJCXLHuxncajCDWw1mX8U+Ptv4WbDb48mFT/LkwidpENWAAncBhZ5CCtwFpMWkOR1bRERERESqSK0tdFhrLznC9veA92o4jtQnfe6FsgXwzl2Q2R7cXZ1OJCcpwhVBXmYeeZl53JZ7G9/t+o6Za2fiL/VTUlbCe18HPkraprTF6/bi8/jokt6FiDAtYSsiIiIiUlfV2kKHiGPCwmHQC/DM6TD+crh+OsSmOJ1KqkBqTCoDmg1gQLMBVNgKln6/NNjt8eLiF3l+0fPERcTRPas7hZ5CvG4vDRMaOh1bREREREROgAodIocTlwZDx8LofjDxahg2CVxhTqeSKuQyLtqltqNdajuu63Qd2/ZuY/ba2cH5PaZ+OxWAJolN8Hl8eN1eumV1IyY8xuHkIiIiIiJyNCp0iByJJw/OGQFv3wZT/wp973U6kVSjhMgE+jbuS9/GfbHWsmrrKvylforLipm4bCIvL3mZSFdkYAlbjw+f20fz5OZawlZEREREpJZRoUPkaPKugNK58PE/wJ0LbQc4nUhqgDGGpklNaZrUlGHthrF7/27mr58f7PYYMXcEIxhBZmxmsNujZ3ZPkqKSnI4uIiIiIlLvqdAhciz9H4Z1n8MbN0D6VEhr6XQiqWHR4dF4PV68Hi+/7vZr1u1YF5zbY8qqKby+/HVcxkWntE54PV4K3YW0S21HmG53EhERERGpcSp0iBxLRDQMGQejTofxw+DajyAq3ulU4qCsuCwuanURF7W6iP0V+/l80+cUlxZTUlrCyIUjeWrhUyRFJeHN9gY7PtJj052OLSIiIiJSL5x0ocMYc6O1dmRVhhGptZJzAiuxjDsf3roZBo8Bzc0gQLgrnK4ZXema0ZVbu97K5t2bmVk2M3iby/ur3gegdYPWwbk9umZ01RK2IiIiIiLV5FQ6Oq4DRoKKHlJPNDsd+t4H/70PZj4J3ludTiS1UIPoBpzT7BzOaXYOFbaCZZuXBbo9ykoYu3gsoxeNJjY8lu5Z3QOFD4+PnIQcp2OLiIiIiISMUyl0HPzr7GDRQySk+W6H0nkw5V7I7gxNezmdSGoxl3HRJqUNbVLacG3Ha9mxbwez1s6ipKyE4tJipq2ZBkCjhEbBbo9uWd2IjYh1NriIiIiISB12KoUOW2UpROoKY+D8p+DZpfDaVXD9dEhq6HQqqSPiIuLo06gPfRr1wVrL6m2rKS4txl/q543lb/DK0leIcEWQm5mLzx3o9miZ3FJL2IqIiIiInIBTKXS0NsZMAuYA8caYeGvt9irKJVJ7RSXA0Jfh2T4w4XK46n0Ij3I6ldQxxhgaJzamcWJjLm17KXvK9wSWsK1czeWReY/wyLxHyIjJwOsJTGpakF2gJWxFRERERI7hVAodhUAekA9sATYaY8qAhcBCa+1fTj2eSC2V3irQ2THhMnj/Hjj3MacTSR0XFRZFgbuAAncBd3M363asY2bZTIpLi/lo9Ue8+dWbuIyLDmkdKHQX4vV46ZDaQUvYioiIiIgc4qQLHdbaBcAC4DkAY0wE0JFA4SOvStKJ1GbtzgPfHeB/DDx5kHuZ04kkhGTFZXFBywu4oOUF7K/Yz6JNi/CX+QNL2H46kqc+fYrEyEQK3AXB21wyYjOcji0iIiIi4rhT6ej4CWvtPmB+5UOkfujzJyhbAO/+CjLbgyfX6UQSgsJd4XTJ6EKXjC7c3OVmftj9AzPXzgze5vLBqg8AaNmgZbDbIzcjl8iwSIeTi4iIiIjUvCordIjUS2HhMGg0jCoKzNcxfDrEpTqdSkJccnQy/Zv2p3/T/lhrWbZ5Gf4yP/5SP+OWjOOFxS8QEx5D96zueN1eCj2FNEps5HRsEREREZEaccxChzHm8lO5gLV27KkcL1LrxaXBkLEwuh9MuhqGvQ6aN0FqiDGG1imtaZ3Smqs7XM3OfTuZvW52cDWX6WumA9AwviE+j49CTyHds7prCVsRERERCVnH09Ex5hTObwEVOiT0eXLhFyNg8q3wv/8HZ9zndCKpp2IjYinKKaIopwiA1VtXB7s9Jq+YzPgvxxPuCic3Ixefx4fP7aNVg1ZawlZEREREQsYxCx3WWldNBBGp83IvhzVzofiRQOGj7blOJxKhUWIjGiU24pI2l7C3fC8LNiwIzu3x6LxHeXTeo6THpFPgLqDQU0hBdgHJ0clOxxYREREROWmao0OkKp3zMKxfBG/cCGmtA8vQitQSkWGR9MjuQY/sHtzFXWzYuYGSshL8pX6mfTuNySsmYzB0SOsQ7PbokNaBcJf+VyEiIiIidYe+exWpSuFRgfk6njkdxg+D6z6CqASnU4kcVkZsBue3OJ/zW5xPeUU5i79bjL/UT3FZMaM+G8XTnz5NQmQCPbN7UugpxOv2khWX5XRsEREREZGj0mSkIlUtqWFgJZZx58NbN8PgF0HzH0gtF+YKo1N6Jzqld+LGLjeyZc8WZq6dSUlpoONjyjdTAGiR3AKf24fP4yM3M5eosCiHk4uIiIiI/JQmIxWpDs1OhzP+DFPuhZInwHe704lETkhSVBL9mvSjX5N+WGtZ/sNySkpLKC4r5t9L/82LX7xIdFg03bK6BW9zaZzYWJOaioiIiIjjNBmpSHXx3gal8+C/f4bsLoHih0gdZIyhVYNWtGrQiis7XMnOfTuZu34uxaXFlJSV8PHsjwHwxHuC3R49snsQFxHncHIRERERqY80R4dIdTEGBv4LNiyFiVfB9TMCt7WI1HGxEbH0atiLXg17AfDttm+D3R5vr3ybCcsmEG7C6ZLRJdjt0TqlNS6jurmIiIiIVL9TLnQYY/pba9+vijAiIScqAS5+GUb1hgmXw1XvByYsFQkhOQk5DG0zlKFthrKvfB8LNy6kuLQYf6mfx+c/zuPzHyc1OhWv24vP46PAXUBKdIrTsUVEREQkRFVFR8cDxpgF1tp1BzYYY6621o6ugnOfEmOMC/gLkAjMtda+6HAkqY/SWsIFIwOrsLz/Gzj3cacTiVSbiLAIumV1o1tWN+7Mu5ONOzcGlrAt8/Nx6ce8vfJtDIZ2qe3weXwUegrpmNZRS9iKiIiISJWpiu8s7wBeMsacaa21xpg/AOcCp1ToMMaMBgYAG6y1HQ7a3g94HAgDnrPW/v0opxkINAS+A9acSh6RU9L2XCi8E4ofBU8e5J7SYkYidUZ6bDoDWwxkYIuBlFeU88V3X+Av8+Mv9fPc588x6rNRJEQk0NPdM9Dx4faRHZ/tdGwRERERqcNOutBhjDE2wG+MmQ78xRiTALQE+lRBtjHAkxy0aosxJgz4F3AmgcLFHGPMZAJFjwcPOf5qoDVQYq19xhgzEfioCnKJnJw+f4KyBfDu3ZDZATy5TicSqVFhrjA6pnekY3pHbuh8A1v2bGHW2lnBwseBJWybJzXH6/FS6C4kNzOX6PBoh5OLiIiISF1yKh0dPxhj5gOzgLkEbhEpAQZYaytONZi1doYxpskhm7sDX1lrVwIYY14FBlprHyTQ/fETxpg1wN7Kp+WnmknklLjC4KLRMOr0wHwdw6dDXKrTqUQckxSVxFlNzuKsJmdhrWXFDyuCRY/xS8cz7otxRIVFkZ+VT6G7EK/HS9PEplrCVkRERESOylhrT+5AY+KBPALFh26Vf4YD84D51tr7TzlcoNDxzoFbV4wxg4B+1tprK59fBvSw1t5yhONjgX8CO4Gl1tp/HWaf4cBwgMzMzLxXX331VGPXuO3btxMfH+90DDlO8du+Inf+b9mS1JbPOv0Z6wpzOlKtpvFdP+2t2MvyPctZsmsJS3YtYcP+DQCkhKXQNqYtbWPa0iq6FTGuGIeTnjyNbQllGt8SqjS2JVTVxbHdu3fvedba/MO9dtIdHdba7cD0ygcAxph0fix8OM5auxO45hj7jAJGAeTn59uioqIaSFa1pk2bRl3MXX8VgSeKBpNv4fTyGdDnlGuCIU3ju/46i7OCf1+zbU1gUtNSP7PWzcK/3U+4CadTeicKPYX4PD7apLSpU0vYamxLKNP4llClsS2hKtTG9jELHcaY+4EFwEJr7aqj7Wut3Qi8W/moDqVAzkHPG1ZuE6lbci+D0nngfywwOWm785xOJFKrNUxoyJDWQxjSegj7Kvbx6YZPg7e5PLHgCZ5Y8AQp0Sl43d7gIzVGt4aJiIiI1EfH09HxJ8ACGGO2AAsrHwsqH0ustTU1/8UcoKUxpimBAsfFwC9r6NoiVav/Q7Duc3jzRkhvA+mtnE4kUidEuCLIz8onPyuf23NvZ9OuTcwsmxksfLyz8h0A2qa0DXZ7dErvRIQrwuHkIiIiIlITjqfQkQ50OeRx+0Gv7zHGLKay8GGtHVkVwYwxrwBFQFrlpKL3WWufN8bcAnxAYKWV0dbaxVVxPZEaFx4FQ8bCM71g/KVw3f8gKsHpVCJ1TlpMGuc2P5dzm59Lha1gyXdLgkWP0YtG8+znzxIfEU+P7B543V4KPYW4491OxxYRERGRanLMQoe19jsCy7J+BGCMSQa+J1Ds2MuPxY9fEpgPo0oKHdbaS46w/T3gvaq4hojjkjww+AUYOxDevClQ+NCKEiInzWVctE9rT/u09gzvNJyte7cye+1sikuL8Zf5+Wh1YJXxpklN8bl9+Dw+8jPztYStiIiISAg5mclIDyzT8qm1dsaBjSaw3p9670VOVNNecOYD8OEfwf84FN7hdCKRkJEYmcgZjc/gjMZnYK3l6y1fU1xaTElZCa8te42XlrxEVFgUeZl5wcJHs6RmWsJWREREpA476VVXDmUD69R+WVXnE6lXCm4JTE760f3g7gLNipxOJBJyjDE0S25Gs+RmXN7+cnbv38289fOC3R4Pz32Yh+c+TFZcVrDo0SO7B4mRiU5HFxEREZETUGWFDhE5BcbAeU/ChiUw8WoYPh2Sc459nIictOjwaHyeQEEDoGx7Gf4yPyWlJXyw6gMmLZ9EmAmjU3onfG4fhZ5C2qa2rVNL2IqIiIjUR8ezvGxXYJG1dl8N5BGpv6LiYehLMKo3TLgcrnofIjRvgEhNcce7GdxqMINbDWZfxT4+2/gZ/lI//jI/Ty58kicXPkmDqAYUuAvweXx43V7SYtKcji0iIiIihziejo55wD5jzBJgPrCcwDwdkdUZTKReSmsJFzwdWIXl/V/Def90OpFIvRThiiAvM4+8zDxuy72N73Z9x8y1M/GX+ikpK+G9rwNzYrdNaYvX7cXn8dElvQsRYVrCVkRERMRpx1PoGM6PK6sMAuIrt39gjPkaWEjl0rLAQmttWZWnFKlP2g6A034FH/8DPPmQd4XTiUTqvdSYVAY0G8CAZgOosBUs/X5psNvjxcUv8vyi54mLiKN7VncKPYV43V4aJjR0OraIiIhIvXQ8y8s+d/BzY0xLfix8dAW8wIUHdgfCqjShSH3U+w9QtgDeuxuyOoAnz+lEIlLJZVy0S21Hu9R2XNfpOrbv3c6sdbMChY9SP1O/nQpAk8QmwVtcumV1IyY8xuHkIiIiIvXDCU9Gaq1dTuD2ldcObDPGZAC5QOeqiyZSj7nC4KLn4ZnTYfzlcP10iNNcACK1UXxkPH0b9aVvo75Ya1m1dVWw22Pisom8vORlIl2R5GbmUugpxOf20Ty5udOxRURERELWKa+6Yozpb619H/hP5UNEqkJsCgwdB8+fFViJZdjrEKaFkkRqM2MMTZOa0jSpKcPaDWP3/t3MXz8ff1mg22PE3BGMYAQZsRk0dzVnz6o99MzuSVJUktPRRUREREJGVfzU9IAxZoG1dt2BDcaYq621o6vg3CL1m7sLDHgE3roZ/vcXOPN+pxOJyAmIDo/G6/Hi9Xj5dbdfs27HumC3R/HqYmZOn4nLuOiU1gmvx0uhu5B2qe0Ic+kuUBEREZGTVRWFjjuAl4wxZ1prrTHmD8C5gAodIlWh6zBYMxf8jwXm6mh3ntOJROQkZcVlcVGri7io1UV8NPUjUtqnBOf2GLlwJE8tfIqkqCS82d7g/B7pselOxxYRERGpU0660GGMMTbAb4yZDvzFGJMAtAT6VFlCEYH+D8G6z+DNGyG9DaS3cjqRiJyiMBNG14yudM3oyi1db2Hz7s3MLJsZvM3l/VXvA9C6Qetgt0fXjK5awlZERETkGE6lo+MHY8x8YBYwF/gLUAIMsNZWVEU4EakUHgVDxlZOTjoMrvsIohKcTiUiVahBdAPOaXYO5zQ7hwpbwbLNyyguLaakrIRxi8fxwqIXiAmPoUdWD3weHz63j5zEHKdji4iIiNQ6p1Lo8AB5QHdgCBADnA28YYyZb63VZAIiVSmpIQwaDePOD8zZMfhFMMbpVCJSDVzGRZuUNrRJacO1Ha9lx74dzFo7i5KyEopLi5m2ZhoAjRIaBYse3bK6ERsR62xwERERkVrgmIUOY0yOtfbbQ7dba7cD0ysfB/ZNJ1D46FaVIUWkUrPT4Yw/w5R7oeSf4LvN6UQiUgPiIuLo06gPfRr1wVrL6m2rKS4txl/q582v3uSVpa8Q4YogNzMXn9uHz+OjZXJLjIqhIiIiUg8dT0fHSmPMG8AT1trio+1ord0IvFv5EJHq4L0NSufBf+8LrMrStJfTiUSkBhljaJzYmMaJjbm07aXsKd/D/PXzg90ej8x7hEfmPUJGTAZejxef20eBu0BL2IqIiEi9cTyFjr8A1wMXGWM+BR4DXrXW7q3OYCJyBMbAwH/BhqXw2lVw/fTAbS0iUi9FhUVR4C6gwF3Ar/J/xbod65hZNpPi0mI+Wv0Rb371Ji7jokNah2C3R4fUDlrCVkREREKW61g7WGsfABoDlwK7gDHAt8aY+40xWdUbT0QOKyoBhr4E+/fAhMsDf4qIEFjC9oKWF/CPon8wY+gMxvUfx/BOw8HC058+zbD3htFrfC/unn43byx/gw07NzgdWURERKRKHddkpNba/cCrwKvGmFzgVuDXwD3GmInA49baOdUXU0R+Jr0VnP8UTLgM3r8Hzn3M6UQiUsuEu8LpktGFLhlduLnLzfyw+wdmrp2Jv9SPv8zPB6s+AKBlg5YUugvxerzkZuQSGRbpcHIRERGRk3fCq65Ya+cDVxlj7gaGAzcAlxhjZhMoeLxaxRlF5EjanQe+O8D/GDTMh67DnE4kIrVYcnQy/Zv2p3/T/lhrWbZ5Gf4yPyWlJYxbMo4XFgeWsO2e1R2v20uhp5BGiY2cji0iIiJyQk640GGMiQMSgSTgI2AhcAUwCHiJQOeHiNSUPn+CsgXwzl2Q2R7cXZ1OJCJ1gDGG1imtaZ3Smqs7XM3OfTuZvW52sNtj+prAomoN4xsGl7Dtnt2duIg4h5OLiIiIHN3xLC/7KT8WNhL4cV6Pg9es2wf8AGyt4nwicixh4TBoNDxzOoy/PDA5aWyK06lEpI6JjYilKKeIopwiAFZvXY2/zI+/1M/kFZMZ/+V4wl3h5GbkBrs9WjVopSVsRUREpNY5no6OjpV/TgeeAjYSKGgEH9ba3dUTT0SOS1waDB0Lo/vBxKth2CTQigoicgoaJTaiUWIjLmlzCXvL97Jgw4Jgt8dj8x/jsfmPkRaTFix6FGQXkByd7HRsERERkeMqdHQB7gAuBtoBTwMjrbXrqi+WiJwwTx6cMwLevg2m/hX63ut0IhEJEZFhkfTI7kGP7B7cxV1s2LmBkrIS/KV+pn07jckrJmMwgSVsK29z6ZDWgXDXCd8hKyIiInLKjvkdiLX2M+BqY8yvgesJTD56jzFmAoHJR+dVc8aTZoxpBDwBfA8ss9b+3eFIItUr7woonQsf/yNQ+GjzC6cTiUgIyojN4PwW53N+i/Mpryhn8XeLg90eoz4bxdOfPk1CZAI9s3tS6CnE6/aSFacV6UVERKRmHPevWqy13wF/M8Y8BFxEYInZOcaYEuBR4A1rbUVVBTPGjAYGABustR0O2t4PeBwIA547RvGiIzDRWvuSMWZ8VWUTqdX6PwzrPoc3boDrpkJaC6cTiUgIC3OF0Sm9E53SO3FjlxvZsmcLM9fOpKQ00PEx5ZspALRIboHP7cPr8ZKXmUdUWJTDyUVERCRUnczysuXABGCCMaYrcDuB1VbWG2OetNaOqKJsY4AngbEHNhhjwoB/AWcCawgUWiYTKHo8eMjxVwOfABONMVcD46ool0jtFhENQ8bBqNNh/KVw7UcQFe90KhGpJ5KikujXpB/9mvTDWstXP3yFv9RPcVkx/176b1784kWiw6LpltUteJtL48TGmtRUREREqszxrLqSTWDVlSM91gP/Ac4FHgKqpNBhrZ1hjGlyyObuwFfW2pWV2V4FBlprHyTQ/XFo9ruB+yrPNRF4oSqyidR6yTmBlVjGXQCTb4FBL4B+iBCRGmaMoWWDlrRs0JIrO1zJzn07mbt+LsWlxZSUlfDx7I8B8MR78Ll9+Dw+emT30BK2IiIickqMtfboOxhTARzY6dCflCywncDSsluALdba06osXKDQ8c6BW1eMMYOAftbaayufXwb0sNbecoTjOwB/BjYB2621dx9mn+HAcIDMzMy8V199tari15jt27cTH6/f2MvP5ayeRPOVY/mq+dWsyRnodJyTovEtoUpjGzbt28SS3UtYsmsJy3YvY4/dgwsXzaKa0TamLW1j2uKJ8OAyrmOfTGoVjW8JVRrbEqrq4tju3bv3PGtt/uFeO55bV27jx0LGgT8P/H2rPValxEHW2kXAoGPsMwoYBZCfn2+LiopqIFnVmjZtGnUxt9QAezpM2EyLpS/SovBCaFpldcgao/EtoUpj+6f2le9j4caFwW6Pt79/m7d/eJvU6FS8bi8+j48CdwEp0SlOR5XjoPEtoUpjW0JVqI3t41l15cmaCHKcSoGcg543rNwmIodjDAx8Cjb2hYlXwfDpkORxOpWIyM9EhEXQLasb3bK6cWfenWzcuTGwhG2Zn49LP+btlW9jMLRLbRec26NTeictYSsiIiI/U9e+O5gDtDTGNCVQ4LgY+KWzkURquehEGPoSPNsHXrsCrnwXwrXagYjUbumx6QxsMZCBLQZSXlHOku+XUFxajL/Uz3OfP8eoz0aREJFAT3fPQMeH20d2fLbTsUVERKQWqLWFDmPMK0ARkGaMWUNgUtHnjTG3AB8QWGlltLV2sYMxReqG9NYw8F+BQsd/fgcDHnE6kYjIcQtzhdEhrQMd0jpwQ+cb2LJnC7PWzsJf5v/JErbNkprh8/godBeSm5lLdHi0w8lFRETECbW20GGtveQI298D3qvhOCJ1X/vzofRWKPknNMyHLmqGEpG6KSkqibOanMVZTc7CWsuKH1YEix7jl45n3BfjiAqLIj8rn0J3IV6Pl6aJTbWErYiISD1RawsdIlIN+v4ZyhbCO3dCZnvI7ux0IhGRU2KMoUWDFrRo0IIr2l/Brv27mLtubrDw8dCch2AOuOPceD1eCt2FdM/uTkJkgtPRRUREpJqo0CFSn4SFw6AXYNTpMH5YYHLSWK1gICKhIyY8htMansZpDQOrTJVuL8VfGih6vP/1+0xcNpEwE0bn9M4UegLdHm1T2moJWxERkRBy0oUOY8z/gMuttWuqMI+IVLf4dBgyFl7oD5OuhUtfA1eY06lERKqFJ97DkNZDGNJ6CPsq9vHphk+D3R5PLHiCJxY8QUp0CgXuAnxuH163l9SYVKdji4iIyCk4lY6OIiC2inKISE1qmA/9HwrcwjLtQejzR6cTiYhUuwhXBPlZ+eRn5XN77u1s2rWJmWUz8Zf5KSkt4d2V7wLQNqUthZ5CfJ7AErYRrgiHk4uIiMiJ0K0rIvVV3lWwZh7MeBg8edC6v9OJRERqVFpMGuc2P5dzm59Lha1gyfdLgre5jF40mmc/f5b4iHh6ZPcILGHr8eGJ9zgdW0RERI5BhQ6R+soY+MUIWP85vH49DJ8Kqc2dTiUi4giXcdE+tT3tU9szvNNwtu3dxqy1syguLaakrISPVn8EQJPEJsFuj/zMfC1hKyIiUgup0CFSn0XEwJBxP05Oeu1/ITLO6VQiIo5LiEzgjMZncEbjM7DW8vWWr4Nze7y27DVeWvISka5I8rPy8bl9+Dw+miU10xK2IiIitYAKHSL1XYPGcNHz8NJFMPk2uOi5QLeHiIgAgSVsmyU3o1lyMy5rdxm79+9m3vp5FJcW4y/z8/Dch3l47sNkxWUFix49snuQGJnodHQREZF6SYUOEYEWfQMTkv7vL4GJSnve6HQiEZFaKzo8Gp8nUNAAKNteFpzQ9INVHzBp+STCTBid0jvhc/so9BTSNlVL2IqIiNQUFTpEJKDwLiidDx/+EbI7Q2Ov04lEROoEd7ybwa0GM7jVYPZV7OPzjZ8Huz2eXPgkTy58kgZRDQJL2HoCS9imxaQ5HVtERCRkqdAhIgEuF1wwEp7tAxOugOtnQGK206lEROqUCFcEuZm55GbmclvubXy36ztmrp2Jv9RPSVkJ7339HgBtUtoEb3Ppkt6FiDAtYSsiIlJVVOgQkR9FJ8HQl+DZvvDaFXDFOxAe6XQqEZE6KzUmlQHNBjCg2QAqbAVLv19KSVkJxaXFvLj4RZ5f9Dyx4bH0yO5BoacQr9tLw4SGTscWERGp006l0HEmsLqqgohILZHRFgY+CROvgg//AOc87HQiEZGQ4DIu2qW2o11qO67teC3b925n1rpZ+EsDq7lM/XYqEFjC1uv24vP46JbVjZjwGIeTi4iI1C0nXeiw1n5UlUFEpBbpcCGUzoOZT4InHzoPdTqRiEjIiY+Mp2+jvvRt1BdrLau2rgoUPcr8vL78df699N9EuiLJzcyl0FOIz+2jeXJzLWErIiJyDLp1RUQO74z7oWwhvH07ZLaDrI5OJxIRCVnGGJomNaVpUlOGtRvGnvI9zFs/L9jtMWLuCEYwgozYjOAtLj2ze5IUleR0dBERkVpHhQ4RObywcBj8AjxzOowfBsOnQUwDp1OJiNQLUWFReN1evG4vv+72a9btWBfs9piyagqvL38dl3HRMa0jPo+PQnch7VLbEeYKczq6iIiI41ToEJEji8+AIWPhhf7w+nC4ZHxgdRYREalRWXFZXNTqIi5qdRH7K/bz+abPg90eIxeO5KmFT5EUlYQ324vX48Xn9pEem+50bBEREUeo0CEiR5fTDfr/Hd79FUx/CHr/zulEIiL1WrgrnK4ZXema0ZVbut7C5t2bmVk2E39ZoPDx/qr3AWjdoDVej5dCdyFdM7pqCVsREak3TqnQYYyJAToAnSofHa21faoimIjUIvnXwJp5MP3v4MmFVmc7nUhERCo1iG7AOc3O4Zxm51BhK1i2eVnwNpdxi8fxwqIXiAmPoUdWD3weHz63j5zEHKdji4iIVJvjLnQYY5ryY0HjwKMZ4AIOTP/9bVUHFJFawBgY8AisXwSvXxeYryOlmdOpRETkEC7jok1KG9qktOGajtewY98OZq+djb/MT3FpMdPWTAOgUUIjvG4vhZ5CumV1IzYi1tngIiIiVeiYhQ5jjJ9A10Y8PxY0tgFfALOAYcCNwKvW2i3VlFNEnBYRA0PHVU5OehlcMwUi9Y2xiEhtFhcRR+9GvendqDfWWlZvW01xaTElZSW8teItXv3yVSJcEeRm5Aa6PTw+Wia31BK2IiJSpx1PR0cBYIH3gJHAImvtagBjTDKBQscSFTlE6oEGTeCi5+HlQYFlZy8cFej2EBGRWs8YQ+PExjRObMylbS9lT/ke5q+fT0lZCcWlxTwy7xEemfcIGTEZwQlNC9wFWsJWRETqnOMpdAwHHgDOAfYAvznoNVsdoUSkFmt5BvT+PUz9KzTMhx7XO51IREROQlRYFAXuAgrcBfwq/1es27GOmWUzKS4t5qPVH/HmV2/iMi46pHXA5w50e3RI7aAlbEVEpNY7ZqHDWvucMeYV4HfAncAAY8yTwF+qO5yI1FKn3Q2l8+GD30NWJ2hc4HQiERE5RVlxWVzQ8gIuaHkB+yv2s2jTIkrKSvCX+nn606cZ+elIEiMTKXAXBAsfGbEZTscWERH5meOajNRauwP4ozHmaeDvBAoelwOPoa4OkfrH5YILnoZne8NrV8D1MyAhy+lUIiJSRcJd4XTJ6EKXjC7c1OUmftj9A5+s/YTi0mL8ZX4+WPUBAC0btAwWPXIzcokMi3Q4uYiIyAkuL2utXQMMM8Y8DjwC/D8ChY6OwIyqj3f8jDHNgD8ASdbaQZXb4oCngL3ANGvtyw5GFAktMckw9CV47gx47Uq44m0Ii3A6lYiIVIPk6GT6Ne1Hv6b9sNYGlrAt81NSWsJLS15izOIxxITH0C2rGz63j4h9+v+BiIg454QKHQdYa+cApxljBhHo8HjCGNMfuNVa+/WJns8YMxoYAGyw1nY4aHs/4HEgDHjOWvv3o2RaCVxjjJl40OYLgYnW2reNMeMBFTpEqlJmezjvnzDpGvjwj9D/IacTiYhINTPG0DqlNa1TWnN1h6vZuW8ns9fNxl/qx1/mZ8aawO++Rk8aHVjJxe2je3Z34iLiHE4uIiL1xUkVOg6w1k40xrwF3A78HlgMnMx6k2OAJ4GxBzYYY8KAfwFnAmuAOcaYyQSKHg8ecvzV1toNhzlvQ+Dzyr+Xn0QuETmWjoNgzVyYNRI8+dBpsNOJRESkBsVGxFKUU0RRThEAq7euZsz0MWyM3cjkFZMZ/+V4wl3h5Gbk4nV7KfQU0qpBKy1hKyIi1cZYWzVTbBhjUoE/W2tvPcnjmwDvHOjoMMYUVJ7v7MrnvwOw1h5a5Dj0PBMPunXlMmCztfYdY8yr1tqLD7P/cAIry5CZmZn36quvnkx8R23fvp34+HinY0g9Zir20/nTP5Gw7Svm5z7MjvgmVXZujW8JVRrbEsoOjO99dh8rd69k6e6lfLHrC8r2lQGQGJZIm+g2tI1pS5voNsSH6d+C1A367JZQVRfHdu/evedZa/MP99oxCx3GmMtP5eLW2rHH3uuwhY5BQD9r7bWVzy8DelhrbznC8anAXwl0gDxnrX2wco6OJ4HdQPGx5ujIz8+3c+fOPb43VotMmzaNoqIip2NIfbdtPTzTCyJiYPi0wBweVUDjW0KVxraEsiON7w07NwRXcpm5diZb9mzBYGif2j5wm4vHR8e0joS7TqnpWKTa6LNbQlVdHNvGmCMWOo7n/yJjTuHaloNuR6lO1trvgBsO2bYDuKomri9S7yVkwpCxMOYceON6uPiVwOosIiIilTJiMzi/xfmc3+J8yivKWfzdYvxlfvylfp79/Fme+ewZEiIS6OnuGVzNJStOq3qJiMiJOWahw1rr1E8qpUDOQc8bVm4TkdqqUQ84+0F4/9fw8Qg4/TdOJxIRkVoqzBVGp/ROdErvxI2db2TLni18svaT4KSmU76ZAkDzpObBSU3zsvKICotyOLmIiNR2tbkvcA7Q0hjTlECB42Lgl85GEpFj6n4dlM6FqX8Dd1doeabTiUREpA5Iikri7CZnc3aTs7HW8tUPX1FSVkJxaTGvLH2FsV+MJTosmrysPArdhXg9XpomNtWkpiIi8jO1otBhjHkFKALSjDFrgPustc8bY24BPiCw0spoa+1iB2OKyPEwBgY8Buu/gEnXBubrSGnqdCoREalDjDG0bNCSlg1ackX7K9i5bydz188Nzu/x0JyHYA6449zBbo8e2T2Ij6xbE+mJiEj1OGahoyYmI7XWXnKE7e8B753K9UXEAZGxMHQsjCqCCZfB1R8GtomIiJyE2IhYejXsRa+GvQBYs21NsNvj3ZXv8tqy1wg34XRK70ShJ9Dt0TalLS6juaJEROqjkJmMVERqmZRmcOFz8O8h8O5dcP7IQLeHiIjIKWqY0JAhrYcwpPUQ9pXvY+HGhcFujycWPMETC54gJTqFAncBPrcPr9tLakyq07FFRKSG1ObJSEWkrmt1FhT9FqY9CJ68wPwdIiIiVSgiLIJuWd3oltWN23NvZ9OuTcwsm4m/zE9JaQnvrnwXgLYpbQPdHm4vnTM6E+GKcDi5iIhUl1oxR4eIhLBev4HS+fCf30F2Z8jp7nQiEREJYWkxaZzb/FzObX4uFbaCJd8vCazkUupn9KLRPPv5s8RFxNEjq0dgfg+PD0+8x+nYIiJShVToEJHq5XLBhc9UztdxOQyfDgmZTqcSEZF6wGVctE9tT/vU9gzvNJxte7cxa+0s/GWBwsf/vv0fAE0SmwQnNc3PyicmPMbh5CIicipU6BCR6hfTAIa+DM+dAROvgsvfgjC1DIuISM1KiEzgjMZncEbjM7DW8vXWrwPdHmV+Ji6byMtLXibSFUleZl6w8NE8ubmWsBURqWNU6BCRmpHVAc57Al6/DqbcB/3+5nQiERGpx4wxNEtqRrOkZlzW7jJ279/N/PXzKS4rxl/qZ8TcEYxgBJmxmT9ZwjYpKsnp6CIicgwqdIhIzek0BNbMhU/+BZ5c6DjI6UQiIiIARIdH4/V48Xq80A3Wbl8bmNC0rIQpq6bw+vLXcRkXndI64fV4KXQX0i61HWGuMKeji4jIIVToEJGaddb/g7WfwuRbIaMdZLZzOpGIiMjPZMdnM6jVIAa1GsT+iv18vulzikuLKSktYeTCkTy18CmSopLwZnvxeQJL2KbHpjsdW0REUKFDRGpaeCQMHgOjTofxw2D4VIhWG7CIiNRe4a5wumZ0pWtGV27teiubd28OLmHrL/Xz/qr3AWjdoHWw26NrRlciNB+ViIgjVOgQkZqXmB0odrx4LrxxQ2CiUpfL6VQiIiLHpUF0A85pdg7nNDuHClvBss3LAt0eZSWMWzyOFxa9QEx4DD2yegQLHzmJOU7HFhGpN1ToEBFnNPYGbmP5z2+h+B/Q69dOJxIRETlhLuOiTUob2qS04dqO17Jj3w5mr52Nv8xPcWkx09ZMAyAnIQef20ehp5BuWd2IjYh1NriISAhToUNEnNPjBiidB//7K7i7QosznE4kIiJySuIi4ujdqDe9G/XGWsvqbauDS9i+teItXv3yVcJd4eRl5OH1ePG5fbRq0EpL2IqIVCEVOkTEOcbAuY/D+i9g0rUwfDo0aOx0KhERkSphjKFxYmMaJzbml21/yd7yvczfMD9Y+Hh03qM8Ou9R0mPS8boDk5oWZBeQHJ3sdHQRkTpNhQ4RcVZkHAwdB6N6ByYnveZDiIhxOpWIiEiViwyLpGd2T3pm9+RX/Ir1O9ZTUlaCv8zP1G+n8taKtzAYOqR1wOfx4XP76JDWgXCXvmUXETkR+tQUEeelNocLR8ErQ+HdX8HAfwW6PUREREJYZlwmF7S8gAtaXkB5RTmLvltESWkJxWXFjPpsFE9/+jQJkQkUZBcEl7DNistyOraISK2nQoeI1A6t+0Gv38CM/wNPHnS7xulEIiIiNSbMFUbn9M50Tu/MjV1uZMueLcxcOxN/qZ+S0hI+/OZDAFokt8Dn9uH1eMnLzCMqLMrh5CIitY8KHSJSexT9Fsrmw/v3QFYnyOnmdCIRERFHJEUl0a9JP/o16Ye1luU/LA92e/x76b958YsXiQ6LJj8rn0JPIT63j8aJjTWpqYgIKnSISG3iCoMLn4VRRTDhcrh+utOJREREHGeMoVWDVrRq0IorO1zJzn07mbt+bnBS07/P/jsAnnhPsNujR1YP4iPjHU4uIuIMFTpEpHaJTQlMTvr8WTDxakyjO51OJCIiUqvERsTSq2EvejXsBcC3274Ndnu8s/IdJiybQLgJp3NGZwo9hXjdXtqktMFlXA4nFxGpGSp0iEjtk90ZBjwGb95As/2p0Kev04lERERqrZyEHIa2GcrQNkPZV76PhRsXBrs9Hp//OI/Pf5yU6JRgt4fX7SUlOsXp2CIi1UaFDhGpnbpcAqVzyZnzHCx6HTpc6HQiERGRWi8iLIJuWd3oltWNO/LuYNOuTYElbEv9fFz6MW+vfBuDoW1qW3xuHz6Pj07pnYhwRTgdXUSkyqjQcZwqKirYtGkTP/zwA+Xl5U7H+YmkpCSWLFnidIyTFhYWRnJyMmlpabhcaqmUg5z9IFu+/Jikt26BjHaQ0cbpRCIiInVKWkwa5zU/j/Oan0d5RTlLvl8S7PYYvWg0z37+LPER8fTM7onX48Xn9uGOdzsdW0TklKjQcZzWrFmDMYYmTZoQERFRq2a03rZtGwkJCU7HOCnWWvbt28f69etZs2YNjRo1cjqS1CbhkSxufw/ez+6B8ZfCdVMhOtHpVCIiInVSmCuMDmkd6JDWges7X8/WvVuZtXZWsPDx39X/BaBpUtNgt0d+Zj7R4dEOJxcROTEqdBynHTt20Lp1a3UcVDFjDJGRkXg8Hr788kun40gttDcqFQaPgRfPgzdvhKEvQS0qNIqIiNRViZGJnNn4TM5sfCbWWr7e8jXFpcWUlJUw4csJvLTkJaLCosjLzAsWPpolNatVv/ATETmckCp0GGOaAX8Akqy1gyq3nQ/8AkgEnrfWfniy51eRo/roaytH1aQQzvoLfPB7KH4UTrvL6UQiIiIhxRhDs+RmNEtuxuXtL2fX/l3MWz8v2O3x8NyHeXjuw2TFZQWLHj2ye5AYqU5LEal9ak2hwxgzGhgAbLDWdjhoez/gcSAMeM5a+/cjncNauxK4xhgz8aBtbwJvGmMaACOAky50iIiDet4Ea+bC//4C7q7QvLfTiUREREJWTHgMhZ5CCj2FAJRtL8Nf5qektIQPVn3ApOWTCDNhdErvFCx8tEttpyVsRaRWqDWFDmAM8CQw9sAGY0wY8C/gTGANMMcYM5lA0ePBQ46/2lq74Sjn/2PluUSkLjIGzvsnbFgCE6+G66dDsuZ0ERERqQnueDeDWw1mcKvB7KvYx+cbPw/e5vLkwid5cuGTNIhqQE93Two9hXjdXtJi0pyOLSL1VK0pdFhrZxhjmhyyuTvwVWWnBsaYV4GB1toHCXR/HJMJ3ET4d+B9a+38KoxcZw0YMIC0tDTGjBnjdBSRExMVDxe/DKOKYPxlcPUHEKEJ0kRERGpShCuC3MxccjNzuS33Nr7b9R0z186kpLQEf5mf979+H4A2KW2C3R5d0rsQEaYlbEWkZhhrrdMZgioLHe8cuHXFGDMI6Getvbby+WVAD2vtLUc4PhX4K4EOkOestQ8aY24DrgDmAAuttU8fcsxwYDhAZmZm3quvvnrYbElJSbRo0eLU32Q1KC8vJyws7Lj3Hzx4MKmpqTz99NPH3vkkPfzww3z44Yd8/vnn7Ny5k61btx7zmK+++ootW7ZUWyapm7Zv3058fPxPtqVumkXHRX9jbdYZfNnmVoeSiZyaw41tkVCh8V1/VdgKSveVsmTXEpbsWsLKPSupoIIoE0Wr6Fa0jWlL2+i2pEXUzW4PjW0JVXVxbPfu3XuetTb/cK/Vmo6OqmCt/Q644ZBtTwBPHOWYUcAogPz8fFtUVHTY/ZYsWVJrl3A90eVlw8PDiYiIqPb3M3jwYPr27cvf/va347pWdHQ0Xbt2rdZMUvdMmzaNn/+7LIIGe8n+eATZ3c6FvCtrPpjIKTr82BYJDRrfcsD2vduZvW52cFLTCd9PAKBxYmO8bi+FnkLyM/OJjYh1OOnx0diWUBVqY7u2FzpKgZyDnjes3CbHaefOndx0001MnDiRuLg4br/99hq57gMPPADAxIkTj7GnyEnq/Xsomw/v/RoyO0LDPKcTiYiIyCHiI+Pp06gPfRr1wVrLN1u/wV/mx1/q543lb/DK0leCt8IUugvxery0TG6pJWxF5JTU9kLHHKClMaYpgQLHxcAvnY30o/vfXswXZce+JaMqtXMnct+57Y97/7vvvpspU6YwadIkPB4P999/PzNmzODCCy884jGrV6+mXbt2Rz3vsGHDqvXWF5FjcoXBRc/DM6fDhMsDk5PG1c02WBERkfrAGEOTpCY0SWrCpW0vZU/5Huavnx/s9vjHvH/wj3n/ICMmA6/Hi8/joyC7gKSoJKeji0gdU2sKHcaYV4AiIM0Yswa4z1r7vDHmFuADAiutjLbWLnYwZp2yfft2nn/+eUaPHs3ZZ58NwAsvvEDDhg2Pepzb7WbhwoVH3ScxUWumSy0QmwJDx8HzZ8HEq2DYGxBWaz7WRERE5CiiwqIocBdQ4C7gbu5m3Y51zCybSXFpMR+t/og3v3oTl3HRIa1DcFLTDqkdCHMd/9x0IlI/1ZqfCKy1lxxh+3vAezUc57icSGeFE1asWMHevXspKCgIbouPj6djx45HPS48PLzWTrwq8jPuLjDgEXjrZvjfA3DmA04nEhERkZOQFZfFBS0v4IKWF7C/Yj+LNi3CX+anpLSEpz99mpGfjiQxMpECd0Gw8JERm+F0bBGphWpNoUNqD926InVO12GwZi74HwdPHrQb6HQiEREROQXhrnC6ZHShS0YXbu5yMz/s/oFP1n5CcWkxJWUlfLDqAwBaNmgZLHrkZuQSGRbpcHIRqQ1U6AhhzZs3JyIigk8++YRmzZoBsGPHDhYtWkTz5s2PeJxuXZE6qf9DsO5zePMmSG8D6a2dTiQiIiJVJDk6mX5N+9GvaT+stSzbvIySshL8pX5eWvISYxaPISY8hm5Z3YKruTRKaKRJTUXqKRU6Qlh8fDzXXHMN99xzD+np6bjdbh544AHKy8uPelxV3LqyevVqvv/+e1atWgUQLJy0aNGizq3PLHVEeBQMGQvP9ILxw+C6/0FU7VwSWkRERE6eMYbWKa1pndKaqzpcxc59O5mzbk6w22PGmhkAeOI9FHoK8bl9dM/uTlxEnMPJRaSmqNAR4kaMGMGOHTu44IILiI2N5dZbb2XHjh3Vft17772XF198Mfi8a9euAEydOjWk1meWWibJA4NfgLEDA50dQ8aCfpMjIiIS0mIjYjk953ROzzkdgG+3fhtcwnbyismM/3I84a5wumZ0DXZ7tG7QWt0eIiFMhY4QFxcXx9ixYxk7dmyNXnfMmDGMGTOmRq8pAkDTXnDG/TDlT4E5OwrvcDqRiIiI1KCcxBwuTryYi9tczL7yfSzYsCBY+Hh8/uM8Pv9xUqNT8Xl8eN1eCtwFpESnOB1bRKqQCh0iEnq8t0LpPPjo/sCqLM2KnE4kIiIiDogIi6B7dne6Z3fnzrw72bhzY3BujxlrZjB5xWQMhnap7fB5fBR6CumY1pFwl35MEqnL9C9YREKPMTDwSdiwBCZeDcOnQ3KO06lERETEYemx6QxsMZCBLQZSXlHOF999Eez2eO7z5xj12SgSIhLo6e6J1+3F5/aRHZ/tdGwROUEqdIhIaIpKgItfhlG9YcLlcNX7EBHtdCoRERGpJcJcYXRM70jH9I7c0PkGtuzZwqy1sygpK6G4tJgp30wBoFlSM3weHz63j70Vex1OLSLHQ4UOEQldaS3hgpGBVVje/w2c94TTiURERKSWSopK4qwmZ3FWk7Ow1rJyy0qKS4vxl/oZv3Q8474YR4SJ4PUprwcKHx4fTRObalJTkVpIhQ4RCW1tz4XCO6H4UWiYD7mXO51IREREajljDM2Tm9M8uTlXtL+CXft3MXfdXCbMnsCq7av4vzn/B3MgOy472O3RI7sHCZFa2l6kNlChQ0RCX58/QdkCePduyOwAnlynE4mIiEgdEhMew2kNT6P8q3KKiooo3V6Kv9RPSVkJ73/9PhOXTSTMhNE5vXOw8NE2tS0u43I6uki9pEKHiIQ+VxhcNBpGnR6Yr2P4dIhLdTqViIiI1FGeeA9DWg9hSOsh7KvYx2cbP8Nf6qe4tJh/Lvgn/1zwT1KiUyhwF+Bz+yhwF5AWk+Z0bJF6Q4UOEakf4lJhyFgY3Q8mXQ3DXg8UQEREREROQYQrgrzMPPIy87gt9za+2/UdJWUlwce7K98FoG1KW3weH163ly4ZXYhwRTicXCR0qdAhIvWHJxd+MQIm3wr/+39wxn1OJxIREZEQkxqTyrnNz+Xc5udSYStY+v1S/KV+/GV+xiwaw3OfP0dcRBzds7pT6CnE6/bSMKGh07FFQooKHfXQgAEDSEtLY8yYMU5HEal5uZfDmrlQ/Ah48qDtAKcTiYiISIhyGRftUtvRLrUd13W6ju17tzNr3axA4aPUz9RvpwLQJLFJsNujW1Y3YsJjHE4uUrep0CFVbtWqVfzlL39h6tSprF27luzsbIYOHcq9995LTIw+tKUWOOdhWPc5vHEDpE8NLEMrIiIiUs3iI+Pp26gvfRv1xVrLqq2rgt0ek5ZN4uUlLxPpiiQ3MzfY7dEiuYWWsBU5QSp0SJVbunQp5eXljBw5kpYtW7JkyRKGDx/Od999x6hRo5yOJwLhUTB0HDzTC8YPg2s/gqh4p1OJiIhIPWKMoWlSU5omNWVYu2HsKd/DvPXzgqu5jJg7AoCM2Ax8bh8+j4+e2T1JikpyOLlI7adCR4jbuXMnN910ExMnTiQuLo7bb7+92q/Zr18/+vXrF3zerFkz/vCHP/CnP/1JhQ6pPZIawqDRMO4CeOtmGDwG9NsSERERcUhUWBRetxev2wvAuh3rgt0e//3mv7zx1Ru4jIuOaR2DS9i2T21PmCZXF/kZFTpOxfu/DbS/16SsjtD/78e9+913382UKVOYNGkSHo+H+++/nxkzZnDhhRce8ZjVq1fTrl27o5532LBhPP3008edY+vWrTRo0OC49xepEc2KoO+98N8/w8wnwXur04lEREREAMiKy+KiVhdxUauL2F+xn0WbFlFcWkxJWQkjF47kqYVPkRSVREF2QXB+j4zYDKdji9QKKnSEsO3bt/P8888zevRozj77bABeeOEFGjY8+qzObrebhQsXHnWfxMTE487xzTffMGLECH7/+98f9zEiNcZ3B5TOgyn3QXYXaHqa04lEREREfiLcFU6XjC50yejCLV1vYfPuzXyy9pNg4eM/q/4DQKsGrYK3uXTN6EpkWKTDyUWcoULHqTiBzgonrFixgr1791JQUBDcFh8fT8eOHY96XHh4OC1atKiSDOvXr6dfv36ceeaZ3HnnnVVyTpEqZQwMfAo29oXXroTrZ0CSx+lUIiIiIkfUILoB/Zv2p3/T/lhrWbZ5WbDoMW7JOF5Y/AIx4TF0z+oevM2lUWIjp2OL1BgVOuRnqurWlXXr1tGnTx86dOjAuHHjNFu01F7RiTD0JXi2D0y4HK56LzBhqYiIiEgtZ4yhdUprWqe05pqO17Bz305mr5tNcWkx/lI/09dMByAnIQev20uhp5DuWd2JjYh1OLlI9VGhI4Q1b96ciIgIPvnkE5o1awbAjh07WLRoEc2bNz/icVVx68ratWvp3bs37du355VXXiE8XENNarn01jDwX/DaFfCf38KAR51OJCIiInLCYiNiKcopoiinCIDVW1fjL/PjL/UzecVkxn85nnBXOLkZucFuj1YNWumXkhJS9NNnCIuPj+eaa67hnnvuIT09HbfbzQMPPEB5eflRjzvVW1fKysooKirC7Xbz2GOPsWnTpuBr6enphIVpZmippdqfD6W3QckT4MmHrpc6nUhERETklDRKbESjxEZc0uYS9pbvZcGGBcHVXB6d9yiPznuU9Jh0CtwFFHoKKcguIDk62enYIqckZAodxphmwB+AJGvtoIO2xwHTgT9ba99xKp9TRowYwY4dO7jggguIjY3l1ltvZceOHdV6zQ8//JDly5ezfPlyGjX66b2AX3/9NU2aNKnW64uckr73QdkCeOdOyGwP7i5OJxIRERGpEpFhkfTI7kGP7B7cxV1s2LmBkrKS4C0uk1dMxmDokNYBr9tLXmYe+Vn5RLginI4uckJqRaHDGDMaGABssNZ2OGh7P+BxIAx4zlp7xNk/rbUrgWuMMRMPeekeYELVp64b4uLiGDt2LGPHjq2xa1555ZVceeWVNXY9kSoVFg6DXoBRp8P4y+D66RCb4nQqERERkSqXEZvB+S3O5/wW51NeUc7i7xYHb3N59vNneeazZ0iNTqXAXUD3rO7kZ+XTML6hbnORWq9WFDqAMcCTQPCncWNMGPAv4ExgDTDHGDOZQNHjwUOOv9pau+HQkxpjzgS+AKKrJ7aIhKT4dBgyDl7oB5OugUsngku3XImIiEjoCnOF0Sm9E53SO3Fj5xvZtncbc9bN4f2v36ekrIR3Vgaa4xslNKJPoz7kZ+aTm5lLQmSCw8lFfq5WFDqstTOMMU0O2dwd+KqyUwNjzKvAQGvtgwS6P45HERAHtAN2GWPes9ZWVE1qEQlpDfOg///BO3fA9P+D3r9zOpGIiIhIjUmITKBPoz70adQHay0rt6xk9rrZ/G/1/3hpyUuMWTyGcBNOl4wuFHoKOa3habRMbqluD6kVjLXW6QwAVBY63jlw64oxZhDQz1p7beXzy4Ae1tpbjnB8KvBXAh0gz1UWRA68diWw6XBzdBhjhgPDATIzM/NeffXVw+ZLSko6pQk6q1N5eXlITPD51VdfsWXLFqdjSC2zfft24uPjnbm4tbRZ+hiZ62ewsMtf2JLc4djHiBwnR8e2SDXT+JZQpbEdsLdiL6v2rmLprqV8sesLSveVApAclkzbmLa0i2lHm+g2RLvUWF9X1MWx3bt373nW2vzDvVYrOjqqgrX2O+CGI7w25ijHjQJGAeTn59uioqLD7rdkyRISEmpnW9a2bdtqbbYTER0dTdeuXZ2OIbXMtGnTONK/yxrhzYdnTqfriifhBj/EpTqXRUKK42NbpBppfEuo0tg+vPU71gfn9phZNpOZ22cSEx5DQXYBrVNaU5RTRKsGrQh3hcyPnyEn1MZ2bR5ppUDOQc8bVm4TEak5UQkw+AV47gx480b45XhQS6aIiIhIUGZcJhe2vJALW17Ivop9LNywkHdXvsu89fOY+u1URn46Ek+8h7Man0Wz5Gb43D7SY9Odji0hrDYXOuYALY0xTQkUOC4GfulsJBGpl7I7w1n/D97/DXwyEgpucjqRiIiISK0U4YqgW1Y3umV1AwLdHnPWz+G1L1/j5SUvs7diLwDuODeDWw/mNM9peOI9xEfWrdsmpHarFYUOY8wrBCYOTTPGrAHus9Y+b4y5BfiAwEoro621ix2MKSL1WffhsHI6TLkXGheAW7dZiYiIiBxLZlwmA5oNYECzAeyv2M/KLSuZsWYGs9bO4vH5j/P4/McJN+Gc1vA0vG4vHdI60CFN86LJqakVhQ5r7SVH2P4e8F4NxxER+TljYOCT8PRpMOEKuPwtSGnqdCoRERGROiPcFU6rBq1o1aAV13a8lm+3fsui7xaxeNNi3v36XaZ+OxWAnIQc4iPiKcopYnCrwbrNRU5YrSh0iIjUCbEpMGQsvHQhjO4Hw6dCotvpVCIiIiJ1Uk5iDjmJOfRv2p878+5k466NTP12KnPWzeH73d8z8tORjPx0JDkJOUS6Ijmn2Tn0b9qf5KhkEiLr/mIMUn1U6KiHBgwYQFpaGmPGjHE6ikjd0zAPrnoPnj8LXrsKrnofXC6nU4mIiIjUaWGuMLLisrikzSVc0ibQ8L9s8zKKS4tZtGkRP+z5gX8u+Cf/XPBPADzxHhIjE8nLzKNdajt6ZPcgIzbDybcgtYgKHVLlKioqOP/881m4cCEbNmygQYMG9O3bl4ceegiPx+N0PJFTl9ke+v8fvHUTLHwZci9zOpGIiIhIyDlwm8sBK35Ywbz189i6dytLv1/K5t2beWnJS0Cg8NEprRMxETGc1fgsWjZoqcJHPaZCh1SLPn368Pvf/57s7GxKS0u5++67ueCCC5g9e7bT0USqRudLYP6LMPlW2LMVCm52OpGIiIhISGue3Jzmyc1/sm3Jd0v4dtu3/GPuP/hs02ds3buV15e/DkCL5BakRKewbe822qS04U89/0REWIQT0aWGqdAR4nbu3MlNN93ExIkTiYuL4/bbb6/2a7pcLu64447g88aNG/Pb3/6WgQMHsnv3bqKjo6s9g0i1c7lg2CSYdB3898/Q8mxIa+F0KhEREZF6pW1qW9qmtuWsJmcBsGv/Luasm8OyzctYuGEh2/ZuIyY8hje+eoMvvvsCd7ybtJg0fG4fq7auonFiY7bv205MeAx9GvUhzIThMj+9LXnTrk0kRCYw/dvpFJcW87sevyMmPMaJtyvHSYWOU/DQ7IdY+v3SGr1mm5Q23NP9nuPe/+6772bKlClMmjQJj8fD/fffz4wZM7jwwguPeMzq1atp167dUc87bNgwnn766ePK8P333/Pyyy/To0cPFTkktEQlwLmPw5Pd4IX+MHgMNPE5nUpERESk3ooJj6FXw170atjrJ9v/8/V/GL1oNKu3rmb2utm8tuy1nx0b6YokOTqZxMhEdu7bSeuU1gDB1WAOSI1J5cr2V7Jq6ypaJrckNiKW8opyXMaFMab63pwcNxU6Qtj27dt5/vnnGT16NGeffTYAL7zwAg0bNjzqcW63m4ULFx51n8TExGNe/5577uHJJ59k586d9OzZk3feeee4s4vUGQmZgclJX7sSXrkYrpkCGW2cTiUiIiIiB+nXtB/9mvYDAl0fs9fOplWDVmzatYnk6GTmrJvDZxs/Y976eezav4t2qe34Zts3bN69mUvaXEJSVBKNEhpRUlbCc58/x0tfvMTu8t3kJORwV95d3FdyH8M7DScvM4+WDVoSFRb1k+s/Mf8J9tv93JV3V3DbnvI9TF4xmXOankN0WDTGGBZvWhxchvevs/5K48TGdM3oCkByVDKjF43m8naXkx6b/pOVZ778/ktSolO0FG8lFTpOwYl0VjhhxYoV7N27l4KCguC2+Ph4OnbseNTjwsPDadHi1Fvwf/3rX3PNNdfwzTffcP/99zNs2DDef/99VTkl9GR1gMvfhJFe+Oh+uOQVpxMd2Zp5EBEDmUfv2hIREREJVTHhMZyeczoA2fHZAOQk5HBhywvZX7EfgHDX4X9UPrPxmTRObEzZ9jK6ZHThL5/8hTun3QnAiLkjgMDcIENbDwUCq8nkJOQwetFoDIYde3eQn5XPmm1rWLN9Da8vf52xi8eybsc6chJzWL55ORGuCE7znMb/vv3fT64dHRbN7vLdTFo+CYPhjMZn0DO7J8s2L2PS8kmkRqcy+uzRvLzkZWauncnDvR4OdqVs3LmRDbs20D61PQAVtoJXlr7C1r1bGdRyUFV+eWsFFTrkZ6rq1pW0tDTS0tJo1aoVbdu2JScnh+LiYk477bSqjCtSOyQ1hJ43wbQH4ds5kNPt5M6z8UvYvgGanga7t0BkPLjCfnx9+0ZYORU6DgZjAs9tRaCz5ICtayEhK/D6wayFCZdDZBzcPOvnr5+IvTsC5xEREREJIUcqcBwQHR7NDZ1vCD53x7v5btd37Cnfw30l9+GJ97Br/y7+OuuvPz2vCWe/3c+EZROYsGxCcHtcRByrtq6iRXILftj9A3/o8QdeX/4609dMZ1jbYTRJbEJCZAIbdm5g1GejuDPvTrbv287WPVt58YsXmfLNFAAaJTRi8+7N/PK9X7JlzxYA/uT/E53SOxEZFsnU1VNZs30N7VPbs37nemLCY/h227cYDJOWTeKqpKuq6ktYK6jQEcKaN29OREQEn3zyCc2aNQNgx44dLFq0iObNmx/xuKq6deVgFRUVAOzZs+eEjhOpU3rcAAtegld/Cb/4B+zbCVtLofCuH4sKC16GzV9Ds6JAsaB5Hzgw+/f+vYG5PnZ+B1d/AOMvg0Y9ICIW8q6C6ER4925YXQIxKdC8N4z5RaAgcvMsiEmG71YE5gw5/ymoKIfiR+GyNyA5B75fCVvXBK71TQnMHQ3droXGBT99H9vWw6qPoeSfkNMdznn4p68vmgQTr4buwyH3ikBHy+ZvYGsZuLvA8ikw4/+g7XmQ3bkav+B1W8p3n8MyfSZKaNL4llClsS2H6glAOHsroDilE5dmF5Kb0JSyPZuJckWws3wPn2xZRmpEAq9vmE2UK5yt+3eRm9iUDXu3crn7dL7ft43chKYYDMYYhra6ml0Ve4k9cPvLfiAymyvy7g10x4elQjTENTyLpTvKuKfpeSSExfDupvn89es36JrQhA7xjRi3dgbLNy8jjMD3oZdl92LZzrV4Yt3M3bKCS7J8XJjRnV8vewnXvi0OfQWrh7HWOp2h1sjPz7dz58497GtLliyhbdu2NZzo+Gzbto2EhITDvnbjjTfyzjvvMHr0aNxuNw888ADvv/8+F154IWPGjKmWPDNnzmT+/PkUFhaSnJzMihUr+NOf/kRZWRlLliw54oSktflrLM6ZNm0aRUVFTsc4fhu/hH8PDRQzDuh0MTT2Boodk28FDFD52Vv0O4hNheUfBh5HEh4D+3f99O+ZHWD9osC2/GtgwCPwyUj4z28hpRn88C1U7AusCHP+U7D0HXj7dnBFQEZbWPdZ4NihL0Gr/hBWWfsedyGs+OjHa/9hHZTvDRRNVhUHiim7vg+8D1c4tDwTvnwvsG9yI/hhNcRnwfZ1p/jFFBEREQkdFqjOm/j3A88kJ9Fvxw6Syyt4LjmRy7ZuI6G8gm1hLtz7yw+bpRz4osMf6Tjo19WYruoZY+ZZa/MP95o6OkLciBEj2LFjBxdccAGxsbHceuut7Nixo1qvGRMTw8SJE7n33nvZsWMH2dnZ9OvXj/Hjx2vVFQl96a0D3RXflAQ6Mab9DT57NfBwRUCz3jDkRVj2AbxzZ+BWF4CwyB/PceFz8OkrgWLEotfBkwtffQTdr4e8K+Cr/8KUewMdGlmdIKdHoDujxw2wovJezu9XQoOm0OEi+HgE/KtH4HzxWdCoJ3zx5o/XGz8MfvFIoBvj29mBIkfPmwL7Tbgc/poVuIVm387AbTIAvX4N3a6D584IFDl8dwSKK+/cCQ27wZXvwuZVsHd79X/N66h58+aTl5frdAyRaqHxLaFKY1tORXXPVBgO3HzQ84NnlDz01+IHZwkDtnyxtrpiOUKFjhAXFxfH2LFjGTt2bI1ds0uXLkydOvXYO4qEqvCowG0lAENfhh++gQlXQPkeGDQaopOg0xAwLph0DfT6Dfhuh6+nBwoNnQYHHgB974PwSNi/J3BegIx2gVtODqzfvut7+PRVeOsmWL8Y2p0fmNej168DxY0WZ8CLAwK3o/T+Q6Dr4os3IaU5nH4PvHUzvHvXT99Dz5sg/qB5PzpfAl0ugT3b4K1boMsvK1eceTdwy0qjQOMmjQog0R3Imt66ur7CIWHb8m3gyXM6hki10PiWUKWxLaFq//JpTkeoUip0iIhUp6h4yGwP11V2WkQfNL9Nh4ugQRNwdw0UJtr8IvA4WHhlp0f4QUuUGfPTiUDj0mDAo/D6tYG5O4p+GyhwHNC4AM78C6z9FE77Fez6IVBkaVIInYeCLYc3bwwUT1r1D9wWk5wTOPbm2RCVECheHHDnoh//ntwo8DggvdWJfoVERERERKqUCh0iIjUh+jAT+BoDDQ97W+GJ6zQ4UJDIaBMonhyq4KYf/x6XCpdODHSGQKBbw5MPaS1/vhKLujJEREREpI5RoUNEJFS07nf8+7bo++PfjVEnhoiIiIiEDJfTAUREREREREREqooKHSdAS/FWH31tRUREREREpCqo0HGcIiIi2LVrl9MxQtauXbuIiIhwOoaIiIiIiIjUcSp0HKeMjAxKS0vZuXOnug+qkLWWnTt3UlpaSkZGhtNxREREREREpI7TZKTHKTExsGJCWVkZ+/btczjNT+3evZvo6GinY5y0iIgIMjMzg19jERERERERkZOlQscJSExMrJU/jE+bNo2uXbs6HUNERERERETEcbp1RURERERERERChgodIiIiIiIiIhIyVOgQERERERERkZChQoeIiIiIiIiIhAwVOkREREREREQkZBhrrdMZag1jzEbgG6dznIQ0YJPTIUSqica3hCqNbQllGt8SqjS2JVTVxbHd2FqbfrgXVOgIAcaYudbafKdziFQHjW8JVRrbEso0viVUaWxLqAq1sa1bV0REREREREQkZKjQISIiIiIiIiIhQ4WO0DDK6QAi1UjjW0KVxraEMo1vCVUa2xKqQmpsa44OEREREREREQkZ6ugQERERERERkZChQkcdZ4zpZ4z50hjzlTHmt07nETkRxpgcY8xUY8wXxpjFxpjbK7enGGOmGGOWV/7ZoHK7McY8UTnePzPG5Dr7DkSOzhgTZoxZYIx5p/J5U2PMrMoxPN4YE1m5Pary+VeVrzdxNLjIMRhjko0xE40xS40xS4wxBfrsllBgjLmz8nuSRcaYV4wx0frslrrKGDPaGLPBGLPooG0n/FltjLmicv/lxpgrnHgvJ0qFjjrMGBMG/AvoD7QDLjHGtHM2lcgJ2Q/8ylrbDugJ3Fw5hn8LfGStbQl8VPkcAmO9ZeVjODCy5iOLnJDbgSUHPX8IeNRa2wLYDFxTuf0aYHPl9kcr9xOpzR4H/mOtbQN0JjDO9dktdZoxxgPcBuRbazsAYcDF6LNb6q4xQL9Dtp3QZ7UxJgW4D+gBdAfuO1Acqc1U6KjbugNfWWtXWmv3Aq8CAx3OJHLcrLVrrbXzK/++jcA3yh4C4/jFyt1eBM6v/PtAYKwN+ARINsZk12xqkeNjjGkI/AJ4rvK5AfoAEyt3OXRsHxjzE4G+lfuL1DrGmCSgF/A8gLV2r7X2B/TZLaEhHIgxxoQDscBa9NktdZS1dgbw/SGbT/Sz+mxgirX2e2vtZmAKPy+e1DoqdNRtHuDbg56vqdwmUudUtnt2BWYBmdbatZUvrQMyK/+uMS91yWPAb4CKyuepwA/W2v2Vzw8ev8GxXfn6lsr9RWqjpsBG4IXKW7OeM8bEoc9uqeOstaXACGA1gQLHFmAe+uyW0HKin9V18jNchQ4RcZwxJh6YBNxhrd168Gs2sDSUloeSOsUYMwDYYK2d53QWkWoQDuQCI621XYEd/Nj6DOizW+qmynb8gQSKeW4gjjrwm2uRkxXKn9UqdNRtpUDOQc8bVm4TqTOMMREEihwvW2tfr9y8/kBbc+WfGyq3a8xLXeEDzjPGrCJwW2EfAnMaJFe2Q8NPx29wbFe+ngR8V5OBRU7AGmCNtXZW5fOJBAof+uyWuu4M4Gtr7UZr7T7gdQKf5/rsllByop/VdfIzXIWOum0O0LJyJuhIApMlTXY4k8hxq7yP9XlgibX2kYNemgwcmNH5CuCtg7ZfXjkrdE9gy0GtdyK1hrX2d9bahtbaJgQ+m/9nrb0UmAoMqtzt0LF9YMwPqtw/JH/DInWftXYd8K0xpnXlpr7AF+izW+q+1UBPY0xs5fcoB8a2PrsllJzoZ/UHwFnGmAaVXU9nVW6r1Yz+LdZtxphzCNwHHgaMttb+1dlEIsfPGFMIfAx8zo/zGPyewDwdE4BGwDfAEGvt95XfdDxJoI10J3CVtXZujQcXOQHGmCLgbmvtAGNMMwIdHinAAmCYtXaPMSYaGEdgnprvgYuttSsdiixyTMaYLgQm2o0EVgJXEfgFmj67pU4zxtwPDCWwMtwC4FoC8xHos1vqHGPMK0ARkAasJ7B6ypuc4Ge1MeZqAt+jA/zVWvtCDb6Nk6JCh4iIiIiIiIiEDN26IiIiIiIiIiIhQ4UOEREREREREQkZKnSIiIiIiIiISMhQoUNEREREREREQoYKHSIiIiIiIiISMlToEBERqWHGmCuNMdYY80PlmvQHvxZe+dqfHcj158prh9f0tU+EMcZljHnMGLPWGFNhjHnzKPv+5GtpjDnfGHNXTeQ8EmPMHcaYCw+z/c/GmDqxHF5dGSsiIlI/qdAhIiLinCTgHqdD1EGDgNuBhwEf8Juj7FsAPHfQ8/MBRwsdwB3AzwodBHIW1GwUERGR0KMqvIiIiHM+BG41xjxqrV3vdJiaYIyJstbuOcXTtK388zFrbcXRdrTWfnKK1zqmKnpPWGvXAGuqIJKIiEi9po4OERER5/y/yj//eLSdjnRLgzFmjDFm1UHPm1TeTnCDMeZBY8w6Y8w2Y8xLxphYY0wLY8wHxpjtxpivjDFXHOGSbY0xU40xOytvD3nAGPOT7xmMMenGmKeNMaXGmD3GmKXGmOGH7HPgFp1expjXjDE/ALOO8V77GWNmGmN2GWO2GGPeNMa0Puj1VcCfK5+WV57/yqOcL3jrijFmDHAF4Kncbg/5+p3SezLGdDPGTDTGrKnM/6Ux5m/GmJhD8jcGLj0ow5jK137239kYk2iMedIYU1aZ6UtjzJ3GGHPQPkWV5zmvct9NlY+XjDHJh5zvdmPMksp8m40xc40xFxzlP8lxq/xvt70yg77HFBERx6ijQ0RE5P+3d+8hVlVRHMe/C8Ms/cMUU5ASohdlYUYFkWZkZSZJoL3MsDLCwoqEwsJ8ZNnDsjBfKWpmD6UoSp20KHthlNHD3mFWYEq+MhUarVZ/rH3xcOboHe+9w9j0+4Dc2efuvc/e984fc7Zrr918NgBPAreb2WR3/7lG/Y4GVhIP9ScBDwP/AKcBs4HJwAhgnpmtdvevcu1fAeYCk4CLgDGp/TiIh2/gfeCwdG1dqjcjRTdMzfX3LPA8seVkn397mFk/YCnwFnAF0A6YALxvZj3cfT1wGXArMIy92zzWNuIzAbgP6AScAVyartXXcE5HA58B84EdwMnAvcAxwJWpzmXAMuBz9i7YbCoabFosWAr0TP2sAS4BHkvzuDvX5AlgCXA1cALxvf9N/B5gZkOAR4nP9L0011OBDkX3PxBmdi2x9WaCu08sV19ERKQpaaFDRESkeT0E3ASMBa6vUZ9r3b0UrbHczHoBQ4Gh7r4QwMxWEw/7g4D8Qsdsd38w/bwiLQKMMrPH3f13Ij9GN+AUd/8h1XszRQ+MNbMZ7v5Xpr8X3X1/eTRKJgI/AheX2pvZKuB7YBRwh7t/ambr4cC3pbj7WjPbBOwuaFv1nNz9pdLPKeLiA+APYIGZ3eLuW9L464HNjRh/f+Ac4Dp3n5+urTCztsT38Zi7b87Uf9fdR2bqnQAMN7Nh7u7EwtAX7j4h02ZZmTGUZWZ3AvcDI9x9Trn6IiIiTU1hhSIiIs3I3bcS/8t+bXaLRpXqcuVv0+vyzH23Ab8BRxW0X5wrv0BEV3RP5X7Edo11FqfEHGJx+sZyoCMRRZL1crkBp4f3nsCi7IKCu68jFgzOLddHlaqeU9pm8pCZrSUiRfYAzwAGHFfBmHoTkTTP5a4vBFrTMHHp0lx5DXAo0DmVPwZ6mNlUM+trZodXMKa8KcB4YJAWOURE5GChiA4REZHmNwUYSWwpGFKD/rblyrv3c71NQft8YtRSuWt6PRI4lniQL9IxV96wj3pZRxALAkV1NxLRFk2pFnOaB/Qltpl8BuwCzgSmUfw5l9MB2Oruu3PXN2bez9qaK5cSpJbuvSD9fANwM7DHzJYRkTI/VTA+gKuAL4E3K2wvIiJSc1roEBERaWbuvtPMJhGRHY8UVPkTwMxa5x568w/ftdKZ2EKSLQOsT69biGiQ2/bR/rtcuUEi1QLbUr0uBe91oeFDfK1VNSczawMMBMa5+xOZ66dUMaatQIeC771L5v1GS9tXZgGzzOwI4ELid24RcFaFYzyfOD2ozsz6u/vOCvsRERGpGW1dEREROThMJxYSihI5lpKUlraOkHJHnN1EY7k8V74S2ElshQB4HTgR+MXdVxf823GgN3T3XcAnwGAza1W6bmbdiHmurGAeReqJJJx51c7pUKAVDSNChh3AGPLeIf5WG5y7PoSIxlnViD4Kufs2d19EbFPqXq7+fnwF9CG25tSZWbsq+hIREakJRXSIiIgcBNy93swmAE8VvF0HbAdmm9lY4qH6TmLxoSncmE78+Jg4eWQ4EamwPb0/hTgV5T0zm0JEO7QlFgp6ufvACu87hsgzscTMphN5QcYTc3+00snkfE1ESYwAVgN/uvsaqpyTu283sw+JJKEbgM1EctmuBdW/BnqZ2QBiG8rmfWwdqSNOgplpZp2IRYX+xPcxKZeItCwze4o4DWYVEb1yPJGkdkWmzjBiC8557r6yMf26+zdm1gd4m0h+26+SxS4REZFaUUSHiIjIwWMe8EP+YjrpZACRmHIxcezrVOLBsikMBC4AXgWuIaJM7suMZzsRZbEMuItI2Dk3tat4TO7+OnF8antinjOBb4Bz3P3XSvvNmUMkV30A+Ah4Ld27FnO6iohKmUYcMbuR4q0wo4mFlMXEYtK4os7c/R/i83g6jWlpKt8B3NPIMWV9AJxORA+9kfpYSDp+NmmbXvN5WvbL3b8jEsZ2Y+9JPSIiIs3CYrumiIiIiPzfmdlzQHt379/cYxEREamUtq6IiIiISElvGuZoERER+U9RRIeIiIiIiIiItBjK0SEiIiIiIiIiLYYWOkRERERERESkxdBCh4iIiIiIiIi0GFroEBEREREREZEWQwsdIiIiIiIiItJiaKFDRERERERERFoMLXSIiIiIiIiISIvxL3/af9fSFa2KAAAAAElFTkSuQmCC\n"},"metadata":{"needs_background":"light","image/png":{"width":1082,"height":358}},"output_type":"display_data"},{"data":{"text/plain":"<Figure size 720x360 with 1 Axes>","image/png":"iVBORw0KGgoAAAANSUhEUgAABDUAAAFmCAYAAAB9UqEfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABYOUlEQVR4nO3dd3yV5f3/8ffnZM9DFiNhBAggUxGcSMUNCirOWke1Vlr9tdW29mtbtXXUTlrRDq0Tsa3VOmpRtE60bgVBUUQEGWGPDLLX9fvjnIQkJJBxkjvn5PXs4zzOue9z3ff53PHuMXl7DXPOCQAAAAAAINz4vC4AAAAAAACgIwg1AAAAAABAWCLUAAAAAAAAYYlQAwAAAAAAhCVCDQAAAAAAEJYINQAAAAAAQFgi1AAAAAAAAGGJUAMAAHQpM0szs3Izc2Z2sdf1NGZmo4N1OTOb2o7jHg0es6Ir6wMAAPtHqAEAALrahZLiJH0p6Rse19Lc5ZL2SNquNtZmZjMlnSOpvAvrAgAAbWDOOa9rAAAAEczMPpS0W9LTkuZJynPOrfW0KElmFiMpX9IzkookzZE0wDm3Zz/HJEv6VNK/JZ0uqcQ5N67rqwUAAC2hpwYAAOgyZnaopEMkPSTpH5Jq1HN6a8yS1FeB2uZLSpJ0/gGOuU1SlKQburQyAADQJvTUAAAAXcbM/izpEkn9nXOlZvakpMMkDXHO1bXxHJnt+Mgi51x1G8/7rKTRkoY755yZLZVU4Zw7upX2h0t6W9IFzrnHzGyd6KkBAICn6KkBAAC6hJnFS/qapCecc6XB3Q9JGijplHacakc7HlPaWFt2sIYFbu9/4XlI0lFmNrqF9tGS7pP0gnPusXbUDgAAulC01wUAAICIdZakPgqEBfUWKRA+fEPSc208z0nt+MzlbWx3qQL/cWdBo31/l/Q7BWr7UbP2P5KUJ+nMdtQCAAC6GMNPAABAlzCzlyWNV6D3RONfOG6SdK6kHOfcTg/qMkmrJZUosIpJY/cqMCRloHOuJtg+T9LHkn7hnLut0XnWieEnAAB4ip4aAAAg5MxsqKTjJJmkz1tpdpECq6Ec6Fz92/HRu51zVQdoc6yk4cHXq1tpM1OBFU4k6fcKrN7yVDDgqBctKTa4r9Q5t6UddQIAgBCgpwYAAAg5M7tF0o2SrpBU2EKTX0iqcs5NaMO52vPLynHOucUHON8CSecpMIFpS5OV/lXSW865WcH2yyQdfIDPfdY5N7MddQIAgBAg1AAAACFlZj5J6yQVthZamNnPFRiGcrhz7v0DnO/Ednz8EudcwX7O5Ze0RdJLzrnTW2nzoKSLJQ1yzm0Jfn6fFpr+RVKFpB9I2uKce7MddQIAgBBg+AkAAAi1kyUNknT/fto8oUCocbmk/YYazrmXQlaZdIGkhODnt+YJBSYS/bqkX7f2+WY2V4E5NR4PYX0AAKAd6KkBAABCysz+pcAEnBOccx/vp90qSf0kDXDOlXdTbe9LOkRS39Z6dJhZnAIrtGxxzo3az7nWiYlCAQDwFKEGAAAAAAAISz6vCwAAAAAAAOgIQg0AAAAAABCWCDUAAAAAAEBYItQAAAAAAABhiVADAAAAAACEpWivC/BSZmamy83N9bqMdistLVVSUpLXZQAhx72NSMW9jUjG/Y1Ixb2NSBaO9/eSJUt2Oueymu/v1aFGbm6uPvjgA6/LaLfFixdr2rRpXpcBhBz3NiIV9zYiGfc3IhX3NiJZON7fZra+pf0MPwEAAAAAAGGJUAMAAAAAAIQlQg0AAAAAABCWCDUAAAAAAEBYItQAAAAAAABhqVeGGmY2y8zuKSoq8roUAAAAAADQQb0y1HDOLXTOzfH7/V6XAgAAAAAAOqhXhhoAAAAAACD8EWoAAAAAAICwRKgBAAAAAADCEqFGGFm++hnNePgwbS7+wOtSAAAAAADwHKFGGImpqVJ+XYUqy9Z5XQoAAAAAAJ4j1Agj22pyJEm7S7d7XAkAAAAAAN4j1AgjOX2HS5KKKnd7XAkAAAAAAN4j1AgjI/pmKL5OKqsr9roUAAAAAAA8R6gRRsxMyS5KlSqTc87rcgAAAAAA8FS01wWgffy+BFVG7VLe9YsUFx0l87ogIIRqa2sV9crzXpcBhBz3NiIZ9zciFfc2ItUZE3N0cprXVYQOoUaY6ZeUpqKqXbr2qD7aZRF0JwKSNuZv1KCBg7wuAwg57m1EMu5vRCrubUSq8QP9UuEur8sIGUKNMJOROkjrir7UlRt+KOWdIKUPk1KzpZT+UvpwKT7V6xKBDlu8eLumTRvjdRlAyHFvI5JxfyNScW8jki1evNrrEkKGUCPMpKXnadfWd6WaGOn9+6SaikbvmpQ5Qso7URp/jpR9qGQMUAEAAAAARCZCjTCTFp+mStWq/JsvKMEXK+3ZKpVslYq3SNtXSvnvBcKOd/4i9RsnHX6FNP5cKTbJ69IBAAAAAAipXhlqmNksSbPy8vK8LqXd0uIC82gUVhQqIXmA5M8JPHIkjZ4ZaFReKH3ylPT+/dLCq6UXfiZNOE8aeYo0+EgpLsWz+gEAAAAACJVeGWo45xZKWjh58uQrvK6lvfom9pUk5Zfka0DygJYbJfSRJl8mTbpU2viu9N490tIF0vv3Bt5PGSBl5EmpOVJieuCREHyO7yPF+wOPhDQpLlWK6pW3CQAAAACgh+Ov1TAzOmO0JOnTXZ/qsP6H7b+xWaBnxuAjpepyaf1b0pZl0s4vpF1fSBveksoKpKo9+z9PbHIw6OizN/CI9wfCk4bt4OuU/lJarpSYwXweAAAAAIAuRagRZjITMpUWlaYVO1e078CYhMBqKXkn7PteTaVUXiCV7ZIqivY+ygsbbTd6XZQvbfsk8LqyqOXPi00OhBv9J0gDJ0kDD5f6jyfoAAAAAACEDKFGGBocN7j9ocb+RMcFelik9G//sXW1UmXx3hBkzxapYF3gsWuNtPoFafk/Am39g6Sxs6UjrwwsQwsAAAAAQCcQaoShwbGDtbxwuQorCtUnvo+3xfiiAnNvJKRJaZJ0SNP3nZMK10vr3pBWLpTe/rP07t3S5Mul42+Q4pI9KBoAAAAAEAl8XheA9hsSO0SS9MmuTzyupA3MAsNQJl4kfe1R6XtLpYMvCAQb9x4f6NEBAAAAAEAHEGqEoUFxgyQptENQuktarnT6ndIlT0sl26SHZknFW7yuCgAAAAAQhgg1wlCiL1G5qblasSsMQ416w46VLn5KKt0lPfFNqa7O64oAAAAAAGGGUCNMjc0cq092hsHwk/3JOVQ69bfS+jekD+73uhoAAAAAQJgh1AhT4zLGaUf5Dm0r3eZ1KZ1zyIVS7lTptd9KVaVeVwMAAAAACCOEGmFqXOY4SQrvIShSYCLRE34mlW6Xli7wuhoAAAAAQBgh1AhTo9JHKcqiwn8IiiQNOlzKmSx98EBgCVgAAAAAANqAUCNMJUQnKK9PXniugNKSyZdJOz+XNrzjdSUAAAAAgDBBqBHGxmWO0ye7PpGLhN4NY86UouKkT5/2uhIAAAAAQJgg1AhjYzPHqriqWBv3bPS6lM6LS5aGHy999gxDUAAAAAAAbUKoEcbGZQQnC42UISijZ0lFG6WtH3ldCQAAAAAgDBBqhLG8tDzFRcXpk10RMFmoJOWdEHhe+5q3dQAAAAAAwgKhRhiL8cVoVPqoyOmpkdJfyhwpffm615UAAAAAAMIAoUaYG5cxTit3r1RtXa3XpYTG0K9IG96Waqu9rgQAAAAA0MMRaoS5cZnjVF5TrrVFa70uJTRyp0pVJdLmD72uBAAAAADQwxFqhLmxmWMlRdBkoblTA88MQQEAAAAAHAChRpjLTc1VUkxS5EwWmpQh9RtHqAEAAAAAOKCICTXMLMnMHjKze83sQq/r6S4+82lc5jgt3b7U61JCZ+hXpI3vStUVXlcCAAAAAOjBenSoYWYPmNl2M1vRbP90M1tlZl+Y2Y+Du8+S9Lhz7gpJp3d7sR6amjNVqwtWa3PJZq9LCY3cqVJNhbTpA68rAQAAAAD0YD061JA0X9L0xjvMLErSnyXNkDRG0gVmNkbSQEkbg80iZCmQtpk2aJokafHGxV6WETpDjpbMJ335P68rAQAAAAD0YD061HDOvS5pd7Pdh0v6wjm31jlXJemfks6QlK9AsCH18OsKtSGpQzTMP0zPffmc16WERkIfqf8EaR2hBgAAAACgddFeF9ABOdrbI0MKhBlHSLpT0p/M7DRJC1s72MzmSJojSf369dPixYu7rtIuUlJSsk/dh/gO0ZM7ntSC/y7Q4LjB3hQWQsOih2rghoV686VFqo1O9LocdJOW7m0gEnBvI5JxfyNScW8jkkXS/R2OoUaLnHOlki5rQ7t7JN0jSZMnT3bTpk3r4spCb/HixWpe96SqSXr+X8/rg5gPdMm0S7wpLJRyo6X5T2lqdo00ZprX1aCbtHRvA5GAexuRjPsbkYp7G5Esku7vcBymsUnSoEbbA4P7erWU2BRdMeEKvbrxVb2w7gWvy+m8QUdK8X7p8+e9rgQAAAAA0EOFY6jxvqQRZjbUzGIlfVXSfzyuqUf4+tiva1zGON3w5g16f+v7XpfTOVHR0oiTpVWLpJpKr6sBAAAAAPRAPTrUMLNHJL0taZSZ5ZvZ5c65GknfkfRfSSslPeac+6Sd551lZvcUFRWFvmgPxfhi9McT/qh+if0054U5+vvKv8s553VZHXfwV6XyAumzZ7yuBAAAAADQA/XoUMM5d4FzboBzLsY5N9A5d39w/yLn3Ejn3HDn3G0dOO9C59wcv98f+qI9lpmQqX+c9g8dM/AY/fq9X+ubL3xTXxR84XVZHTPseMk/WHrvXimcwxkAAAAAQJfo0aEGOiYlNkV3HHeHbjjiBn22+zOds/Ac/fb936q4qtjr0trH55OmfE/a8Da9NQAAAAAA+yDUiFA+8+n8g87XM7Of0Zl5Z+pvn/5NM5+cqUc/e1Q1dTVel9d2ky6T+o6RFl4t7VrjdTUAAAAAgB6kV4YakTqnRkvS4tN009E36dGZjyovLU+/ePcXOnfhuXpz05tel9Y2UdHS+X8LDD+593jp/ful8kKvqwIAAAAA9ADRXhfgBefcQkkLJ0+efIXXtXSX0Rmjdf/J9+uVja/o9x/8Xt9+6duamjNV1x1+nYakDvG6vP3LGC598yXp31dJz/5AevaHUv9xUlqulNxfSsqUouOl6LjAIypO8kVLZpIs+Kxm2yaZb9998FTGzo+lz8q8LqPrGPdYb5Wx82NpVbnXZQBdgvsbkYp7GxErNdvrCkLKwnp1jE6aPHmy++CDD7wuo90WL16sadOmdfj4qtoq/WPlP/TXj/6q6rpqXXXIVbpkzCWK9vXwjMs5Kf99ac0r0sZ3peLN0p6tUkWh15UBAAAAQHg4+GtanHZ+p/6m9IKZLXHOTW6+v4f/FYuuEBsVq0vHXarThp2m2969TbcvuV3Pf/m8bp1yq0alj/K6vNaZSYMODzwaq6uVaiqlmgqptirwXFcbXDHF7f/Z1TXaB699sGSJJk+a5HUZXYR7rDeL7HsbvR33NyIV9zYiVkK6tPxLr6sIGUKNXiwrMUvzjpunF9e/qNveuU1ffear+uaEb2rO+DmKiYrxury280VJsYmBB8JayeeFUvYhXpcBhFzJ50VS9kSvywC6BPc3IhX3NiJb5IQavXKiUDR10pCT9PSZT2v60Om6e/nd+tqir+nzgs+9LgsAAAAAgP3qlaFGb1r9pK38cX79auqvNO+4edpetl3nP3O+7v3o3vBa/hUAAAAA0Kv0ylDDObfQOTfH7/d7XUqPc8LgE/TvM/6tEwafoDs/vFMXL7pYawvXel0WAAAAAAD76JWhBvYvLT5Nc4+dq98d+zvll+Tr3IXnav6K+aqtq/W6NAAAAAAAGhBqoFXTc6frqTOe0jE5x+j3S36vS5+/VGsK13hdFgAAAAAAkgg1cACZCZmad9w8/fKYX2pN0Rqd/Z+zdds7t6mgosDr0gAAAAAAvVyvDDWYKLR9zEyzhs/Ss7Of1Tkjz9G/Pv+XTnvyNP1l2V9UVMnPEAAAAADgjV4ZajBRaMekxafphiNv0BOnP6HD+h+mu5bfpVOeOEXzlszT7ordXpcHAAAAAOhlemWogc4Z3me47jj+Dj0+63Edk3OMHljxgE7610m6/o3r9fGOj+Wc87pEAAAAAEAvEO11AQhfo9JHae6xc7X2kLX6x8p/aOGahfrPmv9odPponT3ibJ2Se4r6xPfxukwAAAAAQISipwY6bZh/mG448ga9ct4ruuGIG1TjavSLd3+h4/51nK5+5Wq9tP4lVdVWeV0mAAAAACDC0FMDIZMUk6TzDzpf5406T6sKVmnhmoVa9OUivbLxFaXEpGjaoGk6cciJOjr7aMVHx3tdLgAAAAAgzBFqIOTMTAelH6SD0g/S9yd9X+9teU+LvlykVze+qoVrFyohOkFTc6bqxCEnamrOVCXHJntdMgAAAAAgDPXKUMPMZkmalZeX53UpES/aF62jc47W0TlHq7quWu9vfV8vr39ZL294WS+sf0HRFq1D+h6iKTlTNDVnqkamjZSZeV02AAAAACAM9MpQwzm3UNLCyZMnX+F1Lb1JjC9GR2cfraOzj9ZPj/iplu9YrtfzX9cbm97QHUvv0B1L71BWQpaOzj5ak/tP1qS+kzQwZSAhBwAAAACgRb0y1ID3onxROrTfoTq036G6ZtI12l62XW9uelNvbHpDr258VU+veVqSlJWQpYl9J2pC1gSNSh+lUWmjlBaf5nH1AAAAAICegFADPULfxL6aPWK2Zo+YrTpXpzWFa/Th9g+1ZNsSLd2+VC+sf6FJ25FpIzU4ZbByknOUk5KjgckD1T+pv1JjU+nZAQAAAAC9BKEGehyf+TQibYRGpI3QeaPOkyTtKt+lVQWr9PnuzwPPBZ9r6balKqspa3JstEXLH+dXWnya0uPTlRSTpIToBCXGJAaeoxMbtuOj4pUQnaC4qDjFRwdex0fHKz4qvsl2rC+WoAQAAAAAeiBCDYSFjIQMHZ0QmI+jnnNOhZWF2lSySZtKNmlb6TYVVhZqd8VuFVQUqLCyUJtLNquspkzlNeUqqw48O7l2fbbJ9oYcwcDDH+dXenx6wyMjIUM5yTkamDJQOck5iouKC/WPAAAAAADQDKEGwpaZKS0+TWnxaRqXOa5NxzjnVFFbofKaclXWVKq8tlwVNRUNjybbwXbNt8trylVcWaz1xev14fYPVVhZqDpX1+RzcpJzNCZjjMZkjNHo9NE6pO8hSopJ6oofAwAAAAD0WoQa6FXMTAnRCUqITgjZOWvralVQWaD8PfnKL8nXxj0btaZwjT7d9aleXP+ipMDSthP7TtQxOcdoRu4MDUgeELLPBwAAAIDeilAD6KQoX5QyEzKVmZCpQ/oe0uS94qpifbLzE7295W29tekt3b7kds1bMk9HDDhCZ404SycNOUnRPv5vCAAAAAAd0Sv/mjKzWZJm5eXleV0KIlxqbKqOyj5KR2UfpR9M+oHy9+Rr4ZqFenrN0/q/1/9Pg1IGac6EOTp9+Onymc/rcgEAAAAgrPTKv6Kccwudc3P8fr/XpaCXGZgyUFcecqUWnbVI846bp9TYVN345o264NkLtGLnCq/LAwAAAICw0itDDcBrPvPphMEn6JHTHtGvp/5aO8t36qJFF+muZXeppq7G6/IAAAAAICwQagAeMjOdNuw0PXXGU5oxdIb+svwv+vZL31ZRZZHXpQEAAABAj0eoAfQAqbGp+tXUX+nWKbdqybYlunDRhcrfk+91WQAAAADQoxFqAD3ImXln6oFTHlBBRYEu++9l2lC8weuSAAAAAKDHItQAepiJfSfq/lPuV0VNhS7772XaUrLF65IAAAAAoEci1AB6oIPSD9J9J9+nsuoyXfXyVdpTtcfrkgAAAACgxyHUAHqoUemjdPtxt2td0Tr9cPEPVVtX63VJAAAAANCjEGoAPdiRA47UDUfeoLe3vK27lt/ldTkAAAAA0KN0ONQwsytDWQiAlp098mydPvx03fPRPXpr01telwMAAAAAPUZnempcUf8i3AIOM5tlZvcUFRV5XQrQJtcfcb2G+Yfp+jevV1El9y0AAAAASJ0LNazR6ytabdUDOecWOufm+P1+r0sB2iQxJlG/mvorFVQU6Dfv/cbrcgAAAACgR+hMqOFCVgWAAxqdMVrfHP9NLVy7UIs3Lva6HAAAAADwXGdCjVFm9oSZ/VhSspklh6ooAC371oRvKa9Pnn757i9VXlPudTkAAAAA4KnOhBrHSHpOUq6kIkk7zGxNMOi4MRTFAWgqJipGNxx5g7aUbtG9H93rdTkAAAAA4KkOhxrOuQ+dc/c5577tnDtMUqqkcyX9V9LAUBUIoKlJ/SZp5rCZmv/JfK0vXu91OQAAAADgmc701GjCOVftnFvqnLvHOfetUJ0XwL5+OPmHio2K1bwl87wuBQAAAAA8E7JQA0D3yUzI1KVjL9VLG17Ssu3LvC4HAAAAADwRfaAGZnZJZz7AObegM8cDaNklYy7RPz/7p25fcrvmT58vMzvwQQAAAAAQQQ4Yakia34nzO0mEGkAXSIxJ1FWHXKVb37lVr+W/pmmDpnldEgAAAAB0qwMOP3HO+TrxiOqOiwB6q9kjZis3NVfzlsxTTV2N1+UAAAAAQLdiTg0gjMX4YvTdid/VmqI1eu7L57wuBwAAAAC6FaEGEOZOHHKiRqaN1D0f3aPaulqvywEAAACAbsNEoUCY85lPVx58pb6/+Pt6bt1zmjlsptclAQAAAEC3YKJQIAIcP/h4jUgbob8u/6tm5M5QlI/pbAAAAABEPiYKBSJAfW+NdcXr9Py6570uBwAAAAC6Ra+cU8PMZpnZPUVFRV6XAoTMCYNP0Ii0Ebp7+d3MrQEAAACgV+h0qGFmM0JRSHdyzi10zs3x+/1elwKEjM98+vaEb9NbAwAAAECvEYqeGreYWf/GO8zsGyE4L4B2OnHIicrrk6e/fvRXemsAAAAAiHihCDWukfQ3MzNJMrPrJc0JwXkBtJPPfPr2wd/Wl0Vf6oX1L3hdDgAAAAB0qQ6HGvUhhnPuTUmvSbrVzO6QNEXS8aEpD0B7nTTkJA33D9dfl/9Vda7O63IAAAAAoMt0pqdGoZm9ama/lrRS0tmSkiXNdM6VhaQ6AO3mM5++dfC3tKZoDb01AAAAAES0zoQaOZJukrRL0nmSEiSdIukpM/t550sD0FEnDzlZQ/1D6a0BAAAAIKJ1ONRwzpU4515zzv3OOXeecy5X0kRJ90iyUBUIoP2ifFH61oRv6YvCL/Tyhpe9LgcAAAAAusQBQw0zu9nMzjSz3AO1dc7tcM4965y7KRTFAei46bnTlZuaq7uX301vDQAAAAARqS09NW6U9ISkNWa228xeMbM/mNnFZjbOzKK6uEYAHRDli9KcCXP0ecHnenXDq16XAwAAAAAh15ZQI0vSyZL+T9Kzwe2rJc2XtFzSHjN738zuMbMru6pQAO03Y+gMDU4ZrLs/ulvOOa/LAQAAAICQOmCo4Zzb5Zx72Tn3e+fcxZKmKjBnxjWSrpL0kKQaSV+T9KcurBVAO0X7ojVnwhx9tvszvbqR3hoAAAAAIktHJgqt/8+9y51zf3XOXemcO0pSiqQxoSsNQCicNuw0DUweqLuX01sDAAAAQGTpzJKuTbiAVaE6H4DQqO+tsXL3Si3euNjrcgAAAAAgZEIWagDouWYOn6khqUN054d3qrau1utyAAAAACAk2rKk60Qzi+mOYgB0jRhfjL4z8Tv6ovALPfvls16XAwAAAAAh0ZaeGksklZjZMjN7QIHJQZ2k2C6tDEBInTzkZI1OH60/f/hnVdVWeV0OAAAAAHRaW0KNOZLulVQi6RxJtymw+sl/zewLM3vczK43s1PNLLsLawXQCT7z6ZpJ12hz6WY9tuoxr8sBAAAAgE6LPlAD59x9jbfNbISkQ4KPiZKOlnRWfXNJUSGtEEDIHJ19tI4YcITu+egenZF3hlJiU7wuCQAAAAA6rN0ThTrnVjvn/uWcu945d6pzLltSf0mnSvppyCsEEFLfn/R9FVYW6t6P7vW6FAAAAADolE6vfmJmM5xz251zzzvnfhOKogB0nbEZY3Vm3pl6eOXDWle0zutyAAAAAKDDQrGk6y1m1r/xDjP7RgjOC6CLfO/Q7ykuKk5zP5jrdSkAAAAA0GGhCDWukfQ3MzNJMrPrFZhcFEAPlZmQqW9N+JZey39Nb2x6w+tyAAAAAKBDOhxq1IcYzrk3Jb0m6VYzu0PSFEnHh6a8dtUzzMzuN7PHu/uzgXB00eiLNCR1iH7z3m9Y4hUAAABAWOpMT41CM3vVzH4taaWksyUlS5rpnCtrz4nM7AEz225mK5rtn25mq4JLx/54f+dwzq11zl3e3osAequYqBj95PCfaF3xOt338X0HPgAAAAAAepjOhBo5km6StEvSeZISJJ0i6Skz+3k7zzVf0vTGO8wsStKfJc2QNEbSBWY2xszGm9kzzR59O3EdQK81JWeKTht2mu79+F6tLVzrdTkAAAAA0C4HDDXMbFBL+51zJc6515xzv3POneecy5U0UdI9kqw9RTjnXpe0u9nuwyV9EeyBUSXpn5LOcM597Jyb2eyxvT2fB2CvH03+kZJiknTz2zerztV5XQ4AAAAAtJk55/bfwKxa0lOS7nTOddmMgmaWK+kZ59y44PY5kqY7574Z3L5Y0hHOue+0cnyGpNsknSTpPufcr1ppN0fBiUz79es36Z///GeoL6XLlZSUKDk52esyEEHeKXlHf9/1d52ffr6OSTnGszq4txGpuLcRybi/Eam4txHJwvH+Pu6445Y45yY33x/dhmNvlfQtSWeb2XJJ8yT9M9h7osdwzu2S9O02tLtHgd4kmjx5sps2bVoXVxZ6ixcvVjjWjZ7rWHes1r64Vv/Z8R9dcuwlGpw62JM6uLcRqbi3Ecm4vxGpuLcRySLp/j7g8BPn3C2Shki6UFK5AvNfbDSzm82sfxfWtklS46EvA4P7AISYmemWKbco2hetn77xU9XU1XhdEgAAAAAcUJsmCnXO1Tjn/umcmyJpsqRFkn4kaZ2Z/c3MDuuC2t6XNMLMhppZrKSvSvpPF3wOAEn9k/rrxiNv1PIdy/XAige8LgcAAAAADqjdq58455Y65y5ToBfFzZKmSnrHzN42s692pAgze0TS25JGmVm+mV3unKuR9B1J/1VgydjHnHOfdOT8LXzeLDO7p6ioKBSnAyLGjKEzNGPoDN217C6t2LniwAcAAAAAgIfaHWqYWZKZDZCUJellBeax+JekwyT9rSNFOOcucM4NcM7FOOcGOufuD+5f5Jwb6Zwb7py7rSPnbuXzFjrn5vj9/lCdEogY1x9xvbISs3Tta9eqqJLgDwAAAEDP1ZYlXZeb2Zdmtju4EkqxpHxJn0p6R9KzkmZLKpS0oQtrBdAN/HF+zT12rraVbdMNb9zAMq8AAAAAeqy29NQYr8BEocslfU3SCQr0yhgpqb+kROdcnHMu0zk3rMsqBdBtJmRN0LWTr9Xi/MWa/8l8r8sBAAAAgBa1JdQ4RIEVT46Q9CdJx0na7Jz7wjm33TlX0XXldQ3m1AAO7GsHfU0nDzlZdy69U+9secfrcgAAAABgH21Z0vUj59w3FJgY9A5Jlymw6skCM5vU1QV2BebUAA6sfpnXof6h+uHiH2p98XqvSwIAAACAJto8Uahzbpdz7peShkq6JPj8vpm9YWZnm1m7Jx0F0LMlxSTpj8f/UT7z6Tsvf0fFVcVelwQAAAAADTqypGutc+4x59xUSZMkfaHAqidrzezaUBcIwFsDUwbq9mm3K78kX9cuvlbVtdVelwQAAAAAktq2+skAMxtlZoeZ2QlmNtvMvm5m35V0qqRtkp6XNFDSb7q4XgAemNx/sn525M/09pa3deNbN7IiCgAAAIAeIboNbTZJcsHX1uw9J6lEgeVcP5UUFjNvmtksSbPy8vK8LgUIG7NHzNauil26Y+kdSo9P148m/0hmzb8SAAAAAKD7tCXU+J4CoUVRo+f618XOOdfagT2Vc26hpIWTJ0++wutagHBy+bjLtat8lx7+9GFlxGfo8vGXe10SAAAAgF7sgKGGc+5P3VEIgJ7PzPSjw36kXRW7NG/pPPnj/Dpn5DlelwUAAACgl2pLTw0AaOAzn26bcpv2VO3RzW/fLJ/5dNaIs7wuCwAAAEAvxDKsANotJipG846bpyk5U/Tzt36uJ1c/6XVJAAAAAHohQg0AHRIXFac7jruDYAMAAACAZ3plqGFms8zsnqKisFisBeixmgcbf1/5d69LAgAAANCL9MpQwzm30Dk3x+/3e10KEPbqg43jBx2vX7/3a/3pwz8pDBdFAgAAABCGOhxqmNkrZjYwlMUACE9xUXH6/bTf66wRZ+mvH/1Vt75zq2rrar0uCwAAAECE68zqJ9MkJYaoDgBhLtoXrZuOuklpcWm6f8X9Kqws1G3H3KaE6ASvSwMAAAAQoVjSFUDImJmumXSNMhIy9Lv3f6ctJVt05/F3Kisxy+vSAAAAAESgXjmnBoCudfGYizXvuHlaU7RGX1v0Na3avcrrkgAAAABEIEINAF3i+MHH66HpD6nO1eni5y7Wyxte9rokAAAAABGmV4YaLOkKdI/RGaP1yGmPaJh/mK559RrNWzJPNXU1XpcFAAAAIEL0ylCDJV2B7tM3sa8emvGQzh5xtu5fcb++/eK3tat8l9dlAQAAAIgAvTLUANC94qLidNPRN+mWo2/Rh9s/1PnPnK+PdnzkdVkAAAAAwhyhBoBuM3vEbD186sOK9kXr689/XQ+ueFB1rs7rsgAAAACEKUINAN1qTMYYPTrzUU0bOE1/WPIHzXlxjraVbvO6LAAAAABhqDOhxkmSNoSqEAC9hz/Orz9M+4NuOuomfbTjI5298GxWRwEAAADQbh0ONZxzLzvnKkJZDIDew8x09siz9ejMR5WTnKNrXr1G/9j1D+2p2uN1aQAAAADCBMNPAHhqqH+o/jbjb7p83OV6p+QdzX56tt7Y9IbXZQEAAAAIA4QaADwXExWjayZdox/0/4GSY5J15UtX6sY3b1RxVbHXpQEAAADowXplqGFms8zsnqKiIq9LAdBIblyuHpv1mK4Yf4UWrlmo2f+erRfXvyjnnNelAQAAAOiBemWo4Zxb6Jyb4/f7vS4FQDOxUbH63qHf099P+7vSE9L1g8U/0JUvX6kNxcxLDAAAAKCpToUaZpZgZoeZ2eVmdoeZvRKqwgD0bmMzxuqR0x7Rjw//sZZtX6bZT8/WXcvuUmVtpdelAQAAAOghotva0MyGSprQ7DFMgWDEgs02hrpAAL1XtC9aF46+UCcNOUlz35+rvyz/ixauXaifHP4TTR041evyAAAAAHjsgD01zOxNMyuS9IWkpyTdLOlkSbslPaJAoHGlpDTn3JAurBVAL9U3sa9+e+xvde/J9yrKonTVy1fp2y9+W6sLVntdGgAAAAAPtWX4yVGSkiUtkjRTUq5zzu+cO0rS94JtVjrnmHUTQJc6csCRevL0J/WjyT/SRzs/0jkLz9Etb9+ineU7vS4NAAAAgAfaEmrMkbRN0qmSvqGmQ1ZYkgBAt4qJitElYy/RotmLdMFBF+ip1U9p5lMzdd/H96m8ptzr8gAAAAB0owOGGs65+ySNkPQrSTMkfWpmc82MpUMAeKZPfB/9+PAf68kzntRh/Q/THUvv0GlPnqZHPntE1bXVXpcHAAAAoBu0afUT51ypc+4GSaMkPS7p+5JWS/p/orcGAA8N9Q/VH4//ox485UENShmkX777S818aqaeWv2UaupqvC4PAAAAQBdq15Kuzrl859xFko6UtErSL4JvjQ91YQDQHpP7T9b86fN194l3Ky0+TT9762ea/fRsPfflc6pzdV6XBwAAAKALtCvUqOece985N1XSeZK+lHSnmT0TXPYVADxhZpqSM0WPnPaI5h03T9G+aP3f6/+ns/9ztp5Z+ww9NwAAAIAI06FQo55z7nFJoyVdJ+loSZ+EoqiuZmazzOyeoiIWbAEikZnphMEn6PFZj+s3U38j55x+8r+faNZTs/Svz/+lqtoqr0sEAAAAEAKdCjUkyTlX7Zybq8Bkovd3vqSu55xb6Jyb4/cz1ykQyaJ8UTp12Kl68ownNe+4efLH+XXL27doxhMztOCTBSqrLvO6RAAAAACdEH2gBmZ2STvO937z9s65Be2uCgBCyGc+nTD4BB0/6Hi9s+Ud3fvxvfrdB7/TvR/fq3NHnqsLDrpAWYlZXpcJAAAAoJ0OGGpImt+J8ztJhBoAegQz01HZR+mo7KO0bPsyPbDiAd338X168JMHNSN3hi4ec7FGZ4z2ukwAAAAAbXTAUMM51+khKgDQ0xzS9xDdefyd2lC8QX9f+Xc99cVTWrh2oSb3m6yLx1ysYwceqyhflNdlAgAAANgPAgsAvdrg1MH6yRE/0UvnvqQfTvqhNpVs0tWvXq1Z/56lBZ8sUFElEwoDAAAAPRWhBgBISo1N1aXjLtWisxZp7rFzlRGfod998Dud8K8TdP0b1+ujHR/JOed1mQAAAAAaCfVEoftgolAA4STaF61Tck/RKbmnaNXuVfrX5//SwjUL9Z81/9FB6Qfp3JHnauawmUqMSfS6VAAAAKDXY6JQAGjFqPRRuuHIG/T9Sd/Xs2uf1WOrHtOt79yqPyz5g04deqrOzDtT4zPHy8y8LhUAAADolZgoFAAOICkmSeeNOk/njjxXH+38SI+tekwL1yzUvz7/l4b5h+mMvDM0a9gsloUFAAAAuhmBBQC0kZnp4KyDddsxt+nV817VTUfdJH+cX7cvuV0nPn6irnrpKr2w7gVV1VZ5XSoAAADQK7Rl+AkAoJnk2GSdPfJsnT3ybK0rWqf/rPmPnl7ztH742g/lj/NrRu4MnTbsNB2cdTDDUwAAAIAuQqgBAJ2U68/V9w79nv7fIf9P72x5R09/8bSeXP2k/rnqn8pJztGMoTM0Y+gMjUwb6XWpAAAAQEQh1ACAEInyRWlKzhRNyZmikqoSvbLxFS1au0gPrnhQ9318n/L65OnUoadqxtAZGpgy0OtyAQAAgLBHqAEAXSA5NlmnDz9dpw8/XbvKd+nF9S9q0ZeLdOeHd+rOD+/UhKwJOnnIyTpxyInKSc7xulwAAAAgLBFqAEAXy0jI0FcP+qq+etBXtblks5778jk9v+55zf1gruZ+MFdjMsbopCEn6cTBJyrXn+t1uQAAAEDY6JWhhpnNkjQrLy/P61IA9DLZydm6fPzlunz85dpYvFEvbXhJL61/SXcsvUN3LL1DeX3yAgHHkBM1os8IJhkFAAAA9qNXhhrOuYWSFk6ePPkKr2sB0HsNSh2ky8ZdpsvGXaatpVv18oaX9eL6F3X38rt11/K7NCR1iI4fdLyOHXSsDs46WNG+XvmVDQAAALSK35ABoAfon9RfF46+UBeOvlA7y3fqlQ2v6OUNL+vhlQ/rwU8elD/Or2NyjtG0gdM0JWeKUmJTvC4ZAAAA8ByhBgD0MJkJmTpv1Hk6b9R5Kqkq0Vub39Jr+a/pf/n/07Nrn1W0RWtSv0k6dtCxmjZwmgalDvK6ZAAAAMAThBoA0IMlxybr5NyTdXLuyaqtq9VHOz/Saxtf02v5r+m37/9Wv33/txrqH6qpOVM1JXuKJvWfpLioOK/LBgAAALoFoQYAhIkoX5Qm9p2oiX0n6ppJ12jjno16Pf91Ld64WI989ogWfLpAcVFxmtx/sqZkT9GU7Cka6h/KZKMAAACIWIQaABCmBqUMapiHo6y6TB9s+0BvbX5Lb256U799/7eSAnN1TMmeoqOzj9YRA46QP87vcdUAAABA6BBqAEAESIxJ1FcGfkVfGfgVSdLmks16c/ObemvTW3ph3Qt6YvUT8plP4zPH66jso3R4/8M1IWsCQ1UAAAAQ1gg1ACACZSdn69yR5+rckeeqpq5GH+/8WG9uelNvbX5L93x0j+5efrfiouJ0SN9DdET/I3RY/8M0NnOsYnwxXpcOAAAAtBmhBgBEuGhfdMNcHN+Z+B3tqdqjJduW6N0t7+q9re/pzg/vlCQlRidqUr9JOmLAETq8/+EalT5KPvN5XD0AAADQOkINAOhlUmJTNG3QNE0bNE2StLtitz7Y+oHe2/qe3t3yrv636X+SpNTYVB3W/zBN7jdZE/tN1Ki0UYr28a8NAAAA9Bz8dgoAvVx6fHrDsrGStL1su97b+p7e2/Ke3tv6nl7e8LIkKSkmSQdnHaxD+x6qQ/sdqvGZ4xUfHe9l6QAAAOjlCDUAAE30TeyrmcNmauawmZKkraVbtXTbUi3dvlRLti3Rn5b9SVJgWMvYjLE6tN+hmtR3kg7pewirqwAAAKBbEWq0orq6Wvn5+aqoqPC6lH34/X6tXLnS6zI6LCoqSn369FFmZqZ8PsbrAz1d/6T+OnXYqTp12KmSpKLKIi3bvkxLti/R0m1L9fCnD+vBFQ/KZMpLy9OhfQ/VwVkH6+CsgzUoZZDMzOMrAAAAQKQi1GhFfn6+UlJSlJub2+N+Id+zZ49SUlK8LqNDnHOqrq7Wtm3blJ+fr8GDB3tdEoB28sf5deygY3XsoGMlSRU1Ffp458daum2pPtz+oZ5Z+4weXfWoJCktLk0TsiY0PMZljFNybLKX5QMAACCCEGq0oqKiokcGGuHOzBQbG6ucnBytWrXK63IAhEB8dLwO63+YDut/mCSptq5Wa4rW6KMdH+mjHR9p+Y7lei3/NUmSyTS8z/CGnhwTsiZoqH8oq6wAAACgQwg19oNAo+sw7ASIXFG+KI1MG6mRaSN1zshzJEnFVcVasWOFlu9cruU7luuF9S/oidVPSJKSY5I1PnO8xmeN17iMcRqbOVZ9E/t6eQkAAAAIE4QaAIAulxqbqqNzjtbROUdLkupcndYXr2/Sm+O+j+9TnauTJPVN6KsxmWM0NmOsxmaM1ZiMMcpIyPDyEgAAANADEWoAALqdz3wa6h+qof6hOiPvDElSWXWZVhWs0ic7P9EnuwKP1za+JicnSRqQNCAQcmQGQo6xGWNZbQUAAKCXI9SIcDNnzlRmZqbmz5/vdSkAsF+JMYma2HeiJvad2LCvpKpEK3ev1Ke7Pm0IO17a8FLD+wOTB2ps5liNTh+t0emjNSp9FD06AAAAehFCDXTabbfdpkWLFmnZsmUqKyuTc87rkgBEiOTY5CaTkEqBJWVX7l7ZEHJ8vONj/Xfdfxvez0rI0kHpB+mg9IM0Kn2UDko/SINSBjEZKQAAQAQi1ECnVVZW6qyzztK0adP0y1/+0utyAEQ4f5xfRw44UkcOOLJhX1FlkVbtXqXPdn+mVQWB57c3v60aVyNJSoxO1Kj0URqVFgg5Dso4SHl98hQXFefVZQAAACAECDUiSFlZma666io9/vjjSkpK0tVXX90tn3vLLbdIkh5//PFu+TwAaM4f59fhAw7X4QMOb9hXWVupNYVrGsKOz3Z/poVrF+qfq/4pSYqyKA31D9VB6QdpZNpIjUgbobw+eeqX2I/VrwAAAMJExIQaZnampNMkpUq63zn3QijPf/PCT/Tp5uJQnvKAxmSn6uezxra5/bXXXqsXX3xRTzzxhHJycnTzzTfr9ddf11lnndXqMRs2bNCYMWP2e96LLrpId999d5vrAICeIC4qTmMyxmhMxt7vuDpXp017NumzgkDIsWr3Kr239T09s/aZhjapsanK65OnEWkjNKLPiEDYkZan1NhULy4DAAAA+9EjQg0ze0DSTEnbnXPjGu2fLukOSVGS7nPO/bq1czjn/i3p32aWJmmupJCGGj1dSUmJ7r//fj3wwAM65ZRTJEkPPvigBg4cuN/jsrOztWzZsv22SU3lF3kAkcFnPg1KHaRBqYN00pCTGvYXVRbpi8IvtLpgdeBRuFqL1i7Snuo9DW36J/XfJ+wY5h+m2KhYLy4FAAAA6iGhhqT5kv4kaUH9DjOLkvRnSSdJypf0vpn9R4GA41fNjv+Gc2578PUNweNCqj09JrywZs0aVVVV6aijjmrYl5ycrPHjx+/3uOjoaOXl5XV1eQDQo/nj/JrUb5Im9ZvUsM85p21l2/R5wedaXbC6IfR4d8u7qq6rlhQYwjIkdYjy+uRpWJ9hGu4frqH+ocr15zJfBwAAQDfoEaGGc+51M8tttvtwSV8459ZKkpn9U9IZzrlfKdCrowkLDID+taTnnHNLW/ssM5sjaY4k9evXT4sXL26xnd/v1549e1p8z2u1tbX71FZaWiop0GOj8Xu1tbWqrq5u9Vo2btyoww8/vMX36p1//vmaN2/eAesqLy+XpDb/3CoqKlr9+aN3Kikp4Z5AjzQ8+L9TUk9RbUqtdtTs0OaqzdpcvVmbqzbrw00f6sX1L8opsPqTyZQZnan+Mf3VL6af+tT20fr/rle/mH6K98V7fDVAaPHdjUjFvY1IFkn3d48INVqRI2ljo+18SUfsp/13JZ0oyW9mec65FieBcM7dI+keSZo8ebKbNm1aiydbuXKlUlJSOlB219uzZ88+tU2YMEExMTFasWKFJkyYICkQdKxcuVIjR45s9VpGjhzZpuEnbflZJCQkSFKbf27x8fGaOHFim9qid1i8eLFa+/8k0NNV1lZqXdE6fVn0pdYUrdHawrVaW7RWi4sXq6auRgpkz+qf1F/D/MMCj2DvjmH+YeoT38fT+oGO4rsbkYp7G5Esku7vnhxqtItz7k5Jd3pdh1eSk5N1+eWX67rrrlNWVpays7N1yy23qLa2dr/HhWL4yYYNG7R7926tW7dOkhpCkry8PCUnJ3fq3AAQLuKi4gLLxqaParK/pq5GT778pDJGZQQCj8I1Wlu0Vk+sfkLlNeUN7dLj0zXMP0y5/lzlpgYeQ1KHKCclRzG+mO6+HAAAgLDQk0ONTZIGNdoeGNyHVsydO1elpaWaPXu2EhMT9d3vfrdhWEpX+tnPfqaHHnqoYbu+98Wrr74aMekfAHRUtC9afWP6atrgaU3217k6bS3d2hByrC1aq7WFa/Xy+pdVUFmw93iL1sCUgRqSOiQQdPiHNIQemQmZLD8LAAB6tZ4carwvaYSZDVUgzPiqpK+F4sRmNkvSrEibIDMpKUkLFizQggULDtw4hObPn6/58+d362cCQLjzmU/ZydnKTs7W1IFTm7xXVFmkdcXrtK5ondYXrw+8Ll6nd7a8o8rayoZ2STFJGpI6RENSh2ho6tBA8OEP9PBIiknq7ksCAADodj0i1DCzRyRNk5RpZvmSfu6cu9/MviPpvwqsePKAc+6TUHyec26hpIWTJ0++IhTnAwAglPxxfh2cdbAOzjq4yf763h3ritY1BB3ri9dr+fblev7L5xsmKpWkvgl9NSh1kAanDNbg1MEalDJIg1IC28mxDA0EAACRoUeEGs65C1rZv0jSom4uBwCAHqlx746jc45u8l5FTYU27NkQ6NkRDD027tmo1/Nf166KXU3apsena2DKwEDgkTJYg1L3Bh594vowpAUAAISNHhFqAACAzomPjtfItJEamTZyn/dKq0uVvydfG/Zs0IbiDdq4Z6M27tmoJduW6Nm1zzbp4ZESkxIIPFKDgUd9D4/UwcpKyCLwAAAAPQqhBgAAES4pJqnFlVmkwFK0m/Zs0sY9G/eGHiUbtXLXSr28/mXVuJqGtvFR8cpJzlFOSo5yknM0MHmgclKCz8k5DGsBAADdrleGGpE6USgAAO0VFxWnYX2GaVifYfu8V1NXoy2lW7SxeGND6JG/J1+bSjZp6balKqkuadLeH+cPhB7Je4OO+gAkOzlbcVFx3XVZAACgl+iVoQYThQIAcGDRvuiG4SfNOedUXFWs/JJ8bdqzSZtKAo/8knytLlitxRsXq7quuskxfRP6NoQcDeFHSiD86JfYT1G+qG66MgAAECl6ZagBAAA6x8zkj/PLH+fX2Iyx+7xf5+q0o2xHk7CjPvxYsm2JFn25SHWurqF9tEWrX1I/DUgaoOzkbPVP6q/spGwNSB6gAUmBR3x0fHdeIgAACAOEGgAAIOR85lO/pH7ql9RPh/Y7dJ/3q2urtbV0ayDsCAYfm0s2a0vpFr239T1tL9veJPSQAqu2tBZ6ZCdlyx/nZyJTAAB6GUINAADQ7WKiYgJLyabuO7RFkqrrqrW9bLu2lGzRltItDYHHltIt+qLwC/0v/3+qqK1ockxCdEKgV0ejoKPx66zELEX7+NUHAIBI0iv/zd6bJgqdOXOmMjMzNX/+fK9LAQCgzWJ8MQ3zbrTEOaeCyoJA0FHSNPTYUrpFn+78VAWVBU2OibIoZSZkqn9Sf/VLDPQi6Z/YP/Ac3JeZkEnwAQBAGOmV/9ZmotDQWbdunW699Va9+uqr2rJliwYMGKDzzz9fP/vZz5SQkOB1eQCACGVmSo9PV3p8eotzekhSWXWZtpZtDYQepZu1pWSLtpVt07bSbfq84HO9nv/6Pr096oOPxoFHv8S9oUf/pP4EHwAA9CD8Gxmd8tlnn6m2tlZ33XWXRowYoZUrV2rOnDnatWuX7rnnHq/LAwD0YokxiRrmH6Zh/n2Xq5X2ruCytXSrtpVt09bSrQ2vt5W1Hnz4zNe0x0d96BEMQgg+AADoPvzbNoKUlZXpqquu0uOPP66kpCRdffXVXf6Z06dP1/Tp0xu2hw0bpuuvv1433ngjoQYAoEdrvILLqPRRLbZpKfio7+2xtWyrVhes1hub3lB5TXnTc8uUkZChrIQs9Uvsp6zELGUlBl8nZKlvYl/1TeyrPnF9mNwUAIBOINRoq+d+LG39uHs/s/94acav29z82muv1YsvvqgnnnhCOTk5uvnmm/X666/rrLPOavWYDRs2aMyYMfs970UXXaS77767zXUUFxcrLS2tze0BAOip2hN8NA47tpVu047yHYHJTku3aPmO5fvM8SEF5g6pDzmyEveGHY339Uvsp6SYpK6+VAAAwhKhRoQoKSnR/fffrwceeECnnHKKJOnBBx/UwIED93tcdna2li1btt82qampba5j/fr1mjt3rn7605+2+RgAAMJZ4+BjZNrIVttV1VZpZ/lObS/bru1l2xtCj+1l27WjbIe+KPxCb21+S6XVpfscmxiduDfwSMxS34S+TYKQrIRAT5C4qLiuvFQAAHqcXhlqdGj1k3b0mPDCmjVrVFVVpaOOOqphX3JyssaPH7/f46KjoxWqVWC2bdum6dOn66STTtL3v//9kJwTAIBIERsVq+zkbGUnZ++3XWl1qXaU7dCO8h3aVrZNO8p2NAlClm1fph1lO1RVV7XPsSmxKcpMyGzyyErIUmZCZsNwmMyETIa9AAAiRq8MNVj9ZK9QDT/ZunWrjj/+eI0bN04PP/wwvygBANBBSTFJSvInKdef22ob55yKKou0vXx7Q+ixs3yndpTv0M7yndpVvksrdq7QzvKd+8z3IUnRvmhlxGc0hB4ZCRlNApDMxL2hCL0/AAA9Wa8MNSLR8OHDFRMTo3feeUfDhgVmeS8tLdWKFSs0fPjwVo8LxfCTLVu26LjjjtPYsWP1yCOPKDqa2woAgK5kZuoT30d94vvsd8iLFOj5sbN8Z0Posat8V+B12Q7trNipLaVb9PHOj7W7Yrec3D7H1/f+aCn8yEjI0OaqzdpZvlNpcWmK8kV11SUDANAi/vqMEMnJybr88st13XXXKSsrS9nZ2brllltUW1u73+M6O/xk8+bNmjZtmrKzszVv3jzt3Lmz4b2srCxFRfHLDQAAXkqKSVJSTJKGpA7Zb7uauhoVVBQ0BCCNg5AD9f741WO/ks986hPXR+nx6cpIyFBGfEaT1833xUbFduVlAwB6CUKNCDJ37lyVlpZq9uzZSkxM1He/+12Vlu472VgovfDCC1q9erVWr16twYMHN3nvyy+/VG5ubpd+PgAACI1oX3TD0rMHUlZdph3lO7SjbIf+t+R/6j+8v3aV79Luit3aVb5Luyp26eOdH2tX+S6V1ZS1eI6UmBSlJ6TvE340vE4Ivo7PUFJMEkNbAQAtItSIIElJSVqwYIEWLFjQbZ956aWX6tJLL+22zwMAAN5LjEnUkJghGpI6RCVJJZp20LRW25bXlO8NO+qDj4qmr9cWrdUH2z5QYWVhi+eIi4prCDhaCkLS4tOUHp+utPg0pcWlKSYqpmsuHADQ4xBqAAAAoMskRCcoJzlHOck5B2xbXVetworCpqFHsOdH/evtZdv12a7PtLtit2pcTYvnSYlJCQQcwUd6fLrS4tKahh/xaUqPC7yOj44P9WUDALpJrww1OrSkKwAAALpUjC+mzUNg6lydiiuLGwKPgooCFVQUaHfl3tcFFQXaVLJJK3auUGFFYashSEJ0QpPgo3nPjyZBSHy6EqMTGQ4DAD1Erww1WNIVAAAgvPnM17ACzHC1vtJbPeeciquKA2FHZUHTIKRitwoqCxomSv284HMVVBSoqq6qxXPF+mL36fXRJPyISwvUFtdH/ji//HF+xfgYEgMAXaFXhhoAAADoXcysIWDIVe4B2zvnVFZT1mr40Xj/+uL12l2xe59VYRpLiUlpCDoaHs23m+1jhRgAODBCDQAAAKAZM2tYDndQyqA2HVNRU6GCigIVVhY2fVQEngsqC1RUWaSd5Tu1pnCNCisLW10dRpISoxOVFp8mf5y/xeAjLS7wXlp8WkOvkITohFD9CAAgLBBqAAAAACEQHx2vAckDNCB5QJuPqaqtCgQeFYHAoz74aGnfhuINKqos0p7qPa3XEBXfEHT44/z7BB+psakNPVb8sYHnlNgURfv4swBAeOLbCwAAAPBIbFSs+ib2Vd/Evm0+prquWkWVRYHAo1Hw0bhXSP3js9LPVFBZoOLKYjm5Vs+ZEpOi1LjUhrCjT1yfJtsNQUhwOzUuVf5YP8vnAvAcoQYAAAAQRmJ8McpMyFRmQmabj6mtq1VxVbGKq4obApGiqsBzcWVxw+v6/VtKt6iwslDFVcWqc3WtnjcxOnHfsKN5ENI8FInzKy4qLhQ/CgAg1AAAAAAiXZQvqmGllvaoc3UqqS7ZG340CkNaCkbWFK5peK+1JXSlwDCZ1gKQlNgUpcamKjUuVamxqU22U2JTWEkGQBOEGhFu5syZyszM1Pz5870uBQAAAGHGZ75AoBCbKqW0/TjnnMpryvcJQep7fzSEIsH31xevbwhGKmsr93vuhOiEvSFHcNhMfY0thiH1r+NSFR8VLzPr5E8FQE/SK0MNM5slaVZeXp7XpYS9uro6nXnmmVq2bJm2b9+utLQ0nXDCCfrNb36jnJwcr8sDAACAB8xMiTGJSoxJ1AC1feJUSaqsrVRxZbH2VO1pMmSm8Xbj9zeXbNaqqlUqripWaXXpfs8d44tpEnI0CT2Ck6jWv15bsVb9d/dv2E6KSZLPfJ35sQDoAr0y1HDOLZS0cPLkyVd4XUskOP744/XTn/5UAwYM0KZNm3Tttddq9uzZeu+997wuDQAAAGEmLipOWYlZykrMavexNXU12lO1Z28AUlm8NwhpIRDZXbFb64rWaU914Jjm84f8ceEfG177zKfkmOQWe4OkxKYoOSZZKbEpDY/m24QiQNfolaFGpCorK9NVV12lxx9/XElJSbr66qu7/DN9Pp+uueaahu0hQ4boxz/+sc444wxVVFQoPj6+y2sAAAAAJCnaF92huUOkwPwhpdWlDYHH6++9rmGjhzVsF1UWqbiqaQ+SraVbVVJdopKqElXUVuz3/CZTckyykmOTG0KPhkAkuC8lJqXV7dTYVMVGxXb0RwNELEKNNvrNe7/RZ7s/69bPPCj9IF13+HVtbn/ttdfqxRdf1BNPPKGcnBzdfPPNev3113XWWWe1esyGDRs0ZsyY/Z73oosu0t13392mGnbv3q2///3vOuKIIwg0AAAAEDZ85mvoVZGtbG2N36ppQ6a1+fiq2irtqdqjkuqSht4irW0XVxWrpKpEW0q3aHXh6obt/S27K0mxvtgmvT/a0kOkPjxJjk2mtwgiEqFGhCgpKdH999+vBx54QKeccook6cEHH9TAgQP3e1x2draWLVu23zapqakH/PzrrrtOf/rTn1RWVqYjjzxSzzzzTJtrBwAAAMJdbFSsMhIylJGQ0aHj61ydyqrLAuFHcDhMSVUwAAkGIy1tby7Z3BCWHGiSVZMFeoE06gFS33skOWbv66SYpCbbzV/HRLECDXoOQo02ak+PCS+sWbNGVVVVOuqooxr2JScna/z48fs9Ljo6WqGYMPVHP/qRLr/8cq1fv14333yzLrroIj333HPMLg0AAAC0gc98gdAgNrndk6vWq+8t0rxHSEvb9cHJtrJtWlO4pmEYzf6W4q0XFxW3N/hoLRBpIQxJiklqmF8kOSZZUb6oDl0n0BihRi8XquEnmZmZyszM1MiRIzV69GgNGjRIb7zxhqZOnRrKcgEAAAC0orO9RZxzqqytVEl1iUqrS1VSVdIQdpRU731dWl2qPdV7VFpV2rB/Y8nGhnal1aX7TLrakoTohDYHI0mxSUqJSdknGEmMSWRITS9HqBEhhg8frpiYGL3zzjsaNmyYJKm0tFQrVqzQ8OHDWz0uVMNPGqurC3yBVVbuv/sbAAAAgJ7DzBQfHa/46HhlJmR2+DzOOZXXlDcNRBoFHnuq9uwNRhqHJ9Ul2la2raHdgZbolQJDapJikgJhSHSSkmLa/qgPRep7kSREJ9DTPAwRakSI5ORkXX755bruuuuUlZWl7Oxs3XLLLaqtrd3vcZ0dfvL2229r6dKlOuaYY9SnTx+tWbNGN954o3Jzc3XMMcd0+LwAAAAAwpOZKTEmUYkxieqb2LfD56mtq1VZTVnrgUijniJ7qvaorLqsIQzZXrZdpTWlKq0qVWlN23qO1AckjYOOJq+jExt6kjQ8opOUFNvsOXgcPUi6B6FGBJk7d65KS0s1e/ZsJSYm6rvf/a5KSw+cbnZGQkKCHn/8cf3sZz9TaWmpBgwYoOnTp+vRRx9l9RMAAAAAHRbli2pYxaUznHOqqK1oCDxKqksaApADvS6pLtGu8l0Nr8uqy9o074ikQAgS7A3SvGdI830t9RypfyRGJzL/yH4QakSQpKQkLViwQAsWLOi2zzzkkEP06quvdtvnAQAAAEB7mJkSohOUEJ3QqWE1UiAgqaqrUknV3tCjtLq0oUdJaU1pk/3NHwUlBU22q+uq2/S5CdEJSoxObAhAGr/eZzs6qaGnTP179e0SohOUFJPUqZ9BT9MrQw0zmyVpVihW/QAAAAAA9A5mprioOMUlxHV4QtbGqmqrWgw/WnqU1QR6kZRVl6m0plQFFQXK35PfsF1WXSYnd8DPnDVslk7WyZ2uvafolaGGc26hpIWTJ0++wutaAAAAAAC9U2xUrGKjYpUWn9bpc9VP0Nok/GgehlSXKtefq7ovDjzHSLjolaEGAAAAAACRpPEErQcaZrP4i8XdU1Q3YDpWAAAAAAAQlgg19sO5A49HQsfwswUAAAAAdBahRiuioqJUXd22mWjRfuXl5YqJifG6DAAAAABAGCPUaEWfPn20bds21dVFzgQqPYFzTmVlZdq0aZP69u3rdTkAAAAAgDDGRKGtyMzMVH5+vlatWuV1KfuoqKhQfHy812V0WExMjPr166fU1FSvSwEAAAAAhDFCjVb4fD4NHjzY6zJatHjxYk2cONHrMgAAAAAA8BTDTwAAAAAAQFgi1AAAAAAAAGGJUAMAAAAAAIQlQg0AAAAAABCWCDUAAAAAAEBYMuec1zV4xsx2SFrvdR0dkClpp9dFAF2AexuRinsbkYz7G5GKexuRLBzv7yHOuazmO3t1qBGuzOwD59xkr+sAQo17G5GKexuRjPsbkYp7G5Esku5vhp8AAAAAAICwRKgBAAAAAADCEqFGeLrH6wKALsK9jUjFvY1Ixv2NSMW9jUgWMfc3c2oAAAAAAICwRE8NAAAAAAAQlgg1woiZTTezVWb2hZn92Ot6gPYws0Fm9qqZfWpmn5jZ1cH96Wb2opmtDj6nBfebmd0ZvN8/MrNDvb0CYP/MLMrMPjSzZ4LbQ83s3eA9/KiZxQb3xwW3vwi+n+tp4cABmFkfM3vczD4zs5VmdhTf3YgUZvb94O8lK8zsETOL5/sb4cjMHjCz7Wa2otG+dn9Xm9nXg+1Xm9nXvbiW9iLUCBNmFiXpz5JmSBoj6QIzG+NtVUC71Ej6oXNujKQjJf2/4D38Y0kvO+dGSHo5uC0F7vURwcccSXd1f8lAu1wtaWWj7d9Iut05lyepQNLlwf2XSyoI7r892A7oye6Q9Lxz7iBJBytwn/PdjbBnZjmSvidpsnNunKQoSV8V398IT/MlTW+2r13f1WaWLunnko6QdLikn9cHIT0ZoUb4OFzSF865tc65Kkn/lHSGxzUBbeac2+KcWxp8vUeBX4pzFLiPHwo2e0jSmcHXZ0ha4ALekdTHzAZ0b9VA25jZQEmnSbovuG2Sjpf0eLBJ83u7/p5/XNIJwfZAj2NmfklfkXS/JDnnqpxzheK7G5EjWlKCmUVLSpS0RXx/Iww5516XtLvZ7vZ+V58i6UXn3G7nXIGkF7VvUNLjEGqEjxxJGxtt5wf3AWEn2F1zoqR3JfVzzm0JvrVVUr/ga+55hJN5kv5PUl1wO0NSoXOuJrjd+P5tuLeD7xcF2wM90VBJOyQ9GBxedZ+ZJYnvbkQA59wmSXMlbVAgzCiStER8fyNytPe7Oiy/wwk1AHQrM0uW9ISka5xzxY3fc4HlmFiSCWHFzGZK2u6cW+J1LUAXiJZ0qKS7nHMTJZVqb/dlSXx3I3wFu9WfoUB4ly0pSWHwX6WBjojk72pCjfCxSdKgRtsDg/uAsGFmMQoEGn93zj0Z3L2tvmty8Hl7cD/3PMLFFEmnm9k6BYYGHq/AHAR9gt2Zpab3b8O9HXzfL2lXdxYMtEO+pHzn3LvB7ccVCDn47kYkOFHSl865Hc65aklPKvCdzvc3IkV7v6vD8jucUCN8vC9pRHA25lgFJjH6j8c1AW0WHHN6v6SVzrk/NHrrP5LqZ1b+uqSnG+2/JDg785GSihp1nwN6DOfcT5xzA51zuQp8N7/inLtQ0quSzgk2a35v19/z5wTbR+R/OUH4c85tlbTRzEYFd50g6VPx3Y3IsEHSkWaWGPw9pf7+5vsbkaK939X/lXSymaUFezKdHNzXoxn/PwwfZnaqAuO2oyQ94Jy7zduKgLYzs2Mk/U/Sx9o778BPFZhX4zFJgyWtl3Sec2538JeLPynQDbRM0mXOuQ+6vXCgHcxsmqRrnXMzzWyYAj030iV9KOki51ylmcVLeliBeWV2S/qqc26tRyUDB2RmhygwCW6spLWSLlPgP4zx3Y2wZ2Y3SzpfgVXaPpT0TQXmEOD7G2HFzB6RNE1SpqRtCqxi8m+187vazL6hwO/oknSbc+7BbryMDiHUAAAAAAAAYYnhJwAAAAAAICwRagAAAAAAgLBEqAEAAAAAAMISoQYAAAAAAAhLhBoAAAAAACAsEWoAANDFzOxSM3NmVhhc973xe9HB927yoK6bgp8d3d2f3R5m5jOzeWa2xczqzOzf+2nb5GdpZmea2Q+6o87WmNk1ZnZWC/tvMrOwWIYuXO4VAEDvQ6gBAED38Uu6zusiwtA5kq6W9DtJUyT9337aHiXpvkbbZ0ryNNSQdI2kfUINBeo8qntLAQAgspC2AwDQfV6Q9F0zu905t83rYrqDmcU55yo7eZrRwed5zrm6/TV0zr3Tyc86oBBdk5xz+ZLyQ1ASAAC9Fj01AADoPr8IPt+wv0atDUsws/lmtq7Rdm5wSMC3zexXZrbVzPaY2d/MLNHM8szsv2ZWYmZfmNnXW/nI0Wb2qpmVBYd43GJmTX5HMLMsM7vbzDaZWaWZfWZmc5q1qR9m8xUz+5eZFUp69wDXOt3M3jazcjMrMrN/m9moRu+vk3RTcLM2eP5L93O+huEnZjZf0tcl5QT3u2Y/v05dk5kdZmaPm1l+sP5VZvZLM0toVv8QSRc2qmF+8L19/jmbWaqZ/cnMNgdrWmVm3zcza9RmWvA8pwfb7gw+/mZmfZqd72ozWxmsr8DMPjCz2fv5R9JmwX92JcEa+J0SAOAJemoAANB9tkj6k6RrzGyuc259iM77E0mLFfgDfoyk30qqkzRR0r2S5kq6UtKDZvaBc+6TZsf/W9IDkn4l6RRJNwaPv0kK/KEt6Q1JCcF9Xwbb3RXstfDHZuf7u6RHFBg20urvGmY2XdKzkl6RdL6kZEm3SHrDzA5xzm2SNFvS9yRdqr1DNda04WciSbdKypJ0mKTTg/sqQ3hNgyUtkzRf0h5JYyX9TNIwSV8NtpktaZGk5dobzuxoqdhgMPCspEOD5/lY0mmS/hC8jp82O+QOSc9I+pqkUQr8c69V4D6QmV0o6fcK/Ez/F7zWCZLSW/r89jCzSxQYPnOLc+4XB2oPAEBXIdQAAKB7/UbStyT9XNI3QnTONc65+l4Y/zWzqZIulnSxc+5vkmRmHyjwh/05kpqHGvc6534dfP1C8A/+H5rZPOdcoQLzWQyRNN45tzrY7qVgr4Cfm9ldzrmaRud73Dm3v3kv6v1C0lpJM+qPN7O3JX0u6YeSfuCc+9DMNkntH1rinFtjZjskVbVwbKevyTn3RP3rYE+KNyUVS1pgZv/PObcrWH+lpJ1tqP9UScdIusw5Nz+47wUzS1Lgn8cfnHM7G7V/3Tn33UbtRkn6ppld6pxzCoRAHznnbml0zKID1HBAZvZ/km6TdKVz7r4DtQcAoCvRVRAAgG7knNutwH89v6TxMItOeq7Z9mfB5/82+twCSdslDWrh+Meabf9TgV4T44Lb0xUYcvGlBVZribbAKhj/lZShQO+Qxp46UMHBP9QPlfRo4/DAOfelAuHAsQc6Ryd1+pqCQ0V+Y2ZrFOgBUi3pYUkmaUQHavqKAj1k/tFs/98kxWrfSUWfbbb9saQ4Sf2C2+9LOsTM/mhmJ5pZYgdqau52STdLOodAAwDQE9BTAwCA7ne7pO8qMCzgwhCcr6DZdtV+9se3cHzzSUvrt3OCz30l5SnwR3tLMpptb2mlXWNpCvzx31LbrQr0ouhKobimByWdqMBQkWWSSiUdLunPavnnfCDpknY756qa7d/a6P3Gdjfbrp+8tP6zFwRfXy7pKknVZrZIgR4w6zpQnyRdIGmFpJc6eDwAACFFqAEAQDdzzpWY2a8U6LHxuxaaVEiSmcU2+wO3+R/aodJPgWEgjbclaVPweZcCvTyubuX4Vc2295nktAUFwXb9W3ivv/b9gz3UOnVNZhYv6QxJNznn7mi0f3wnatotKb2Ff+79G73fZsEhKH+V9FczS5N0sgL33KOSjuhgjScosIrPc2Z2qnOupIPnAQAgJBh+AgCAN/6iQGjQ0iSL9ROI1g//UHCuh6O7qJbzmm1/VVKJAsMZJOl5SQdJ2uCc+6CFx572fqBzrlTSEknnmllU/X4zG6LAdS7uwHW0pFKBCTKb6+w1xUmK0r49PS5tRw3NvabA72bnNtt/oQK9bN5uwzla5JwrcM49qsBQo3EHar8fn0iapsDwmufMLLkT5wIAoNPoqQEAgAecc5Vmdouke1p4+zlJRZLuNbOfK/AH9P8pEDR0hSuCK2+8r8AKIN9UoAdCUfD92xVYneR/Zna7Ar0YkhQIBaY6587o4OfeqMC8EM+Y2V8UmMfjZgWu/fcdvZhmPlWg98OVkj6QVOGc+1idvCbnXJGZvaPABJ5bJO1UYOLXnBaafyppqpnNVGAoyc5Whn88p8CKLHebWZYCAcKpCvzz+FWzSUIPyMzuUWBVlrcV6JUyUoEJZF9o1OZSBYbRHOecW9yW8zrnVprZNEmvKjAx7fSOBFsAAIQCPTUAAPDOg5JWN98ZXHFkpgKTRj6mwFKrf1Tgj8iucIakkyT9R9JFCvQeubVRPUUK9J5YJOk6BSbTfCB4XIdrcs49r8CSpX0UuM67Ja2UdIxzbnNHz9vMfQpMfPpLSe9JWhj87FBc0wUK9Db5swLLum5Vy8NZfqJAaPKYAsHRTS2dzDlXp8DP46FgTc8Gt38g6fo21tTYm5ImKdAr6MXgOf6m4JKvQUnB5+bzquyXc26VApO5DtHeFXMAAOh2FhhuCQAAgN7GzP4hqY9z7lSvawEAoCMYfgIAANB7fUX7zqkCAEDYoKcGAAAAAAAIS8ypAQAAAAAAwhKhBgAAAAAACEuEGgAAAAAAICwRagAAAAAAgLBEqAEAAAAAAMISoQYAAAAAAAhLhBoAAAAAACAs/X9aHLHpKbUtxgAAAABJRU5ErkJggg==\n"},"metadata":{"needs_background":"light","image/png":{"width":1077,"height":358}},"output_type":"display_data"}],"execution_count":null},{"cell_type":"markdown","source":"Above are plots showing how the norm changes as the number of iterations increases. Total number of iterations is set to 1000. It is clear from the plots that the norm is either stable or decreases as the number of iterations increases, so the update algorithm does seem to satisfy equation $(10)$ in the project description,\n\n$$\n||A - W_{k+1} H_{k+1}||_F \\leq ||A - W_k H_k ||_F.\n$$\n\nNote that the norm never really converges to true zero, but the machine epsilon, which is approximately $10^{-15}$ for a 64-bit computer. However, when commenting the plots, we say it converges to zero.\n\nThe plots are quite different for the two different matrices $A_3$ and $A_4$. The number of steps required for the algorithm to converge, that is, the number of steps before the norm reaches a local minimum, varies with $d$. For $d=1$, the norm converges, approximately instantaneously, for both matrices to around $1$ and $2$ respectively, meaning the NMF-factorization does not produce a very accurate representation of the original matrices. For $d=2$, the norm converges for both matrices, but while it goes to zero for $A_3$ very fast, it stabilizes at just less than $1$ for $A_4$. As discussed above, this is expected, as $A_3$ is a rank $2$ matrix. For $d=3$ for the $A_4$-factorization, it is unclear whether the norm converges to zero or not given enough iterations, since it converges so slowly. However, the norm does seem to approach som value close to $10^{-3}$ asymptotically. In that case, the $NMF$ does not yield a perfect recreation as expected. This might be due to the fact that the norm might have several local minimas, and the algorithm might get stuck in one such local minima instead of converging towards the global minima. Whether the algorithm does this or not might depend on the initialization of $W$ and $H$. A different seed in the $NMF$ might yield different results. The non-negativity constraint might also limit the approximation.\n\nA peculiar observation of the $A_4$ plot is the sudden crack in the graph for $d=2$ and $d=3$. This could be explained by imagining a topological surface, and the algorithm moving along this surface. Some places are steep, some are flat, some places there are deep valleys, corresponding to local minimas, while some places there are mountain tops, corresponding to local maxima. The algorithm, converging towards local minimas, does only realize steps that moves it to a point that is lower on the surface. On this surface, the algorithm could find itself located in a flat area where, no matter where it moves, the change in height is small. At some point, it might go from moving in a flat area to moving in a steep area, where the change of height in one step suddenly is big. This does not explain the cracks mathematically, but is a good analogue to think about how the algorithm moves and converges.","metadata":{"tags":[],"cell_id":"87e3829b265c4f59aeaa36391c5fa668","deepnote_app_coordinates":{"h":5,"w":12,"x":0,"y":103},"deepnote_cell_type":"markdown"}},{"cell_type":"markdown","source":"A weakness of NMF is, as mentioned, the enforcing of non-negativity which may cause a loss of important data, as key features for some matrix systems are represented by negative values. In practice, this means that a matrix might not be fully constructed by basisvectors that are added together - subtraction might also be necessary. The NMF cannot do this, it is an exclusively additive method, since the weights in $H$ which determines the linear combinations of the basisvectors in $W$ are always non-negative. Another weakness is the fact that the norm converges towards a local minimizer, not global, meaning the algorithm does not necessarily produce an optimal reconstruction of the original matrix for a given $d$. Note however that even local minimas are useful for many objectives. To examine whether any of these weaknesses might have played a role in the resulting plots above, it is appropriate to compare the results with results from a method that does not share the same weaknesses. \n\nThe SVD-method discussed in the project description has two, and probably more, important properties that separates it from NMF. One is, it does not require non-negativity. The other one is, a truncated SVD reconstruction of a matrix $A$ will always be the best possible reconstruction of $A$ with regards to the Frobenius norm. This means that for a specified $d$, the SVD algorithm is certain to find the global minimum of $||A - Ã||_F$, where $Ã$ is the truncated SVD reconstruction of rank $d$. \n\nBy comparing the convergence value of the norm for the two different methods, it will be clear whether the NMF has indeed found a best possible factorization of the original matrix, or if it $I)$ converges towards some local minmizer or $II)$ is limited by the non-negativity requirement. Only a comparison of the final value of the norm will be made, as it is the convergence value that is of interest here, not the rate at which it converges.","metadata":{"tags":[],"cell_id":"291036c492194627881b2fba97e2397b","deepnote_app_coordinates":{"h":5,"w":12,"x":0,"y":109},"deepnote_cell_type":"markdown"}},{"cell_type":"code","source":"def ex1g_SVDComparison():\n    \"\"\"\n    Function for \n    Input:\n        None.\n    Output: \n        None.\n    \"\"\"\n    A3 = np.array([[2, 1, 1], [2, 1, 1], [1, 1, 2]])\n    A4 = np.array([[2, 1, 0], [1, 2, 3], [0, 3, 3]])\n\n    dList = [1,2,3]\n\n    matrixLabel = ['A3', 'A4']\n    i = 0    # For matrix labels\n\n    for A in [A3, A4]:\n\n        for d in dList:\n\n            U, Sigma, VT = np.linalg.svd(A)\n\n            smat = np.diag(Sigma)\n\n            svd = U @ smat @ VT\n\n            norm = np.linalg.norm(A - svd, 'fro')\n\n            \"\"\" Reduce dimension to specified rank \"\"\"\n            rank = d\n            U_redusert = U[:, :rank]\n            smat_redusert = np.diag(Sigma[:rank])\n            VT_redusert = VT[:rank, :]\n            \n            svd_redusert = U_redusert @ smat_redusert @ VT_redusert\n\n            norm_redusert = np.linalg.norm(A - svd_redusert, 'fro')\n\n            #print(f'SVD for {matrixLabel[i]}, rank {d}:\\n', svd_redusert, '\\n')\n            print(f'Norm SVD for {matrixLabel[i]}, rank {d} approximation:', norm_redusert, '\\n')\n\n        i += 1\n\nex1g_SVDComparison()","metadata":{"tags":[],"cell_id":"a8ee8602af0f4dfaa8ab871c35fb407e","source_hash":"81dd8fc2","execution_start":1649447213732,"execution_millis":415,"deepnote_app_coordinates":{"h":5,"w":12,"x":0,"y":115},"deepnote_to_be_reexecuted":false,"deepnote_cell_type":"code"},"outputs":[{"name":"stdout","text":"Norm SVD for A3, rank 1 approximation: 1.14841379830242 \n\nNorm SVD for A3, rank 2 approximation: 2.4525628233156873e-15 \n\nNorm SVD for A3, rank 3 approximation: 2.4525628233156873e-15 \n\nNorm SVD for A4, rank 1 approximation: 2.231680019120091 \n\nNorm SVD for A4, rank 2 approximation: 0.7577017654507557 \n\nNorm SVD for A4, rank 3 approximation: 5.0895131002843784e-15 \n\n","output_type":"stream"}],"execution_count":null},{"cell_type":"markdown","source":"For $A_3$, the NMF seems to produce the best possible reconstructions for all ranks, as the convergence value of the norm is the same as for the SVD. For $A_4$, the convergence value seems to be the same for rank 1 and 2, while for rank 3 it is zero for the SVD. It is difficult to see whether it converges to zero or not given enough iterations for NMF, but it is possible that either the non-negativity constraint or convergence towards a local minima has limited the NMF, compared to the SVD, for this rank. ","metadata":{"tags":[],"cell_id":"4ea2d66cd7d14f47b074631b0507c53c","deepnote_app_coordinates":{"h":5,"w":12,"x":0,"y":121},"deepnote_cell_type":"markdown"}},{"cell_type":"markdown","source":"## Task 2","metadata":{"tags":[],"cell_id":"67a22e3288fb4cbfb0893b935e8067e9","is_collapsed":false,"formattedRanges":[],"deepnote_app_coordinates":{"h":5,"w":12,"x":0,"y":127},"deepnote_cell_type":"text-cell-h2"}},{"cell_type":"markdown","source":"In the following section, the Cryptopunk dataset will be investigated through the lens of the NMF method. The methods ability to extract underlying features from a dataset, as well as yielding a representative reconstruction of the original data in a new, compressed dataset, will be tested experimentally. \n\nThe Cryptopunk dataset which will be examined consists of in total 10000 unique images. In this project, 500 of these will be randomly selected and represented in a 4-dimensional, numerical array. Experiments with NMF will be conducted on these randomly selected images.","metadata":{"tags":[],"cell_id":"8a0a894609e346a0a6f940d41d5aa404","deepnote_app_coordinates":{"h":5,"w":12,"x":0,"y":133},"deepnote_cell_type":"markdown"}},{"cell_type":"code","source":"def load_images(N):\n    \"\"\"\n    Loads images from cryptopunk dataset. Loading order is deterministic,\n    so for a certain N the exact same images will be loaded. \n    Input:\n        N:       integer, number of images to load\n    Output:\n        faces:   (24,24,4,N) numpy array containing images\n    \"\"\"\n\n    \"\"\" Allocate array to store images \"\"\"\n    faces = np.zeros((24,24,4,N))\n\n    \"\"\" Iteration variable \"\"\"\n    i = 0\n\n    \"\"\" Iterate over folders \"\"\"\n    for subdir, dirs, files in os.walk('./imgs'):\n\n        \"\"\" Iterate over files \"\"\"\n        for file in files:\n\n            \"\"\" Filepath to load from \"\"\"\n            filepath = subdir + os.sep + file\n\n            \"\"\" Make sure that the file is a .png \"\"\"\n            if filepath[-3:] == 'png':\n\n                \"\"\" Load the image \"\"\"\n                im = cv2.imread(filepath, cv2.IMREAD_UNCHANGED)\n\n                \"\"\" Convert it to RGBA and rescale pixels \"\"\"\n                faces[:,:,:,i] = cv2.cvtColor(im, cv2.COLOR_BGRA2RGBA)/255.0\n\n                i+=1\n            if i == N:\n                break\n    return faces\n\n\"\"\" Global variables to be used later \"\"\"\nmaxIterations = 1000\nN = 500                        # Number of faces to keep in final array\nfaces = load_images(10000)     # Load all 10000 images\nchoices = np.random.choice(faces.shape[-1], N, replace = False)\nfaces = faces[:,:,:,choices]  \n\nprint(\"The shape of faces: \", faces.shape) # Shape of faces","metadata":{"tags":[],"cell_id":"94b6f7e003d940bebd9906204594b622","source_hash":"b7b22aa5","execution_start":1649447213733,"execution_millis":40512,"deepnote_app_coordinates":{"h":5,"w":12,"x":0,"y":139},"deepnote_to_be_reexecuted":false,"deepnote_cell_type":"code"},"outputs":[{"name":"stdout","text":"The shape of faces:  (24, 24, 4, 500)\n","output_type":"stream"}],"execution_count":null},{"cell_type":"code","source":"def plotimgs(imgs, d, nplot = 8, rescale = True, filename = None):\n    \"\"\"\n    Plots nplot * nplot images on an nplot x nplot grid. \n    Saves to given filename if filename is given\n    Can also rescale the RGB channels\n    Input:\n        imgs:      Numpy array, (24,24,4,N) or (24,24,3,N) array containing images, where N > nplot**2\n        nplot:     integer, nplot**2 images will be plotted\n        rescale:   bool\n        filename:  string, figure will be saved to this location. Should end with \".png\".\n    Output:\n        Plot of imgs.\n    \"\"\"\n    \"\"\" We will change some of the parameters of matplotlib, so we store the initial ones \"\"\"\n    oldparams = plt.rcParams['figure.figsize']\n\n    \"\"\" New params to make better plot. There definitely exists better ways of doing this \"\"\"\n    plt.rcParams['figure.figsize'] = (16, 16)\n    \n    \"\"\" Initialize subplots \"\"\"\n    fig, axes = plt.subplots(nplot,nplot)\n\n    \"\"\" Set background color \"\"\"\n    plt.gcf().set_facecolor(\"lightgray\")\n\n    \"\"\" Iterate over images \"\"\"\n    for idx in range(nplot**2):\n        \n        \"\"\" Indices \"\"\"\n        i = idx//nplot; j = idx%nplot\n\n        \"\"\" Remove axis \"\"\"\n        axes[i,j].axis('off')\n\n        \"\"\" Rescale RGB channels by dividing my maximal value \"\"\"\n        if rescale:\n            scaled_img = np.copy(imgs[:,:,:,idx])\n            scaled_img[:,:,:3] = scaled_img[:,:,:3]/np.max(scaled_img[:,:,:3])\n            axes[i,j].imshow(scaled_img)\n        else:\n            axes[i,j].imshow(imgs[:,:,:,idx])\n    \n    \"\"\" Tight layout so images will appear closer together \"\"\"\n    plt.tight_layout()\n\n    \"\"\" Save if filename is given \"\"\"\n    if filename is not None:\n        plt.savefig(filename)\n    if (d!= None):\n        fig.suptitle(f\"Dataset: {filename}, d = {d}\", fontsize = 32, x = 0.5, y = 1.05)\n    else:\n        fig.suptitle(f\"Dataset: {filename}\", fontsize = 32, x = 0.5, y = 1.05)\n\n    plt.show()\n\n    \"\"\" Return to old parameters \"\"\"\n    plt.rcParams['figure.figsize'] = oldparams\n\n\n# Example of plotting 8 times 8 images stored in \"faces\" and saving the output to a file named \"punks.png\"\nplotimgs(faces, d = None, nplot= 8, filename=\"64_CryptoPunks.png\")","metadata":{"tags":[],"cell_id":"6485b32722b046efb5ff8fa5eb7a3688","source_hash":"a0cdd63","execution_start":1649447254243,"execution_millis":3148,"deepnote_app_coordinates":{"h":5,"w":12,"x":0,"y":145},"deepnote_to_be_reexecuted":false,"deepnote_cell_type":"code"},"outputs":[{"data":{"text/plain":"<Figure size 1152x1152 with 64 Axes>","image/png":"iVBORw0KGgoAAAANSUhEUgAABHYAAAS9CAYAAAAiHt73AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACRb0lEQVR4nOzdd5idVbk/7mcgKKEqiQHpQWJAM/QiRYqo6BHpzQoBjkjTQAAL4MEDHo/SIoj4laqgVCEgSO9NQOogLfQWSoKUQICEzO+P/DInYa832W92XXvu+7q8LrLyzlpr9qzs8vjO5+nq6enpDQAAAACyM0+rNwAAAADA3FHYAQAAAMiUwg4AAABAphR2AAAAADKlsAMAAACQKYUdAAAAgEwp7AAA0O/cdddd0d3dHd3d3XHIIYe0ejsAMNcGtHoDADnbfPPN48UXX6wY7+rqioEDB8ZCCy0UCy20UCy//PKx0korxSqrrBLrrrtuDBjQmqffM888M956662IiNh7771bsod28sgjj8R1110XERFrr712rL322i3e0XTvvPNOXHnllXHdddfF448/HhMnTox55pknBg0aFEsuuWSstdZa8bnPfS5WXXXV0nNPmzYtvvvd78b999/fN7bXXns1/TxMmTIlbrrpprjjjjvi/vvvjwkTJsQbb7wR88wzTyy88MKx/PLLx4gRI2LTTTeN1VZbral7a6W77ror7rrrroiI+MIXvhArrbRSU9cfO3ZsHHbYYYV/P3DgwFhkkUVixRVXjHXWWSe23HLLGDx4cBN3CAB8mMIOQAP09vbGO++8E++880688sor8eSTT/YVEAYPHhxbb7117L777rHQQgs1dV9nnXVWXyFKYWd6Yeekk07q+3M7FHauuOKKOOqoo+KVV16p+Lu33347nn322fjHP/4RF154YVx55ZWl5z/zzDNnKeo0W29vb1xwwQVx8sknx/jx45PXTJ48OV555ZW4884747TTTovll18+9t577/jKV74SXV1dTd5xc9111119Z3LJJZdsemFnTiZPnhyTJ0+Ol19+OW699db4/e9/H/vvv3984xvfaPXWAKDfUtgBqJMdd9wxlllmmb4/v//++/HWW2/FhAkT4l//+lc8/fTT0dvbGxMmTIhTTjklLrvssjjyyCNjnXXWaeGuaSennHJK/OY3v+n789ChQ2PNNdeMIUOGRG9vb7z66qvx4osvxr333jtX8z/99NPx29/+NiIi5ptvvpgyZUpd9l2tt99+O37yk5/E9ddf3zc2zzzzxMorrxwjRoyIxRZbLOaZZ56YOHFiPP7443HffffF1KlT4+mnn46DDz44Bg4cGJtssklT99yfLb300rHTTjvNMjZp0qR45JFH4tZbb42pU6fG5MmT43/+539i2rRp8a1vfatFOwWA/k1hB6BOvvKVr8z2jo/x48fHOeecE2eddVa8//77MX78+Nh7773j5JNPjtVXX72JO6UdjR07tq+oM2TIkPj5z38eG264YfLa999/Px5++OFS80+bNi1+9rOfxbvvvhtDhw6NlVZaKS6//PKa912tKVOmxF577dVXlOrq6ortt98+9txzz1h88cWTXzNp0qT461//GqeffnpMnDgxPvjgg6btl4glllgidt111+TfPf3007HffvvF008/HRERY8aMiS996UsxZMiQ5m0QAIgI4ckATfPJT34y9t9//zjrrLP6Pvy899578YMf/CBef/311m6OlnrppZfi17/+dURELLbYYvHnP/+5sKgTEfGRj3ykdL7OWWedFffee2/MM8888fOf/zzmm2++mvZc1tFHH91X1BkwYED8+te/jp/97GeFRZ2IiIUWWih22WWXuOyyy+IrX/lKs7ZKFZZffvk47rjjYp55pr+VfPfdd+Pqq69u8a4AoH9yxw5Ak6288soxZsyY2GWXXWLKlCnx+uuvxxlnnBGjRo1KXv/OO+/0hcw+/PDD8fzzz8fbb78d888/fwwePDhWWWWV+NrXvhbrr79+4Zrd3d1VjS255JIVuS31WH9mzzzzTPz1r3+Nf/7zn/HMM8/EO++8E/POO28sssgisfTSS8fqq68e6623Xqy55ppzLD7cdtttcdVVV8U999wTEyZMiPfeey8+9rGPxWc+85nYbLPNYosttkgGVf/ud7+bJVsnIuKkk06qGIuIOOKII2Lrrbeu6nubW3/605/6Qq1Hjx4dSyyxRF3nf/bZZ+OEE06IiIiddtopVl999bjgggvqusbsPPnkk3HOOef0/XmfffYpVahZcMEF46ijjop33nlnlvEXXnihb5611lorTj/99JgyZUpceumlceWVV8YTTzwREyZMiKlTp8YVV1wRv/vd7+KSSy6JiIhDDz204teMUt54443YbLPN4r333ouBAwfG9ddfHwsuuGDf388coN7T0xMRETfccENceOGF8cgjj8TEiRNj4YUXjpVXXjm22mqrwu/7kEMO6dvbDIcddlgyyPi0005L3h34/vvvx8UXXxzXX399PProo/H666/HRz/60Vh88cVjnXXWia233jpWXnnlOX7P1VpxxRVjxIgR8cADD0TE/33/M6QemyKpn+WHzfzvdsa/ywkTJsT5558f1157bbz44osxderUWHzxxWPDDTeMkSNH1u0Oor/97W/xs5/9LKZOnRrzzTdf/OIXv4ivfvWrs1zzxhtvxNixY+Pmm2+OJ554It54443o7e2NBRdcMJZccsn47Gc/G+utt1587nOfi0UWWWSu91KvMzfDzGdvxtl67rnn4txzz42bb745xo8fH11dXbH00kvHJptsEt/97ndj0UUXrWqv999/f5x77rlx9913x4QJE/qC0bfYYovYaqutYr755ouRI0fGP//5z4iYnjG21FJLze1DA9BvKewAtEB3d3d8/etfjwsvvDAiIs4+++zYe++94yMf+cgs140bNy6++c1vxrvvvlsxx6RJk2LSpEnx9NNPxyWXXBIbbLBB/PrXv67pA8OH1Xv9M888M4499tiYOnXqLONTp06NV199NV599dW4995747TTTovf/va3sfHGGyfnefnll+PHP/5x34eBmb3yyivxyiuvxA033BCnn356/OY3v4nll1++3Dc+GzN/AI2o/YPIu+++G2PHjo2IiIUXXrjiw2Ktent747DDDot33303PvnJTxYWEBvptNNOi2nTpkVExFJLLRW77bbbXM2zwAILzPbvx48fH/vvv3/861//Sv79dttt1/cB9qKLLqqqsHPZZZfFe++9FxHTP1DPXNT5sClTpsTPfvazuPTSS2cZnzhxYtxyyy1xyy23xNixY+PYY4+d4/dSVk9PTxx00EHxwgsvzDI+I+vr8ccfj7PPPjt22GGH+MlPflK3znxLLbVUX2Hn3//+d13mrNYdd9wRBx98cLz22muzjD/99NPx9NNPx9ixY+PEE0+MNdZYo6Z1Tj/99DjuuOOit7c3FlhggRgzZkyst956s1xz1113xejRo5OPwRtvvBFvvPFGPPzww3HBBRfELrvsEgceeGBNe5qhEWfu8ssvj8MPP7yikPrYY4/FY489FmPHjo2TTz45VlhhhdnOc+yxx8YZZ5wRvb29s+xr4sSJcffdd8eFF14YY8aMqe4bBWC2FHYAWmTnnXfuK+y888478cADD8Raa601yzXvvPNOvPvuu9HV1RUrr7xyrLTSSjFkyJCYf/7546233opHHnkk7rjjjpg6dWrceuutccABB8Qf/vCHvl+PmGH06NEREXHyySfHm2++OcvYzD7cpate60dEXH/99X2/bhQRsdJKK8Uaa6zR1yr53//+dzzxxBNx3333VXygmNlzzz0Xu+66a1/XqEUWWSQ22GCDWH755WO++eaLF198MW666aa+bmTf/e5349xzz41PfvKTfXOsv/76scACC8S//vWvuOKKKyIiYr311kvedTRixIjCvdTDAw880He3ziqrrNL3PZxzzjlx4403xvjx42PeeeeNIUOGxNprrx077LBDDB8+vOr5//KXv8Q999wTERE/+9nP6l5QmJNp06bFDTfc0Pfn7bffPnk+avX+++/HD3/4w3j44YdjscUWi4033jiWWmqpeOedd+K+++6Lrq6uWGONNWKFFVaIJ598Mv71r3/Fo48+OsfH8qKLLur772233Xa2144ZMyYuvfTS+MhHPhIbb7xxDBs2LKZMmRL33ntvXxHy1ltvjR/84AcV/06++tWvxrBhw+K2226L22+/PSKm53Z99rOfrVhn5pD2iOlnaI899ojJkydHxPQ7nDbddNNYfvnlY/LkyXHnnXdGT09P9Pb2xnnnnRcTJ06s2wfqGWtGRMw///x1mbMajz76aPzP//xPTJ48OVZZZZVYc801Y+GFF44XXnghrrrqqnjrrbdi0qRJccABB8TFF19c9R0mM+vt7Y2jjz46/vSnP0XE9F+T/N3vflfxM3nppZdiv/32i7fffjsiIhZffPFYf/31Y8kll4wBAwbEpEmT4plnnon7778/Xn311dq/+ZnUcuZSbrvttjj99NNj2rRpse6668Yqq6wS888/fzz99NNx1VVXxXvvvRevvPJKjB49Os4777zCuypPOOGEWe66Gjp0aGy44YbxsY99LMaPHx/XX3999PT0xOjRozu+0x1AMyjsALTISiutFAsvvHDfh/q77767orCz8MILxw9/+MPYZpttYtCgQcl5nnvuuRg9enQ8/PDDcccdd8Rll10WX//612e5ZkYA6tlnn91X2CkKRW3E+hERZ5xxRt9//+IXv4gtt9wyOd+UKVPihhtumKUQM/PfjR49uq+os8suu8S+++5b8YFyypQpceyxx8ZZZ50V//73v+OnP/3pLB8yVltttVhttdVi7NixfYWd1VZbrarHpN5m3O0QEbHccsvF5ZdfHj//+c/7PiTOMGnSpHjyySfjvPPOi+985zsxevToOX5Ie+655/oCmbfYYovZ5vY0yqOPPhpvvPFG35/XXXfdhqwz43Hccsst45BDDiksYG233XZx1FFHRcT0wOof/ehHhXM+/PDD8cgjj0TE9A+mcwo5P/PMM2PZZZeNE088seIusZtuuilGjx4d7777btxxxx1x1llnxXe/+92+v99www1jww03jHfeeaevsLPBBhvM8dcA33333fjRj37UV2BZY4014phjjukrmM5w6aWXxmGHHRZTp06Na6+9Ns4+++yaW5S///77cf/99/f9eemll65pvjLOOuusWGCBBeKEE06o6JS27777xsiRI+Ppp5+OiRMnxvnnnx977LFHqfmnTJkShx12WFx22WURMf3OpP/3//5fLLfcchXXXnDBBX3/Xrfbbrs49NBDk3dE9fb2xv333z/Lv4da1XLmUk455ZQYNGhQjBkzJlZbbbVZ/m6PPfaIkSNHxmuvvRaPP/54XH311fEf//EfFXM8+OCDccopp/T9ed99943//M//nOX56qCDDopDDz00rr76aoUdgDoQngzQIl1dXTFs2LC+P48fP77imhVWWCH22GOPwqJKxPT/9/63v/1tX3Gjntkp9Vx/xgfkFVdcsbCoEzG9DfeXvvSl+PSnP13xd3/729/6ukF9+9vfjgMPPDB5l8B8880XP/rRj+ILX/hCRET885//7Ltrpd0888wzff/9r3/9K37605/G22+/HYMHD44ddtghfvCDH8R3v/vdvl976O3tjT/96U9xxBFHzHbe3t7e+NnPfhaTJ0+OxRZbbLYFjEZ68skn+/67q6srVlpppYattcYaa8SRRx4527uSttxyy75febz00ktn2/J9xh11EXO+Wydi+rn77W9/m/zVv4022igOOeSQvj+fdtppdWk3f8kll8Tzzz8fEdO7qZ144okVRZ2I6YW9mX/95+STT655/ZNOOmmWXz36/Oc/X9N8ZR1xxBEVRZ2IiMGDB89y3q+55ppS877zzjux33779RV1Pv3pT8eZZ56ZLOpE/N9zW0TEqFGjCn/NraurK1ZbbbXCXzGdG/U+c/PMM08cf/zxFUWdiOmvB/vss0/fn4se11NPPbXvVy+32mqr2HPPPSuK0AsssED86le/ihVXXHGWX9UCYO4o7AC00My/HlDL/4s7ZMiQWHPNNSNietbG+++/X/Pe6r3+jDf6M/JK5sbZZ58dEdN/5WPvvfee4/UjR47s+++Zfx2oFksttVT09PT0/a/WoM8Zd1BFTA8anTp1amy++eZx2WWXxc9+9rP4z//8zzjooIPioosuiv3226/v2gsuuCBuuummwnnPPvvsvl/F+PGPfxwf+9jHatrn3Jq549tCCy3U0G5c3//+9+f4//5/7GMfi80226xvb9ddd13yuvfeey/+/ve/R8T0Ll6pu9A+7Otf/3oMHTq08O+32mqrvuLAxIkT49Zbb53jnHMyc+DynnvuWfHrlDP7xje+0Xcn3Kuvvhq33XZb6fXefvvtuPvuu2P06NGz3JWxxhprxOc+97nS882t4cOHx5e//OXCv19//fX78pDGjRsXH3zwQVXz/vvf/47dd9+972ez1lprxRlnnBGf+MQnCr9m5rlTeWSNVO8zt/HGG8cqq6xS+Pdf+tKX+v575oLWDG+//Xbfc21XV9dsn6fnm2++2HPPPWe7HwCq41exAFpo5jsLJk2aNNtrP/jgg3jiiSfiySefjDfffDMmT548y//TOeP/OZ8yZUo8//zzcwy2LKvW9T/96U/HAw88EM8991wce+yxsddee8XAgQOrXv/111+PRx99NCKmZ9EsvPDCc/yamfNTHnzwwarXaqYP/8rViiuuGL/85S8rCiDzzDNPfO9734tnnnmm78P8KaecEhtttFHFnM8//3xfhsomm2xS90DmMmb+/hqZ7zP//PPHOuusU9W122+/fVx++eURMT1DZ/PNN6+45tprr+0rum2yySazvWtthhkFoyJdXV3xhS98oe/XAu+7777kHSfVev/99+Ohhx7q+/PMH7pT5plnnvjiF78YZ555ZkRE3HPPPbO9e+Sf//xnsnvehw0dOjSOOeaYKnddH3P6tcJ55pknll122Xj44Yfj/fffj0mTJs0xZ+eFF16I73//+/H0009HxPSf569//euKUPsPGz58eNxyyy0RMT3H6sgjj6xbN645qfeZm9Pj+vGPfzwWWWSRePPNNytCqyOmP8/OCMdfaaWVYskll5ztfBtvvHHMO++8VRfeAEhT2AFooZk/9Bb9P+1vvfVWnHzyyXHxxRcn30gXfU291Gv93Xbbra8j0+mnnx7nnXderL/++rHmmmtGd3d3rLzyyrO9m+Oxxx7rKyTdeeedVX3gnFmzO/ZU68O/SjZy5MjZPg577LFHX2HnvvvuizfeeGOWD6y9vb3xX//1XzF58uRYaKGF4tBDD23Mxqs0cxep2YVi12rZZZeNeeedt6pr11577Vh22WXj2Wefjdtvvz1eeumlihbzZUKTZ6jm18xm/hXDGQWEufXiiy/2/WrN4osvHh//+Mfn+DUztzt/9tlna1p/8ODBsd1228Uee+zR1ODkiJhjwSBi1kLiO++8M9vCzjPPPBPf+c53+sKNt99++zj00EOrOlM77rhjnHvuuTFp0qS4/fbbY/PNN4811lgj1l577VhllVVi1VVXnW03tVrU+8xV87guuOCC8eabbyb/Pc/8q6Uz/6pxkYEDB8bSSy89y9cBUJ7CDkALzfxrOKkPHS+88ELsvvvuFS2M56Rev4pVz/U322yz+PnPfx5HH310vPXWW/H222/H1VdfHVdffXVETH+Dv8EGG8S2226bzOqY+Vd65sbM3XvayYfvYpnTXSdDhw6NIUOGxCuvvBK9vb3xyCOPzBJIfN5558Wdd94ZERH7779/LL744vXfdAkz/wrY22+/HVOmTGnIr2PN7leQPqyrqyu23XbbGDNmTEybNi3Gjh0b3//+9/v+/oUXXog77rgjIqYXTDbYYIOq5q3m191mLr7M/O9/bsz89dUUdT583Zx+/XPppZeepSV8V1dXzD///LHooovGpz71qVhhhRWqLqbV25zuoomIWX4tb8avghaZOQR66NChccghh1T9vS255JLx+9//Pn7yk5/Ec889F1OnTo0777yz79/hvPPOG6uuump8/etfj6222qqu57/eZ+6jH/3oHOeb8bimsnHm9JqWMjcdywCYlcIOQItMmzYtHnvssb4/p/6f0p/+9Kd9RZUll1wydt5551hjjTViqaWWioUWWig++tGP9r3JPuSQQ2bJ26iHeq+/7bbbxhe/+MW44oor4pZbbon77ruv706ayZMnxzXXXBPXXHNNbLDBBnHsscfOUvSY+Vb9YcOGzTaAOaXMB/9mmjm7o6urq6pf4Vh88cX7OoPNfCfSm2++Gccee2xERKy55pqxww471Hm35c38K3kzznyqhXetyrZQ33rrreO3v/1tTJ06NcaOHRt77rln31keO3Zs34fWrbfeuiHt2XOwxBJLtKRTXCusttpq8dxzz8XEiRPjqaeeih//+Mfxv//7v4VByB+26qqrxiWXXBI33nhjXH/99XH33Xf3hVp/8MEHcc8998Q999wTZ5xxRhx//PF1/1VZAPo3hR2AFnnkkUdmydX5cKvzhx56qK+T01JLLRXnnXdeLLLIIoXz1fPXrxq5/iKLLBI77rhj7LjjjtHb2xtPPfVU3HXXXXH11Vf33SVx6623xs9//vP41a9+1fd1M/+/uoMGDeqYD5wrrrhi3393dXVV1fq36Jq33nqr79cj7r777tmGoM7spJNOipNOOikiphfwrrzyyqq+rhrDhw/vy+SIiPjHP/7RkMJOWYMGDYpNN900rr766njhhRfizjvvjHXXXTemTZsWF198cURMf5y32Wabqud8/fXXZxuyGzFrIW52/56qMfPXV3tH28zrN/pOiZnPaW9v72zPdrNDhz9s2WWXjZ///Oex++67x4QJE+LKK6+MadOmxa9//euqizsDBgyIzTbbrC/35pVXXom77747brjhhrjmmmvi/fffj2eeeSb22WefuPjii6u662hOmn3m5mTm+attCFDP9u8A/VX//L+gANrAueee2/ffCy20UEVmzAMPPND331tvvfUc35A//vjjdd1fM9bv6uqKFVZYIXbaaac45ZRT4uijj+778HfFFVfM8oZ/5v+He+Y7nXL3mc98pu+/p02b1ncnzuy89NJLff9dTahvK80zzzyx6aab9v35ggsumOOvxTTL9ttv3/ffM1qb/+Mf/4jx48dHRMS6665bquvZjHDv2Zn57KZaVJex5JJL9v1az0svvVRVcWfmTkZF7bvrZeZw9DnlK814zFtphRVWiFNPPbWvUHL11VfHQQcdNNdt4YcMGRJf/epX41e/+lVccMEFfYW0559/Pm6++ea67LnZZ25Oll122b7/Hjdu3Byvnzx5ct+dTQDMPYUdgBbo6emJv/3tb31//sY3vlGRu1Amq+CRRx6J5557bo7rzvz/PM+pC0kj1p+TzTffvO+Dx7Rp02YJ1FxiiSX62vq+9tpr8Y9//KPm9co8Ho0yfPjwWGaZZfr+POOupSJPP/10X/Fn3nnnnSUMd4EFFogtt9yyqv/NvObw4cP7xufUWWlu7Lbbbn2/zvT888/3degpq97hy+utt15f4WZGF6y5CU2e4dprr53jNddff33ff6+22moVfz/zmZxTAewjH/nILIXBq666arbXT5s2La655pq+P6+++upz2m5NZi46zim0tx6t3+thhRVWiNNOO63vVyKvueaaOPDAA+e6uDPD0KFDZ+m+Vmtw9gz1OHP1NGLEiL4z/Mgjj8yxYHfjjTfqiAVQBwo7AE32yCOPxKhRo/o+KHz84x+PXXbZpeK6mUMxZ25p/GHTpk2Lo48+uqq1Z86ZmdPt741Yv6wPB3l+85vf7PvvX/3qV6U+6KeCPmdumd7KXwfYeuut+/77jDPOmO2HyJNPPrnvvz/3uc/N8jP9+Mc/Hr/4xS+q+t/MH+q/8IUv9I0feOCB9f3mIvruyprht7/9bVxxxRVVf/3bb78dBx98cNx+++113dfMv2r13nvvxdlnnx3XXXddREwvZs6plfSHXXLJJbPt7nPJJZf0faBfbLHFkqHMZf6NRsQsWVOnnHLKLJ32Puzcc8+NF198MSKmZzutv/76c5y/FjMXnWZXgHjxxRdnKai12vLLLx+nn356X/D4ddddFwcccEDNxZ2Z1auLWD3OXD0ttNBCsfHGG0fE9Ofc3/3ud4XXTpkyJf7whz80dD8A/YXCDkCTjB8/PsaMGRPf+ta3+u64+OhHPxrHH3988o6YNdZYo++///a3v8WNN95Ycc2bb74ZBx98cNxxxx1VZbPMfBv+jI4tReq5/osvvhjf/e5344orrigsxvT29saf//zneOqppyJiepHiwwGj2223XV9738cffzx23XXX2f5a1rvvvhtXX3117Lrrrsni1MyPx913313Vrwi98MIL0d3d3fe/sh3DUr7zne/03SEwbty4+OlPf1rxOE2bNi1OPvnkvoDqeeaZZ5ZOTu3uoIMO6ismTZ06NQ4++OA44ogj4uWXXy78mkmTJsUf//jH+NrXvhaXX355Q/a1zTbb9HU/+v3vf9/X0W2LLbYonYEyZcqU2GeffZIftG+++eY48sgj+/682267Jbsjlfk3GhGz3H01fvz42G+//WLixIkV111++eVx1FFH9f35P//zPxvSnWxmMxfGzjrrrLjvvvsqrnn66afj+9///mwLUq2w7LLLxumnnx5LLLFERETccMMNsf/++yeLO7vvvnv86U9/igkTJhTOd88998Sll17a9+c111yz4prf/e53fc8rI0eOrGqf9Thz9TbzHXpjx46NP/zhDxXPre+88078+Mc/jnHjxlX12gXA7AlPBqiTK664Iv71r3/1/XnKlCnx1ltvxcSJE+PBBx+Mp556apa7RpZccsk48sgjC2+NX3HFFWOTTTaJG264IT744IPYd999Y911143PfOYzseCCC8azzz4bN9xwQ7z55pux4oorxtChQ/tahxfZaKON4u9//3tERBx++OHxz3/+M5Zddtm+W+cXWmihvjsA6rl+b29v3HvvvXHvvffG/PPPH93d3TFs2LBYbLHFYtq0aTFhwoS49dZbZymS7LvvvhUfQuabb744/vjjY9ddd40XX3wxHn744dhuu+1ilVVWiVVWWSUGDRoUU6ZMiddffz3GjRsXDz744GzbnC+33HKx3HLLxTPPPBOPP/547LLLLrHhhhvOcifP5z73uYZ3sBk4cGD8+te/jj333DPee++9uOKKK+Kf//xnbLbZZrHEEkvE66+/HjfffHM8+eSTfV+z9957N/zXKuppvvnmi5NOOil+8pOfxPXXXx+9vb1x3nnnxV//+tf4zGc+E5/97GdjscUWi66urnjttddi3Lhxcd9998XUqVP75qg2xLaMIUOGxOc///m44YYbZlmr7K9hRUwv0P3pT3+K7bbbLjbeeOMYNmxYTJkyJe6999646667+q5ba6214tvf/nZyjjXWWCMWXnjheOutt+KWW26J73//+7HWWmvN0iFus80267ubZP7554///d//jT322CMmT54cd911V2yxxRax6aabxvLLLx+TJ0+OO++8c5bMrC984Qux8847l/7+ylp11VVjgw02iFtvvTUmT54cI0eOjE033TRWWmmlmDp1ajz88MNxyy23xNSpU+N73/te2929scwyy8Rpp50Wu+++e4wfPz5uvPHG+OEPfxhjxoyZpej3/PPPx1FHHRXHHHNMrLTSSrHyyivHkCFDYr755ovXXnstHnjggVke/6985St9Bepa1ePM1dsqq6wSI0eOjFNPPTUiIk444YS49NJLY6ONNopFF100xo8fH9ddd11MnDgxVltttejq6op77703IoqD4QGYPYUdgDo577zzqrruE5/4RGy99dax++67x4ILLjjba4888sjYc889+wpGd9xxR0UGy8orrxzHHntsX1ej2dl8883j/PPPj7vvvjvefvvtWQKcI6YXm2b+1Y56rT/vvPPGPPPME9OmTYt333037rrrrlk+dMzsox/9aPzgBz+IHXfcMfn3n/zkJ+Pcc8+Nww8/vO/XOz78wenDhgwZUhj+fPDBB8cPf/jDmDp1atx3330VdxUcccQRTWlNvOaaa8aJJ54YhxxySLz88ssxYcKEip9PxPTHZ9SoUU37kFZPCy64YPzmN7+J888/P04++eR46aWX4oMPPoienp7o6ekp/LoVV1wx9t13375f8ai37bffPm644Ya+P48YMSI+/elPl55n1KhRMWHChPj73/8eV111VTLzZr311ovjjjuu7y6hD5t//vlj//33jyOOOCJ6e3vj1ltvrcifGTZsWF9hJ2L6B+lTTz01DjzwwHjxxRdj0qRJs2R4zdDV1RXbb799/PSnP23aB+gjjzwyvve978W4ceNi6tSpcfXVV89SAB4wYEAceOCB8cUvfrHtCjsR04s7p59+euy2227x4osvxs033xw/+MEP4je/+U3fr4rOKEBPmzYtHnroodn+6uqWW24Z//Vf/1W3/dXjzDXCqFGjYurUqfGnP/2pr/vhjLsxZ/jsZz8bxxxzTBx00EF9Yx/+9VsAqqOwA9AgAwcOjIUWWigWXnjhWG655WLllVeOVVddNdZdd92q32AvuuiiceaZZ8YFF1wQl19+eTz++OPx7rvv9v2a0uabbx5bbbVV1bfXDxgwIE4++eQ477zz4tprr40nnngi3nzzzVnuVGjE+ksssURcd911ceutt8Y999wTjz76aLz44ovx5ptvRldXVyy88MIxdOjQWHfddWObbbbp+/WHIh/72MdizJgx8eijj8all14ad999d7zwwgvx5ptvxoABA2LRRReN5ZZbLkaMGBEbbLBBrLXWWn2/GvBhG220UZx99tnxl7/8Je6777546aWX4t13301m8jTauuuuGxdffHGMHTs2rrvuunj66afjtddeiwUXXDCWXnrpWH/99WOnnXaa5UN9brq6umLHHXeMbbbZJm666aa4/fbb44EHHoiJEyfG66+/HvPMM08sssgisfzyy0d3d3dsttlmFR3j6m3DDTeMIUOG9P2K5NzcrRMx/QP+r371q/jyl78cY8eOjYcffjhee+21WHjhhWPllVeOrbfeOr7yla/McZ4ddtghll9++Tj//POjp6cnJk6cONs7zyIiuru7429/+1uMHTs2rr/++njsscfi3//+d8w///wxZMiQWHvttWPbbbedJWy7GQYPHhxnn312nHPOOXHVVVfFU089Fe+//3584hOfiHXWWSd23nnnWHnllevyK42NstRSS/UVd1544YW49dZb4wc/+EEcf/zx8dGPfjTOP//8uOOOO+Kuu+6Khx56KJ577rl4/fXX44MPPogFFlggll566VhttdViyy23jM9+9rN13Vu9zlwjzCjYnXPOOXH33XfHxIkTY+GFF47ll18+/uM//iO22Wab+MhHPhJvvfVW39fMfLckANXr6unpaf47VwCANjF58uTYdNNN4+23346BAwfGddddN0uI8exsvvnmfYHEs7vrCOqlk87c1KlTY7311ot33303Bg8ePEsHLwCqJzwZAOjXrr766r7w3i9/+ctVF3WA2tx5553x7rvvRsSsXdQAKEdhBwDo12bOMtphhx1auBPoPz744IM48cQT+/78hS98oYW7Acibwg4A0G9deeWVfcHb3d3dseqqq7Z4R5C/2267Lf70pz/FpEmTkn//73//O0aPHt33b2/QoEHx1a9+tZlbBOgowpMBgH7j5ZdfjmuvvTamTp0a48aNi0svvbTv7/bdd98W7gw6xxtvvBFHHXVUHH/88bHmmmvG8OHDY5FFFonJkyfHE088EbfddltfIPg888wT//Vf/xULLLBAi3cNkC+FHQCgwi233BKPP/54TXPsuuuu9dlMHT377LPxy1/+smJ8xx13jPXXX78FO4LO9d5778Vtt90Wt912W/LvF1544fjv//7v2HTTTZu8M4DOorADAFS4/PLL45JLLqlpjnYs7MxsRuvlnXfeOb7+9a+3ejvQMTbddNM49thj47bbbovHHnssJk6cGK+99lp88MEH8bGPfSxWWGGFWH/99WO77baLRRZZpNXbBcieducAQIVDDjmk5sJO7q2YAQByoLADAAAAkCldsQAAAAAypbADAAAAkCmFHQAAAIBMKewAAAAAZEphBwAAACBTCjsAAAAAmVLYAQAAAMiUwg4AAABAphR2AAAAADKlsAMAAACQKYUdAAAAgEwp7AAAAABkSmEHAAAAIFMKOwAAAACZUtgBAAAAyJTCDgAAAECmFHYAAAAAMqWwAwAAAJAphR0AAACATCnsAAAAAGRKYQcAAAAgUwo7AAAAAJlS2AEAAADIlMIOAAAAQKYUdgAAAAAypbADAAAAkCmFHQAAAIBMKewAAAAAZEphBwAAACBTCjsAAAAAmVLYAQAAAMiUwg4AAABAphR2AAAAADKlsAMAAACQKYUdAAAAgEwp7AAAAABkSmEHAAAAIFMKOwAAAACZUtgBAAAAyJTCDgAAAECmBrR6AwAAAABFuru7q762p6engTtpT+7YAQAAAMiUwg4AAABAphR2AAAAADKlsAMAAACQKYUdAAAAgEzpigUAAAC0XFH3q5f+8PmKsSW+d3Ojt5MNd+wAAAAAZEphBwAAACBTCjsAAAAAmVLYAQAAAMiU8GQAaFPfmnJITV//5/l+UaedAEBaUdhttXp6euq0E3KTOjupkGTmzB07AAAAAJlS2AEAAADIlMIOAAAAQKYUdgAAAAAypbADAAAAkCldsSBqT/Ovh1RHgKJ96R4A7a/WjlbtsgedtdrHhV9+vtVbSNr2qqVbvQWgzsq8N/72t7/dtLW8B85T0c/4qh9/psk76Vzu2AEAAADIlMIOAAAAQKYUdgAAAAAypbADAAAAkKmunp6e3lZvol422+P+Vm+hlGtPWbXVW+h32iEkuR4Ex7WHL+/3aqu3UMpVJ3yi1VvoWO0QlNxMApUbqx1Cklf/yrDk+L1XjKt6DqHK0P6K3hvXGojcKGeddVZy3Hvj9pE6U0UhyausMKimtZb43s1VX9vpZ8QdOwAAAACZUtgBAAAAyJTCDgAAAECmFHYAAAAAMqWwAwAAAJCpLLtiFXW/GrDQik3eSW2mTnq8YkynrPrplA5Yter0BPhmKOp+Nd8i6YT/djXlzYcqxnTKKqe/db8qS7es8tqhA1YZqW5ZRZ2ydMVqD7rGMkPqvXG7dr8qK9Uty3vgxir6rPXWTb+sad63H/l71dcuuNJ/VH3twhv9JDneKefEHTsAAAAAmVLYAQAAAMiUwg4AAABAphR2AAAAADLV9uHJqcC33EKSiwhPrg8hydN1SvBXq6WCknMLSS4iPLkcQcn1IVB59nILT24m4cvlaC7CDEXvjTslKLlaqUDlCO+Z50bqTJUJSV5o6fS/4UnPVx/ungpVLhOeXCQVqpzjGXHHDgAAAECmFHYAAAAAMqWwAwAAAJAphR0AAACATCnsAAAAAGRqQL0m2nzU2xVjqVT7iHQ6f9G1095+pHKwIN2/aI5a1dpNoGhfr9yRSqbPL4G71YpSy9u1W9Ytp+yXHN9wjxOavJO8fe2Qym5Oqa5PEemuVkXXTnvrgcrBgq5YRXPUqtYuXEX7Gn/DFxKjnnOA9lTUMUy3rM7uGks5qfe79eh+VdRRqtXKfG9F16Yesxy7ILWrVAesMt2vitSjA1Ync8cOAAAAQKYUdgAAAAAypbADAAAAkCmFHQAAAIBM1S08+coxC1aMbT6q+pDjZEhyREx48MiKsf0H/TG9iflns8Ea/HnSL2v6+m/N/5Pk+HE1zcoM9QhJTgUaF4UZF4Ufp5QJRC6zh5Six6FTw+Au+8WrFWNfO6T6kONkSHJEvHz3qIqx3pPnK7e5Gi15QG1f/+KxDyfHu9aobd5O9a0ph7R6C4Xuj80bMu+qcWVD5k0penz/PN8vmraHdvZf479aMXbhUSNbsJP62/ag0yvGOvU1qYjmIsU0F2kPRSHJvRMmNHkn1ekaPDg5Xo/AaOqjHkHJlOeOHQAAAIBMKewAAAAAZEphBwAAACBTCjsAAAAAmVLYAQAAAMhU3bpilZFK8r/+7J2S13Z3V3bFarairla0hzIdNoo6R6W6T5XpftUoRXtI7bfM4zBo0KDk+MSJE6ueIyepDljXnLFZ8to6NFmrWVFXKzpDozpdNWoPzeygxeylukzVQ6oLV6PW6m8a1TU29b656D3O/hsvM7stzjVdY/NT1AErpaj7VLtKfW86ZdGfuGMHAAAAIFMKOwAAAACZUtgBAAAAyJTCDgAAAECmWhKeXBSUXK3jbnyuTjuB6RoVlNwOAcwUByU3wk2XnFb1tRttuVtT16O5HljjkvRf3NP68GTaW5ng4sPHPVb9tcM+3RbrkVamuUg70FykuYrCsWsNCO6dMCE53qjw5KL1Ui7961+rvvbre+5Z9bWpx6zo8S3TnIRi/7jyzKqv/dzm32nqep3CHTsAAAAAmVLYAQAAAMiUwg4AAABAphR2AAAAADKlsAMAAACQqYZ2xbpyzIJVX1uURJ6y/8bLVH1tmQ5aZeatx3o0VupMlelS1XP7pdWvtd4WVV9bj/VIu+wXr1Z9bdFzTu89J9a0h40Pvzs5PunvP6xp3jLrFa+V3lt/9+f5fpEc/9aUQ6qeI9UBq8xZautualsuVdNaRY9vf1P0nHPhUSOrnqNM96oyUnto1FoUK9MBK3WeyryPfWF89e9Xl/pk7e+Py6xH7c4666zkeJmOVO0g1elq3I03Vv31RY9DrZ3EOlnRa9VbN/2ypnm/9IuHkuMv/3X3muYts17xWum95cYdOwAAAACZUtgBAAAAyJTCDgAAAECmFHYAAAAAMtXQ8OR6qEegMcyNvU59Kjl+zVFbN2294rXSe6P1ag1fbvf1aIx2Dt1+YI3fVIytcs+Wdd8Tc+fwYZ/u6PU6UZnmIo1y3mPp8QPWHVgx1tug9VJrTTe5DitSq1TQctfgwTV9fT32QJ5qDV9u9/XagTt2AAAAADKlsAMAAACQKYUdAAAAgEwp7AAAAABkSmEHAAAAIFNdPT099Qi7L6W7u7tirPfRdJeFruGVMfqd0inruBufqxjr6elpwU46U+qcFbnllP0auJP623CPEyrGypydQYMGJccnTpw413vKTZnz0Smdp7rW2KdizHNOsW9NOaTqax9Y45Kqr83tPKXOTZFUt6w/z/eLem4nC7W+z7nwqJF131MrbHvQ6RVjnnPKKXqtSp2n1FmKyO99s/fH6Z/7t7/97eS1Z511Vk1rdUrnqTIdu1LKPL6dfB7LvD/ulM5TC2/0k4qxHH/G7tgBAAAAyJTCDgAAAECmFHYAAAAAMqWwAwAAAJCpAa1YNBVG1DW8+qCmZkuFuBXJLaCuk6XOWZlAMDpbUSha6ozcdMlpyWs32nK3uu5phjJhtbkF8eYkFfpbFKicCg0uE6icm9T3G9E/g5JTcnufkwo5LtIpwc65KHqtaufzBLNTJuS4U4Kdc1Lm/XGzpUKOi3RKsHMZ7tgBAAAAyJTCDgAAAECmFHYAAAAAMqWwAwAAAJAphR0AAACATLWkK1ZKOydw63TF3NpwjxMqxm45Zb8W7GRWEydObPUWOkKqW1Y9OmXV2umqqIsXtSvq+lTULata5159b3J8py+tXvUcqW5quqa1j3Z+n6PTVX7aofNnqmus98yd7bKjNqt5jkt/tGpT16Nz9MdOV2W4YwcAAAAgUwo7AAAAAJlS2AEAAADIlMIOAAAAQKbaJjy52SZ/tHk1rYHvTWvaWrSXMkHJqaDlMuoRmlgU7gnMXipUuTsuqfrry4QkF2lmUHJRiDTQfwhK7gwCiqEzuGMHAAAAIFMKOwAAAACZUtgBAAAAyJTCDgAAAECmFHYAAAAAMtVvu2Kl/P6qZ2qe4/tfXq4OOyE3n9rjx1Vf+8lYKjn+1FNP1Ws7c7T8L7+WHO9KdNbSKStioy13S47fdMlpVY0VzdG1xj61bSya2wmJ9nDkFw+reY5DrzmiDjshN9sedHrNc1x41Mg67IScHHfjczXPoYNW/7PFr+6veY5Lf7RqHXZCbhbe6Cc1z/HWTb+sw07y4o4dAAAAgEwp7AAAAABkSmEHAAAAIFMKOwAAAACZEp48E8HHna8oCLg7ERp8yyn7VT3vE6f8b9XX3hLpeYcOHVr1HI0iKLm5BB93tqJ/T6mQ8jJnoVHBx0Vh3p4XOofg485W5j1OmTDjRgUfF4Uye85JPwapn2NExLe//e2KsbPOOqvueyqrnYOPyzxmzmNjpYKS+2PwcT24YwcAAAAgUwo7AAAAAJlS2AEAAADIlMIOAAAAQKYUdgAAAAAy1W+7Yg18b1rF2OSP1l7nSs0r9b+zbLjHCRVjZTpoleGMtLeNttytYuymS05LXls03ggbH353ctx5yk+qU1U9uqml5nU+mFvbHnR6ctyZyk/qPWs9umKl5nU+mBtb/Or+qq9Ndb+KSHfAch5bo5kdsFIduCI652fvjh0AAACATCnsAAAAAGRKYQcAAAAgUwo7AAAAAJnqt+HJqRC37395uYbM2ymBTEyXCkpOBSqX5Zx0hlSgckQ6rPbGw9eseb1UULKz1DlSQcmps1SWM9L5igKNG8F56hypoOSiJiBlOCO1K3oMu7u7K8bKhAYXhRFf+qNVS+yuUpmQ43pIfc+p7zfCeWwnRYHGjdDpP3d37AAAAABkSmEHAAAAIFMKOwAAAACZUtgBAAAAyJTCDgAAAECm+m1XrJTfX/VMzXN0eto2aalOWRHpblnOCDOkOlqV5Tz1P6lOWRHpblnOBzNzHpgbqU5ZETrBdoreCROS412DBzdtD0VdvMpIdcByHvPk5zZ33LEDAAAAkCmFHQAAAIBMKewAAAAAZEphBwAAACBTwpNnIqgJaCbPOQBAOyoKVU4pE7ScCkpOBR+X5T0V/Z07dgAAAAAypbADAAAAkCmFHQAAAIBMKewAAAAAZEphBwAAACBTXT09Pb2t3gQAAAAA5bljBwAAACBTCjsAAAAAmVLYAQAAAMiUwg4AAABAphR2AAAAADKlsAMAAACQKYUdAAAAgEwp7AAAAABkSmEHAAAAIFMKOwAAAACZUtgBAAAAyJTCDgAAAECmFHYAAAAAMqWwAwAAAJAphR0AAACATA1o9QZy0N3dXfW1PT09DdwJAMDcKXo/470LAO3Ca9XccccOAAAAQKYUdgAAAAAypbADAAAAkCmFHQAAAIBMKewAAAAAZEpXrJmU6X4FANCuUu9pdthhh6qv1X0EgEbzWlU/7tgBAAAAyJTCDgAAAECmFHYAAAAAMqWwAwAAAJCpfhueLCgZAAAAyJ07dgAAAAAypbADAAAAkCmFHQAAAIBMKewAAAAAZEphBwAAACBTHd8VS/crAAAAoFO5YwcAAAAgUwo7AAAAAJlS2AEAAADIlMIOAAAAQKY6Kjy5HYKSU3vo6elpwU4oox3OToqzk592OEvOTXtrhzOS4ty0v2aenTJrOTudY8SIEQ2Z98EHH6x6rdS1tIcrvzKp1VsotPkVC7V6C/z/vFa1hjt2AAAAADKlsAMAAACQKYUdAAAAgEwp7AAAAABkSmEHAAAAIFNZdsUqSr8ed/HhNc07bKvqv77MWsMK9tvpydztqOjs7L/xMk3eSXWK9uvstIfUz+fVbw5qwU5m9Qnnpi20a/erIp5v2kc9XquOu/G5mvZQZi1npz2U6TLVqO5XRVLr6X7V3tqhA9baW65UMXbXJY8kr03tV6esxip67r/wqJFVz7HtQafXtIcya3X6a5U7dgAAAAAypbADAAAAkCmFHQAAAIBMKewAAAAAZKqrp6ent9WbmJ1UyFGZ4OKFllw5OT7pxYerniMVqlxrUHPRvJ0S3tQOUmenTBjkkoMXTY6/OOGNud5TvaRCMZ2dxikKW2uHoOQyPvGXiRVjzk191BqUPHavdZPjT71Y+TPb/+LHa1orIuK4rVasaV7npn68VlEvzQ5EbpQyYc8CmGvXDiHJZaQClSPSocrCk+sn9VpVJrh4/sFDk+PvTnhqrvdUL6kA5xxfq9yxAwAAAJAphR0AAACATCnsAAAAAGRKYQcAAAAgUwo7AAAAAJka0OoN1FOqA1aZ7ldF6tEBi/aW6irSDh1FaL5U6v/5myyQvPaGFyc3ejt1lfo+iro55dgNIBepDlip7ldFUh2tItJdrYqurXVeWsNrVf/TKZ2uykh9z0Xdr8pcS2dIdb8qUo+OXzprlZfqgFXU/erBJ16qGBvxqSVq3kOj5m1n7tgBAAAAyJTCDgAAAECmFHYAAAAAMqWwAwAAAJCpjgpPrkdQMv2T8EnmxiZLDqwYKwpUbtdrI95JXkvjlAlKhpl5rep/yoQG18NFR+9WMbbNgac1ZK0y+mOINO0hFcAsUHn2ioKSUxoVaNzpQckp7tgBAAAAyJTCDgAAAECmFHYAAAAAMqWwAwAAAJAphR0AAACATHVUVyyAWvX09FSMdXd3J6/tveeoirHtS6zV7Gu71tinYiz1/dJY+1/8eEeuBdRfM7tfRaQ7YNXj2mq/vqyirmFU78AX1kuO906Y0OSd1KZr8OCKMe9xWmPbg05vyLwXHjWyaWvlyB07AAAAAJlS2AEAAADIlMIOAAAAQKYUdgAAAAAy1fHhyXdde0HV1669WZl40trXo/mOu/G5Vm8B6CeO22rF5Hgq0PjArwyqet6jr5hY9XpF4cn1WI/28ML46l/XlvrkMk1dj3JSQclF4cBlQpW7urqq30SJINLeRPhxqSDTMmv19ibHyzxmQH2V+fd++LjHqr922KfbYr3cuGMHAAAAIFMKOwAAAACZUtgBAAAAyJTCDgAAAECmFHYAAAAAMtU2XbG6u7uT4+MuPrymeb95fDoZ/4FTd61p3jLrFa8ltb8eis5Oyv4bV98RpEwHrTLz1mM9Gid1nnrvObHqr9/38vFVX/vbr36y6mvrsR61K3q+SXVsGbP1sKrn/d8tPlL1tUdfUfWlbbMexWen1teP8woafxyw7sCKsXRfodrXS6013eQ6rNh/pLo5Nar7VT06xjR7vZQyj5luWQXvcSZMqPrr//O0S6q+9uTdtqz62nqsR30UvVZdeNTIquco1R2vhNQeGrVWjtyxAwAAAJAphR0AAACATCnsAAAAAGRKYQcAAAAgU20TntwotYYvt/t6FKtHoDGUdeIhRybHDz/lhKat16i1KJYKSh41dlz64sS1A/Z9vOq1jttqxZqvLbMe7a3ota4eQcnVrle8lqYAZaRCf4sCf1PXFoWbdnKQaZnHjNqdcvBuyfHRf7iwaes1ai3Ke/CJl6q+tkwoej00e7124I4dAAAAgEwp7AAAAABkSmEHAAAAIFMKOwAAAACZUtgBAAAAyFRXT09PoxonFOru7q4Y6300nVzdNfyxirFO6Tw1bKvDK8Z6enqav5GM1Hp2OqVT1nE3VnYacXbqI3XGivTec2IDd1J/XWvsUzHm3JRT5nwUdaRKdctKddVqtqIuXl1dXRVjzs3sea2azmtVWqqTUz2k/q1G1N69qqjbVhm1dsvq7a3+44quWMVKvceZMKGBO6m/rsGDK8Y838xera9V9XhuaJRUx64Rn1oieW3q+SnHs+OOHQAAAIBMKewAAAAAZEphBwAAACBTCjsAAAAAmRrQikVTYURdw6sP87rr2guS42tvtv1c72l2UiHHRTol2Lld1Xp2UkGOEY0Lqixar5l7oJzUGSsTNkhnKwrTK3NGUkHJRcHFZTzzzDMVY8stt1zVX98OAc6dotbXqmbzWtVcZcJ9GxW03OzQ0zLr1Rq0XPSYCVX2HodZ5fZa1ezQ99y4YwcAAAAgUwo7AAAAAJlS2AEAAADIlMIOAAAAQKYUdgAAAAAy1ZKuWCn16DSS6pZVj05ZtXa6KuriRX3U4+w0qiNIrd1DyuyLztG1xj4VY733nNiCnVCL/S9+PDl+3FYrNmS9Mh2waL56vFalrL3qojV9fUTEX+owR5LXsI6W6lDT7E40Ol3lp2vw4Iqx3gkTWrATUhr1WvXgEy8lx0d8aomq5+iPna7KcMcOAAAAQKYUdgAAAAAypbADAAAAkCmFHQAAAIBMtU14cqMUBRfXI1SZ/kmgMY0mKLn/eeaZZ5LjjQpELlqP9lCPQOR28JcfjKgYKwrgLArs7E9GjKh8vNo5HLiZQaZFj0NujxmCkvurMiHJjVIU4Nwp3LEDAAAAkCmFHQAAAIBMKewAAAAAZEphBwAAACBTCjsAAAAAmcqyK1ZRR6uiDljVGrbV4TV9fUTEuItrn4P87LXq/DXPcdL979ZhJ+Ska419ap5DB6321dvb2+otFEp12xo1dlzy2v27uhq9nX6hqBtUqnNUo3zz+Nq7BTVzv/1Nu3ZzGvK7i2qe45W9t6nDTiq162NGxKHDhtU8x5Hj0q9LdLZtDzq95jlSXfvaoTNXI7ljBwAAACBTCjsAAAAAmVLYAQAAAMiUwg4AAABAprIMTy5SFKpcrUYFHxfuqw4hhrQHwcedraenJznelQhDLRNm3Kjg46JQ5qLvg8YYs3X1wZFFwcXNVGa/5EnwcWcreo5PBXengkWLNCr4uCgg1WtVcxW+xxk8uGKsd8KEqudtVPBxal8Rzk0nKfP8xP9xxw4AAABAphR2AAAAADKlsAMAAACQKYUdAAAAgEwp7AAAAABkqqO6YrWrYVsdnhyX3t58+2+8THL8uBufa/JOauPs5CfVqaoeXbFS8zof+SnqSNWoblmp9fa/+PHktc4T9B+pTlX16FCTmtdzS+eotYNWmXmdm/b34BMvVYyN+NQSLZ+30zvxuWMHAAAAIFMKOwAAAACZUtgBAAAAyJTCDgAAAECm+m14clGgcSN0SiATMPdSQcmp4OOyPL90tq6urqat5Sw1VtHj293dXfUcf/nBiHptB5JSQclFgaNleH7pbKmg5FTwcVnOTZ7qEWjcCJ1+ntyxAwAAAJAphR0AAACATCnsAAAAAGRKYQcAAAAgUwo7AAAAAJnqt12xUjo9KZti+2+8TMXYcTc+14KdzMqZ7GypTlkR6W5ZzgIzOAudL/WaFBHxzeMfrGneZnfVSu3X+c1PqlNWRLqbjZ8vM6Q6ZUWku2U5N8zMeZg77tgBAAAAyJTCDgAAAECmFHYAAAAAMqWwAwAAAJAp4clQoCi8MhWqLOQLgEYrel1KSb1W1Rq+XJbXRgBoDnfsAAAAAGRKYQcAAAAgUwo7AAAAAJlS2AEAAADIlMIOAAAAQKa6enp6elu9CQAAAADKc8cOAAAAQKYUdgAAAAAypbADAAAAkCmFHQAAAIBMKewAAAAAZEphBwAAACBTCjsAAAAAmVLYAQAAAMiUwg4AAABAphR2AAAAADKlsAMAAACQKYUdAAAAgEwp7AAAAABkSmEHAAAAIFMKOwAAAACZGtDqDQAwq+7u7qqv7enpaeBOAACAdueOHQAAAIBMKewAAAAAZEphBwAAACBTCjsAAAAAmVLYAQAAAMiUrlgALVKm+xUAADBnqffYnd5J1h07AAAAAJlS2AEAAADIlMIOAAAAQKYUdgAAAAAy1fHhyXt/+2tNXe93Z13W1PWAPAhKBgAgR7WGERe9D6410Lge83ZK0LI7dgAAAAAypbADAAAAkCmFHQAAAIBMKewAAAAAZEphBwAAACBTXT09Pb2t3kS9NLsDVrV0yoL+o9ndr3JM7QcA2ls7dPNMvcdpVHclpivz+Nbj2mq/vuwctWqHjl9luWMHAAAAIFMKOwAAAACZUtgBAAAAyJTCDgAAAECmBrR6A9Cu2jU0jvbRDmcktQfnpr21w7lJcW4A+p92fU2KaO+95aQe4b5lfha1/tza+efezu+73bEDAAAAkCmFHQAAAIBMKewAAAAAZEphBwAAACBTCjsAAAAAmerq6enpbfUmytr7219r9Rbq4ndnXdbqLWSnTEp6o5Le20Gjvrd2SXVvN0WP4f4bL1PTvMfd+FzV15ZZq2heP9/mKjo3d2358SbvpDprX/Lv5LhzA9AZcnu/2yhe16ZzHuqjXc6TO3YAAAAAMqWwAwAAAJAphR0AAACATCnsAAAAAGSq7cOT+1uoU7uEL7Vao37uvY9+OjneNfyxhqzXKKnvo1HfQ387k6mzVya4eMnBiybHX5zwRtVzpMKPaw1qLpq3v/18GyV1bto1JLmsVKiyc9M+2uF9kvOQH+ems7XDz7cdOGPTNfs8LL9s5dgm61f/9TfcVvseal3v6Wdr30Ozz587dgAAAAAypbADAAAAkCmFHQAAAIBMKewAAAAAZEphBwAAACBTLemKtfe3v9bsJTvS7866rNVbqAvJ/Xnq1E4DZbpipTpglel+1Wy6YtWu6Pnqt+sObPJOWmvfOyYnx52nxsrt9dJ5aA+pc3PCNsOS1+530bimXVvEuWmcdn0OueWU/ZLjG+5xQk3zOkuzV+t5SHW/ikh3pFr77A+qnveub8ybHE91ryrqflXremecU/WXt805c8cOAAAAQKYUdgAAAAAypbADAAAAkCmFHQAAAIBMDWjk5EKSG6vo8e2UUOVapYKs6hEa98qjj9Y8R7WGDB9e9bVFwV3tGpTXCdo5KJnWW3fx+ZPjd7z8bvbX0lid8ryd+j7aJWSyExWdm1SgcVGYcTtc69zUrh7PIalA46Iw46Lw45Qygchl9pBS9Dj0t/PUKa8p7aCdz447dgAAAAAypbADAAAAkCmFHQAAAIBMKewAAAAAZEphBwAAACBTXT09Pb2t3sTspFK89994mRbspP6Ou/G5irF2TtpulFqT2ss8ZmXWamb3q7JS3bIa9TgU6dSz2t86B3Tqz7HZll122VZvoameffbZVm+hYzTqOWfy7WMaMm/KwPVGVX1tmeecQYMGJccnTpxY9Rz9SZmzlOpSFZHuVNUO13qtqg/vcYp1yvNNM3/Gy5d467PJ+tVfe8Nt6fGnE289ivZQ63qptYq0y/OTO3YAAAAAMqWwAwAAAJAphR0AAACATCnsAAAAAGRqQKs30GgvjK8MKC6y1CdrD2Uusx7to52Dkmm9osD2VAD6t9dbtOp5z7r9jarXS61Vr/Wo3aKLVv4c3nij+sd701MXqXkP1+/+ZsXYIptuWvO8b15/fc1z0DjNDEkuu4cyoco0VyqguOy1qfDjesybUhQI2y6hpTm75ZT9kuMb7nFCxdiem3ys6nn/3w2vV71eaq16rdffNLuZSsp5R4yq6ev3/mp99lGtG24bU9PXt8vzkzt2AAAAADKlsAMAAACQKYUdAAAAgEwp7AAAAABkSmEHAAAAIFNt0xWrKE26qBtNtc57LD1+wLoDK8Z6a1qpeL3UWtNNrsOK+UslhtcjXTw1R5nuV1dfemnV135piy2qvrYe69Wq6HFMPWad2nGiUc85+2w4X9XXnnV7TUu1ZL3+rujcXHT0yIqx604elbz2C/85po47or+7Z+/3q752jd99pKnr0Thlutn876LfqGmtH79xdnK8TFerRu2BtKLzUdQBq1o/+WL1zyH/74aalmrJep2qUd2vnn62+msfuPWSqq9dZYMt52I3c79eme8jpV0+K7ljBwAAACBTCjsAAAAAmVLYAQAAAMiUwg4AAABAptomPLlRioJQ6xGUXO16xWs916Bd5K8dQqi+NXp0cvyOS6oP46p1vUatVaQdHvecpP69r3dU9f+uywQ1F11bZj3a1/W7v9mQed+8/vqGzEt59QivnHz7mIqxgeuNSl776OZ/TIz+u+Y9bHDvwVWuRbtYpau2pgBFTthmWMVYUaByo/ZA46SClpff44Savr7stWXWo7wyDWxqtccfnkyO3zRm26atV7xWem+5cccOAAAAQKYUdgAAAAAypbADAAAAkCmFHQAAAIBMKewAAAAAZKolXbFSadu9j346eW3X8Mcqxsp0koGZDRk+PDn+yqOPVjXWSM1erz9p5nNOs5+fyqx33I06aDXKNgeeXjF20dEjk9ded/KoBu+mvlLfmw567SPVKWu62jtgVb9ewVpXNmQLlPTZJT9S2wSvd8YeiNgw0WWqHt2rGqXMeqnvjemKXrMb1QEr5c4/jmraWs1er+hxbPZ7JXfsAAAAAGRKYQcAAAAgUwo7AAAAAJlS2AEAAADIVEvCk1NBQl3Dqw9vKgoAbVRoaZnAUcHO7SN1zpoZEkb7qPU5Z+1VF02O33X/G3O9p9nxnNO+ygQQvvvsXclr51927bruaYZUyHGRomBnIA9l3uMs99CRNa11wjbDar52uYtq24PA9nLKvFYVhQ43Kii5TMhxs8OaaY+g5XbWzs9F7tgBAAAAyJTCDgAAAECmFHYAAAAAMqWwAwAAAJAphR0AAACATLWkK1ZKPRK4G9VJptauM2X2RWcZMnx4xdgrjz7agp3wYfV4zkl1y6pHp6xan3OKuniF56K2kOqWVY9OWbV2uirq4kXnG7jeqIqxybePafo+PmzixImt3kJHKNPVqoz9LhpX9Vpl9pCal+ZLda+qR5eqWuco01WrjP74fNPOHZ5S1tllTMXYnX8c1fR9tCt37AAAAABkSmEHAAAAIFMKOwAAAACZUtgBAAAAyFTbhCc3m0BjmkFQcv9TFFxcj1BlOldRcHE9QpVhTsoEJaeClssoE1BfJLfAz07VqFBm2lejgosbxfNNeUWPWepxqMfjW4ag5Nlzxw4AAABAphR2AAAAADKlsAMAAACQKYUdAAAAgEwp7AAAAABkqt92xUrZa9X5a57jpPvfrcNOyM0v11235jl+cscdddgJjVDU0aqoA1a16tGdb/+Nl6l5DhqjqKNVUQesam1z4Ok1fX1ExEVHj6x5DvLz+no7VH3tJ2Op5PhTTz1Vr+3M0fK//FpyvCvRiaW/da5ppn0f/XfNc/x2+MfrsBNyctLuQ6u+dq9T088rnm+arx2+t3V2GVPzHLV20Cp6HFKdwNrhMYtwxw4AAABAthR2AAAAADKlsAMAAACQKYUdAAAAgEx19fT09LZ6E7OTCijqZO0SvtTfpM7ZK48+2oKdzGrI8OHJceekcVJnoVMCilNhzc5SfaTOTacEFKfCmp2b8hr1fmby7WMaMm+RgeuNaup6Kc5fOamzd8I2w1qwk1ntd9G45Lifb+OkzsItp+yXvHbDPU5o9Hay4DyWlzpntYYZ10NRKHOn/IzdsQMAAACQKYUdAAAAgEwp7AAAAABkSmEHAAAAIFMKOwAAAACZGtDqDcyN3js+nRzvWvexJu+kNp2SwN3fpDpV1aODVmpeZ4S5kep+FeE8MXup7lcRzk2uUt2rmt1BK8V5am+pTlX16KCVmtdZaG+pblnt3CnLecpTqlNVPTpopebt9DPijh0AAACATCnsAAAAAGRKYQcAAAAgUwo7AAAAAJnKMjz5gIMnt3oL9GOpoORU8HFZnR7o1d8VBRo3grPUOYoCjRvBueksqaDkVKAyzCwVlJwKPi7L80tnSAUqRzQ3VNlZ6iypoORU8HFZ/fGcuGMHAAAAIFMKOwAAAACZUtgBAAAAyJTCDgAAAECmFHYAAAAAMpVlV6wi+2+8TMVYMzvRFOmPqdz9TapTVkS6W5bzwAzOAnPDuWFupTplRTSuW5az2hlSnbIi0t2y/MyZwVlgbqU6ZUWku2U5Z//HHTsAAAAAmVLYAQAAAMiUwg4AAABAphR2AAAAADLVUeHJKalA5Yh0qLLwJQCgEerxHqO7u7sOO6mO90QAkA937AAAAABkSmEHAAAAIFMKOwAAAACZUtgBAAAAyJTCDgAAAECmunp6enpbvQkAAAAAynPHDgAAAECmFHYAAAAAMqWwAwAAAJAphR0AAACATCnsAAAAAGRKYQcAAAAgUwo7AAAAAJlS2AEAAADIlMIOAAAAQKYUdgAAAAAypbADAAAAkCmFHQAAAIBMKewAAAAAZEphBwAAACBTA1q9AYBO0t3dnRzv6elp2rUAAED/4Y4dAAAAgEwp7AAAAABkSmEHAAAAIFMKOwAAAACZUtgBAAAAyFRXT09Pb6s3AZCjok5VraZTFgD1Uua1zusPQGu4YwcAAAAgUwo7AAAAAJlS2AEAAADIlMIOAAAAQKYGtHoDAABA6yWDknc4PHntChtUjhcFLQtVBmgsd+wAAAAAZEphBwAAACBTCjsAAAAAmVLYAQAAAMiUwg4AAABAprp6enp6W70JaLWiLg7NlOoYobtEe2iH81EPzg0AEbN5XUt0wEp1v4qIePLWEteOqhzzmgRQP+7YAQAAAMiUwg4AAABAphR2AAAAADKlsAMAAACQqQGt3gA0UzuH4Lbz3oD6add/64JM25+zQ6Olwo9TIcllr40oGgegHtyxAwAAAJAphR0AAACATCnsAAAAAGRKYQcAAAAgUwo7AAAAAJnSFYuO1a7dQ+qhzPemW0k5ZR7bN24+puprF/386LnZTl3XSn1vzkfjFJ2lC48a2eSdVKdov85I8xX9LHrvOrZirGvtA1p/rbPT1lLnaYUx6WtTXa1S3a9KX5voiuU5B/qPdvhc1unPLe7YAQAAAMiUwg4AAABAphR2AAAAADKlsAMAAACQqY4PTxbU1Pna4WfcDpyzxikTXLzIMunzmJqjKOS4zHplvr7WAGeKpZ6Hent7W7CTudd74GnJ8a6urooxzzf1kzw7iYDidla031SosrPTOEXvh1JByang44h0+HHDrk0EKkcI+m9nP9t9vVZvIf771NtbvQXmoNbPZkXvn1LvR8ro9MB2d+wAAAAAZEphBwAAACBTCjsAAAAAmVLYAQAAAMiUwg4AAABApjqqK1a7dkfq9ATuVit6HNv1PEw9epPk+IADb2jqPqhdqgPWm89V/++61u5XtLelfvhQq7dAh+la+4CKscKOVCWuTWnUvDRfqlNVqktV21x7fnKYJmuHDlgpRfvSLav5GvVZq6j7VapbVq2dsiI6pxOfO3YAAAAAMqWwAwAAAJAphR0AAACATCnsAAAAAGQqy/Dkdg3FLatTgpparR7nIRVoXBRmXBR+nFImELnMHlKEdDdfmaBk+p/fLnN0q7dQF9u2egPMlVSgcSr4uOha2lvyNX+Hw5PXFoUUt/raVKByRMQKYyrHvcdpnHYNSS4r9X0IVO4s9QhK7mTu2AEAAADIlMIOAAAAQKYUdgAAAAAypbADAAAAkCmFHQAAAIBMtX1XrEZ1wLrllP0aMm/Khnuc0JB5Bw0alByfOHFiQ9ZrV0UdEVJnp6ijVar7VJnuV41SZr86Q7SHDU5bJzl+6253Nm29Rq0FNEdR96par23UHPXYA7Ur06XqyqHVX9som0fr99DfNKoD1q8PObAh86Yc/IvO6DjZCXqPva7VW2iYB1u9gbngjh0AAACATCnsAAAAAGRKYQcAAAAgUwo7AAAAAJlq+/DkWjUzJLnsHhoVqkx5qZDiW+64oeqv33Ddyq8vmrdImfVoXwPefSY5vvHvFq8Yu3HvlxuyXmotmm/bg05v9RbIVO9dxybHGxVSXLReyq2XnVr1tRse/q+52Q511g5BySlF+9r8qfQ4rffwCn8u+Jt7G7Le189evWLsbwVBzUKVG2vE1a/W9PWPf+qmqq9d8YmNalqrHusVfb8PfukTc72nRnPHDgAAAECmFHYAAAAAMqWwAwAAAJAphR0AAACATCnsAAAAAGSq47ti9dx+adXXdq+3RVPXoz66u7uT42U6UqVscn56vPeQwRVjH9S0UvF6qbWmm1CHFfu3onPzxs3H1DTvfWd/O73eF3+QGF2uprWK1kuvRT0UnZuUC48aWfW1ZTpolZm3HutRH0Vnp0xHqnaQ6nQ16bLvF1ytK1a7uuvaC6q+du3Ntm/qerFCzcvRIAPeez45vs0ZlZ2CLtq1ti5KReul1oqIGFbzatRLqiPVzx+8suqv/68R6fFU96qi7ldl1jtzYO1duNqBO3YAAAAAMqWwAwAAAJAphR0AAACATCnsAAAAAGSqbcKTywRSFrnllP0qxjbc44TktdcctXXN66XsdepTJdaqvJb2URS+XI+g5GrXK17rhgbtglqNGHlzcvyW3e5s2npFay16TUO2QNQn0BjmJBW03LX2ATV9fT32QH6+efyDyfEHTt21aesVrvVWem9U72e7r1fzHL8+5MCKsWFb7ZO8duWN9kiMLl3zHh68qHK99FrUy4irqw+9LgouTjnrkNuT4z/4/debtl7hWu9UPW3y8XnwS+lA72Zzxw4AAABAphR2AAAAADKlsAMAAACQKYUdAAAAgEwp7AAAAABkqm26YjVKqlNWJ61HsQEH3lAxVtTpCmZY9POjK8beuPmYqr/+1gZ1v2qX9fqTVLfG3kc/nby2a/jpFWNlOmU1u6tWmfW2Pajye6N+Ul2tynSe0qWqs9Wja2zKuIsPb8i8dVnvrYZtgxqttPPFyfFLvnFv09YrWuvgXzRkC8zGik9slBxPda9q6+ecJxq2jaZyxw4AAABAphR2AAAAADKlsAMAAACQKYUdAAAAgEx1fHgyna+npyc5ngocTAUqRzQuVLlovWbugbQy5+a2v5+ZvHb9//hOXfc0QyrAuUiZYGfKSZ2RruGNCTKthzIhx80Oa6bcc06zpQKciwhrbq52Pjf0P39rUEhyu6wHOXPHDgAAAECmFHYAAAAAMqWwAwAAAJAphR0AAACATCnsAAAAAGRKV6wqbLjHCRVjt5yyXwt2MquJEye2egsdo1Hdq2rtdFVmXzRfqltWPTpl1drpqqiLF7Vr5w41Ol0xt3S66n/+futDyfH/2OAzVc8xbKvDK8bGXVw5BjNzbphbzs7suWMHAAAAIFMKOwAAAACZUtgBAAAAyJTCDgAAAECmhCdXoUxQcipouYx6BHAWhXtSHwKNmR3BxQC0uzIhyUXKhJamQk/rodb3zd4zN5+wW+aWszN77tgBAAAAyJTCDgAAAECmFHYAAAAAMqWwAwAAAJAphR0AAACATOmKNZNP7fHjqq/9ZCyVHH/qqafqtZ05Wv6XX0uOdyU6BEj9b6xX9vp4zXMMOenfddgJOfnqL++reY7Lf7JazXOQl20POr3mOS48amQddkJuutY+oOY5eu86tg47ISe/22VM1dce9/rryfFvfOMb9dlMFc4e/5f0X9zQ1bQ9EPHyqDE1z7H4mFEVYwf/4uia56XYg1/6RHJ8xNWvNm0PZZ5ziuz9x1E1z5FS9Pi0A3fsAAAAAGRKYQcAAAAgUwo7AAAAAJlS2AEAAADIVEeFJ2+4xwkVY7ecsl/VX//EKf9b9bW3RHreoUOHVj1HowhKbj7Bx51t/f/4TnL8tr+fWdO8go+ZG4KPmVuCj/PTnWiIERGxwpjq59j8qcMrxq4cWjlWpEwI6d4F48O2qn692p3dxLU6V+pnNu7iyrEiqeBj+ocVn9ioYuzxT91U9dc3Kvg4ta9O4o4dAAAAgEwp7AAAAABkSmEHAAAAIFMKOwAAAACZUtgBAAAAyFRHdcUqo9YOWo2io1VjTT16k+T4gANvaOo+auWctIdUt6xaO2XVw1d/eV9y3LlhdrY96PTkuHPDnHStfUBy3NmpXdFjmOqWVdQp68lRicGL09fW2gmpHlLfR/J7CGesXTTq3KTm3WadhWqel/Ie/NInKsZGXP1qzfM28+z0Hntd1V+f+n7bnTt2AAAAADKlsAMAAACQKYUdAAAAgEwp7AAAAABkqt+GJ6eCklOBygBlpAKVIyIW/fzopu1BmGTnKAo0bgTnprMUBRo3grPTfKnHPBWoXFYqtDQVQlpWmTOS+j6csfbWqHMjKLm9FQUMp/4NFwUiN/M558GaZ21v7tgBAAAAyJTCDgAAAECmFHYAAAAAMqWwAwAAAJAphR0AAACATPXbrlgpqU5ZEY3rliXhv31MPXqTirEBB97Q9H18mDPS2fx8mRvODXPL2elsRT/fWrtlFXWzSXWuqccZc07b14pL/KXqa3vv+HRyvGvdxyrG6tH96r9Pvb3mOWgPzX7O6RTu2AEAAADIlMIOAAAAQKYUdgAAAAAypbADAAAAkKm2CU+uR/BRreFwZQhq6nypQOWIdKiy8wAAQDuoR5DwRYnPVY+/9M2a5404vGJE8DHUzh07AAAAAJlS2AEAAADIlMIOAAAAQKYUdgAAAAAypbADAAAAkKmunp6e3lZvAgAAAIDy3LEDAAAAkCmFHQAAAIBMKewAAAAAZEphBwAAACBTCjsAAAAAmVLYAQAAAMiUwg4AAABAphR2AAAAADKlsAMAAACQKYUdAAAAgEwp7AAAAABkSmEHAAAAIFMKOwAAAACZUtgBAAAAyJTCDgAAAECmBrR6AwDMqru7u+pre3p6GrgToD/wnANAu/NaNXvu2AEAAADIlMIOAAAAQKYUdgAAAAAypbADAAAAkCmFHQAAAIBM6YoF0CJF6f5/+cGIirFvHv9go7cDdLii55wbD1+zYmzjw+9u9HYAoEKZ7lf8H3fsAAAAAGRKYQcAAAAgUwo7AAAAAJlS2AEAAADIlPBkiPYN6erp6Wn1FqiT1BlLhSQD1EPqOScVkgwArdKun8Fy5I4dAAAAgEwp7AAAAABkSmEHAAAAIFMKOwAAAACZUtgBAAAAyJSuWPQrZZLXV1111eT4/fffX6/tzFHRfnXLal9FP7Nf7Lhsk3cC9AdFzzl/2GOFJu8EANJ0v2o8d+wAAAAAZEphBwAAACBTCjsAAAAAmVLYAQAAAMhUR4Unt2sok6Db1qg1KLmZIcllpb4356z5Uj+HopDkoUss0rQ9OAvtzWsVcyt1dopCkocv/fGm7cHZaW+ec4BmaofnnP74WuWOHQAAAIBMKewAAAAAZEphBwAAACBTCjsAAAAAmVLYAQAAAMhUV09PT2+rN1FWUdL24zss1uSdVGfF819Ljnd6MneztEPyejtzzmpXdMb233iZmuZde9VFq772rvvfqPra4258LjnuLDRX0bk58MADm7yT6hx99NHJceem+YrOzp1/HFXTvJOfurnqawcO/XzV166zy5jkuLPTXJ3yfsi5gTw06v1x0fvYWtfq9PfH7tgBAAAAyJTCDgAAAECmFHYAAAAAMqWwAwAAAJCptg9PToUytWtIclmpUOVOCW9qpk4JC2wUZ6qc1HkqE8y25OB0IPKLE6oPP06FKpcJTy6SCo1zPuojdW7KhCSvuOKKyfHHH398rvdUL6lQZeemflJnp0xI8sAlhifHJ7/0aNVzpEKVy4QnF0mFKjs79VHre59Hrv1Dcjx1blb/1jE1rRURce+fR9c0r3PTHtrhPbez0Brt8P449T621qDmonlzPGfu2AEAAADIlMIOAAAAQKYUdgAAAAAypbADAAAAkCmFHQAAAIBMDWj1BmYoSlk/Y4OBFWO3vDi50dtpitT3VvQ45JjMDZ0ulfBfJt2/SD06YNG+Uh2w2qH7Fe0v1QGrTPerwnnr0AGL9pXqgFXm3KQ6WkWku1oVXVvrvDRf6jNJ7z0nJq/tWmOfpl3rs1L7a9T743p0wOpk7tgBAAAAyJTCDgAAAECmFHYAAAAAMqWwAwAAAJCptglPLmPDJStDhyPSocq5XQvkox5BcPQ/gpKZW/UISqb/cW6YnaIw4lSgcSrMuF2uTX0fApVbw/vj1nDHDgAAAECmFHYAAAAAMqWwAwAAAJAphR0AAACATCnsAAAAAGSqbbpiFaWWpxLOeyc8l7x2xcGDE6NlOk+lr+2dMKFirCu5Vrl5U6S3t8bBC3+9pq//9Vt/y2oPgwYNSo5PnDixpj0A/+foo49u9RYapqiLitewxlpnlzENmffOP45q2lo0zr1/Ht3R69Fcqe5TqS5V7Xwt9Cfu2AEAAADIlMIOAAAAQKYUdgAAAAAypbADAAAAkKm2CU8uo0xw8VGvVR8Ge9Bi6UDZZq9H8w3v+mSrt9AWe6B2L4xPh7unLPXJZZq6Hu3h5ftuqRx79aWqv36VL21f01qNXI/6KBNcfGLvB1Vfu0/XvG2xHq13381jq752tc9v3dT1aF9lAoqLrk2FH9djXtqb98eN544dAAAAgEwp7AAAAABkSmEHAAAAIFMKOwAAAACZUtgBAAAAyFTbdMXq7u5OjvdOmFD1HGW6V5WR2kOj1qI1Pr34R2qb4M308OTbx1SMDVxvVFP3QFrRc87+G9eWxH/eY+nxA9YdWDHWW9NKxeul1ppuch1W7N+Kzs1fdx1R07x/fzo9vvuqH637WkXrpdYq0tPTU/Me+puis3PnH0dVPUeZ7lVlpPbQqLUop+jc3Pvn0TXNO/L3TyTHbzuhMV3wUusVr5XeG7UrOk/VqkdXvDJdrXThaz7vj/Pljh0AAACATCnsAAAAAGRKYQcAAAAgUwo7AAAAAJlqm/DkRjlosUEdvR718flxv63p61MhyWWvLQpVrpYw0/ZQFC5XjyC4atcrXuu5Bu2CWo1ce4nk+LQmrteotWisZgeGCijtDLWGL7f7elSv954Tk+NlQo5rXa9Ra9E+vD9uPHfsAAAAAGRKYQcAAAAgUwo7AAAAAJlS2AEAAADIlMIOAAAAQKbavitW1+DBFWO9EyYkry0ab4R6rJX63misMt2rmq3M3mrtoNXfdHd3V4z1Pvrp5LVdwx+rGCtK8ocZtjvjwYqxv+46InntLWO+3+jttGQt5s46u4ypGLvzj6OS1xaNN0I91kp9b9TH6t86pmKs2Z2nVkvsoch9umK1raKOVMnuVSW64hV12ypzbZn1KM/7487ijh0AAACATCnsAAAAAGRKYQcAAAAgUwo7AAAAAJlqm/Dknp6e5Hgq1OmyozZLXvu1g66t655mKBNy3MwAZ6Yrc3aarUzIcTsHO+cudUa6hrf+fBQ57sbnqr5WcF1ztfPzTSrAuUhRsDONU+bsFIUONyo8uUzIcTMDnGnv5xzykzpPZc5SmUDkeiizXlEINMVqfX/85MTJyfEVBg2c6z3NjvfHs+eOHQAAAIBMKewAAAAAZEphBwAAACBTCjsAAAAAmVLYAQAAAMhU23TFqodUt6x6dMqqtdNVURcvOl+7drqaOHFiq7fQcu3caaQ/Jvn3d9t+ZfGa5+itwxxJJbpt0ViN6l5Va6erMvuicVb/1jHJ8Xv/PLoh693XoHnpbKnuVc3utkWxerw/TnXLqkenrFrfHxd18eoU7tgBAAAAyJTCDgAAAECmFHYAAAAAMqWwAwAAAJCpjgpPThFcTC4Grjeqpq+vR+hvUWAaUF49ApHbQe85la+jXQXPN55D2odAY6AdCUrunzo9uLgduGMHAAAAIFMKOwAAAACZUtgBAAAAyJTCDgAAAECmFHYAAAAAMtXxXbHK2OJX99c8x6U/WrUOOyE3tXa0ioh46qmnat9IlZb/5deS46lON7rcNM5xNz5X8xz7b7xMHXZCtYq6z6U6RzVK187X1jxHM/dL+/jpOgNrnuN/7tTZJDerf+uYirF7/zy6pq8vq8x6dIYjv3hYzXMces0RddgJuXn032/XPMfwjy9Yh53kxR07AAAAAJlS2AEAAADIlMIOAAAAQKYUdgAAAAAylWV48tcOSgdHXnZUbWGQgo+ZW5NvH1PzHAOHDq19IzUSlNw4qaBkwcfMDcHHzC3Bx52tUQHFgo87W9F7v1RDjd57Tqx63kYFH3etsU9y3HvY5lthUDqQ/8mJtb3W9Mfg43pwxw4AAABAphR2AAAAADKlsAMAAACQKYUdAAAAgEwp7AAAAABkKsuuWEVS3bJq7ZRVD1v86v7kuPT2znHLZX+seY5UZ62B641KXuvs5KeZHbBSHbginBvIxZ1/HJUcX2eXMU3dR6085zA7q3/rmOS4c5OfVKeqMh20yszrfLS/VLesWjtl1cPFD05IjnfKmXLHDgAAAECmFHYAAAAAMqWwAwAAAJAphR0AAACATHVUeHJKKlA5IqJr8OCm7aFTApmYLhVofPWhqzdkXmencxQFGjeCc9M4RY9tV3d31XP0ntP6UH+AlKJA40bwWtU5UkHJqeDjspyRzpEKVI7w/rie3LEDAAAAkCmFHQAAAIBMKewAAAAAZEphBwAAACBTCjsAAAAAmer4rlhldHpSNo3zpSPvTY6numUVXev89T9+5p3tr7uOSI537Zzu1litZnfVSu3X2W2NO/84qmJsnV3GNH0fH+Y8dDY/X+ZGqlNWRLpbljPGzJyHueOOHQAAAIBMKewAAAAAZEphBwAAACBTCjsAAAAAmRKeDHVQFPLV3d1d9bVA/1AUqpyy3RkPVozVGr5clues9pYKVI5Ihyr7WQJAZ3LHDgAAAECmFHYAAAAAMqWwAwAAAJAphR0AAACATCnsAAAAAGSqq6enp7fVmwAAAACgPHfsAAAAAGRKYQcAAAAgUwo7AAAAAJlS2AEAAADIlMIOAAAAQKYUdgAAAAAypbADAAAAkCmFHQAAAIBMKewAAAAAZEphBwAAACBTCjsAAAAAmVLYAQAAAMiUwg4AAABAphR2AAAAADKlsAMAAACQKYUdAAAAgEwp7AAAAABkSmEHAAAAIFMKOwAAAACZUtgBAAAAyJTCDgAAAECmFHYAAAAAMqWwAwAAAJAphR0AAACATCnsAAAAAGRqQKs3ALkZsdNOFWMPnntuzdcCAABAWe7YAQAAAMiUwg4AAABAphR2AAAAADKlsAMAAACQKYUdAAAAgEzpikXH6oTuVal9RbTH3gCA9tfd3d3qLST19PS0egsAHcMdOwAAAACZUtgBAAAAyJTCDgAAAECmFHYAAAAAMtVR4cnC4ZhbqTDiouDilEZdW0Y95hXKXI7nHOpl5Lmnt3oLcfpOI1u9BeZCPZ6HPGd0hjJnYbXVVkuO33ffffXZTBWK9us8tgfvcZhbzk5ruGMHAAAAIFMKOwAAAACZUtgBAAAAyJTCDgAAAECmFHYAAAAAMtXV09PT2+pNlFWUtN272yeavJPqdJ32anK805O5m6WoG1Stna5yo6NV4xQ957zy6KNN3kl1hgwfnhz3nNMe2rVbRBHnpvna4Yz4ube3WjtgNbP7VT04j41TdJZ23nnnJu+kOuecc05y3BlpPp/J24s7dgAAAAAypbADAAAAkCmFHQAAAIBMKewAAAAAZKrtw5NToUztGshUVirAqVPCm5qpTCByUcBwJ4cqpwhaLpZ8zult66fJqnV1dVWMec5pnKJQwRN7P6hp3n265q362lrXKlrPuamfdghKrpXz0DidcD4aydkrJ3WeyoQkL7XUUsnxF154Ya73VC+pUGXno358Jm9/7tgBAAAAyJTCDgAAAECmFHYAAAAAMqWwAwAAAJAphR0AAACATA1o9QZmKEr9v/JLC1aMXfXcO43eTlOkvreixyHHZO5aFHWpqrWbU5nuV7cesFlNa5W1wbHX1vT1Ol01zlI/fKjVW6CfKtMBq8zX16NbFuW0Q3ej3ntObMi8Xd67QMdJdcBqh+5XNJbP5NPl+JncHTsAAAAAmVLYAQAAAMiUwg4AAABAphR2AAAAADLVNuHJZXx5mQWS46kAp9yuZbqiIOAy4cdlpIKSBy4+LHnt5JfHNW0PRVJBy/V4bAQwp923T5ZPlRWGHN/qHRBReyDyWoceUPW1/zzy2IbsgfbXqKDkMmulQpXbOXgS+D+CkpmTdvjs7DP5/3HHDgAAAECmFHYAAAAAMqWwAwAAAJAphR0AAACATCnsAAAAAGSqbVq9FHVJ6E50VBh30Q+T166QGHu8YL12uHbzbf6nYky3iNlLdW1qVKesRnW/age6X5UzZPjwVm+hLcw333zJ8SlTpjR5J3ko072qk/dAYzWz+xWd784/jqoYW2eXMU3fB81zzjnntHoLtBGfyafL8TO5O3YAAAAAMqWwAwAAAJAphR0AAACATCnsAAAAAGSqbcKTG+WeG86v+to1Ntmhqes1yoILLlgx9vbbb7dgJ+2n66GH0n+xR8F4jW45Zb+KsQ33OKEha/V+5jNVX1sUOC1UOe2VRx9NjqdClb+93qJVz3vW7W9UvV5RgHM91qN2I889veprt7r7ogbupP4uXnObVm8hO6mQSciBoOT+pyiAvWuNfZq6XspNl5xW9bUbH3733GyHJumPn8mbzR07AAAAAJlS2AEAAADIlMIOAAAAQKYUdgAAAAAypbADAAAAkKm26YpV1EFi3EU/rWnenX4zLjn+wCnfqGneMusVr5XeW7VS3a/KXptbt6yibk4phR2wqjRmcvWPzaiB6ce3TAeseqxXLd2vip9zijpgVWufDeer+tqzbq9pqZasR2M889xTVV+73DJDm7perFnzcjRQma4xG225W1PXo5xmdlM7sfeDqq/dp2vetl0v9Zj19PRU/fWdqugslelI1Q5Sna4m/f2HBVfrilUPPpPnyx07AAAAAJlS2AEAAADIlMIOAAAAQKYUdgAAAAAy1TbhyY1Sa9BTu6/X36RCf8sEKt9yyn7J8TIhx2Wk1mvUWkUEJTdOKmh5yPDhNX192WvLrEf7OuXB9PiRmyxQMdbboPVSa0VE3FeH9aiPVPBp1xr7JK8tDhitjTBTZrjzj6MqxtbZZUzT90FjlHm+qfbr67EH8uQzeeO5YwcAAAAgUwo7AAAAAJlS2AEAAADIlMIOAAAAQKYUdgAAAAAy1fZdsYZt8z8VY/0x5Trl7bffbvUWmq5MB6yUoo5Uye5VAxeset6ibltlri2zXhmpx0ynrGKpLlP16F7VKGXW00GrfR3x1aHJ8Xp0wKp2vUatRWM1u2uMLjX5SXav6pq3pq8ve22Z9WicVFerMv+m/fvvv3wmb3/u2AEAAADIlMIOAAAAQKYUdgAAAAAypbADAAAAkKm2CU/u6elJjnd3dzd5J5VSYVFF2iFEasEFK0N4OyVoORX6WxSo3PuZz1SMdT30UNVrlQlErocy6xWFQKcISk5r5+ecMiHHzQ5rJu30nUZWjI089/QW7ARgzsoEIjd7vXV2GdOwffQX7fweJxXgXERYc/OVOTvvjLs2ee0Cwzar655myO0zebO5YwcAAAAgUwo7AAAAAJlS2AEAAADIlMIOAAAAQKYUdgAAAAAy1TZdsdpZbqnandIBq1pFXZ+KumU1U6p7VbO7bZGfdu10NWXKlFZvgdk47PKnKsaO+OrQFuyE3KS61OhG03ypbjTt0MWoSKp7VbO7bZEfzy2dL9Utqx6dsmr9TF7UxatTuGMHAAAAIFMKOwAAAACZUtgBAAAAyJTCDgAAAECmhCd3oAUXXLBirL8FKkcUhCo3OYSwmUHJRSHSdLYhw4fX9PX1COZMBX7SfIKSmVvCTJkb7RCU7PWnPQhgh9Zzxw4AAABAphR2AAAAADKlsAMAAACQKYUdAAAAgEwp7AAAAABkSlesmQzb5n8aMu+4i37akHmL9McOWK32qT1+XPMcT5zyv3XYCTmptaNVRMRtt91Wh51UZ+kTd02OL5vorKVTSeOMfOKNmuc4/VOL1mEnNFutnWde2Pmwmvew1DlH1DwH1SvzXFqPLocpK+5yaM1zPP7HI2v6eq8p7S31PJR6vqrHvLSPBYZtlhx/Z9y1VY0VzVGPz+TN/vzdDtyxAwAAAJAphR0AAACATCnsAAAAAGRKYQcAAAAgU8KTZ1ImZKko1Ons732y6mvLaFQgXkonB9QVfW+px/eWU/aret5GBR9vuMcJyfFO/hn1J688+mjNc9QjgLlWzmM5h13+VMXYEV8dWvXXNyr4OLWviIi11mzIch2hma/N9dCo4OOikFTPDc1V5j3OnX8cVfW8tQYfF1lnlzHJceemMwg+Zm71x+DjenDHDgAAAECmFHYAAAAAMqWwAwAAAJAphR0AAACATCnsAAAAAGRKV6y5VJTWneqAleqUFRHxjT+Mr2kPRfOWUese+qNUp6oyHbTKzKszBHOS6qxV1CnLecpPrR20ysxbdD5Gnnt6zevRfKlOVfXoUpOa13NL50h1qirTQavMvM4Nc0MXvva3wLDNKsbeGXdt8tqi8UZY9eA7kuOdcnbcsQMAAACQKYUdAAAAgEwp7AAAAABkSmEHAAAAIFP9Njw5FXLcKEUBxanw4+7u7qrnffyFN5LjKy61aNXXUl4qKDkVfFxWpwR3kVYUaNwIzlJ7OH2nkcnx7iOPrXqOVFByKvi4rDJnpOj7oL2lgpKLQkfL8PzS2VJByang47Kcm85Wj+eWajlLeUoFKkekP5Pf/+t1a14vFZTc6WfHHTsAAAAAmVLYAQAAAMiUwg4AAABAphR2AAAAADKlsAMAAACQqX7bFSul2UnZqQ5YqU5ZZaU6YB122TvJazs9HbxZUp2yItLdsjzmzOAsMDdSnbIi0t2ynLHGaof3DWWkOmVFpDvaODvMkOqUFZHuluXcMIOzwNxKdbQqqz+eP3fsAAAAAGRKYQcAAAAgUwo7AAAAAJlS2AEAAADIlPDkFkqFOtUajFhmLQAAAGgXPrfOHXfsAAAAAGRKYQcAAAAgUwo7AAAAAJlS2AEAAADIlMIOAAAAQKa6enp6elu9CQAAAADKc8cOAAAAQKYUdgAAAAAypbADAAAAkCmFHQAAAIBMKewAAAAAZEphBwAAACBTCjsAAAAAmVLYAQAAAMiUwg4AAABAphR2AAAAADKlsAMAAACQKYUdAAAAgEwp7AAAAABkSmEHAAAAIFMKOwAAAACZGtDqDeSgu7u76mt7enoauBMAAACA/+OOHQAAAIBMKewAAAAAZEphBwAAACBTCjsAAAAAmVLYAQAAAMiUrlgzKep+1XvOZhVjXTtf2+jtAG1ixE47JccfPPfcpq3XqLUAANpR6rOZDsSQ5o4dAAAAgEwp7AAAAABkSmEHAAAAIFMKOwAAAACZ6urp6elt9SZaIRXGlQpJLlIUnizQC/JWFJRcraKQ41rnLbtetXsQygydqaghRLW8n4HOU2sYcdHzSq3PF/WYV9BynrxW1Y87dgAAAAAypbADAAAAkCmFHQAAAIBMKewAAAAAZEphBwAAACBTA1q9gUYrStr+55GrNHknQH/Q7O5XjVqPxqm1A0Sj6CzR/sqcndGjRzdtLWcH2kuZLlPN7khV5rmlma+Xjer41R+V+bkdc8wxTVur03+W7tgBAAAAyJTCDgAAAECmFHYAAAAAMqWwAwAAAJCprp6ent5Wb6JeUuFJRSHJa674iZrW6tr52qqv7fSgpk7VDgGnzk59CBguryismeoVPYdssMEGFWPLL798g3czZ3/+85+T456Hmq/o7NQaiNwoReGXzk57aIf3MynORzn1CETub8oEODuP5RWds1oDkRul6DW0U3727tgBAAAAyJTCDgAAAECmFHYAAAAAMqWwAwAAAJAphR0AAACATGXZFasogfuvu46oad5tv7J41ddeeMXLVV+73RkPJsc7JYG7mcqk/Jd5fHPrHtCo7y2nM5nqdFWmk5NOWfWjg1b631mq+1VEe3TAKiPVLSun54p2lzo77dr9qqxUZxRnp3GKXu9/+MMfNnkn1fnNb36THHdGysntPWy7cu5mL3XO2rX7VVmp19wcz4M7dgAAAAAypbADAAAAkCmFHQAAAIBMKewAAAAAZKrtw5NTQU1lQpJXWi4diPzIM9WHH6dClcuEJxdJhSrnGNTUCI0Kgut99NPJ8a7hjzVkvUZJfR+N+h7a9UwKP24+IcnFUs9Z3/rWt2qeNxVc3M7a9fmiHRS9rnVKUHK1isI2nZ1yUuepTEjyCiuskBx/8skn53pP9ZIKVXY+hCS3Sn87e0XnrFOCkqtV9NrczufBHTsAAAAAmVLYAQAAAMiUwg4AAABAphR2AAAAADKlsAMAAACQqQGt3kA9pTpglel+VaQeHbAo1syU/9y6XxVp5vdR9PNpdSp8mQ5N7dBB69YDNqv62g2Ovbbqr6/1Wp2u2kNR96sNNtigyTupTer5otXPFa2Qehzq0f2qXbuSlPneiq51dhon1QGrHbpfUU7RvwfdsuqjPz7fpM5OPV5n2rXbY5nvrejadn6tcscOAAAAQKYUdgAAAAAypbADAAAAkCmFHQAAAIBMdVR4cj2CkukcqSCregTMjbv48JrnqNawrapfS6hefXQ99FDF2C2n7Je8tkxwcRll5ihzbep7a4+4t85UFIhcxq233lqHnZCbotDGidce2eSdVGfQZocmx9s1QLO/EZTcGTrl/dzk28dUfe3A9UY1ZA/tEnabu6Ln+Gv2Wq25G6nSFwv2266NCcpyxw4AAABAphR2AAAAADKlsAMAAACQKYUdAAAAgEwp7AAAAABkqqO6YtE/NSrZvpndr8ruodZuWZ3SWeHDRuy0U1PXq0cHLDpXmc4f7SzVlaTM8+6gQYOS4xMnTpzbLXWUMt04irpPtatO6TSSizHfXq7VW6iL3/ym1TtovXZ9n1aPjlap8aJ5U+P16JSVenxffPHF5LVeq6Yr0+Xwiyfd17iNNECndHB0xw4AAABAphR2AAAAADKlsAMAAACQKYUdAAAAgExlGZ683RkPtnoLdJhUSPHXz149ee3fvnFvQ/aQWq9RaxHR9dBDDZm35/ZLq762e70tmroe7euWy/5Y9bUbfm2Xpq5HsaKA00YFMfZOerZi7OlH7q7664eutU1NazVyvdRjVvT4NqppQn9y62WnVn3tBl/bvanrUe6MNypoudYGAI1qIFA0b62hyieddFJyfMcdd6xp3nZQdEYaFXD/wbP/qhgb//ILVX/90mt/uaa1Grle6jFrl9cqd+wAAAAAZEphBwAAACBTCjsAAAAAmVLYAQAAAMiUwg4AAABAptqmK1aZRPe/7jqi6mvLdNAqM2891mO6VGJ4PdLFU3Okul8VGfDe88nxbc74RMXYRbu+WvW8ZdZLrVUPRY9j6jHLqfvIg+eemxwfsdNOVc9xyyn71bSHvU59Kjl+zVFb1zRvmfWK10rvjeoVPTfV2v3jS0emO+BNuHjfmuYts17xWrrz1UNR95GJ1x5Z07x/uPbl5Pjhu65b97WK1kutRX0UPef03nVsTfNueHi6k8yky75f07xl1iteK723/q5R3a/KGHXv2KqvHbP61k1dr1Z77bVXcnzixIlN20M7KOrqeM1eq9U079gn0uP7rDWw7msVrZdaq5O4YwcAAAAgUwo7AAAAAJlS2AEAAADIlMIOAAAAQKbaJjy5SD0CjclPOwT2PnjRPsnxlTfaIzG6dEPWS6/VOO3wuOeu1vDldl+Pxqg1fLnd16Nx/mef/+jo9WiMWsOX2329/qRME5Ja/b+9b0iOH3r+jk1br1Fr0Vh7rb9UcnxaE9dr1Frtwh07AAAAAJlS2AEAAADIlMIOAAAAQKYUdgAAAAAypbADAAAAkKmunp6e3lZvIqJcenundMra7owHK8Z0JaqfMmdq3MWHV4x9/ezVk9f+7Rv3zu2WZiu1XtFaw7Y6vGLM2YkYsdNOyfEHzz23YqzM+eiUzlMb7nFCxZhzU06Zc9MpnacGrjeqYqzMuRk0aFByfOLEiXO7pZZI/exHjx6dvPaYY46paa2J1x5Z09e3i0GbHVrT15d5fDv1uazMc06ndJ7qWvuAirFO/fnWQ6M6YOX2GpZ6rSrjsMMOS47vuGNeXbhS56HoNanoObZa1+y1Wk1f3y6+eNJ9NX19mce3kc9l7tgBAAAAyJTCDgAAAECmFHYAAAAAMqWwAwAAAJCpAa3ewAxFQUKpAKhtv7J48toLr3i5rnuaIRVyXKRTgp07QepMlQmYa1RIcrus14lSIclFyjznpEKHIxoXqly0XjP3QFqZc9NsZYIjcwvF7G+uuP2R5PhX1lupIeuVCTnulGDnXLTzc04q5LhIpwQ756Kdz007SD0+nRL038nKhBx3SrBzGe7YAQAAAMiUwg4AAABAphR2AAAAADKlsAMAAACQKYUdAAAAgEy1TVesekh1y6pHp6xaO10VdfGKEt22yNOwrQ6vGBt3ceUYeWpU96paO12V2Redo107XekoUj//feo1FWM/2/2LNc9ba6eroi5edDadrtpDUQesRrjguvuT49t/YdWq50h1cGyH1y+vVe2vP3a6KsMdOwAAAACZUtgBAAAAyJTCDgAAAECmFHYA+P/au99Qu+v7DuC/AzJIYT5YErZKhaYzZh25sDocCI0ptIG10mTQhjEXrIjghna1kXYdFLnrE7eK0dlKGbSicukoTtZkqytkG40WAhNd2b2w2bjmgSMOkvSBLcvDuweSB+v5fOP53t+f8/v87uv18OvvfH/fe84333P88OP9AQAAkppUeHKkFFzcRagyvBtByVwl0JiteOAvv9PLvN/67tlWr19ZWWm9hiEDP6fid37zfXNjgouBX1Q6o6Nzt+Y8rwlJLqkJSo6ClrtQ8zf7riILT+wAAAAAJKWwAwAAAJCUwg4AAABAUgo7AAAAAEkp7AAAAAAklbIrVqmjVakD1qI+9cxGq9c3TdO8cPf+1nOQz9tH7mg9x/Unv9fBSsjki7fuaD3HV1+50sFKGKuv/+nvz4110SXk/PnzredY1Psfic/HWdCVRPeRfv3VM99tPcfn7v691nOQy+zW463n2HzlRAcrYVFjOEv/4o6vLHztn//0p+G476rt6WPf+FHrOf7pj3+r9RzZeGIHAAAAICmFHQAAAICkFHYAAAAAklLYAQAAAEgqZXhySSlUeVF9BR+3XRfdKYWd7Q2C0c6dXF143r6Cj/ceidcgtG0aBB+zFVfOPtF6jh179rRfSEvZzrFovSvBd0fTNM1DDz00N/bYY48tfK/fve03wvHvn/3PheeIjDn4uOY9y7Z3shN8PG2lf087gvOt5vvnS997ePFrC+O+q+rVfFdFZ2x0Fg9tzMHHNe/Z0HvHEzsAAAAASSnsAAAAACSlsAMAAACQlMIOAAAAQFIKOwAAAABJTaor1lh96pmNcDxbyjrviDpV1XTQqpnXHhmHH37zs+H4h+/92sAracd+4qqos8mO2x4Mr7VvxiPqltW2U1YX/vDLawtfW+oeEnUasfembXbr8XDc555P9P3RRQfHiP3BVn3sGz9a+NpSV8boO2wse9ITOwAAAABJKewAAAAAJKWwAwAAAJCUwg4AAABAUts2PLkUaNyHsQQq0Y0oKDkKPq5lnwC/qBRo3AdnUL3Se7aysjI3VhMaXCMKVG6aptn50S+3mrcL0d9c+nvtv3EoBRr3wWc+HTWB/DXskW7UfFfVhAZ3oSbQuC/R31z6e8e8Jz2xAwAAAJCUwg4AAABAUgo7AAAAAEkp7AAAAAAkpbADAAAAkNS27YoVGXPKNeMWdcpqmrhbln02HT/85mfnxj5879eWsJL/zx6bNp8vQ+iiA0rUacT+zcdnxlZEnbKaJu6WZY+xVW07SzZN/H2XcU96YgcAAAAgKYUdAAAAgKQUdgAAAACSUtgBAAAASEp4MkCHokDlpolDlTMGswHTEwVHdhFI6YwDoCvR91IXQf9T+a7yxA4AAABAUgo7AAAAAEkp7AAAAAAkpbADAAAAkJTCDgAAAEBSs/X19c1lLwIAAACAep7YAQAAAEhKYQcAAAAgKYUdAAAAgKQUdgAAAACSUtgBAAAASEphBwAAACAphR0AAACApBR2AAAAAJJS2AEAAABISmEHAAAAICmFHQAAAICkFHYAAAAAklLYAQAAAEhKYQcAAAAgKYUdAAAAgKQUdgAAAACSUtgBAAAASEphBwAAACAphR0AAACApBR2AAAAAJJS2AEAAABISmEHAAAAICmFHQAAAICkFHYAAAAAklLYAQAAAEhKYQcAAAAgqeuWvQAAILaystLq9evr6x2tBNgOnDkAOXliBwAAACAphR0AAACApBR2AAAAAJJS2AEAAABISmEHAAAAICldsQBgQDVdZ44dOzbYvXSzGb+2HYv6Yu8Mr6+9cPOHPtHq9X2tyx4DuDZP7AAAAAAkpbADAAAAkJTCDgAAAEBSCjsAAAAASU0qPFmoIDAkZw7XUtofbQORa9Tcq7Re+2l4pc/iwIEDc2N79uzpeznvyt7pT+m9bRtyXOP1v3kxHN/3B/Nr6Gtd9tg47P/104Peb+O/Dg16P7rh9/FyeGIHAAAAICmFHQAAAICkFHYAAAAAklLYAQAAAEhKYQcAAAAgqZRdsUpJ2xfv3DnwShazW5J/SmNIdLdHxqG0F44ePTrwShaje8jwovd8yO5XXSitN/rb7KXuRO9v1P2qacbRASty1113heP2zjRE3a+YvqE7YC26Bp2yxmMM/69UY+q/jz2xAwAAAJCUwg4AAABAUgo7AAAAAEkp7AAAAAAkNVtfX99c9iKuJQo5GmtIcq3d3748NzaV8KZs2oZ/bW7G/4xms1mreUvsk/5Ee6EmJPmGG24Ixy9cuLDlNXXl+eefnxuzl+qUzopsQcltra2theP2U71oT5XCiGs899xzrecYkr1TJ9o3Nb9Fsl1rf/RnDCHJXRCq3K+2/6/01ivfCcd/fuE/5sb2Hlltda+maZpzJ+fnqJk345njiR0AAACApBR2AAAAAJJS2AEAAABISmEHAAAAICmFHQAAAICkRtMVq5S0/fxH3jPwSpbr6A/+NxzPmMw9Rm0T3WtFHR90yhq3mq5YUQesMXS/KtEVq060F7roflXqKLVsff1t9ti1te2KVep+deDAgS2vaRlefvnluTF7p6zt75mbP/SJjlYyjB//24vhuD3S3lS6YkV0yupOzZkTdcCKul/VirpaRd2vupg349niiR0AAACApBR2AAAAAJJS2AEAAABISmEHAAAAIKnrlr2ArfjIDTvC8R9cuJL+Wqalr6BkhhWFDvcpCmvuaw2lMLyMoXFjUwpJ3rx0aeCVLGa2a1c43kWoMnVKgcg1ojBipu3zB29c+NrHz8RhxEzblIOSGY8ugpKp54kdAAAAgKQUdgAAAACSUtgBAAAASEphBwAAACAphR0AAACApEbTFavUgSXq2LL52qPhtZ+uuN8Yrj16y/1zYzrR9GvzxL8sewm92Vj2ArahL/7yJ1u9/qs/+/twvKYDVl9riOzcuTMcv3z5cqs1TEGpA1ak1H1qrKK/Taesfm2+9tSyl9CJmd85o1XTQWtoj595c27MvhmHN06/3cu8Nx26vvX9SnPQn3MnVyd9v2w8sQMAAACQlMIOAAAAQFIKOwAAAABJKewAAAAAJDWa8OS+vHTq6YWvvf3wPYPej37tP32x1es/+K8/C8c//tYDc2Mnjjzb6l6l+0X3Kt2v9PduHNrdbmEU7Zu9t5d5r5x9Ym5sx20PDrqG7SQK6W+a9gHBm5cuheN9hSeX7hf5hxdeWPjaT95338LXRu9Z6f0VhtoNv3OmrfTvJxKFDk+Fc2R4QwYl93Uv6tWcOXuPrPa3kCXLeOZ4YgcAAAAgKYUdAAAAgKQUdgAAAACSUtgBAAAASEphBwAAACCp0XTFKiVPb772VKt5D66+Go7//MXPtZq35n7le8VrY3jHT35mbuy6X/lSeO3pYDx6fdPE3atK10b3i+5FN0pnTk1Hqpt/9ZfaLaKDJhBjWMN2sra2Fo7XdKQag6jT1bkzZxZ+fel9aNtJbMr8zqFLnz9448LX9tUtawxroL2ajlSv/PPfLnztrR/99KD3u+lQ+65/lJ07ubrwtX11yxrDGsbMEzsAAAAASSnsAAAAACSlsAMAAACQlMIOAAAAQFKjCU/uS9tQwrHfj6bZf/riwteWgosjG393fzj+wdvvnR+c9XO/8F7v/JeF543en41Duxd+PXGgctOUQ5XbzjvkGtbX11u9nnpR0PJs165Wr+9iDeTkdw7vJgo5rgkzrglJ7msNvqvG4c4nN8Lxf//W3YPdr6970Z0o5LgmzLgmJLmvNWQ8czyxAwAAAJCUwg4AAABAUgo7AAAAAEkp7AAAAAAkpbADAAAAkNRsfX19c9mLaJqmWVlZWfjaqXRkmN0y3wUpYwL3stV0xSqJulf943u/Hl778bceaH2/SHS/0r1OHHm21b10xao7c2q6V41Z1EGr5szZuXNnOH758uWtLmlw0ed+7Nix8Nq1tbVW95pK56majl2Rmvd3yt+Bfue8Y8qfcVvRHtl8/ebw2tm+H8+NddG9agyibln2TZ3SeRPupxv/KLz2jdNvd7mkztx06PpwfPae43Nj9s21tT1zuuheNQZRt6yMe8cTOwAAAABJKewAAAAAJKWwAwAAAJCUwg4AAABAUtctewFXlQKKolCnl049HV57++F7Ol3TVVH4X8lUAg/pLyR5LPfb7mrOnKFFIcclUwl2pr2akOOpBDtnMuYzx++ccYj2yGzf8vdHSRRyXDKVYOcsSudNvJ/mQ4ebZrzBuGMNdc4o25kThRyXjHX/9skTOwAAAABJKewAAAAAJKWwAwAAAJCUwg4AAABAUgo7AAAAAEmNpitWF6JuWV10ymrbAaLUxYvpizpG6AzBuxlrp6vLly8vewlcg05XbJVOV+M15m5qfs/kE+2nofdS1NloO3YwGquaM6fUpaqvz9M+uTZP7AAAAAAkpbADAAAAkJTCDgAAAEBSCjsAAAAASU0qPDkiuJhlEizIVQ8/8mQv8z566ietXt9FaGIpaI/27jt+fLB7/fWJE4PdC4DtSQAu9MMTOwAAAABJKewAAAAAJKWwAwAAAJCUwg4AAABAUgo7AAAAAElNvitWjYOrr7ae48zqb3ewEmpsHNodju8/fXGwNby+/t+t59i38r4OVjKv9P6wfG07WjVN05w/f76DlSzm/Y/cEY7Pgs5aOmV1I+pUNdu1q/W8m5cutZ6DfGa33N96js3XnupgJWTy+Jk3W8+hS+j2s/fIaus5dNDKKfrsaz5Le2drPLEDAAAAkJTCDgAAAEBSCjsAAAAASSnsAAAAACSVMjz59sP3hOMvnXq61byCj7evE0eenRs7fvIzC7++r+DjaF1MxxcOf6D1HHv27OlgJe1kCkqO1roShD83TdMcO3Zsbmxtba3zNdUac/BxzXuWad9MheBjtkLw8bSVzuK9wXdjTSBtX+G1pWBd3ynD6+sz3o7Bx13wxA4AAABAUgo7AAAAAEkp7AAAAAAkpbADAAAAkJTCDgAAAEBSKbtilUTdstp2yurCwdVXw3Hp7f3aOLR7bmz/6Yut5338zJtzY110jIjmPXFk8ddHfy/j8ZU/+5O5sYcfebL1vFfOPjE3tuO2B8NrnTlcy2zXroWvjbpfNU3cAcu+m77ZLfeH4z57riX63dM09k1GUaeqLjobRfPaH+Nx0699Oxx/43/uHHgli5l6RzVP7AAAAAAkpbADAAAAkJTCDgAAAEBSCjsAAAAASU0qPDkSBSo3TTnorw9TCWSaglLA8MrKytxYKRA5Gi8FANaI9slG61kZiyjQ+AuHP9DLvM6cOqX3KzoXakKDu1ATaNyX6G8u/b323nj4ncNWdPF7ZlH2zXREQcmloNoa9si4lUKSo1Dl0rVd7JNFTX0/eWIHAAAAICmFHQAAAICkFHYAAAAAklLYAQAAAEhKYQcAAAAgqcl3xaox9aRs+lPqoBV1l7DPuOrRUz9pPYf9xLWUunjViDpg2Xc5+dzYCvuGrYg6ZTVN3AXJHpuWqANW1CmrxH7YGk/sAAAAACSlsAMAAACQlMIOAAAAQFIKOwAAAABJCU8GWBLhcHQpCkqOgo9r2acAQBtRoPI7VodcxqR5YgcAAAAgKYUdAAAAgKQUdgAAAACSUtgBAAAASEphBwAAACCp2fr6+uayFwEAAABAPU/sAAAAACSlsAMAAACQlMIOAAAAQFIKOwAAAABJKewAAAAAJKWwAwAAAJDU/wGjd+qGoLc7SAAAAABJRU5ErkJggg==\n"},"metadata":{"image/png":{"width":1142,"height":1213}},"output_type":"display_data"}],"execution_count":null},{"cell_type":"code","source":"def plotMeanImage(imgs):\n    \"\"\"\n    Loads image array \"faces\" with N = 500 images from Cryptopunk dataset. Loading order \n    is deterministic for certain seed.\n    Input:\n        imgs:   Numpy array, array of images from which the mean image is calculated\n    Output:\n        plot of the mean image, (24,24,4) numpy array mean image\n    \"\"\"\n    meanFace = np.mean(imgs, axis = -1)\n    fig, ax = plt.subplots(figsize=(8, 8))\n    plt.gcf().set_facecolor(\"lightgray\")\n    ax.set_title(\"Mean image\")\n    ax.imshow(meanFace)\n\n    \"\"\" Number of pixels with no opacity \"\"\"\n    print(\"Number of pixels with no opacity: \", len(np.argwhere(meanFace[:,:, 3] == 0.0)))\n\n    \"\"\" Finding the rank of the matrix by finding the number of non-zero singular values \"\"\"\n    facesRGB = faces[:,:,:3, :]\n    singVals = np.linalg.svd(facesRGB.reshape((np.prod(facesRGB.shape)//N, N)))[1]\n    print(\"Rank of matrix containing images: \", len(singVals[singVals > 1E-9]))\n\nplotMeanImage(faces)","metadata":{"tags":[],"cell_id":"8ba760c7263845d99520ed19ac6299a9","source_hash":"e8404234","execution_start":1649447257425,"execution_millis":1718,"deepnote_app_coordinates":{"h":5,"w":12,"x":0,"y":151},"deepnote_to_be_reexecuted":false,"deepnote_cell_type":"code"},"outputs":[{"name":"stdout","text":"Number of pixels with no opacity:  166\nRank of matrix containing images:  373\n","output_type":"stream"},{"data":{"text/plain":"<Figure size 576x576 with 1 Axes>","image/png":"iVBORw0KGgoAAAANSUhEUgAAAdUAAAHiCAYAAAC+xlbiAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAfIUlEQVR4nO3df3DU9eHn8ddmN7v5wa+QhEAQCghnocpMkWmsFgxEh68gBpBIHbHQUdBKh0qHw37poKOWzpTBOkNnwFZi692pRIJc5IDW6mQAf91h27vCTaEKhS9CCTFAINn82Gz2/nAaywlFkxfZbHg+/pIkvHjzycZnPklIAvv27UsIAAB0WVqyDwAAQG9BVAEAMCGqAACYEFUAAEyIKgAAJkQVAAATogr0In/4wx80c+bMZB8DuGoRVaALpk2bpq9//es6c+bMBU8vKyvTDTfcoOPHj3freW688UZt27atW/9MAJ8hqkAXXXPNNdqxY0fHr//617+qubk5iScCkCxEFeiiO++884K7w9dff/1zH4JtbW3V2rVrdfvtt+vWW2/VU0891RHe+vp6LVmyRJMnT9bNN9+sJUuW6OTJkx2/97vf/a5+8Ytf6P7771dRUZEWL178uTvjf9i7d69KSko6fj1t2jT9+te/1pw5c/SNb3xDjz/+uD755BM9/PDDKioq0oMPPqj6+vqOl//hD3+o4uJiffOb39SCBQv00UcfdTzv7Nmz+v73v6+bbrpJ3/72t7Vu3Tp95zvf6Xj+4cOHtWjRIt1yyy2aOXOmfvvb33byigKpi6gCXTR+/Hg1Njbq8OHDisfj2rlzp+68884LXubZZ5/V0aNHVVlZqR07dujUqVN67rnnJEmJREKzZs3S7373O/3+979XJBLRT3/60wt+/44dO/T0009r165disVi+s1vfvOFz/fmm2/qV7/6lbZt26Zdu3bpkUce0Q9+8APt3r1biURCL7/8csfLTpo0Sdu3b9euXbs0btw4/ehHP+p43urVq5WZmanq6mqtXr1ar7/+esfzotGoFi9erOnTp2vXrl1as2aNVq9erUOHDn2ZSwmkPKIKGNx55516/fXX9d5772nUqFEaNGhQx/MSiYS2bNmiFStWqH///srOztaDDz7YcSc3YMAA3X777crMzFR2drYWL16sDz744IL9WbNmacSIEcrIyNC0adN08ODBL3y2e++9V3l5eSooKNCECRN0ww03aOzYsYpEIpo6dar+8pe/dLzs7NmzlZ2drXA4rO9973s6ePCgzp8/r3g8rjfffFOPPPKIMjMzde211+quu+7q+H27d+/W0KFDNXv2bIVCIY0dO1a33Xab3njjjc5eUiAlhZJ9AKA3mDlzphYuXKjjx49fEBtJOn36tJqamjRv3ryOpyUSCcXjcUlSU1OT1qxZo3feeUfnzp2TJDU2NioejysYDEqS8vLyOn5vRkaGotHoFz5bbm5ux39HIpELfv3PW/F4XOvWrdMbb7yhM2fOKC3t0/e5z549q5aWFrW1tWnw4MEdv/ef//vEiRP685//rJtvvrnjaW1tbXwlMq46RBUwKCws1NChQ7Vnzx49+eSTFzwvJydHGRkZ2rp1qwoKCj73e1988UUdOXJEL7/8svLy8nTgwAGVlZUpkejeHyC1Y8cOVVdX6/nnn9fQoUN1/vx53XLLLUokEsrJyVEoFFJNTY1GjBghSRd83nfw4MGaOHGinn/++W49M9DT8OFfwOSpp55SeXm5srKyLnh6Wlqa7r77bq1Zs0Z1dXWSpJqaGr3zzjuSPv18ZCQSUd++fVVfX68NGzZ0+9mlT++Ow+GwBgwYoKamJq1bt67jecFgUCUlJVq/fr2ampp0+PDhC74469Zbb9XRo0e1bds2xWIxxWIx7d+/X4cPH07GXwVIGqIKmAwbNkxf+9rXLvq8ZcuWafjw4brvvvt00003adGiRTpy5Igkaf78+WppadGkSZN033336ZZbbunGU3/mrrvu0pAhQ1RSUqJZs2Zp/PjxFzx/5cqVamho0JQpU7Ry5UrdcccdCofDkqTs7Gz98pe/1M6dO1VSUqIpU6bo2WefVWtrazL+KkDSBPgh5QA64+c//7nq6uq0evXqZB8F6DG4UwXwhRw+fFgHDx5UIpHQvn37tHXrVk2dOjXZxwJ6FL5QCcAXEo1GtWLFCtXW1io3N1cLFiwgqsD/hw//AgBgwod/AQAwIaoAAJh06+dUi4uLO/7hOAAAqejQoUPas2fPRZ/XrVEdMWLE576nKQAAqeRS/x5d4sO/AADYEFUAAEyIKgAAJl2K6ttvv62ZM2dq+vTp2rhxo+tMAACkpE5HNR6Pa/Xq1Vq/fr2qqqq0c+dOHTp0yHk2AABSSqejum/fPg0fPlzDhg1Tenq67rjjDlVXVzvPBgBASul0VE+dOqXBgwd3/LqgoEA1NTWWQwEAkIqu+L9T3bx5syorKyVJDQ0NV/qPAwAgaTod1UGDBunkyZMdv66pqVFBQcHnXq6srExlZWWSpIULF3b2jwMAoMfr9Id/r7/+eh09elQff/yxYrGYdu7cqeLiYuPRAABILZ2+Uw2FQlq5cqUefvhhxeNxzZ49W6NHj3aeDQCAlNKlz6lOnjxZkydPdp0FAICUxndUAgDAhKgCAGBCVAEAMCGqAACYdOsPKcfVKx6PJ/sIF2hpabHsRCIRy47rG6O0trZadiSpubnZslNYWGjZcQkGg8k+Anox7lQBADAhqgAAmBBVAABMiCoAACZEFQAAE6IKAIAJUQUAwISoAgBgQlQBADAhqgAAmBBVAABMiCoAACZEFQAAE6IKAIAJUQUAwISoAgBgQlQBADAJJfsA6Nni8bhlJxaLWXba29stOy4NDQ2WnZqaGstOm+k6S1Lffv0sO9Fo1LKTlZVl2XE9poPBoGUHvQt3qgAAmBBVAABMiCoAACZEFQAAE6IKAIAJUQUAwISoAgBgQlQBADAhqgAAmBBVAABMiCoAACZEFQAAE6IKAIAJUQUAwISoAgBgQlQBADAhqgAAmISSfQD0bOfOnbPshEKeh1o0GrXsNDU1WXY+PHjQspOW5nn/tqmp0bIjSX369rfsXDt6tGXH9Rhqbm627OTk5Fh20LtwpwoAgAlRBQDAhKgCAGBCVAEAMCGqAACYEFUAAEyIKgAAJkQVAAATogoAgAlRBQDAhKgCAGBCVAEAMCGqAACYEFUAAEyIKgAAJkQVAAATogoAgEko2QfoDWKxmGUnPT3dsiNJ8XjcstPY0GDZOW/a+etfDlh2PvmkzrLT1tpq2Qmme94UG87WW3YkKdKvj2Un2tho2cnLz7PsjPlP11l2EomEZaetra1H7WRmZlp2rlbcqQIAYEJUAQAwIaoAAJgQVQAATIgqAAAmRBUAABOiCgCACVEFAMCEqAIAYEJUAQAwIaoAAJgQVQAATIgqAAAmRBUAABOiCgCACVEFAMCEqAIAYEJUAQAwCSX7AL1BW1ubZScajVp2JKmpqcmyc/7cecvO3/52xLJT9d93WHbqT9VYdlzvliZami07gaDvTbo1EbTspAU8F+m+795n2ckfVGDZcb3dRyIRy05mZqZlB13DnSoAACZEFQAAE6IKAIAJUQUAwKRLX9Uwbdo0ZWVlKRgMKhgMqqKiwnUuAABSTpe/VPCFF15QTk6O4ywAAKQ0PvwLAIBJl+5UA4GAHnroIUlSWVmZysrKLIcCACAVdSmqL774ogoKClRXV6fFixdr5MiRmjhx4gUvs3nzZlVWVkqSGhoauvLHAQDQo3Xpw78FBZ9+Z5Lc3FyVlJRo//79n3uZsrIyVVRUqKKiQvn5+V354wAA6NE6HdVoNKrGxsaO/3733Xc1evRo28EAAEg1nf7wb11dnR599FFJUjwe1/Tp0/Wtb33LdS4AAFJOp6M6bNgwbdmyxXkWAABSGv+kBgAAE6IKAIAJUQUAwISoAgBg0uXv/ZvKYrGYZScU8lzGtrY2y44knf6kzrJz7D+OWXZe/vV/tewU9s207GQPyLLstDZ7HkPRtlbLTnowaNmRpCzTtY5keK71pv/yqmUnEglbdr76tbGWnby8PMtOIpGw7PTr18+yI336XfeuNtypAgBgQlQBADAhqgAAmBBVAABMiCoAACZEFQAAE6IKAIAJUQUAwISoAgBgQlQBADAhqgAAmBBVAABMiCoAACZEFQAAE6IKAIAJUQUAwISoAgBgEkr2AZKpvb3dshONRnvUjiTV19dbdp5/bqNl57phgy07501/r6bmmGWntfmcZae93fP+bVPMcx5Jaol7rlEw7Yxl59prRlp2yp8rt+z8+xP/btnJiEQsO4OHDLHsxGKe17skhcNh21aq4E4VAAATogoAgAlRBQDAhKgCAGBCVAEAMCGqAACYEFUAAEyIKgAAJkQVAAATogoAgAlRBQDAhKgCAGBCVAEAMCGqAACYEFUAAEyIKgAAJkQVAACTULIPkEzNzc2WnWg0atmpOVlj2ZGk2tpay04i1mrZqT11xrJz+vRpy07/AZ73J9sjYctOVr+AZScRz7LsSFJGpmcner7NsnP0+DHLTltTk2XnzNmzlp2MLM+FHpCTY9nJzDS94iW1tXle96FQ6qSKO1UAAEyIKgAAJkQVAAATogoAgAlRBQDAhKgCAGBCVAEAMCGqAACYEFUAAEyIKgAAJkQVAAATogoAgAlRBQDAhKgCAGBCVAEAMCGqAACYEFUAAExS58epXwGxWMyyc+7cectOW6zNsiNJzU3Nlp36xjOWnb46bdm5tjDTsqP0dMvMgOyIZaehscmy05awzEiSwsGgZadvhmkn2mLZ+R//Z59l55PaU5ad0WNGW3aamjyPoXA4bNmRpLS0q+++7er7GwMAcIUQVQAATIgqAAAmRBUAABOiCgCACVEFAMCEqAIAYEJUAQAwIaoAAJgQVQAATIgqAAAmRBUAABOiCgCACVEFAMCEqAIAYEJUAQAwIaoAAJiEkn2AZMrOzrbsNDU1W3bi8bhlR5JGXjvSstMSa7XsKN0z09QWtuwMyMyw7ATaA5adcCho2YkEfG/SiUC7ZSct4XnfPZTt+bu1JhKWnWvHjLbs9O/f37ITSvdcn2DQ81i8WnGnCgCACVEFAMCEqAIAYEJUAQAwuWxUV61apVtvvVWzZ8/ueFp9fb0WLVqkGTNmaNGiRaqvr7+ihwQAIBVcNqqlpaXasGHDBU8rLy9XUVGRtm/frqKiIpWXl1+xAwIAkCouG9WJEyd+7ku+q6urVVpaKunT6FZXV1+Z0wEAkEI69TnVuro65efnS5Ly8vJUV1dnPRQAAKmoy/9aOBD41//4ffPmzaqsrJQkNTQ0dPWPAwCgx+rUnWpubq5qa2slSbW1tcrNzb3ky5aVlamiokIVFRUdd7cAAPRGnYpqcXGxqqqqJElVVVWaMmWK9VAAAKSiy0Z1xYoVmj9/vo4cOaKSkhK99tpreuCBB/T+++9rxowZev/99/XAAw90x1kBAOjRLvs51TVr1lz06Rs3brQfBgCAVMZ3VAIAwISoAgBgQlQBADAhqgAAmHh+VPxVzvVNLdIu8400voyWllbLTlvMs3M26nn/rV+W5yF7xnR9oi0tlp36c56dYQX9L/9CX1Bzc8yy06pmy06G6c2jLZ6w7Jwz/SCRpmjUspMWDFp2+mT3sexcrbhTBQDAhKgCAGBCVAEAMCGqAACYEFUAAEyIKgAAJkQVAAATogoAgAlRBQDAhKgCAGBCVAEAMCGqAACYEFUAAEyIKgAAJkQVAAATogoAgAlRBQDAJJTsAyRTZmamZadfv76WneZok2VHkn7y9JOWnRtHD7DsfGVwjmWnoSFu2flfH9ZYdq4flWvZGdjf86Z43VcKLDuSdOLkacvOrj8dsexMGDPIspNIWGaUkZFh2QmGPK/7SCRi2Um4LpCkQCBg20oV3KkCAGBCVAEAMCGqAACYEFUAAEyIKgAAJkQVAAATogoAgAlRBQDAhKgCAGBCVAEAMCGqAACYEFUAAEyIKgAAJkQVAAATogoAgAlRBQDAhKgCAGBCVAEAMAkl+wDJFIvFLDt9+/a17LQ0t1h2JCnaeM6yExnUx7KTnh607Awt8Fzr2MFjlp22WMKyM/YreZadjHTfm3TOgH6WnXBmumWnpd3zGGprb7fsDByYa9lJS/Pc2wQCActOKHRVZ6HLuFMFAMCEqAIAYEJUAQAwIaoAAJgQVQAATIgqAAAmRBUAABOiCgCACVEFAMCEqAIAYEJUAQAwIaoAAJgQVQAATIgqAAAmRBUAABOiCgCACVEFAMDkqv4R74FAwLKTluZ53+TDDz+07EhSwYB2y85/++17lp1FsyZZdm4aV2DZWfBvN1p2IkpYdsKRoGUnIM/rXZJy+oQtO3cVj7fsZAU9b2fx19osO67/f7TFYpadcNjz+nIKBj2P61TCnSoAACZEFQAAE6IKAIAJUQUAwISoAgBgQlQBADAhqgAAmBBVAABMiCoAACZEFQAAE6IKAIAJUQUAwISoAgBgQlQBADAhqgAAmBBVAABMiCoAACahZB+gN0hL87xvct1Xr7PsSNLc+cssOx/9x9OWnbPnzll22ttjlp3+GT3roZ+WFrDsrH91l2VHkgIBz5kemjvJsqP2uGUmFm+z7GRkZHh2MjMtOy7xuOc6S1Io1LPezroDd6oAAJgQVQAATIgqAAAmRBUAAJPLfhZ51apV2r17twYOHKitW7dKktavX68tW7YoJydHkrR06VJNnjz5yp4UAIAe7rJRLS0t1b333qsf//jHFzz9/vvv18KFC6/UuQAASDmX/fDvxIkT1b9//+44CwAAKa3Tn1N95ZVXNGfOHK1atUr19fXOMwEAkJI6FdV77rlHO3bsUGVlpfLz87V27dpLvuzmzZs1b948zZs3T7W1tZ0+KAAAPV2nopqXl6dgMKi0tDTdfffd2r9//yVftqysTBUVFaqoqFB+fn6nDwoAQE/Xqaj+8x3nW2+9pdGjR9sOBABAqrrsV/+uWLFCe/fu1dmzZ1VSUqIlS5Zo7969OnDggAKBgIYOHarHH3+8O84KAECPdtmorlmz5nNPmzNnzhU5DAAAqYzvqAQAgAlRBQDAhKgCAGBCVAEAMLn6fiz7FRAOhy07ffv2texI0nVjx1l2MjIzLTsJJSw758+ft+yEMzx/r8yI53WvhOf6jB052LIjSVNuHGPbcqg/f86yEwhYZhRI8wwFTAcaMGCAZcd1nqsVd6oAAJgQVQAATIgqAAAmRBUAABOiCgCACVEFAMCEqAIAYEJUAQAwIaoAAJgQVQAATIgqAAAmRBUAABOiCgCACVEFAMCEqAIAYEJUAQAwIaoAAJiEkn0AfKaxsdG21d7ebtmJZGRZdhLtrZadQFrCshOLec5zpv6cZSecHrTs3HBtvmVHkj45e9ayc+pMg2Un3XQL4LqT+PjYx5ad06fPWHaOHTtm2RkzZoxlR5L69etn20oV3KkCAGBCVAEAMCGqAACYEFUAAEyIKgAAJkQVAAATogoAgAlRBQDAhKgCAGBCVAEAMCGqAACYEFUAAEyIKgAAJkQVAAATogoAgAlRBQDAhKgCAGASSvYBeoOWlhbLTp8+fSw7klRfX2/ZCYdND5G0hGWmqbXdspOV4TlPVkbYsvPcumrLTiLhuT6S1CLP1qP/eZZlJ97uOc+QIUMsO3369rXsRCIRy07QsiKdOHHCtCT169fPtpUquFMFAMCEqAIAYEJUAQAwIaoAAJgQVQAATIgqAAAmRBUAABOiCgCACVEFAMCEqAIAYEJUAQAwIaoAAJgQVQAATIgqAAAmRBUAABOiCgCACVEFAMAklOwDJFMo5Pnrt7a2WnYikYhlR5IyMjIsO4E0z/tdX71+gmXnvQ/et+yUTBxr2Ym3xyw7Dy+dYtlxircnLDunak5adv7n/z1i2RlSeI1lx/V2n2Z6G1N6umVm+NChlh3Jd41cwuHwFf8zuFMFAMCEqAIAYEJUAQAwIaoAAJgQVQAATIgqAAAmRBUAABOiCgCACVEFAMCEqAIAYEJUAQAwIaoAAJgQVQAATIgqAAAmRBUAABOiCgCACVEFAMAklOwD4DOBQMC2FQp5XrWRcMSyk5Xp2Qmne3ba29ssO3v+998sO8VfH2HZUcIzI0lB08Pxzx8et+zEsodbdp5bs9ayU1Aw2LLjelsNh8OWHXQNd6oAAJgQVQAATIgqAAAmRBUAABOiCgCAyWW/7OzkyZNauXKl6urqFAgENHfuXM2fP1/19fVavny5Tpw4ocLCQq1du1b9+/fvjjMDANAjXfZONRgMavny5aqqqtJLL72kTZs26dChQyovL1dRUZG2b9+uoqIilZeXd8d5AQDosS4b1fz8fI0bN06SlJ2drZEjR6qmpkbV1dUqLS2VJJWWlqq6uvrKnhQAgB7uS/2r4+PHj+vAgQMaP3686urqlJ+fL0nKy8tTXV3dRX/P5s2bVVlZKUlqaGjo4nEBAOi5vnBUo9Goli1bpscee0x9+vS54Hn/6jsBlZWVqaysTJK0cOHCzp0SAIAU8IW++jcWi2nZsmWaMWOGbrvtNklSbm6uamtrJUm1tbXKzc29cqcEACAFXDaqiURCTzzxhEaNGqUFCxZ0PL24uFhVVVWSpKqqKk2ZMuXKnRIAgBRw2Q///ulPf9K2bds0ZswYzZ07V5K0dOlSPfDAA1q+fLm2bt2qIUOG6JlnnrnihwUAoCe7bFQnTJigffv2XfR5GzdutB8IAIBUxXdUAgDAhKgCAGBCVAEAMCGqAACYfKnvqISLC4U8l7Gtrc2yI0nhcNiyEwgGLTuxtkt/g5Avp92yEolkWHY+PnXWsrPs2dcsOz3R1H+badn56VM/seyETI/pRCJh2XG9raJn4E4VAAATogoAgAlRBQDAhKgCAGBCVAEAMCGqAACYEFUAAEyIKgAAJkQVAAATogoAgAlRBQDAhKgCAGBCVAEAMCGqAACYEFUAAEyIKgAAJkQVAACTULIP0BuEw2HLTlqa732cSCRi2smw7GRl97HsBNLSLTsJy4rU1u5Z+slTT1p2Pvq41rIjSaWzZlt2CgsLLTuZGZmenawsy06WaQeX5/p/bHfgThUAABOiCgCACVEFAMCEqAIAYEJUAQAwIaoAAJgQVQAATIgqAAAmRBUAABOiCgCACVEFAMCEqAIAYEJUAQAwIaoAAJgQVQAATIgqAAAmRBUAAJNQsg+AK2PAgAGWnT59+ll20tMzLDuhtIBlJzOcbtkJyHOewUOHW3aiCc91lqQJE260bfUkWVlZlp3W1lbLTm8WDoeTfYRux50qAAAmRBUAABOiCgCACVEFAMCEqAIAYEJUAQAwIaoAAJgQVQAATIgqAAAmRBUAABOiCgCACVEFAMCEqAIAYEJUAQAwIaoAAJgQVQAATIgqAAAmgX379iW66w+bNGmSCgsL/+XLnDlzRjk5Od10oqsb17p7cJ27D9e6e1zt1/nEiRPas2fPRZ/XrVH9IubNm6eKiopkH+OqwLXuHlzn7sO17h5c50vjw78AAJgQVQAATHpcVOfOnZvsI1w1uNbdg+vcfbjW3YPrfGk97nOqAACkqh53pwoAQKoKJfsA/+ztt9/Wz372M8Xjcc2ZM0cPPvhgso/UK02bNk1ZWVkKBoMKBoN8FZ/RqlWrtHv3bg0cOFBbt26VJNXX12v58uU6ceKECgsLtXbtWvXv3z/JJ019F7vW69ev15YtWzr+ucfSpUs1efLkZB4z5Z08eVIrV65UXV2dAoGA5s6dq/nz5/O4voQec6caj8e1evVqrV+/XlVVVdq5c6cOHTqU7GP1Wi+88IIqKysJqllpaak2bNhwwdPKy8tVVFSk7du3q6ioSOXl5Uk6Xe9ysWstSffff78qKytVWVlJUA2CwaCWL1+uqqoqvfTSS9q0aZMOHTrE4/oSekxU9+3bp+HDh2vYsGFKT0/XHXfcoerq6mQfC/hSJk6c+Ln31qurq1VaWirp0xDwuPa42LWGX35+vsaNGydJys7O1siRI1VTU8Pj+hJ6TFRPnTqlwYMHd/y6oKBANTU1STxR7xUIBPTQQw/pnnvu0ebNm5N9nF6vrq5O+fn5kqS8vDzV1dUl+US92yuvvKI5c+Zo1apVqq+vT/ZxepXjx4/rwIEDGj9+PI/rS+gxUUX3efHFF/Xqq69qw4YN2rRpkz744INkH+mqEQgEkn2EXu2ee+7Rjh07VFlZqfz8fK1duzbZR+o1otGoli1bpscee0x9+vS54Hk8rj/TY6I6aNAgnTx5suPXNTU1KigoSOKJeq9/XNfc3FyVlJRo//79ST5R75abm6va2lpJUm1trXJzc5N8ot4rLy9PwWBQaWlpuvvuu3lsm8RiMS1btkwzZszQbbfdJonH9aX0mKhef/31Onr0qD7++GPFYjHt3LlTxcXFyT5WrxONRtXY2Njx3++++65Gjx6d5FP1bsXFxaqqqpIkVVVVacqUKUk+Ue/1j//JS9Jbb73FY9sgkUjoiSee0KhRo7RgwYKOp/O4vrge9c0fdu/erTVr1igej2v27NlavHhxso/U6xw7dkyPPvqopE+/4nr69OlcZ6MVK1Zo7969Onv2rAYOHKglS5Zo6tSpWr58uf7+979ryJAheuaZZ/gCG4OLXeu9e/fqwIEDCgQCGjp0qB5//PGOz/uhc/74xz9qwYIFGjNmjNLSPr0PW7p0qcaPH8/j+iJ6VFQBAEhlPebDvwAApDqiCgCACVEFAMCEqAIAYEJUAQAwIaoAAJgQVQAATIgqAAAm/w8M7ghQJN+s5AAAAABJRU5ErkJggg==\n"},"metadata":{"image/png":{"width":469,"height":482}},"output_type":"display_data"}],"execution_count":null},{"cell_type":"markdown","source":"In the above plot a representation of the average pixel occurence density of the dataset is depicted. Hence, darker colours resemble greater occurence, and brighter colours resemble lower occurence, i.e. white resemble no occurence. \n\n\nIf a pixel in the average image has an opacity equal to zero, it implies that all associated pixels in all of the $500$ images must have an opacity value equal to zero. This is because the only way that an average value can be equal to zero is that if all the values ​​used to calculate the average are equal to zero. \n\nThe mean image resembles a blurry face. Some pixels have high opacity, meaning these pixels contain features that are shared by more images. An example is the countour line of the face, which gives some indication of the average shape of the face for the $500$ images, and that most faces have the same position in the image. Examining the original images, it seems like all male faces share the same face shape, and the same for all female faces. This corresponds to a large number of pixels sharing the same values, and explains the high opacity contour line in the mean image. A resemblance of a mouth and two eyes are also apparent, meaning that for most of the images these features are contained in those high opacity pixels. The low opacity pixels surrounding the face tells us that some images include features outside of the average face shape, but these features are unique for one or a few images since the opacity is so low for these pixels.   \n\nFrom knowing the number of pixels with no opacity in the mean image, an upper bound estimate of the rank of the matrix containing all 500 images can be made. Each image is made up of $24 \\cdot 24 = 576$ pixels, and subtracting the number of no-opacity pixels in the mean image, which is 166, and then multiplying by the number of colour channels, 3, an upper bound for the rank is found to be $1230$. This estimate is found assuming all pixels with opacity in the mean image do have opacity in all separate $500$ images, which they most certainly do not. That is why it is an upper bound estimate, and a very rough one. \n\nThe actual rank can be found by finding the number of non-zero singular values. It is only of interest to find the rank of the matrix containing the three colour channels exclusively, as the opacity channel will be excluded from the NMF computation. In order to find the rank, the $(24 \\times 24 \\times 3 \\times 500)$-matrix must be reshaped to a two dimensional $([24 \\cdot 24 \\cdot 3] \\times 500)$-matrix. This is done in the code above, using built-in NumPy functions. The rank is found to be 373. Essentially, what this tells us, is that the column space in which the information about all 500 images are contained, is of dimension $373$, i.e. it is spanned by 373 linearly independent (singular) vectors. Hence, the rank gives a lower bound for which $d$ is necessary in order to reconstruct an original matrix with 100% precision through NMF, as $W$ must contain at least the same number of basis vectors in order to span the same column space.\n\nSince the rank is smaller than both the number of rows and columns in the original matrix, we know that all the information stored in the original matrix could be contained in a significantly smaller - compressed - dataset, as many of the singular vectors are linearly dependent and thus superfluous in the representation of the data. Compressing the dataset, i.e. represent the data in fewer elements, is exactly what NMF intends to do. However, as NMF requires non-negativity, it is unlikely that it is capable of yielding a 100% reconstruction for such a large dataset, no matter how large $d$ is chosen.","metadata":{"tags":[],"cell_id":"0bac14f67ceb46b5855bc142bd087f08","deepnote_app_coordinates":{"h":5,"w":12,"x":0,"y":157},"deepnote_cell_type":"markdown"}},{"cell_type":"code","source":"def NMFImages(V, d, maxIterations, H = None, W = None, seed = None):\n    \"\"\"\n    Multiplicative update algorithm in according to Lee and Seung's update rule.\n    Tailored to fit the cryptopunk dataset.\n    Input:\n        V:             input array containing images stored as(24,24,4,N)\n        d:             integer, Number of components we want to decompose V into\n        maxIterations: integer, maximum number of iterations\n        seed:          integer, random seed\n    Output:\n        W:             Numpy array, (m x d) array\n        H:             Numpt array, (d x n) array\n    \"\"\"\n\n    \"\"\" Setting the machine error \"\"\"\n    import struct; numberBits = 8 * struct.calcsize(\"P\")\n    if numberBits >= 64:\n        machineError = 1E-15\n    else:\n        machineError = 1E-7 # 32 bit precision is = 1E-7\n\n    \"\"\" Stores the opacity channel in 24 x 24 x N array \"\"\"\n    opacityMatrix = V[:,:, 3, :]   \n\n    \"\"\" Removes the opacity channel from V \"\"\"\n    imagesRGB = V[:,:,:3, :] \n    \n    \"\"\" Reshapes matrix to (1728 x N) shape \"\"\"\n    V = np.reshape(imagesRGB, (np.prod(imagesRGB.shape)//V.shape[3], V.shape[3])) \n\n    M = V.shape[0]\n    N = V.shape[1]\n\n    \"\"\" Random initialization of W and H \"\"\"\n    if seed != None:\n        np.random.seed(seed)\n    if W is None:\n        W = np.random.rand(M, d) * np.sqrt(np.mean(V) / d)\n    if H is None:\n        H = np.random.rand(d, N) * np.sqrt(np.mean(V) / d)\n    \n    normsList = np.zeros(maxIterations)\n\n    \"\"\" The multiplicative update algorithm \"\"\"\n    for n in range(maxIterations):\n        H_next = H * (W.T @ V)        /   (W.T @ W @ H + machineError)\n        W_next = W * (V @ H_next.T)   /   (W @ H_next @ H_next.T + machineError)\n\n        H = H_next\n        W = W_next\n\n        normsList[n] = np.linalg.norm(V - W @ H, 'fro')\n\n    assert not np.min(H) < 0 or not np.min(W) < 0, \"Negative numbers in NMF\"\n\n    return W, H, opacityMatrix, normsList\n\n\ndef ex2c():\n    dList = [4, 16, 64, 144]\n    WList = []\n    HList = []\n    for d in dList:\n        W, H, opacityMatrix, norm = NMFImages(faces, d, 1000)\n        WList.append(W); HList.append(H)\n        W_reshaped = np.reshape(W,(24,24,3,d))\n        plotimgs(W_reshaped, d, int(np.sqrt(d)), filename=f\"W_Columns_images.png\")\n    return W_reshaped, WList, HList, dList, opacityMatrix\n\n\"\"\" Global variables \"\"\"    \nW_reshaped, WList, HList, dList, opacityMatrix = ex2c()","metadata":{"tags":[],"cell_id":"21737f9b94b544a2b4064707fbba16de","source_hash":"b891cf76","execution_start":1649447258756,"execution_millis":227671,"deepnote_app_coordinates":{"h":5,"w":12,"x":0,"y":163},"deepnote_to_be_reexecuted":false,"deepnote_cell_type":"code"},"outputs":[{"data":{"text/plain":"<Figure size 1152x1152 with 4 Axes>","image/png":"iVBORw0KGgoAAAANSUhEUgAABHMAAAS9CAYAAADENxWzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABoBklEQVR4nOz9d5hdVb0H/n/OlPRGQgIkQBJ6Agk1FKNIRAG/ijQLelUQUIFLUxEuForA/Skier0oXFHQC4ogCIJcOokUKaEmIAmEJATSK5NMybTz/SPfnN8MmUwGmJXJgtfreXieKSfvszhz9j77vM/aaxemTp1aDAAAAACyUNbVAwAAAACg45Q5AAAAABlR5gAAAABkRJkDAAAAkBFlDgAAAEBGlDkAAAAAGVHmAMAm5Ne//nWMGTMmxowZE7fffntXD4d3ae3f8NBDD+3qocD7mm0N+KCq6OoBABvHoYceGvPmzVvn54VCIXr27Bl9+vSJPn36xIgRI2KXXXaJsWPHxn777RcVFV2zm7j++utj5cqVERFx6qmndskYNiXTpk2Lhx56KCIixo0bF+PGjduo9/+5z30upk2bFhERF198cRx55JHt3n7ZsmVx0EEHRbFYjIiI8ePHx9VXX73B+znppJPiySefjIiIs846K0488cT3NvANaGhoiIcffjiefPLJeOGFF2LJkiXx1ltvRVlZWfTt2zdGjBgRu+22W0yYMCH22GOPpGMBgHfipptuiksuuaT0/dChQ+Pee+/twhEBG5MyBz7gisVi1NTURE1NTSxatChmzpxZKg0233zzOPLII+PEE0+MPn36bNRx3XDDDaXySZmzpsy56qqrSt9v7DJn3LhxpTJn8uTJGyxzJk+eXCpyIiKee+65aGxsbLccbGhoiBdeeKH0/X777ffeBt2OYrEYt9xyS1xzzTUxf/78Nm9TW1sbixYtiqeeeiquvfbaGDFiRJx66qlx2GGHRaFQSDY2ANiQefPmxRVXXNHVwwC6kDIHPoA+//nPxzbbbFP6vr6+PlauXBlLliyJl156KWbPnh3FYjGWLFkSv/3tb+Ouu+6KSy65JPbdd98uHDVdad99943rr78+IiKefvrpDd5+8uTJrb6vqamJF198sd3ZLVOmTIm6urqIiOjTp0+MGjXq3Q+4HdXV1XHeeefFxIkTSz8rKyuLUaNGxW677RYDBw6MsrKyWLp0acyYMSOef/75aGxsjNmzZ8c555wTPXv2jIMOOijJ2ACgI84///yoqamJysrKaGho6OrhAF1AmQMfQIcddli7Mzvmz58ff/7zn+OGG26I+vr6mD9/fpx66qlxzTXXxJ577rkRR8qmYu+9947y8vJoamqKefPmxZtvvhlbb731em+/tswZO3ZsvPTSS9HU1BRPP/10u2XOU089tc79dbaGhoY45ZRT4rnnnouINacZfvazn41vfvObscUWW7T5b1atWhW33nprXHfddbF06dJoamrq9HHx/jN16tSuHgLwPnXzzTfHk08+GYVCIb7+9a/Hr3/9664eEtAFLIAMrGOrrbaKb33rW3HDDTfEkCFDIiJi9erVccYZZ8SKFSu6dnB0ib59+8Yuu+xS+v7tM29aWrJkScycOTMiIg466KDSv2tZ1rSl5YyfVKeRXX755aUip6KiIi677LI4//zz11vkRKyZJXTcccfFXXfdFYcddliScQFAR8yfP790etUxxxwT++yzTxePCOgqZuYA6zVq1Kj4xS9+Eccdd1w0NDTEihUr4ve//32cddZZbd6+pqamtJjsyy+/HG+++WZUV1dHjx49YvPNN4+xY8fGpz71qfjQhz603vscM2ZMh37W1iJ/nXH/Lb3++utx6623xtNPPx2vv/561NTURHl5efTr1y+23nrr2HPPPeOAAw6IvffeOyorK9vN+uc//xn33XdfPPvss7FkyZJYvXp1DBgwIEaPHh0HH3xwfPrTn25zPZlf//rXrdbKiYi46qqr1vlZRMcWJn4v9t1333jppZciYk0xc9RRR7V5u7eXMm+99Va89NJL8fzzz0dDQ0Obj1V9fX3y9XJmzpwZf/7zn0vf//u///s7Kmd69+4dP/3pT6Ompma9t6mvr4+//e1vMXHixJg+fXqsWLEiunfvHltssUXsu+++ceSRR3bK6WMtFzTf0AyQuXPnlv4/99lnn7juuuvWuU3L59na59G8efPipptuiocffjgWLFgQhUIhRowYEUceeWQcddRRrf6OjY2N8cADD8Rf//rXmDlzZixfvjwGDhwY+++/f3zjG99odVrn202ePDlOOOGEiIj4zGc+E5deemk0NDTEbbfdFnfddVfMnj07Vq5cGQMHDoy99torvvrVr8Zuu+22wceoM7ffd2Ptfmt9C5K29f9dU1MTt956a9xzzz3x5ptvRm1tbQwbNiwOOuigOO6442LAgAGtMp577rm48cYb46WXXoqFCxdGr169YuzYsfGVr3ylQ9vQ9OnT45FHHolnn302Zs6cGcuWLYvGxsbo169fjBw5Mg444ID43Oc+F5tttlmH/78fffTRuPXWW2PKlCmxfPny2GyzzWLHHXeMI444orTe1Dt5/ka8+/1nS01NTXH33XfHAw88ENOmTYtly5ZFfX199OzZM4YMGRI77LBDHHDAAfGhD30ohg4d2uH/37f7/ve/H3fccUdERFx77bUxbty4mD59evz5z3+OyZMnx6JFi6KysjJGjBgRhxxySHzhC1+IHj16rDfv9ttvjx/+8IcREXHKKafEqaeeWpoteM8998Qbb7wRtbW1MXjw4Nh///3juOOOi5EjR3ZorAsWLIgbbrghHnnkkZg/f35UVFTE0KFD4+CDD47Pf/7zMWjQoDb3DRvTfffdF7fffnu8/PLLUVVVFYMGDYpRo0bFMcccEwceeOBGHcum4oILLojq6uoYMmRIfOc734mXX365q4cEdBFlDtCuMWPGxOGHHx5//etfIyLixhtvjFNPPTW6devW6navvvpqfOlLXyqtedLSqlWrYtWqVTF79uy44447Yvz48XHZZZdFv379Om2cnX3/119/fVxxxRXR2NjY6ueNjY2xePHiWLx4cTz33HNx7bXXxpVXXhkf/ehH28xZuHBh/Md//Eeb68wsWrQoFi1aFJMmTYrrrrsu/uu//itGjBjxzv7H29HyTXxExD333BPDhg1713njxo0rFQHtzcxZ+7uePXvGrrvuGitWrIg//OEPUVtbGy+++GKbp+q98MILsXr16oiI6N+/f+y0007vepzrc+2110Zzc3NERAwbNqz0Rvqd6tWrV5s/nzp1anz3u9+NuXPntvr52jWpZsyYETfeeGN87nOfi/POO6/LrhTXEf/4xz/ivPPOK11Rbq2pU6fG1KlT4957741f/epX0aNHj1iyZEmcfvrp8eKLL7a67YIFC+L2228v3bajs63mzZsXZ5111jpvUBYuXBh333133HPPPXHuuefGv/3bv603o7O2341p9uzZccYZZ8SsWbNa/XzGjBkxY8aMuOOOO+K6666LbbfdNhobG+NHP/pR3Hbbba1uu3r16vjHP/4R//jHP+Jb3/pWu8/x8847L/7+97+3+bulS5fG0qVL4+mnn47f/e53cfHFF8chhxzS7vgbGxvj/PPPjzvvvLPVz9fu5x577LG4884747LLLms3p6XO2n8uXLgwTjvttNIi7i2tfX2YOXNm3HfffTF69Oi46aabOjzGDfnjH/8Yl19+eavnYm1tbUyZMiWmTJkSN998c1x55ZUdLmCmT58e3/rWt+KNN95o9fO5c+fGrbfeGnfccUf85Cc/iU984hPt5tx3333xwx/+cJ1yevr06TF9+vS4+eabu3Rx3dra2jj77LPj4YcfbvXz+fPnx/z58+Ohhx6Kz3zmM3HhhRd2zQC7yK233hqPP/54RET84Ac/2OgXpwA2LZvukSSwyTj22GNLZU5NTU1MmTJlnWm9NTU1UVdXF4VCIUaNGhW77LJLDBkyJHr06BErV66MadOmxZNPPhmNjY3x2GOPxbe//e34zW9+E2Vlrc/2/M53vhMREddcc01UVVW1+llLbz+A6az7j4iYOHFiqzccu+yyS+y1116x+eabR0TE8uXL47XXXovnn3++3Vkab7zxRhx//PGxaNGiiIjo169fjB8/PkaMGBGVlZUxb968ePjhh0tXEfvqV78aN910U2y11ValjA996EPRq1eveOmll+Kee+6JiCh9evx2HZmt8F7svffeUVFREY2NjbFw4cKYM2dObLvttuvcbm2Zs/vuu0dlZWXstddeUVZWFs3NzfHUU0+1Wea0fLO2zz77tPl3eS+am5tj0qRJpe8/+9nPdup9TJkyJU466aSora2NiDWzeCZMmBAjRoyI2traeOqpp2Lq1KlRLBbj5ptvjqVLl8YvfvGLTrv/zjRt2rS45ZZbYvXq1bHPPvvEnnvuGd27d49XX301HnjggWhqaoqnnnoqfvzjH8e5554bJ598ckyfPj222mqrOPDAA2OLLbaIpUuXxv333x+LFi0qvSm74447on///u3ed01NTZx66qnx2muvxbBhw+IjH/lIDBkyJFasWBETJ06MN954I4rFYvzkJz+J0aNHt/lc6qztd2NatWpVnHbaafH666/HyJEj48Mf/nBsttlmMX/+/Lj33nujqqoqFi1aFKeddlrcdtttcckll8Rtt90Wffr0iYMOOihGjBgRq1evjkceeaRUWPziF7+IPfbYI/baa68273P58uUREbHZZpvF7rvvHiNGjIh+/fpFU1NTLFiwIB5//PGYN29e1NTUxHe/+93o379/u7N9fvjDH7Yqh0aPHh37779/9OrVK+bMmRMTJ06MRx55pMNvvjtj/xmxZts/88wzS49L7969Y/z48TFy5Mjo2bNn1NbWxrx58+Kll14qnR7aWSZNmhT/+7//GxFr9p977bVXVFZWxquvvhr/+Mc/or6+PubMmRMnnXRS3HjjjaXTmtdn4cKFcfLJJ8eSJUtKM4kGDhwYCxcujAcffDAWL14cDQ0N8b3vfS922WWX9c6Ie/TRR+Pcc88tFUwDBw6MCRMmxNChQ6Oqqioee+yxmDFjRpxxxhnxsY99rFMfk45Y+zdbW1pEROy1116lWXRrH7877rjjHc0ay92CBQvi8ssvj4g1ax9OmDChi0cEdDVlDrBBu+yyS/Tt27f0Kf0zzzyzTpnTt2/fOPPMM+Ooo46KQYMGtZnzxhtvlKYEP/nkk3HXXXfF4Ycf3uo2xx9/fESsmQG0tsxZ+7P2dNb9R0T8/ve/L3196aWXxmc+85k28xoaGmLSpEnrvHlY+7vvfOc7pTcixx13XJx22mnrTKdvaGiIK664Im644YZYvnx5fO9732t1Gswee+wRe+yxR9x+++2lMmePPfbo0GPS2Xr16hWjR4+OKVOmRMSa0ubtZc6SJUtKMwvWzsTo169f7LTTTjFt2rSYPHlyfPOb31wnu+V6OinWy5k+fXq89dZbpe878zSuurq6OPfcc0tFzl577RU/+9nPSuXBWn//+9/jhz/8YTQ2NsaDDz4YN954Y3zxi1/stHF0lj/+8Y/Rt2/f+O///u844IADWv3u6aefjq9//evR2NgYf/vb32LVqlUxffr0OO644+LMM89sdbrSaaedFieccEK8/PLLsWzZsvjLX/4SJ510Urv3/cADD0TEmlPgTjrppFazl84666w499xz4/77749isRhXX311/M///M86GZ2x/W5sDz30UBQKhfjOd74TX/3qV1sVjaecckp85Stfiblz58asWbPi+9//ftx1112x3377xU9/+tNWb2ZPP/30uOiii+LWW2+NYrEYv/nNb+Lqq69u8z4POOCA+NrXvhbjxo1rs9hsbm4uzSppbm6OH/3oR3HnnXe2edsHHnigVOSUl5fHBRdcsM5pmEuXLo1vf/vbce+990ahUGj38eis/WfEmv3U2tNDd91117j66qvXOV1trTfeeGODa3u9E9dff3306NEjLr/88nVmf82ePTv+/d//PebMmROLFi2Kiy++OP77v/+73by//vWvUVFRERdccEF89rOfbfW7s846K04++eR4/vnno66uLq699tq44IIL1smorq6OCy64oFTkTJgwIf7zP/+z1Qck3/nOd+K6666Ln//85+vM/toY/vznP5eKnG7dusVll10WBx98cKvbzJo1K0455ZRSWdZZvva1r3Xoio0dtfZUu85w4YUXxqpVq2LAgAHxH//xH52SCeTNAsjABhUKhdhxxx1L38+fP3+d22y33XZx0kknrbdIiYjYZptt4sorrywdkN9yyy2dNsbOvP+1n+DusMMO630jGBFRWVkZn/jEJ9o8JejOO+8snSby5S9/Oc4+++w210WorKyMc889t/Tp59NPPx3PPvvseu+zq7W8PH1bb3pann7V8gB2bfn3wgsvrHMJ1dWrV5cKorffR2dp+Yl7oVBotZjze3XHHXfEm2++GRERQ4YMiV/96lfrFDkREZ/+9Kfj7LPPLn1/zTXXbLKXk7300kvXKXIi1vwdjzjiiIhYc1rNvffeG5/4xCfi7LPPXmfdmT59+sS5555b+v7BBx/s0H0fe+yxcfLJJ69zGlplZWVccMEFpe3oiSeeiOrq6nX+fWdsv13hy1/+chx//PHrlCWDBw+O0047rfT9XXfdFcOGDYtf/vKX68xKKBQKcc4555TemD/++ONtPkYRawqS/fbbb70z1MrKyuIrX/lKqXCcM2fOeouO3/zmN6Wvv/nNb7a5ntagQYPiyiuvjEGDBkWxWGwzZ63O3H+2PLXqxBNPXG+RE7HmNeKYY45pd2zvRLFYjB/84AdtnsY3YsSIuPLKK0vbzaRJk2L69OkbzDzzzDPXKXIi1sw4uuiii0rfr297u/3220sl2YgRI+Lyyy9fZ6ZroVCIE044IT73uc9t8G/V2RobG+N3v/td6ftzzz13nSInImLkyJHxq1/9KslVDzdFt912Wzz22GMREXHOOee0e6wDfHCYmQN0SMvTI1rOcHinhgwZEnvvvXc89thjMXXq1Kivr19n/Z2UOnL/a9dVWbuGy7tx4403RkREjx494tRTT93g7b/2ta/FQw89FBFrDurXd2rEOzFs2LBOvzzyuHHj4re//W1ERJufXq59s9ezZ89Wp33ts88+ccMNN0RdXV288MILrWZ2vfDCC1FfXx8Ra6b7tywOO0vLq7D16dOnUxe8XbvYacSaN7LtrWHwxS9+Mf7whz/E/PnzY/HixfHPf/5zk1ivpaVRo0a1O33/wAMPjFtvvbX0/SmnnLLe2+61117Rr1+/qKqqildeeSWampraffNVUVERJ5988np/379//9h3333j4Ycfjubm5pg+ffo620pnbL8bW2VlZXz9619f7+/fvtDrV7/61fWu3dSrV68YN25cTJw4MZqbm+OVV15p83S0jvrkJz8Zf/zjHyNizazM/fffv9XvZ86cWSpeevfu3e6swb59+8ZXv/rV+PnPf97ufXbm/rOpqan0dVtrqqU0YsSIUvnZlpEjR8ZnPvOZ0vZ0xx13xHe/+9313n7gwIHtrhW13XbbxQ477BAzZsyI5cuXx4IFC2LLLbdsdZu77rqr9PU3vvGNdl9/TznllPjrX//a6jFM7amnniqVTUOHDm2zuFpr++23j8MPP7xTZw994Qtf6NR9cnuLv3fUwoUL46c//WlERIwfP77NGcXAB5MyB+iQlm8cVq1a1e5tm5qa4rXXXouZM2dGVVVV1NbWtvp0b+1aDQ0NDfHmm2/Gdttt16ljfa/3v9NOO8WUKVPijTfeiCuuuCJOOeWU6NmzZ4fvf8WKFaVPWMeOHRt9+/bd4L/ZeeedS1+/fSHZTcmee+4ZlZWV0dDQEIsWLYrZs2e3WnR0bcEzduzYVoXJ3nvvHYVCIYrFYkyePLlVmbO+2TydqeXshPW9CX436uvr41//+lfp+w0tOlpWVhYf//jH4/rrr4+IiGeffXaTK3PGjx/f7u+33nrr0tdDhgxpt3wrFAoxbNiwqKqqKi0E3d7MiNGjR2/wE+fhw4eXvl62bNk6v3+v229XGD16dLtrf/Tr1y/69+9fKtI3dEW+lm8glyxZssH7X758eUybNi0WLFgQNTU1rWaMtSzvZ8+evc6/bXkVuv3333+Dj/WECRPaLXM6e//Z8ndXXnllbLfddrHrrrtuMLMzdGRNk4MPPrhU5jz//PPt3na//fbbYBE9fPjwmDFjRkSs2T5aljmrV68uFW+FQiEOOuigdrMGDx4cu+66a6uZk6k999xzpa8nTJiwwbXNPv7xj3dqmfNOrnC4sVx00UWxcuXK6NWrV5unzgEfXMocoENavhle38yDlStXxjXXXBN/+9vf2nyTtb5/01k66/5POOGE0uXXr7vuurj55pvjQx/6UOy9994xZsyYGDVqVLsH1K+88kqpPHrqqafavLR6e9aWTZuinj17xpgxY0qnMjz11FOlMmfx4sWlN3tvL2UGDBgQ22+/fcyYMSMmT57cajZHyzInxSlWEWtmDKzVmYvezps3r/TGd4sttujQYpwtL00+Z86cThtLZ9nQGjIty7C3f+q/odvX1ta2W+Z05JLQG/pbvtfttyt0ZN2eXr16lYqVd/I3WruWU1sef/zx+J//+Z949tlnO3Q6TVv7y9dff730dUdm1Q0fPjy6detWmo33dp29/zzggANi1KhR8fLLL8e8efPi2GOPjZ122ikOOOCA2GOPPWLs2LEbXHj43erI6ZwtT/NrqyxrqSPPk/a2j3nz5pXWytlyyy07VJTtuOOOG7XMafl8alnErU9HbpOzv/3tb/HII49ERMQZZ5yxSazxBWw6lDlAh6xdjDgi2rwizdy5c+PEE09c57LMG7K+A/p3qjPv/+CDD46LLrooLr/88li5cmVUV1fH/fffH/fff39ErCk0xo8fH0cffXR85CMfWefftzyl591o783XpmDcuHGlMmfy5Mnx+c9/PiI2vIjxuHHjYsaMGaXLkHfv3j3q6upanQqWamZOywKhuro6GhoaOuUNfcvtoqNXVWl5u/dyymIqGzrtseXitR05RbLl7deeAvVu77sjee91++0K7/T/u3v37h2+7foe86uuuip+/etfd3CEa7R16lrLbaC9om6tsrKy6Nev33pnDHX2/rOsrCx+/etfx3nnnRdPPPFERKwpjF555ZX4wx/+EBFrTnc67LDD4thjj42BAwe+p/tvqSOPR8v9wapVq6JYLK53gegN/d3f7u0F3Tv9W72T23WWdzrG9/PVrBYvXly6Mt8ee+yxSS6YD3QtZQ6wQWvXXVirrU/Pv/e975WKlKFDh8axxx4be+21VwwbNiz69OkT3bt3Lx2gfv/732+1zkhn6Oz7P/roo+PjH/943HPPPfHoo4/G888/X/rEt7a2Nh544IF44IEHYvz48XHFFVe0+iS85foCO+64Y7uLsLalvTVXNgX77rtv6SpCLdfNWTvDpkePHm1+mr7PPvvEjTfeGPX19TFlypQYN25cq/VyhgwZEiNHjkwy5pan0q19Pm+sUy3Y+N7L9vtB8Pjjj5eKnEKhEIcddlgccsghscMOO8Tmm28e3bt3L5Wdb775Znzyk5/caGNLsf/cfPPN45prronnn38+7r333njmmWdKazhFrLky0lVXXRX/+7//G5deemmbC+7ywXDPPffEggULOi3vsMMO69AMxrZcccUVUVVVFZWVlXHRRRdt8JQz4INHmQNs0LRp01qtk/P2y5L/61//Ks3UGDZsWNx8883Rr1+/9eZ15qlVKe+/X79+8fnPfz4+//nPR7FYjFmzZsXkyZPj/vvvjyeffDIiIh577LG46KKL4ic/+Unp37WcuTRo0KAuuYx4SrvvvnvpNIklS5bEzJkzY7vttiuVObvvvnubs1723nvv0tdPPfVUjBs3LvklydfaeeedSwvxRqy5ElJnlDktn2cdnVHQ8jSQtma5dUTLT+7b+yQ/YuMv+rqpeLfb7wfBn/70p9LX55xzTnz5y19e7203tEZay1N1OrINNDc3t5p98XYp95977LFH7LHHHhGx5v/r+eefj8ceeyz+7//+L5YtWxbV1dVx9tlnx1/+8pfYYYcd3vP9deTxaLk/6NOnzwYv2/5evNO/1Tu5XWd5p/vUzj4t+aabburUS5Pvuuuu77rMWVsqNTQ0tLuQdkvz5s1r9WFKZ14aHdj0qHiBDbrppptKX/fp02edWRctz6c/8sgj2y1SIqK0OGNn2Rj3XygUYrvttosvfOEL8dvf/jYuv/zy0kH3Pffc0+p0mZazQFrOaHq/6N69e+y+++6l7ydPnhwLFy4srf/y9rJvrUGDBpUem7XFT8uD5lTr5USsOdWi5WKkt9xyywZP+emIoUOHloqrBQsWdOjNR8tLJbdczPedaLnI7IbWAJo/f/67uo/3k3ey/X4QrN1ndu/ePb7whS+0e9tXX3213d+3fA5v6LYRa9ZEae/02o21/+zTp098+MMfjnPPPTfuvvvuGDt2bESsuTR2y6u1vRcdudR4y//HlovJpzBs2LCoqFjzOe6CBQs69MFGR/6mnanl86kjf/+OPMYA71dm5gDtmjp1atx5552l77/4xS+uM+tiQ+vptDRt2rR44403Nni/aw84I2KDlzNOcf8bcuihh8avfvWrmDVrVjQ3N8frr79eejOw5ZZbxsiRI2PWrFmxbNmyeOKJJ9a5nO879fbHo6uNGzeuVMg89dRTrRbdXF+Zs/Z3M2fOjClTpsSKFSs2yno5a51wwglx5513RnNzc7z55ptx3XXXxYknnviOc2pqakqn5XTr1i1Gjx5duqLPfffdV1pDqC3Nzc3xwAMPlL5/t5eMHjRoUKmUnD17druzjB577LF3dR/vZ+1tvx8Ea/eZvXr12uDaUWvXGlqftTNdItbMeKutrW33ilYTJ05sNy/F/nNDevXqFV/5yldKlwWfNWtWp+Q+9NBD8a1vfavd2zz44IOlr1s+lil07949Ro0aFVOnTo1isRiTJk1q9zLXixcvjpdeeinpmN6u5WMwceLEOOecc9qdrdTy8esM1113XafmvRfjx4/v0KLwS5cuLe3ne/bs2eqqihu6OiCQNzNzgPWaNm1anHXWWaWr9Wy22WZx3HHHrXO7losUtrxM89s1NzfH5Zdf3qH7brnuwYY+NU9x/+/U2xem/NKXvlT6+ic/+ck7uoJSW1eVaTk9flOYRdByFs3TTz/dar2c9t4Ury16Ghoa4ve//33pubXVVlu1upxyCmtnZqx15ZVXxj333NPhf19dXR3nnHNOPP74461+3nJNj9/+9retrvz2djfddFPMmzcvItZc9ndDl5hen9GjR5e+bu/NzLx58zr1sr3vV+90YdncrS29ly9f3u7MrSeffDImTZrUbtZ2221XukJbdXV1/P73v1/vbVeuXBnXX3/9BsfX2fvPd6pHjx7vOSNiTdHa8sOQt3v99ddb/f6drg/0bnzqU58qfX3NNde0O0vq6quv3ugfHuy3334xePDgiFhzYYP2ZknNnDmz3cc3dyeddFJceumlG/yv5YcSm222WavftZzpBrz/KHOAdcyfPz9+8YtfxL/927/FokWLImLNm51f/vKXbc582WuvvUpf33nnnfGPf/xjndtUVVXFOeecE08++WSH1gRoOd285boqbenM+583b1589atfjXvuuWe9byCKxWL88Y9/LH16u9lmm61zwHTMMceULks7Y8aMOP7449udMl5XVxf3339/HH/88W0WUi0fj2eeeaZDpwjNnTs3xowZU/rvnV7pqz1jx44tveFZtmxZqRQZO3Zsu1fmaTlr58Ybbyx9nfIUq5a++93vlmbDNDY2xjnnnBMXX3xxLFy4cL3/ZtWqVfGHP/whPvWpT8Xdd9+9zu8/85nPlIqo+fPnx+mnnx5Lly5d53Z33313/PSnPy19//Wvf/1dX1Gr5QKtN9xwQzz//PPr3Gb27Nlx8sknt1suvd901vb7ftdy/arzzz+/zefII488ssFZJWuddNJJpa//53/+p80CcdmyZXH66afHkiVLNvga0Jn7z5/85Cdx+eWXt3t67cKFC0uLuke0fnzWmjx5cqv9aUcUCoW4+OKLS5eWbmnOnDlx2mmnlcqUgw46aKNcZvuII44olSWzZs2Ks88+e511kYrFYlx33XVx8803d3gNn5aPzdpy/92oqKhoVU78+Mc/brNQnD17dpx++umlS60DfBA5zQo+gO65555WU6cbGhpi5cqVsXTp0njxxRdj1qxZrT7dHDp0aFxyySXrnQK+ww47xEEHHRSTJk2KpqamOO2002K//faL0aNHR+/evWPOnDkxadKkqKqqih122CFGjhy5wan7Bx54YPzf//1fRERceOGF8fTTT8e2225bOt2oT58+pU8xO/P+i8ViPPfcc/Hcc8+Vrsq04447xsCBA6O5uTmWLFkSjz32WKti5LTTTlvnTXllZWX88pe/jOOPPz7mzZsXL7/8chxzzDExduzYGDt2bAwaNCgaGhpixYoV8eqrr8aLL77Y7iXJhw8fHsOHD4/XX389ZsyYEccdd1x8+MMfbjVjZ//9999ob0orKytjjz32KF3qd+0b5/ZOsYpYMxtl7f9HyzfbG6vMqaysjKuuuirOO++8mDhxYhSLxbj55pvj1ltvjdGjR8euu+4aAwcOjEKhEMuWLYtXX301nn/++VZvGFqe8hax5lP8H//4x3HSSSdFbW1tTJ48OT796U/HhAkTYsSIEVFbWxtPPfVUq7WdPvaxj8Wxxx77rv8/dt999xg/fnw89thjUVtbG1/72tdiwoQJscsuu0RjY2O8/PLL8eijj0ZjY2N84xvfiN/85jfv+r5y0lnb7/vd1772tXjwwQejqakpnnjiifjkJz8ZH/vYx2Lo0KGxatWqeOaZZ0rP15NPPjmuvvrqdvMOOeSQ+OQnPxl33313NDU1xfnnnx833XRT7L///tGrV6+YM2dOPPTQQ7Fy5co49NBDY+rUqaUZam3pzP1nVVVV3HHHHfGHP/whttlmm9htt91i6623jl69ekVVVVXMmjWrtK1ERGyzzTZxzDHHvMtHtrUvf/nLcf3118epp54a48aNiz333DMqKytjxowZMWnSpNKl3jfffPP4wQ9+0Cn3uSF9+vSJCy+8MM4444xoamqKiRMnxqc+9anS37+qqioeffTRmDFjRgwYMCA+9rGPxV//+teIiKSLM7f0xS9+MSZOnBhPPvlkrF69Ok4//fTYe++9Y++9947Kysp49dVXY9KkSVFfXx/HHXdc6RLzAB80yhz4ALr55ps7dLvBgwfHkUceGSeeeGKrNVHacskll8Q3v/nNUkn05JNPlq4Ys9aoUaPiiiuuiKuuumqD933ooYfGX/7yl3jmmWeiurq61SLMEWsKppZT0jvr/svLy6OsrCyam5ujrq4uJk+evN5PGbt37x5nnHHGetdI2WqrreKmm26KCy+8sHQqzJQpU1q9qX+7IUOGrHcB53POOSfOPPPMaGxsjOeff36d2RgXX3zxRp1hsO+++5bKnLU2VOasvc3rr7++TtbG0rt37/iv//qv+Mtf/hLXXHNNLFiwIJqammLq1Kmt1vB5ux122CFOO+20+OhHP7rO78aOHRu/+93v4uyzz4558+bFqlWr2pz+XygU4rOf/Wx873vfe89vjC655JL4xje+Ea+++mo0NjbG/fff36qkrKioiLPPPjs+/vGPf2DKnM7cft/Pdtttt7jgggviRz/6UTQ2Nsby5cvXOZ2loqIizjzzzPjEJz6xwTInIuLSSy+NiCjNXnvppZfWWW9l/PjxceGFF8aRRx4ZEe2fztRZ+8+WRd0bb7zR7pppu+22W6deqn7ChAkxdOjQ+NnPfrbe5+LWW28dv/rVr2KLLbbolPvsiAMPPDB+/OMfx/nnnx+1tbWxbNmyuOWWW1rdZuDAgfHzn/+81Zpb6zsd8e2ntr3XS2iXlZXFL3/5y/j2t79duv9nnnkmnnnmmVa3+/SnPx1nnnmmMgf4wFLmANGzZ8/o06dP9O3bN4YPHx6jRo2K3XffPfbbb792Fx5uqX///nH99dfHLbfcEnfffXfMmDEj6urqSqcwHHrooXHEEUd0+BPwioqKuOaaa+Lmm2+OBx98MF577bWoqqpa75Tqzrr/LbfcMh566KF47LHH4tlnn43p06fHvHnzoqqqKgqFQvTt2zdGjhwZ++23Xxx11FEbvOTogAED4he/+EVMnz49/v73v8czzzwTc+fOjaqqqqioqIj+/fvH8OHDY7fddovx48fHPvvss94D4QMPPDBuvPHG+NOf/hTPP/98LFiwIOrq6jpljYh34+0LFr/9Klfrs/fee7d647jNNtu860u3vluFQiE+//nPx1FHHRUPP/xwPP744zFlypRYunRprFixIsrKyqJfv34xYsSIGDNmTBx88MEbPLVizJgxceedd8btt98eEydOjFdeeSWWL18ePXr0iCFDhsS4cePi6KOPLq0v8l5tvvnmceONN8af//znuO+++2LWrFlRX18fgwcPjn333TeOPfbYGDVqVKeeXrep6+zt9/3sqKOOil133TWuv/76mDx5cixatCh69OgRgwcPjv333z+OPvro2HnnnTv8/KmsrIzLLrssDj/88Lj11ltLi5wPGDAgdthhhzj88MPjU5/6VJSVlZVO62m5NlpbOmP/ef7558cRRxwRTz75ZEyZMiVmz54dS5cujbq6uujRo0dsscUWMXr06DjkkENiwoQJnT775Mtf/nLstddecdNNN8XkyZNj8eLFUVlZGSNGjIhDDjkkjj322E5bo+edOOyww2L33XeP66+/Ph555JFYuHBhVFRUxFZbbRUTJkyIY489NjbffPO49957S/+m5UzQllqewrblllt2ymLivXr1iquvvjruvffeuP322+Nf//pXrFy5MgYOHBijRo2Ko48+utUVCgE+iApTp07tmncBAAB8oCxcuDA+/vGPR8SaGW1//OMfu3hEnev73/9+3HHHHRERce211ya/Sl9qX//610szMO+4444YOXLkOre58cYb4z//8z8jIuJ73/tefPGLX9yoYwT4oLIAMgAAG8XDDz9c+rrlVdnY9FRVVcULL7wQEWtOT225EH9LTz/9dESsOTX76KOP3ljDA/jAU+YAAJBcdXV1/O53vyt9/7GPfawLR8OGXHPNNaWFpQ866KD1noK2di2b4447br3r6gDQ+ZQ5AAC8J3fddVfcdtttpSs0vd28efPilFNOKa3Bs8MOO8T++++/MYfI/2f58uXx4x//eL1XFGtoaIirrrqqtLBwoVCIL33pS23edubMmbF06dLYbLPNPpCLiQN0JQsgAwDwnsyfPz/+67/+Ky677LLYZ599YocddojevXtHdXV1TJs2LZ544onSAvbdu3ePSy65ZKNd6prWmpqa4o9//GP86U9/ijFjxsSuu+4agwcPjsbGxpg7d27885//jMWLF5duf9xxx613UePtttuu3asAApCOMgeATdajjz7a6kop78bxxx/fOYPhfW3GjBnx6KOPvqeMww477AN9hayIiFWrVsWkSZNi0qRJbf5+8ODBcfnll8euu+66cQfGOorFYruXey8vL48TTjghTj/99I08MgA6QpkDwCbr7rvvLl0Z5t1S5tARL774YvzsZz97Txm77rrrB7bM+cIXvhBbbLFFPPHEE/Haa6/FsmXLYvny5RGx5hLjO++8c3z4wx+OI488sksuxc3/36BBg+K6666Lhx9+OF588cVYvHhxLFu2LGpqaqJfv34xdOjQGDduXBxzzDExfPjwrh4uAOuhzAEA4D3p27dvHH744XH44Yd39VC61KWXXhqXXnppVw+jXYVCIfbZZ5/YZ599unooALwHhalTpxa7ehAAAAAAdIyrWQEAAABkRJkDAAAAkBFlDgAAAEBGlDkAAAAAGVHmAAAAAGREmQMAAACQEWUOAAAAQEaUOQAAAAAZUeYAAAAAZESZAwAAAJARZQ4AAABARpQ5AAAAABlR5gAAAABkRJkDAAAAkBFlDgAAAEBGlDkAAAAAGVHmAAAAAGREmQMAAACQEWUOAAAAQEaUOQAAAAAZUeYAAAAAZESZAwAAAJARZQ4AAABARpQ5AAAAABlR5gAAAABkRJkDAAAAkBFlDgAAAEBGlDkAAAAAGVHmAAAAAGREmQMAAACQEWUOAAAAQEaUOQAAAAAZUeYAAAAAZESZAwAAAJARZQ4AAABARira++WYMWM21jgAADrF1KlT2/y54xoAIDfrO64xMwcAAAAgI8ocAAAAgIwocwAAAAAyoswBAAAAyIgyBwAAACAjyhwAAACAjChzAAAAADKizAEAAADIiDIHAAAAICPKHAAAAICMKHMAAAAAMqLMAQAAAMiIMgcAAAAgI8ocAAAAgIwocwAAAAAyoswBAAAAyIgyBwAAACAjyhwAAACAjChzAAAAADKizAEAAADIiDIHAAAAICPKHAAAAICMKHMAAAAAMqLMAQAAAMiIMgcAAAAgI8ocAAAAgIwocwAAAAAyoswBAAAAyIgyBwAAACAjyhwAAACAjChzAAAAADKizAEAAADIiDIHAAAAICPKHAAAAICMKHMAAAAAMqLMAQAAAMiIMgcAAAAgI8ocAAAAgIwocwAAAAAyoswBAAAAyIgyBwAAACAjyhwAAACAjChzAAAAADKizAEAAADIiDIHAAAAICPKHAAAAICMVHT1AKAjehUKSfNrisWk+bkqK0vX9w7pUZ4se0FNQ7JsAACArmZmDgAAAEBGlDkAAAAAGVHmAAAAAGREmQMAAACQEWUOAAAAQEaUOQAAAAAZUeYAAAAAZESZAwAAAJARZQ4AAABARpQ5AAAAABlR5gAAAABkRJkDAAAAkBFlDgAAAEBGlDkAAAAAGVHmAAAAAGREmQMAAACQEWUOAAAAQEaUOQAAAAAZUeYAAAAAZESZAwAAAJARZQ4AAABARpQ5AAAAABmp6OoB8P7Rq1Do6iG8a33L0/WaTdEjWXZDc22y7IiIYT37Jste1VyTLLt/ZXmy7IiItxqakuanknobrSkWk+YD8P5WXpb2daop5ctUj4ThaQ/3gEyZmQMAAACQEWUOAAAAQEaUOQAAAAAZUeYAAAAAZESZAwAAAJARZQ4AAABARpQ5AAAAABlR5gAAAABkRJkDAAAAkBFlDgAAAEBGlDkAAAAAGVHmAAAAAGREmQMAAACQEWUOAAAAQEaUOQAAAAAZUeYAAAAAZESZAwAAAJARZQ4AAABARpQ5AAAAABlR5gAAAABkRJkDAAAAkBFlDgAAAEBGKrp6ALx/NEX3ZNndiquTZUdElBf7J8vuU1aeLrv/oGTZERF9K7slyy6vT/c3XVS3Kll2RMTAsvpk2Suaa5JlA8CmrCn1x8xlxWTR/QvpjoPf6p32ODiq00UX0kVHur8m5MHMHAAAAICMKHMAAAAAMqLMAQAAAMiIMgcAAAAgI8ocAAAAgIwocwAAAAAyoswBAAAAyIgyBwAAACAjyhwAAACAjChzAAAAADKizAEAAADIiDIHAAAAICPKHAAAAICMKHMAAAAAMqLMAQAAAMiIMgcAAAAgI8ocAAAAgIwocwAAAAAyoswBAAAAyIgyBwAAACAjyhwAAACAjChzAAAAADKizAEAAADISEVXD4DW+pX17OohvGt1zYVk2T3LN0+WHRHRf7OhybJXN9Yny15Zly47IqKQ7k8aq+q6Jcsulg9Ilh0RUdEz3XZatnJhsuzm4opk2RER5VFMlt2ULBmATUZTuteRiIjujZXJsgvlCY/JalJ//t6cLDntXzStlI96ZcqD7MRWF3P+q76/mJkDAAAAkBFlDgAAAEBGlDkAAAAAGVHmAAAAAGREmQMAAACQEWUOAAAAQEaUOQAAAAAZUeYAAAAAZESZAwAAAJARZQ4AAABARpQ5AAAAABlR5gAAAABkRJkDAAAAkBFlDgAAAEBGlDkAAAAAGVHmAAAAAGREmQMAAACQEWUOAAAAQEaUOQAAAAAZUeYAAAAAZESZAwAAAJARZQ4AAABARiq6egCp9CoUkmXXFIvJsquaa5NlR0RURLdk2UPK+ifLbijrmyw7IuKzH/1Qsuw35y9Llr2qsSFZdkTEgsUrkmUP3yrhc7F/v2TZERGbD+ydLPuOx59Nlr3graZk2RER5U1vpctOlpxefVcPACAX6Q6xIyKiPtIdNxVr0x0bRFQnzE6rLOHbzcpI934vImJ1wufL6oTvJ/ngMDMHAAAAICPKHAAAAICMKHMAAAAAMqLMAQAAAMiIMgcAAAAgI8ocAAAAgIwocwAAAAAyoswBAAAAyIgyBwAAACAjyhwAAACAjChzAAAAADKizAEAAADIiDIHAAAAICPKHAAAAICMKHMAAAAAMqLMAQAAAMiIMgcAAAAgI8ocAAAAgIwocwAAAAAyoswBAAAAyIgyBwAAACAjyhwAAACAjFR09QBSKS8rJMvuV+yRLLupuZgsOyJidTQny27oOSBZ9vGfODRZdkTE8uq6ZNnd+w1Kll1WU50sOyJiQUW6x6VQXp4su6Yh7Xb01qp029En9x+XLPsP9yxLlh0RURtvJcvuFt2TZdfH6mTZERHpXo0i0j7TAd5fUu4zGyLtMVmumqMxWXav/pXJsiMiVqc7rIFOYWYOAAAAQEaUOQAAAAAZUeYAAAAAZESZAwAAAJARZQ4AAABARpQ5AAAAABlR5gAAAABkRJkDAAAAkBFlDgAAAEBGlDkAAAAAGVHmAAAAAGREmQMAAACQEWUOAAAAQEaUOQAAAAAZUeYAAAAAZESZAwAAAJARZQ4AAABARpQ5AAAAABlR5gAAAABkRJkDAAAAkBFlDgAAAEBGlDkAAAAAGVHmAAAAAGSkoqsHkEpN+YBk2U2NDcmyB/UYkCw7IqKpvjZZdnP1imTZb76VbtwRESsS5hdjbrLsqqbmZNkREYO26pMuvC7ddtRrcK9k2RERM15fkCx7i7JtkmV3b34rWXZERFN572TZDU01ybJ7lHVPlh0Rsbp5ddJ8eK+6JcyuT5hN19h/35HJsleuKCTLjojYYrOmZNkL3kr3GrjlgHSvgRERxeifLHviEy8ky17xVmOy7DXSPh9TKY/ypPlNkfpxp6PMzAEAAADIiDIHAAAAICPKHAAAAICMKHMAAAAAMqLMAQAAAMiIMgcAAAAgI8ocAAAAgIwocwAAAAAyoswBAAAAyIgyBwAAACAjyhwAAACAjChzAAAAADKizAEAAADIiDIHAAAAICPKHAAAAICMKHMAAAAAMqLMAQAAAMiIMgcAAAAgI8ocAAAAgIwocwAAAAAyoswBAAAAyIgyBwAAACAjFV09gFQK9dXJsvt0H5wsu7HYmCw7IqJ7t/Jk2UvrFibL7lH5WrLsiIihg2qTZVf2qEyWPXBg/2TZERFvzJ+TLLty4JBk2d0rlyTLjogYtlVdsuxiwzPJspdFVbLsiIhoShufSlPz6q4eAnRAutfv+rLmZNmFQtrPDYvN6cYexWK67MQO/PCeybKr6tMd1xxy4LbJsiMiFi5elix79I7p3lZV16fdjvr06ZUsuz7SHau+8PzDybIjIurq0j3ulQn36eWFdNkREXXFdI9LY9Qny34/MjMHAAAAICPKHAAAAICMKHMAAAAAMqLMAQAAAMiIMgcAAAAgI8ocAAAAgIwocwAAAAAyoswBAAAAyIgyBwAAACAjyhwAAACAjChzAAAAADKizAEAAADIiDIHAAAAICPKHAAAAICMKHMAAAAAMqLMAQAAAMiIMgcAAAAgI8ocAAAAgIwocwAAAAAyoswBAAAAyIgyBwAAACAjyhwAAACAjFR09QBSaYzV6cKba9JFNxWSZUdErGxenjQ/ladffilp/tQ3FifLTrmR9S/vljA9YmlTfbLsXUcOSpb90qylybIjIvqXVybLrm5qSJZN24YNG5Y0f+7cuUnz+aBoShddTPdaUmxO9zrC+q2qXpEs+/iDP5wse/uR2yTLjohYunxRsuwF82uTZY/Yfstk2RERzQ3pjlYryqqTZU9+Nll0REQ0RnOy7LKE2YO33SpZdkTEnNfnJM2n48zMAQAAAMiIMgcAAAAgI8ocAAAAgIwocwAAAAAyoswBAAAAyIgyBwAAACAjyhwAAACAjChzAAAAADKizAEAAADIiDIHAAAAICPKHAAAAICMKHMAAAAAMqLMAQAAAMiIMgcAAAAgI8ocAAAAgIwocwAAAAAyoswBAAAAyIgyBwAAACAjyhwAAACAjChzAAAAADKizAEAAADIiDIHAAAAICPKHAAAAICMVHT1AFKpiB7JsgvFdNn1zQuTZa+Rsr9rTpa8oqouWXZqB31kXLLsYlkhWXZExIP/eCpZ9urVacee0oH/z0eTZTcn/Jve9bf7k2XnrLaxqauHAF2r2NDVI9gk5XnEtMaHRu2SLHvLnXdKlj2wR9rPmRcsLCbL3nn7Acmyq+tXJ8uOiCgMGZQs++itJyTL/u1NDyXLjohoqk+3b0x55FHWmHYPUyikO1YtFtNto+9HZuYAAAAAZESZAwAAAJARZQ4AAABARpQ5AAAAABlR5gAAAABkRJkDAAAAkBFlDgAAAEBGlDkAAAAAGVHmAAAAAGREmQMAAACQEWUOAAAAQEaUOQAAAAAZUeYAAAAAZESZAwAAAJARZQ4AAABARpQ5AAAAABlR5gAAAABkRJkDAAAAkBFlDgAAAEBGlDkAAAAAGVHmAAAAAGREmQMAAACQkYquHkAqjVGXLLu2cWmy7IpC92TZERFRrEkWfdV5X0uWPWf+gmTZERG//P0DybLLi+k2sz2H90yWHRHxcMLs/zz9iGTZF//l0WTZERH1y6uTZe87fqdk2Xf9LVl01gqNTV09BOhaZQk/22vOd/tqTpj9b0d/OGF6xMithiTLnvPy68my/1Wd7jg1ImLU9ukel2223jJZ9ltLlyfLjoh45V+vJst+rK4xWXZjMVl0cuUJs5tS7tMTKxQKybKLxYyfMOuR718aAAAA4ANImQMAAACQEWUOAAAAQEaUOQAAAAAZUeYAAAAAZESZAwAAAJARZQ4AAABARpQ5AAAAABlR5gAAAABkRJkDAAAAkBFlDgAAAEBGlDkAAAAAGVHmAAAAAGREmQMAAACQEWUOAAAAQEaUOQAAAAAZUeYAAAAAZESZAwAAAJARZQ4AAABARpQ5AAAAABlR5gAAAABkRJkDAAAAkJGKrh5AKhXRI1l2UzQnyy4vrk6WndqQAb2SZRcqtk2WHRFx7BH7Jcv+378/miz73nTRERFx8UmHJMvu2SPdNnrU+N2TZUdE/O3RZ5Jl///++4Vk2bSte/duXT0E6FrNTV09gnete8LslEdkffv2SZgese/o4cmyP3Lij5Jl//jMryfLjojYfEDvZNlDBvZLll2oq02WHRFxyuXXJcv+1XdOSJZdXihPlr1GQ7Lk+mTJEeXl5mt8UPhLAwAAAGREmQMAAACQEWUOAAAAQEaUOQAAAAAZUeYAAAAAZESZAwAAAJARZQ4AAABARpQ5AAAAABlR5gAAAABkRJkDAAAAkBFlDgAAAEBGlDkAAAAAGVHmAAAAAGREmQMAAACQEWUOAAAAQEaUOQAAAAAZUeYAAAAAZESZAwAAAJARZQ4AAABARpQ5AAAAABlR5gAAAABkRJkDAAAAkBFlDgAAAEBGClOnTi2u75djxozZmGPJRmXC7IaE2RER+48uT5b9xL+akmX/66ZLk2VHRNQWm5NlN9VWJ8suFpJFR0REWWVFsuxCWcouOe0DU1y9Oll2c3m3ZNn7feVHybJzNnTo1knz5817M2k+65o6dWqbP3dcwzsxfIt0r1OvL0x33BERsejR65NlT579RrLsbbql/Zx50OABybLLK9IdYzelfbrEtMVVybK37d0jWfbex343WXZERPVbNcmyKwvpjlUHDR2WLDsiYu5cxzUb2/qOa8zMAQAAAMiIMgcAAAAgI8ocAAAAgIwocwAAAAAyoswBAAAAyIgyBwAAACAjyhwAAACAjChzAAAAADKizAEAAADIiDIHAAAAICPKHAAAAICMKHMAAAAAMqLMAQAAAMiIMgcAAAAgI8ocAAAAgIwocwAAAAAyoswBAAAAyIgyBwAAACAjyhwAAACAjChzAAAAADKizAEAAADIiDIHAAAAICMVXT2ALBV6pYsuNibLjoh44l/1SfNTGbp596T5c5bXJcvuNmBgsuzkCoVk0WOO/G6y7NSm3nZZsuxiY57baM7q61d39RCAdynlp5LzFjanC++WLjoioqG+Kln2ntsMSZadWkV5umfMoL49k2WXJTwei4goRLr8YlO619jquppk2anVFYvJsosJsyMiCgmfj6nH/n5jZg4AAABARpQ5AAAAABlR5gAAAABkRJkDAAAAkBFlDgAAAEBGlDkAAAAAGVHmAAAAAGREmQMAAACQEWUOAAAAQEaUOQAAAAAZUeYAAAAAZESZAwAAAJARZQ4AAABARpQ5AAAAABlR5gAAAABkRJkDAAAAkBFlDgAAAEBGlDkAAAAAGVHmAAAAAGREmQMAAACQEWUOAAAAQEaUOQAAAAAZqejqAeSouWx1suxiU1Oy7JzV1dUnzR/cL92m0FCsTJa9oro2WXZERBTTRS948OfJshe9lfZxKRYbk2UP6ZssmvVYvnxZVw8BeJeaE2aXJ8yOxId7A/v3SZa9bGW619iKinTHTBERxYQHNuW7fzFZ9sKHr0mWHRFRXp7u8/1+fXony054mBoRafcBKXcB8+bNTZjOpsTMHAAAAICMKHMAAAAAMqLMAQAAAMiIMgcAAAAgI8ocAAAAgIwocwAAAAAyoswBAAAAyIgyBwAAACAjyhwAAACAjChzAAAAADKizAEAAADIiDIHAAAAICPKHAAAAICMKHMAAAAAMqLMAQAAAMiIMgcAAAAgI8ocAAAAgIwocwAAAAAyoswBAAAAyIgyBwAAACAjyhwAAACAjChzAAAAADKizAEAAADISEVXDwA6pNiYNr6pPFl29+7NybJrVi1Llh0RMbBfr2TZVSvrkmX3SFxTvzx7SbLsRd2SRbMeTU1NXT0EYBPUkDK8kDI8opju0CMG9u+XLLuiIt3xWETah71x6k0J09N6edb8ZNnz62uSZZcl3pASv/tImp5SoZDucS8W831cuoKZOQAAAAAZUeYAAAAAZESZAwAAAJARZQ4AAABARpQ5AAAAABlR5gAAAABkRJkDAAAAkBFlDgAAAEBGlDkAAAAAGVHmAAAAAGREmQMAAACQEWUOAAAAQEaUOQAAAAAZUeYAAAAAZESZAwAAAJARZQ4AAABARpQ5AAAAABlR5gAAAABkRJkDAAAAkBFlDgAAAEBGlDkAAAAAGVHmAAAAAGSkoqsHwMZWnjC7KVlyeffeybIjImpX1yXL7tmU7nEZvtWgZNkREVv9PxelC29oSJddWZkuOyLm3PuTZNkNDYVk2VsM2SJZdkRERWWeLynlNem2/4iIOcuXJs0H0ki3N44oJv449ZW5K5Jl7zw83WtJsVhMlh0R8ZtDr00X3pxu7IujOll2RMS37jsnWfa0WfOSZW+77bbJsiMioiHdhtrYnO79QWHF8mTZERGvV61Mmk/HmZkDAAAAkBFlDgAAAEBGlDkAAAAAGVHmAAAAAGREmQMAAACQEWUOAAAAQEaUOQAAAAAZUeYAAAAAZESZAwAAAJARZQ4AAABARpQ5AAAAABlR5gAAAABkRJkDAAAAkBFlDgAAAEBGlDkAAAAAGVHmAAAAAGREmQMAAACQEWUOAAAAQEaUOQAAAAAZUeYAAAAAZESZAwAAAJARZQ4AAABARiq6egA5ampqSpZdXl6eLDsi7djTKiRNH7ZZr2TZy1cXk2XX1NQmy46ImP9/F6YLT/gnbW5qThceES+/OjtZ9oAe6fYBCxctTJadWsp9Y777RSDl0UG3PunSV9emOzaIiNjjc2cmy657+sZk2YVC2s+Zv37vCUnzU2lqTntc8+rs2cmy9zv6rGTZ3bqnfb4UE+5hGmode/DemZkDAAAAkBFlDgAAAEBGlDkAAAAAGVHmAAAAAGREmQMAAACQEWUOAAAAQEaUOQAAAAAZUeYAAAAAZESZAwAAAJARZQ4AAABARpQ5AAAAABlR5gAAAABkRJkDAAAAkBFlDgAAAEBGlDkAAAAAGVHmAAAAAGREmQMAAACQEWUOAAAAQEaUOQAAAAAZUeYAAAAAZESZAwAAAJARZQ4AAABARpQ5AAAAABmp6OoBQEesXFWbNL9H9z7JsgvNdcmyR245JFl2RMTcRQuSZReLyaKjUEiXHRHxkd22TZbdffy3kmWnVl5eniy7qakpWTZAW+pXJXyhSi3hLrOxPt0xWc/9T06WHRFR99z16cITHtiUlaV7fY2IGHvEWcmye1SkmztQqEx7wFdbleexR+LD4GxlvEdfLzNzAAAAADKizAEAAADIiDIHAAAAICPKHAAAAICMKHMAAAAAMqLMAQAAAMiIMgcAAAAgI8ocAAAAgIwocwAAAAAyoswBAAAAyIgyBwAAACAjyhwAAACAjChzAAAAADKizAEAAADIiDIHAAAAICPKHAAAAICMKHMAAAAAMqLMAQAAAMiIMgcAAAAgI8ocAAAAgIwocwAAAAAyoswBAAAAyEhFVw+A1pqamrp6CJuk1U3FpPnl5emyVzcWkmUX9jklWXZExG7b9E6an6sX36ju6iG8K4VI91yMsP8CNr6URwdp95j5qq9vSJZd++Q1ybIjIrqP/ULS/FylfK7XNzYnyy6sTBYNWTAzBwAAACAjyhwAAACAjChzAAAAADKizAEAAADIiDIHAAAAICPKHAAAAICMKHMAAAAAMqLMAQAAAMiIMgcAAAAgI8ocAAAAgIwocwAAAAAyoswBAAAAyIgyBwAAACAjyhwAAACAjChzAAAAADKizAEAAADIiDIHAAAAICPKHAAAAICMKHMAAAAAMqLMAQAAAMiIMgcAAAAgI8ocAAAAgIxUdPUAoCN69eqZNH/hirpk2Y3FQrLs1F58ozpZ9sA+6XY/y1c1JsuOiMj1L1qMYlcPAYDMlSV9EWxOGR6rn7kuWXaPvb+WLDv1q3fK/KRjT/zA5Hq8lzNHqu+MmTkAAAAAGVHmAAAAAGREmQMAAACQEWUOAAAAQEaUOQAAAAAZUeYAAAAAZESZAwAAAJARZQ4AAABARpQ5AAAAABlR5gAAAABkRJkDAAAAkBFlDgAAAEBGlDkAAAAAGVHmAAAAAGREmQMAAACQEWUOAAAAQEaUOQAAAAAZUeYAAAAAZESZAwAAAJARZQ4AAABARpQ5AAAAABlR5gAAAABkRJkDAAAAkJGKrh4AG1d5eXmy7KampmTZ3SsLybLXqEyWvOit2mTZOXurtpgsO10yAB8UXkvaVtfQnCy7d890x6mpeb68//ibsqkzMwcAAAAgI8ocAAAAgIwocwAAAAAyoswBAAAAyIgyBwAAACAjyhwAAACAjChzAAAAADKizAEAAADIiDIHAAAAICPKHAAAAICMKHMAAAAAMqLMAQAAAMiIMgcAAAAgI8ocAAAAgIwocwAAAAAyoswBAAAAyIgyBwAAACAjyhwAAACAjChzAAAAADKizAEAAADIiDIHAAAAICPKHAAAAICMFKZOnVrs6kEAAAAA0DFm5gAAAABkRJkDAAAAkBFlDgAAAEBGlDkAAAAAGVHmAAAAAGREmQMAAACQEWUOAAAAQEaUOQAAAAAZUeYAAAAAZESZAwAAAJCRivZ+OWbMmI01DgCATjF16tQ2f+64BgDIzfqOa8zMAQAAAMiIMgcAAAAgI8ocAAAAgIwocwAAAAAyoswBAAAAyIgyBwAAACAjyhwAAACAjChzAAAAADKizAEAAADIiDIHAAAAICPKHAAAAICMKHMAAAAAMqLMAQAAAMiIMgcAAAAgI8ocAAAAgIwocwAAAAAyoswBAAAAyIgyBwAAACAjyhwAAACAjChzAAAAADKizAEAAADIiDIHAAAAICPKHAAAAICMKHMAAAAAMqLMAQAAAMiIMgcAAAAgI8ocAAAAgIwocwAAAAAyoswBAAAAyIgyBwAAACAjyhwAAACAjChzAAAAADKizAEAAADIiDIHAAAAICPKHAAAAICMKHMAAAAAMqLMAQAAAMiIMgcAAAAgI8ocAAAAgIwocwAAAAAyoswBAAAAyIgyBwAAACAjyhwAAACAjChzAAAAADKizAEAAADIiDIHAAAAICMVXT0A6IjehULS/OpiMWk+6xrcI93uZ3FdY7JsAIB1pPyIvDlhNpAtM3MAAAAAMqLMAQAAAMiIMgcAAAAgI8ocAAAAgIwocwAAAAAyoswBAAAAyIgyBwAAACAjyhwAAACAjChzAAAAADKizAEAAADIiDIHAAAAICPKHAAAAICMKHMAAAAAMqLMAQAAAMiIMgcAAAAgI8ocAAAAgIwocwAAAAAyoswBAAAAyIgyBwAAACAjyhwAAACAjChzAAAAADKizAEAAADISEVXD4D3j96FQlcP4V3rFenGXh89k2WP6lNMlh0RURg8JFl2n6qlybJX1lUny46I6N6ve9L8VBpXrk6aX11M+3wEgPck30NVgHWYmQMAAACQEWUOAAAAQEaUOQAAAAAZUeYAAAAAZESZAwAAAJARZQ4AAABARpQ5AAAAABlR5gAAAABkRJkDAAAAkBFlDgAAAEBGlDkAAAAAGVHmAAAAAGREmQMAAACQEWUOAAAAQEaUOQAAAAAZUeYAAAAAZESZAwAAAJARZQ4AAABARpQ5AAAAABlR5gAAAABkRJkDAAAAkBFlDgAAAEBGKrp6ALx/jO4+MFn2y+VVybIjIg7aYmSy7Feq65Jlb95QSJYdETF72epk2Ttuvk2y7M3LViXLjoio6J7ubzqispgse/LKdH/PiIj+/Xoky36rKt1jDrDRpT4Cb0ycn0p5xvlNCbMB2mBmDgAAAEBGlDkAAAAAGVHmAAAAAGREmQMAAACQEWUOAAAAQEaUOQAAAAAZUeYAAAAAZESZAwAAAJARZQ4AAABARpQ5AAAAABlR5gAAAABkRJkDAAAAkBFlDgAAAEBGlDkAAAAAGVHmAAAAAGREmQMAAACQEWUOAAAAQEaUOQAAAAAZUeYAAAAAZESZAwAAAJARZQ4AAABARpQ5AAAAABlR5gAAAABkpKKrB0Brm5X17eohvGuDhvZJlj2sPu3jMq1qVbLs7x5+QLLsXceMSpYdEbF0cX2y7IEDeyTLrmsuJsuOiHjgvn8myy726J0se2b9xGTZERH9l6R7viyryPflam5jY1cPAdjUNHf1ADZRaV++o1vPdNn11emys1ZIGZ54XkLRhsqmzcwcAAAAgIwocwAAAAAyoswBAAAAyIgyBwAAACAjyhwAAACAjChzAAAAADKizAEAAADIiDIHAAAAICPKHAAAAICMKHMAAAAAMqLMAQAAAMiIMgcAAAAgI8ocAAAAgIwocwAAAAAyoswBAAAAyIgyBwAAACAjyhwAAACAjChzAAAAADKizAEAAADIiDIHAAAAICPKHAAAAICMKHMAAAAAMlLR1QNIpXehkCy7ulhMlr28eWWy7IiIw7YbmSz7tYbmZNlnHnVQsuyIiOVvvJUse4+9xyXLbqhtSpYdEbHNsF7JsmtWr06WvVmvdOOOiDjiqMOSZf/u+juTZe/QvV+y7IiIGYNXJcsuVDcmy06tf1O6l9q3quqSZcMHXrpDyYh0h0wREXHAnkMSpqc79uhX0T1ZdkTEquqqdOEJ33tE97SPS1NjurE/MWVxsuwoT7mRRsqnOnQKM3MAAAAAMqLMAQAAAMiIMgcAAAAgI8ocAAAAgIwocwAAAAAyoswBAAAAyIgyBwAAACAjyhwAAACAjChzAAAAADKizAEAAADIiDIHAAAAICPKHAAAAICMKHMAAAAAMqLMAQAAAMiIMgcAAAAgI8ocAAAAgIwocwAAAAAyoswBAAAAyIgyBwAAACAjyhwAAACAjChzAAAAADKizAEAAADISEVXDyCVYjFd9mZlfZNlbz6sX7Ls1IbUNCfL7j10h2TZERHjRvdMlr3Ljlsky66oLCTLjojoVd4jWXZTcXWy7Pqm8mTZERHNhcZk2aeccHSy7D/d8kCy7IiI3Qq1ybKnzZiWLPu+mXOTZQO05eMfHZk0/61V1cmytxw6PFn2W0vnJcuOiNh2u+2SZc95c3ay7D4DByXLjoioqX4rWfZHP7x9sux/PPpasmzWryzh24/mhO/h34/MzAEAAADIiDIHAAAAICPKHAAAAICMKHMAAAAAMqLMAQAAAMiIMgcAAAAgI8ocAAAAgIwocwAAAAAyoswBAAAAyIgyBwAAACAjyhwAAACAjChzAAAAADKizAEAAADIiDIHAAAAICPKHAAAAICMKHMAAAAAMqLMAQAAAMiIMgcAAAAgI8ocAAAAgIwocwAAAAAyoswBAAAAyIgyBwAAACAjyhwAAACAjFR09QBSqYlisuztBhWSZdc0NyfLjojYaZedkmWP3nn7ZNlDEz9VR4zcKln2zEJtsuzuvXsky46IWLhwbrLsQd3Sdcmvv5XuMY+I2GJVurFvtcvwZNmHfmz3ZNkRET+95+5k2VUDtkuW3atQnSw7IqKmuCJpPh8M5WXp9jtNKY890h0yrZHucC9p9qJlK9OFR0TfgZsly65fke41tlf0T5YdEbFiRUOy7M0GpXudivr6dNkR0afn5smyV6xcnCw7+bSEtG/L0km932WTYWYOAAAAQEaUOQAAAAAZUeYAAAAAZESZAwAAAJARZQ4AAABARpQ5AAAAABlR5gAAAABkRJkDAAAAkBFlDgAAAEBGlDkAAAAAGVHmAAAAAGREmQMAAACQEWUOAAAAQEaUOQAAAAAZUeYAAAAAZESZAwAAAJARZQ4AAABARpQ5AAAAABlR5gAAAABkRJkDAAAAkBFlDgAAAEBGlDkAAAAAGano6gGk0qPboGTZr65KFh1je5SnC4+I6dNnJsvee7+dkmVvv1ufZNkREc/OeSJZ9mYjhyTL/uc9LyTLjogYsc02ybJXNhWSZS9asDxZdkTE0r69kmWvWvJWsuyBw3sky46I+Mio7ZNlT5uxMFl287ZpH5epc3smy65vrE2WzaalKZrThVemi0457IiIaEqcn8iorbZMmj94QLrj4GhoSBa9urExWXZERHlZuuPsNxcvS5a91aD+ybIjIpqK6Y7Jtu6V7jX28eZ0xwZZK6aNb045HSTx2N9vzMwBAAAAyIgyBwAAACAjyhwAAACAjChzAAAAADKizAEAAADIiDIHAAAAICPKHAAAAICMKHMAAAAAMqLMAQAAAMiIMgcAAAAgI8ocAAAAgIwocwAAAAAyoswBAAAAyIgyBwAAACAjyhwAAACAjChzAAAAADKizAEAAADIiDIHAAAAICPKHAAAAICMKHMAAAAAMqLMAQAAAMiIMgcAAAAgIxVdPYBU6pqWJcvu171Hsuy3+vVLlh0R8ZGdRyXL3nGnzZNlz1z4TLLsiIh586qTZd9w89+SZc9fUp8sOyKiV7fmZNnbDNspWfa06S8my46IKBYbk2WPHbtbsuxjjv5QsuyIiMbmdNvRS69MTZa9ONLt0yMievUvJMuuX5osmg+S5vJ02U1N6bIzdsyRn0maP370iGTZdT27J8tuqq1Jlh0R0b+sMln2S7MWJsvebfstkmVHRMxLuJ1u0zPda+w1fz8xWfYa6Y73spbu7QHvkJk5AAAAABlR5gAAAABkRJkDAAAAkBFlDgAAAEBGlDkAAAAAGVHmAAAAAGREmQMAAACQEWUOAAAAQEaUOQAAAAAZUeYAAAAAZESZAwAAAJARZQ4AAABARpQ5AAAAABlR5gAAAABkRJkDAAAAkBFlDgAAAEBGlDkAAAAAGVHmAAAAAGREmQMAAACQEWUOAAAAQEaUOQAAAAAZUeYAAAAAZESZAwAAAJCRiq4eQCrdmnoly95y4JBk2bvsuHOy7IiIJavnJssuK+yZLPumf76WLDsi4sG/P50se/bKmmTZUZsuOrWdRzQny54+e3my7IiI6J4uetLLjyfL7t6/b7LsiIg+Fen2u7vstFOy7C2WLUuWHRHx8IKlSfP5gEi3y4yIppThtGHwwLT746FbDk6W/a0L/jNZdrE57XPxlBO/kSy7R8/yZNmDKtJlR0T896UXJcsuNqX7m/YbNCBZdkRE1dIlSfNz1a1bt2TZ9fX1ybLfj8zMAQAAAMiIMgcAAAAgI8ocAAAAgIwocwAAAAAyoswBAAAAyIgyBwAAACAjyhwAAACAjChzAAAAADKizAEAAADIiDIHAAAAICPKHAAAAICMKHMAAAAAMqLMAQAAAMiIMgcAAAAgI8ocAAAAgIwocwAAAAAyoswBAAAAyIgyBwAAACAjyhwAAACAjChzAAAAADKizAEAAADIiDIHAAAAICMVXT2AVOqjOln263NWJMvevmJ6suyIiKETdkmW/dir05Jl91xZnyw7IqKuriZZ9o6jRibLXl6V7nkeEbFkxqJk2bXLlyfLTm3cToOSZS+uSvdcXFK7Oll2RETvPj2SZb86Y0ay7O333j9ZdkTEwLmLk2UvS7gZ1den3e/Cpu6bn5uQLHvO63OTZUdENO+X7njvFzdNTpb9b0d+Ill2RMSAgf2SZd/yQLrHZedoSpYdEXHx3W8kyz5j/+HJsivLGpJls36NTc3Jsrt165Ys+/14XGNmDgAAAEBGlDkAAAAAGVHmAAAAAGREmQMAAACQEWUOAAAAQEaUOQAAAAAZUeYAAAAAZESZAwAAAJARZQ4AAABARpQ5AAAAABlR5gAAAABkRJkDAAAAkBFlDgAAAEBGlDkAAAAAGVHmAAAAAGREmQMAAACQEWUOAAAAQEaUOQAAAAAZUeYAAAAAZESZAwAAAJARZQ4AAABARpQ5AAAAABmp6OoBpNIteifLHtAv3cNWPmxEsuyIiB7da5Nl19b2TJbdt6IhWXZExIKqdNlLpy1Jlt2z26pk2an1qmjs6iG8a6+9vDRZdu90u65orGtKFx4R0SdddL/h2yfLnjlzZrJsIF/NxWKy7Fdmzk6WHRHx5NMzkmVPmfj7ZNlDuqd9azLpqenJsqtq6pJlP/z64mTZERFP/eWKZNnbD+6bLPt/jz43WTbkwMwcAAAAgIwocwAAAAAyoswBAAAAyIgyBwAAACAjyhwAAACAjChzAAAAADKizAEAAADIiDIHAAAAICPKHAAAAICMKHMAAAAAMqLMAQAAAMiIMgcAAAAgI8ocAAAAgIwocwAAAAAyoswBAAAAyIgyBwAAACAjyhwAAACAjChzAAAAADKizAEAAADIiDIHAAAAICPKHAAAAICMKHMAAAAAMqLMAQAAAMhIRVcPIJX6qE6WvfVW2yTLHlAoT5YdEfHhXfdJlv343BnJsqevWpUsOyJi5wGFZNnTV6xMlt1Qkyw6IiKG906X3dCQLnt4n3TZERFzEj4d695Kl11Rlu55HhHRXN2YLHursnSfPSxdXZ8sOyJiwcIVSfPhg6xHwv39NbdMSpb9pSM+lCw7IuKXv78tWfaggf2TZRebmpJlR0S8tWp1suzmunSvJXNfm5ksOyKi96B/pQtvTvc3XbFsWbJs1q+5Kd3xXn3aXcD7jpk5AAAAABlR5gAAAABkRJkDAAAAkBFlDgAAAEBGlDkAAAAAGVHmAAAAAGREmQMAAACQEWUOAAAAQEaUOQAAAAAZUeYAAAAAZESZAwAAAJARZQ4AAABARpQ5AAAAABlR5gAAAABkRJkDAAAAkBFlDgAAAEBGlDkAAAAAGVHmAAAAAGREmQMAAACQEWUOAAAAQEaUOQAAAAAZUeYAAAAAZKSiqweQozcXLk2XPT9ddkTEMZ/ePVn2yP79k2Xfv7g6WXZERFNTMVn2jukeluTKE9a93Xv2TBcehYTZEd3Ka5JlF9M9FeOtVVXpwiNi274DkmWv7lmZLHvkyJHJsiMiXp3xRrLs+vr6ZNmQg7pVXT2Cd+eeiU8nzT94/3THewvnL0yWnVpzwhfZvz74XLLs1D778b3ShZeVp8umS3Tr1i1ZtuOad8bMHAAAAICMKHMAAAAAMqLMAQAAAMiIMgcAAAAgI8ocAAAAgIwocwAAAAAyoswBAAAAyIgyBwAAACAjyhwAAACAjChzAAAAADKizAEAAADIiDIHAAAAICPKHAAAAICMKHMAAAAAMqLMAQAAAMiIMgcAAAAgI8ocAAAAgIwocwAAAAAyoswBAAAAyIgyBwAAACAjyhwAAACAjChzAAAAADJS0dUDyNHC5YuTZffv1yNZdkTEC/NWJMveYatk0TF0aP904RHx+gtvJssuFJJFR2XiLbipKV32C/Nqk2Xv3C9ZdHL1Demy+/Xtli48IlZUpfubLlmcbht9dPKsZNkAbWlsbE6af9ekycmyd9pum2TZ2w8bkiw7IqIQ6Q7Kjjxor2TZ5Yk/fi8W0z0u9/7j6WTZdI36+vquHgL/HzNzAAAAADKizAEAAADIiDIHAAAAICPKHAAAAICMKHMAAAAAMqLMAQAAAMiIMgcAAAAgI8ocAAAAgIwocwAAAAAyoswBAAAAyIgyBwAAACAjyhwAAACAjChzAAAAADKizAEAAADIiDIHAAAAICPKHAAAAICMKHMAAAAAMqLMAQAAAMiIMgcAAAAgI8ocAAAAgIwocwAAAAAyoswBAAAAyIgyBwAAACAjFV09AFo78tBDk+YvXvxmsuw5i1Yky16+vCZZdkREv83TZVevSJddKE+XHRHR2Jgue7u+6bIbiumyIyJW1afLLiQc+1sratOFR8Sj02Ylyx4zesdk2bvtWpcsOyLilVeXJsuur0/4ZASSKa9Iewje2NCULPuV195Ilv3StHTZERGJDw+yNXRQt2TZQwb1T5a9at6KZNmsX7du6Z4vjmveGTNzAAAAADKizAEAAADIiDIHAAAAICPKHAAAAICMKHMAAAAAMqLMAQAAAMiIMgcAAAAgI8ocAAAAgIwocwAAAAAyoswBAAAAyIgyBwAAACAjyhwAAACAjChzAAAAADKizAEAAADIiDIHAAAAICPKHAAAAICMKHMAAAAAMqLMAQAAAMiIMgcAAAAgI8ocAAAAgIwocwAAAAAyoswBAAAAyEhFVw+A1v7wl78lzT9o392SZW+xVbqnU3NzMVl2RMRWm/dLlr2gUJUsu3pFsuiIiOgf3ZNlNydLjmhsTttT9xic7rk+fJvNkmVvudWWybIjIp5+YWmy7MefnpEsu7Ay3bgjIurrUz7bgRwVytIegpcV6pNlNzWlPSZLabN0h3sRleXpsuub0mVHxOKl6Z4vm/XP9/lC2+rr0z1feGfMzAEAAADIiDIHAAAAICPKHAAAAICMKHMAAAAAMqLMAQAAAMiIMgcAAAAgI8ocAAAAgIwocwAAAAAyoswBAAAAyIgyBwAAACAjyhwAAACAjChzAAAAADKizAEAAADIiDIHAAAAICPKHAAAAICMKHMAAAAAMqLMAQAAAMiIMgcAAAAgI8ocAAAAgIwocwAAAAAyoswBAAAAyIgyBwAAACAjFV09ADau+SsWJstetrIyWfaCRenGHRGxaGlTsuyRvZNFR6E8XXZERFVhddo7SKQhcX79knTZ/3pzZbLsPavSPc8jIhYtXJQsu6E53dibkyUDOetWUUiWvevO2yTLjoh48eXZybIL9emODZqa0u6RV1SlTE/3OlVMlrzGsEHp3hIWuvdLll25almy7IiIhqbUjzy8N2bmAAAAAGREmQMAAACQEWUOAAAAQEaUOQAAAAAZUeYAAAAAZESZAwAAAJARZQ4AAABARpQ5AAAAABlR5gAAAABkRJkDAAAAkBFlDgAAAEBGlDkAAAAAGVHmAAAAAGREmQMAAACQEWUOAAAAQEaUOQAAAAAZUeYAAAAAZESZAwAAAJARZQ4AAABARpQ5AAAAABlR5gD/b7t2t9rEGoZh+E2aprglbiyVICiKG+pCWOd/EAssKrqhqCAqgmBtq/mZ8QSKqPg6Pva6DuDpx3SSTO8UAACAIGIOAAAAQBAxBwAAACDIYuoD8PfYjtu27f1l9626a1sex7bpev6xb7uq6vbF3v0uB823y8vjvu3/7l5t296s++7zqqrN2LvfZeFrjTNth6lPANPq/Py+ee1S33hVHX383Lb99NnLtu39g7227aqqbePnYOPt0v7t+/vjWdv2ePShbZuzLXpfRrG2mY+p3+QRFgAAACCImAMAAAAQRMwBAAAACCLmAAAAAAQRcwAAAACCiDkAAAAAQcQcAAAAgCBiDgAAAEAQMQcAAAAgiJgDAAAAEETMAQAAAAgi5gAAAAAEEXMAAAAAgog5AAAAAEHEHAAAAIAgYg4AAABAEDEHAAAAIIiYAwAAABBEzAEAAAAIIuYAAAAABBFzAAAAAIKIOQAAAABBFlMfgN9rPpu1be+GsW37+ORL23a3se+y1P3Vsm+8qh68Xrfup/r3zuW27ZP1tm17ueh7/VdVVeO93qn72J1XPfSSwy8zn/d9L7nZDX3b697342HctW3fur5q2z58+qptu6rqwtL32GdZb/qePTotm3+fm9O+11Gnzr89qqoa/5xsP/vfxjsaAAAAQBAxBwAAACCImAMAAAAQRMwBAAAACCLmAAAAAAQRcwAAAACCiDkAAAAAQcQcAAAAgCBiDgAAAEAQMQcAAAAgiJgDAAAAEETMAQAAAAgi5gAAAAAEEXMAAAAAgog5AAAAAEHEHAAAAIAgYg4AAABAEDEHAAAAIIiYAwAAABBEzAEAAAAIIuYAAAAABBFzAAAAAIIspj4AfI/5bOoT/Lx5YzLd7Ma+8aq6v1q2bT94vW7bvnfnStt2VdWs8X5cLvfath8+etu2XdV7ryfrfJXuhsZxoFHvg82N1dW27Vdvej9LOp2uM980DxqfDaqq5nuZD9rHp7vW/UXvZY81Nj7YeK75MR69AQAAAIKIOQAAAABBxBwAAACAIGIOAAAAQBAxBwAAACCImAMAAAAQRMwBAAAACCLmAAAAAAQRcwAAAACCiDkAAAAAQcQcAAAAgCBiDgAAAEAQMQcAAAAgiJgDAAAAEETMAQAAAAgi5gAAAAAEEXMAAAAAgog5AAAAAEHEHAAAAIAgYg4AAABAEDEHAAAAIIiYAwAAABBEzAEAAAAIspj6APxej5+8m/oI587Bft/2bNa3XVW1HcbeH9Dk4eO3Ux/hXBqGqU8AnDdD6BvP0aeTqY/w026u/mnb/v/Ri7btZF/Wu6mPcC5tXXb+cP4zBwAAACCImAMAAAAQRMwBAAAACCLmAAAAAAQRcwAAAACCiDkAAAAAQcQcAAAAgCBiDgAAAEAQMQcAAAAgiJgDAAAAEETMAQAAAAgi5gAAAAAEEXMAAAAAgog5AAAAAEHEHAAAAIAgYg4AAABAEDEHAAAAIIiYAwAAABBEzAEAAAAIIuYAAAAABBFzAAAAAIKIOQAAAABBZoeHh+PUhwAAAADg+/jPHAAAAIAgYg4AAABAEDEHAAAAIIiYAwAAABBEzAEAAAAIIuYAAAAABPkKln7RGCHbiAEAAAAASUVORK5CYII=\n"},"metadata":{"image/png":{"width":1139,"height":1213}},"output_type":"display_data"},{"data":{"text/plain":"<Figure size 1152x1152 with 16 Axes>","image/png":"iVBORw0KGgoAAAANSUhEUgAABHUAAAS9CAYAAADJKWX0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACTFklEQVR4nOzdd5idZZ0//s+Zkkw6CSGUgISmtNCrWEAsuIqgKGIFFRVYsKKsumJB9quuuuqioKjIoosgKOKygKB0KaEmtEAMoaT3On3O74/8Mjsh7b5hTmbu5PW6Lq4rYd75nHtOec5z3uc5z6lMmjSpGgAAAAAUpa6vFwAAAABAPqUOAAAAQIGUOgAAAAAFUuoAAAAAFEipAwAAAFAgpQ4AAABAgZQ6ALAR/PSnP43x48fH+PHj45prrunr5fASrboN3/KWt/T1UmCT5rEGkKahrxcAvDxvectbYsaMGWv8/0qlEoMGDYqhQ4fG0KFDY9y4cbH77rvHPvvsE4ceemg0NPTNw/+yyy6LpUuXRkTEGWec0Sdr6E+efPLJ+Nvf/hYREQcffHAcfPDBG/Xy3/Oe98STTz4ZERHnnXdeHH/88evNL1iwII488sioVqsREXHEEUfERRddtMHLOfXUU+Pee++NiIjPfOYz8bGPfezlLXwD2tvb4/bbb4977703HnnkkZg3b14sXrw46urqYtiwYTFu3LjYe++946ijjor99tuvpmsBgLWZPn16PPbYY/H44493/7d48eLun0+aNOklz65Wq3H77bfHzTff3P082NbWFqNGjYoxY8bEfvvtFwcffHC8+tWvjsbGxt74dYA+otSBTVS1Wo0VK1bEihUrYs6cOTF16tTu8mD06NFx/PHHx8c+9rEYOnToRl3Xb37zm+4SSqmzstS58MILu/++sUudgw8+uLvUmTBhwgZLnQkTJnQXOhERDz30UHR0dKy3JGxvb49HHnmk+++HHnroy1v0elSr1bjqqqvi4osvjpkzZ64109zcHHPmzIn77rsvfvWrX8W4cePijDPOiGOOOSYqlUrN1gYAq3zhC1+IG264oSazH3/88TjvvPPi0UcfXeNnM2fOjJkzZ8YjjzwSl156adxwww0xduzYmqwD2DiUOrAJOfHEE2OHHXbo/ntbW1ssXbo05s2bF4899lhMmzYtqtVqzJs3L37xi1/EddddF9/61rfikEMO6cNV05cOOeSQuOyyyyIi4v77799gfsKECav9fcWKFfHoo4+u92iXiRMnRktLS0REDB06NPbYY4+XvuD1WL58eXzpS1+KW265pfv/1dXVxR577BF77713jBo1Kurq6mL+/PkxZcqUePjhh6OjoyOmTZsWX/ziF2PQoEFx5JFH1mRtANBTa2vrGv9vxIgRqx2p81Lcc8898alPfSqam5sjImLLLbeMQw89NMaOHRtNTU0xb968mDt3bjz44IOxYMGCl3VZQP+g1IFNyDHHHLPeIz1mzpwZv/vd7+I3v/lNtLW1xcyZM+OMM86Iiy++OPbff/+NuFL6iwMPPDDq6+ujs7MzZsyYES+88EJsv/3268yvKnX22WefeOyxx6KzszPuv//+9ZY699133xqX19va29vj9NNPj4ceeigiVn788N3vfnd88pOfjK233nqt/2bZsmVx9dVXxyWXXBLz58+Pzs7OXl8Xm56X83EIgFVGjx4dr3/962PPPffs/q+9vT2OOeaYlzxz6tSpcdZZZ0VLS0s0NjbG5z//+TjxxBPX+vGqarUajz/+eIwcOfLl/BpAP+BEybAZ2XbbbeOzn/1s/OY3v4kxY8ZExMp3ij71qU/FokWL+nZx9Ilhw4bF7rvv3v33Fx+J09O8efNi6tSpERFx5JFHdv+7nqXN2vQ8AqhWHy/73ve+113oNDQ0xHe/+90499xz11noRKw8aujkk0+O66677mXtRANArnPPPTcuuOCCOOOMM+LII4/s3i97qbq6uuIrX/lKtLS0RKVSiR/96EfxgQ98YJ3ny6lUKrHXXnvF4MGDX9blAn3PkTqwGdpjjz3ihz/8YZx88snR3t4eixYtil//+tfxmc98Zq35FStWdJ909oknnogXXnghli9fHk1NTTF69OjYZ5994m1ve1u8+tWvXudljh8/Pun/bbfddnHjjTf2+uX39Oyzz8bVV18d999/fzz77LOxYsWKqK+vj+HDh8f2228f+++/fxx++OFx4IEHbvDkgX//+9/jL3/5Szz44IMxb968aG1tjS222CL23HPPOProo+Ptb3/7Ws8389Of/nS1c+lERFx44YVr/L+ItBMYvxyHHHJIPPbYYxGxsqB55zvfudbci8uZxYsXx2OPPRYPP/xwtLe3r/W6amtrq/n5dKZOnRq/+93vuv/+z//8z1klzZAhQ+Lf//3fY8WKFevMtLW1xZ/+9Ke45ZZbYvLkybFo0aIYOHBgbL311nHIIYfE8ccf3ysfK+t54vMNHREyffr07t/zoIMOiksuuWSNTM/72ar70YwZM+KKK66I22+/PWbNmhWVSiXGjRsXxx9/fLzzne9c7Xbs6OiIm2++Of7whz/E1KlTY+HChTFq1Kg47LDD4hOf+MRqH/d8sQkTJsRHP/rRiIh4xzveEeeff360t7fHH//4x7juuuti2rRpsXTp0hg1alQccMAB8eEPfzj23nvvDV5Hvfn4fSlWbbfWtq2KWPvvvWLFirj66qvjhhtuiBdeeCGam5tj7NixceSRR8bJJ58cW2yxxWozHnroobj88svjsccei9mzZ8fgwYNjn332iQ996ENJj6HJkyfHHXfcEQ8++GBMnTo1FixYEB0dHTF8+PDYaaed4vDDD4/3vOc9We/Q33nnnXH11VfHxIkTY+HChTFy5MjYbbfd4rjjjus+H1XO/TfipW8/e+rs7Izrr78+br755njyySdjwYIF0dbWFoMGDYoxY8bErrvuGocffni8+tWvju222y75932xr3zlK3HttddGRMSvfvWrOPjgg2Py5Mnxu9/9LiZMmBBz5syJxsbGGDduXLz5zW+O9773vdHU1LTOeddcc0189atfjYiI008/Pc4444zuowdvuOGGeP7556O5uTm22mqrOOyww+Lkk0+OnXbaKWmts2bNit/85jdxxx13xMyZM6OhoSG22267OProo+PEE0+MLbfccq3bho3pL3/5S1xzzTXxxBNPxJIlS2LLLbeMPfbYI0444YR43etet1HXsqm47bbbus+hc9xxx8VrX/vaPl4RsLEodWAzNX78+Dj22GPjD3/4Q0REXH755XHGGWfEgAEDVss9/fTT8f73v7/7nCg9LVu2LJYtWxbTpk2La6+9No444oj47ne/G8OHD++1dfb25V922WXxgx/8IDo6Olb7/x0dHTF37tyYO3duPPTQQ/GrX/0qLrjggnj961+/1jmzZ8+Of/mXf1nreWjmzJkTc+bMiVtvvTUuueSS+NGPfhTjxo3L+8XXo+eL+Yh42Sc5PPjgg7sLgfUdqbPqZ4MGDYq99torFi1aFJdeemk0NzfHo48+utaP8D3yyCPd5w0YMWJEvPKVr3zJ61yXX/3qV9HV1RUREWPHju1+QZ1rXe9WTpo0Kb7whS/E9OnTV/v/q85ZNWXKlLj88svjPe95T3zpS1/qs2+WS3HbbbfFl770pe5voFtl0qRJMWnSpLjxxhvjJz/5Sfd5F84666w1TrQ5a9asuOaaa7qzqUdfzZgxIz7zmc/EE088sdr/nz17dlx//fVxww03xDnnnBMf+MAH1jmjtx6/G9O0adPiU5/6VDzzzDOr/f8pU6bElClT4tprr41LLrkkXvGKV0RHR0d885vfjD/+8Y+rZVtbW+O2226L2267LT772c+u9z7+pS99Kf7nf/5nrT+bP39+zJ8/P+6///745S9/Geedd168+c1vXu/6Ozo64txzz40///nPq/3/Vdu5u+66K/785z/Hd7/73fXO6am3tp+zZ8+OM888s/tk7z2ten6YOnVq/OUvf4k999wzrrjiiuQ1bshvf/vb+N73vrfafbG5uTkmTpwYEydOjCuvvDIuuOCC5CJm8uTJ8dnPfjaef/751f7/9OnT4+qrr45rr702vvOd78Sb3vSm9c75y1/+El/96lfXKKknT54ckydPjiuvvDJ+8IMfJP6Wva+5uTnOPvvsuP3221f7/6tO3vu3v/0t3vGOd8TXv/71vllgwXrev9/73vf24UqAja3/7nkCNXfSSSd1lzorVqyIiRMnxkEHHbRaZsWKFd2H8u6xxx6x++67x5gxY6KpqSmWLl0aTz75ZNx7773R0dERd911V3zuc5+Ln//851FXt/qnOz//+c9HRMTFF18cS5YsWe3/9fTib+PqrcuPiLjllltWe+Gx++67xwEHHBCjR4+OiIiFCxfGP/7xj3j44YfXe9TG888/H6ecckrMmTMnIiKGDx8eRxxxRIwbNy4aGxtjxowZcfvtt3d/69iHP/zhuOKKK2LbbbftnvHqV786Bg8eHI899lj3t1+sejf5xVKOXng5DjzwwGhoaIiOjo6YPXt2PPfcc/GKV7xijdyqUmffffeNxsbGOOCAA6Kuri66urrivvvuW2up0/NF20EHHbTW2+Xl6OrqiltvvbX77+9+97t79TImTpwYp556avcJJ4cMGRJHHXVUjBs3Lpqbm+O+++6LSZMmRbVajSuvvDLmz58fP/zhD3vt8nvTk08+GVdddVW0trbGQQcdFPvvv38MHDgwnn766bj55pujs7Mz7rvvvvj2t78d55xzTpx22mkxefLk2HbbbeN1r3tdbL311jF//vy46aabYs6cOd0vzq699toYMWLEei97xYoVccYZZ8Q//vGPGDt2bLz2ta+NMWPGxKJFi+KWW26J559/PqrVanznO9+JPffcc633pd56/G5My5YtizPPPDOeffbZ2GmnneI1r3lNjBw5MmbOnBk33nhjLFmyJObMmRNnnnlm/PGPf4xvfetb8cc//jGGDh0aRx55ZIwbNy5aW1vjjjvu6C4ufvjDH8Z+++0XBxxwwFovc+HChRERMXLkyNh3331j3LhxMXz48Ojs7IxZs2bF3XffHTNmzIgVK1bEF77whRgxYsR6j/756le/ulpJtOeee8Zhhx0WgwcPjueeey5uueWWuOOOO5JfhPfG9jNi5WP/05/+dPf1MmTIkDjiiCNip512ikGDBkVzc3PMmDEjHnvsse6PjfaWW2+9Nf7rv/4rIlZuPw844IBobGyMp59+Om677bZoa2uL5557Lk499dS4/PLLN/ixmtmzZ8dpp50W8+bN6z6yaNSoUTF79uz461//GnPnzo329vb48pe/HLvvvvs6j5C7884745xzzukumkaNGhVHHXVUbLfddrFkyZK46667YsqUKfGpT30q3vCGN/TqdZJi1W129913d/+/Aw44oPuoulXX37XXXus8L5na2tq6Pwo9aNCg2GOPPWLFihXx+9//Pm688cZ49tlnu7/OfN99941/+qd/8sUAsAlR6sBmbPfdd49hw4Z1v2v/wAMPrFHqDBs2LD796U/HO9/5zthyyy3XOuf555+Pz3/+8/HEE0/EvffeG9ddd10ce+yxq2VOOeWUiFh5RNCqUmfV/1uf3rr8iIhf//rX3X8+//zz4x3veMda57W3t8ett966xouIVT/7/Oc/3/2C5OSTT44zzzxzjcPs29vb4wc/+EH85je/iYULF8aXv/zl1T4es99++8V+++0X11xzTXeps99++yVdJ71t8ODBseeee8bEiRMjYmV58+JSZ968ed1HGqw6MmP48OHxyle+Mp588smYMGFCfPKTn1xjds/z7dTifDqTJ09e7ZtCevPjXS0tLXHOOed0FzoHHHBAfP/73+8uEVb5n//5n/jqV78aHR0d8de//jUuv/zyeN/73tdr6+gtv/3tb2PYsGHxn//5n3H44Yev9rP7778/Pv7xj0dHR0f86U9/imXLlsXkyZPj5JNPjk9/+tOrfYzpzDPPjI9+9KPxxBNPxIIFC+L3v/99nHrqqeu97JtvvjkiVn407tRTT13taKbPfOYzcc4558RNN90U1Wo1LrroovjZz362xozeePxubH/729+iUqnE5z//+fjwhz+8WuF4+umnx4c+9KGYPn16PPPMM/GVr3wlrrvuujj00EPj3//931d7UXvWWWfFN77xjbj66qujWq3Gz3/+87jooovWepmHH354fOQjH4mDDz54rQVnV1dX91EmXV1d8c1vfjP+/Oc/rzV78803dxc69fX18bWvfW2Nj2fOnz8/Pve5z8WNN94YlUplvddHb20/I1Zup1Z9bHSvvfaKiy66aI2Psa3y/PPPb/DcXzkuu+yyaGpqiu9973trHA02bdq0+Od//ud47rnnYs6cOXHeeefFf/7nf6533h/+8IdoaGiIr33ta/Hud797tZ995jOfidNOOy0efvjhaGlpiV/96lfxta99bY0Zy5cvj6997Wvdhc5RRx0V//Zv/7baGyWf//zn45JLLon/+I//WONosI3hd7/7XXehM2DAgPjud78bRx999GqZZ555Jk4//fTu0qy3fOQjH0n6hsdUqz6C1188/vjj0d7eHhER22+/fUyZMmWtR37NmDEjZsyYEddff30ceuih8f3vf3+DpTzQ/zlRMmzGKpVK7Lbbbt1/nzlz5hqZnXfeOU499dR1FioRETvssENccMEF3TvmV111Va+tsTcvf9U7urvuuus6XxBGRDQ2Nsab3vSmtX5U6M9//nP3x0c++MEPxtlnn73W8yY0NjbGOeec0/1u6P333x8PPvjgOi+zr/X8Wvu1vfjp+bGsnjuyq0rARx55pHuHcpXW1tbuoujFl9Fber4DX6lUVjvp88t17bXXxgsvvBAREWPGjImf/OQnaxQ6ERFvf/vb4+yzz+7++8UXX7zGddFfnH/++WsUOhErb8fjjjsuIlZ+3ObGG2+MN73pTXH22WevcV6aoUOHxjnnnNP997/+9a9Jl33SSSfFaaedtsbH0xobG+NrX/ta9+PonnvuieXLl6/x73vj8dsXPvjBD8Ypp5yyRmmy1VZbxZlnntn99+uuuy7Gjh0bP/7xj9c4SqFSqcQXv/jF7hfod99991qvo4iVRcmhhx66ziPW6urq4kMf+lB38fjcc8+ts/D4+c9/3v3nT37yk2s939aWW24ZF1xwQWy55ZZRrVbXOmeV3tx+9vzI1cc+9rF1FjoRK58jTjjhhPWuLUe1Wo1//dd/XevH+8aNGxcXXHBB9+Pm1ltvjcmTJ29w5qc//ek1Cp2IlUcgfeMb3+j++7oeb9dcc013WTZu3Lj43ve+t8aRr5VKJT760Y/Ge97zng3eVr2to6MjfvnLX3b//Zxzzlmj0ImI2GmnneInP/lJTb4lcVP23HPPdf+5paUlTj/99Hj++eejqakpjjnmmPjnf/7n+MQnPrHa8/e9994bH/vYx9b61epAWRypA5u5nu/Q9DziIdeYMWPiwAMPjLvuuismTZoUbW1ta5yfp5ZSLn/VeVdezg7M5ZdfHhERTU1NccYZZ2ww/5GPfCT+9re/RcTKnft1fWQix9ixY3v9a5UPPvjg+MUvfhERsdZ3M3se1t3z42AHHXRQ/OY3v4mWlpZ45JFHVjvS65FHHom2traIWPkxgJ4FYm/p+a1tQ4cO7dUT4646KWrEyhe0L36B1NP73ve+uPTSS2PmzJkxd+7c+Pvf/94vzufS0x577BFHHXXUOn/+ute9Lq6++uruv59++unrzB5wwAExfPjwWLJkSTz11FPR2dm53hdhDQ0Ncdppp63z5yNGjIhDDjkkbr/99ujq6orJkyev8VjpjcfvxtbY2Bgf//jH1/nzF58Q9sMf/vA6z+00ePDgOPjgg+OWW26Jrq6ueOqpp9b6MbVUb33rW+O3v/1tRKw8SvOwww5b7edTp07tLmCGDBmy3qMIhw0bFh/+8IfjP/7jP9Z7mb25/ezs7Oz+89rOuVZL48aN6y5B12annXaKd7zjHd2Pp2uvvTa+8IUvrDM/atSo9Z5Lauedd45dd901pkyZEgsXLoxZs2bFNttss1rmuuuu6/7zJz7xifU+/55++unxhz/8YbXrsNbuu+++7tJpu+22W2uBtcouu+wSxx57bK8eTfTe9763V7fJ6ztJfF9YdQR0RHQfnbPrrrvGT37ykzVOEH7HHXfE5z//+Whubo7JkyfHBRdcsNaPwwPlUOrAZq7nC4hly5atN9vZ2Rn/+Mc/YurUqbFkyZJobm5e7d2+VedyaG9vjxdeeCF23nnnXl3ry738V77ylTFx4sR4/vnn4wc/+EGcfvrpMWjQoOTLX7RoUfc7rvvss08MGzZsg//mVa96VfefX3zC2f5k//33j8bGxmhvb485c+bEtGnTVjs56aqiZ5999lmtODnwwAOjUqlEtVqNCRMmrFbqrOvont7U82iF3vxa1ra2tnj88ce7/76hk5PW1dXFG9/4xrjssssiIuLBBx/sd6XOEUccsd6fb7/99t1/HjNmzHpLuEqlEmPHjo0lS5Z0nzB6fUdK7Lnnnus92i4iYscdd+z+84IFC9b4+ct9/PaFPffcc73nBhk+fHiMGDGiu1Df0Df49XwhOW/evA1e/sKFC+PJJ5+MWbNmxYoVK1Y7gqxniT9t2rQ1/m3Pb6077LDDNnhdH3XUUestdXp7+9nzZxdccEHsvPPOsddee21wZm9YXzm6ytFHH91d6jz88MPrzR566KEbLKR33HHHmDJlSkSsfHz0LHVaW1u7C7hKpbLBc6VstdVWsddee612JGWtPfTQQ91/PuqoozZ47rM3vvGNvVrq5HwjYolefOReU1NT/PjHP17rN7699rWvjS996Utx7rnnRsTKEyx//OMf79UvuQA2LqUObOZ67gis60iEpUuXxsUXXxx/+tOf1vpia13/prf01uV/9KMf7f7a9ksuuSSuvPLKePWrXx0HHnhgjB8/PvbYY4/17lg/9dRT3SXSfffdt9avZF+fVaVTfzRo0KAYP35890cc7rvvvu5SZ+7cud0v+l5czmyxxRaxyy67xJQpU2LChAmrHd3Rs9SpxUevIlYeQbBKb54cd8aMGd0vgLfeeuukk3b2/ErznofC9xcbOsdMz1LsxUcBbCjf3Ny83lIn5aukN3RbvtzHb19IOa/P4MGDuwuWnNto1bme1ubuu++On/3sZ/Hggw8mfcxmbdvLZ599tvvPKUfZ7bjjjjFgwIDuo/NerLe3n4cffnjsscce8cQTT8SMGTPipJNOile+8pVx+OGHx3777Rf77LPPBk9Q/FKlfMyz58f/1laa9ZRyP1nf42PGjBnd59LZZpttkgqz3XbbbaOWOj3vTz0LuXVJyfB/XvwxxmOOOWa9RxO94x3viAsuuKD7pPcTJkxY68fhgDI4pw5s5noesru2k+VNnz493vOe98Qll1ySXKhExDp37HP15uUfffTR8Y1vfKN7h3f58uVx0003xbe//e34wAc+EEcccUR89rOfjTvuuGOtM3t+1OelWN+LsP6gZ2HTs5DZ0MmOV/2/nl9f3tLSstpHxGp1pE7PImH58uW9di6bno+L1G9h6Zl7OR9lrJUNfRyy50luUz462TO/6qNRL/WyU+a93MdvX8j9vQcOHJicXdd1fuGFF8YnPvGJeOCBB5LPm7K2j7T1fAysr7Bbpa6ubr3v9Pf29rOuri5++tOfrvaxsaeeeiouvfTS+OxnPxtHH310vOMd74if/vSnWc8dKVKuj57bg2XLlq33ttjQ7f5iL56Ve1vl5HpL7hp9+1WeFx+puqE3Uurr61c7snbVkV5AmRypA5uxVedlWGVt76Z/+ctfjunTp3f//KSTTooDDjggxo4dG0OHDo2BAwd2v9D4yle+stp5SHpDb1/+u971rnjjG98YN9xwQ9x5553x8MMPd78D3NzcHDfffHPcfPPNccQRR8QPfvCD1XaUep5/YLfddlvvyVrXZn3nZOkPDjnkkO5vHep5Xp1VBU9TU9Na310/6KCD4vLLL4+2traYOHFiHHzwwaudT2fMmDGx00471WTNPT9it+r+vLE+gsHG93Iev5uDu+++O376059GxMoC6Jhjjok3v/nNseuuu8bo0aNj4MCB3UczvfDCC/HWt751o62tFtvP0aNHx8UXXxwPP/xw3HjjjfHAAw90n+MpYuU3KV144YXxX//1X3H++ec7EmEzdsMNN8SsWbN6bd4xxxyTdETjxrLVVlut9veUtW299dbdf365pSvQt5Q6sBl78sknVzuPzou/zvzxxx/v/jjO2LFj48orr1zvO7G9+ZGrWl7+8OHD48QTT4wTTzwxqtVqPPPMMzFhwoS46aab4t57742IiLvuuiu+8Y1vxHe+853uf9fzSKYtt9yyT75+vJb23Xff7o9PzJs3L6ZOnRo777xzd6mz7777rvXjLQceeGD3n++77744+OCDa/5V5qu86lWv6j5hb8TKb07qjVKn5/0sdWe358dDXupXxPY8EqNara73K6I39slh+4uX+vjdHPz3f/9395+/+MUvxgc/+MF1Zjd0DrWeH+FJeQx0dXWtdjTGi9Vy+7nffvvFfvvtFxErf6+HH3447rrrrvjf//3fWLBgQSxfvjzOPvvs+P3vfx+77rrry768lOuj5/Zg6NChG/y695cj97bKyfWW3G1qb39c+YorrujVrzTfa6+9+lWps8suu2T/m1reJ4GNy8evYDN2xRVXdP956NChaxyF0fPz9scff/wGT6K36iSOvWVjXH6lUomdd9453vve98YvfvGL+N73vte9o3PDDTes9jGankeF9DzCaVMxcODA2Hfffbv/PmHChJg9e3b3+WFeXPqtsuWWW3ZfN6sKoJ47z7U6n07Eyo9g9Dxp6VVXXbXBjwKl2G677boLrFmzZiW9COn5Fcs9T/qbo+fJaDd0jqCZM2e+pMvYlOQ8fjcHq7aZAwcOjPe+973rzT799NPr/XnP+/CGshErz5myvo/dbqzt59ChQ+M1r3lNnHPOOXH99dfHPvvsExErv1K757e7vRwpX1He83fsedL5Whg7dmw0NKx8n3bWrFlJb3Ck3Ka9qef9KeX2T7mO+T/bb7/9asXp7NmzN/hvemZGjRpVk3UBG4dSBzZTkyZNij//+c/df3/f+963xlEYGzrfTk9PPvlk99dors+qHc+I2ODXqdbi8jfkLW95S/cOeFdX12ond9xmm226P0a0YMGCuOeee1725eVcHxtDz6Nq7rvvvtXOrbOuUqfnzyZOnBiLFi3aKOfTWeWjH/1o9zepvPDCC3HJJZe8pDk9S5QBAwbEnnvu2f33v/zlL+v9t11dXXHzzTd3//2lftV0z2+I2tDJVe+6666XdBmbsvU9fjcHq7aZgwcP3uBJo2+66ab1/nzVkS8RK4+A29A5wW655Zb1/rwW288NGTx4cHzoQx/q/vszzzzTK3NXfc36+vz1r3/t/nPP67IWBg4c2H2i9mq1Grfeeut683Pnzo3HHnuspmt6sZ7XwS233LLB8z31vP56wyWXXBKTJk3qtf9q/byWq1KprPbxwlVHLa5LZ2fnam++7L333jVbG1B7Sh3YDD355JPxmc98pvuksiNHjoyTTz55jVzPkxn2/HrnF+vq6orvfe97SZfd87wIG3oXvRaXn+vFJ7B8//vf3/3n73znO1nfuLS2ndieh833h6MKeh5Vc//99692Pp1V73ivzapSp729PX79619337e23Xbb9X4DR29YdaTGKhdccEHccMMNyf9++fLl8cUvfjHuvvvu1f5/z3N+/OIXv1jjK2N7uuKKK2LGjBkRsfLcBhv6aup16Vkkre9FzYwZM3r16343VbknoC3dqvJ74cKF6z2S6957793gC/+dd965uyhYvnx5/PrXv15ndunSpXHZZZdtcH29vf3M9eJvCHqppk2bttqbIi/27LPPrvbz3PMHvRRve9vbuv988cUXr/eoqYsuumijv4lw6KGHdp/3Zfr06es9amrq1KnrvX5Zu+OPP777zzfccMN63+i69tpru4/UGTFiRL8rqYA8Sh3YjMycOTN++MMfxgc+8IGYM2dORKx80fPjH/94rUfCHHDAAd1//vOf/xy33XbbGpklS5bEF7/4xbj33nuTPp/d8zD0nuddWZvevPwZM2bEhz/84bjhhhvW+UKiWq3Gb3/72+53c0eOHLnaRwYiIk444YTur7OdMmVKnHLKKes9lLylpSVuuummOOWUU9ZaTPW8Ph544IGkjw5Nnz49xo8f3/3fqhNJ94Z99tmn+4XPggULusuRffbZZ73f5NPzKJ7LL7+8+8+1/OhVT1/4whe6j47p6OiIL37xi3Heeeet9xD0ZcuWxaWXXhpve9vb4vrrr1/j5+94xzu6C6mZM2fGWWedFfPnz18jd/3118e///u/d//94x//+Ev+au2e77T+5je/iYcffniNzLRp0+K0005bb8m0qemtx++mruf5rc4999y13kfuuOOO+OxnP5s079RTT+3+889+9rO1FokLFiyIs846K+bNm7fB54De3H5+5zvfie9973vr/djt7Nmzu0/+HrH69bPKhAkTVtuepqhUKnHeeeet9ZvWnnvuuTjzzDO7S5Ujjzxyo3w993HHHdddmjzzzDNx9tlnr3HepGq1GpdccklceeWVyedT6Xnd9DxyM1dDQ0N87GMf6/77t7/97bUWi9OmTYuzzjqr+yvaSbf//vvHG97whohY+dj51Kc+1f1mQ0933nlnfPvb3+7++ymnnLLaR3+B8jhRMmxCbrjhhtUOqW5vb4+lS5fG/Pnz49FHH41nnnlmtXc7t9tuu/jWt761zkPDd9111zjyyCPj1ltvjc7OzjjzzDPj0EMPjT333DOGDBkSzz33XNx6662xZMmS2HXXXWOnnXba4CH9r3vd6+J///d/IyLi61//etx///3xile8ovtjSEOHDu1+V7M3L79arcZDDz0UDz30UPe3OO22224xatSo6Orqinnz5sVdd921WkFy5plnrvHivLGxMX784x/HKaecEjNmzIgnnngiTjjhhNhnn31in332iS233DLa29tj0aJF8fTTT8ejjz663o8t7LjjjrHjjjvGs88+G1OmTImTTz45XvOa16x2BM9hhx220V6cNjY2xn777df90YhVL6DX99GriJVHp6z6PXq+6N5YpU5jY2NceOGF8aUvfan70P4rr7wyrr766thzzz1jr732ilGjRkWlUokFCxbE008/HQ8//PBqLxx6fhQuYuW7+t/+9rfj1FNPjebm5pgwYUK8/e1vj6OOOirGjRsXzc3Ncd9996127qc3vOENcdJJJ73k32PfffeNI444Iu66665obm6Oj3zkI3HUUUfF7rvvHh0dHfHEE0/EnXfeGR0dHfGJT3wifv7zn7/kyypJbz1+N3Uf+chH4q9//Wt0dnbGPffcE29961vjDW94Q2y33XaxbNmyeOCBB7rvr6eddlpcdNFF65335je/Od761rfG9ddfH52dnXHuuefGFVdcEYcddlgMHjw4nnvuufjb3/4WS5cujbe85S0xadKktb6IXKU3t59LliyJa6+9Ni699NLYYYcdYu+9947tt98+Bg8eHEuWLIlnnnmm+7ESEbHDDjvECSec8BKv2dV98IMfjMsuuyzOOOOMOPjgg2P//fePxsbGmDJlStx6663dXxE/evTo+Nd//ddeucwNGTp0aHz961+PT33qU9HZ2Rm33HJLvO1tb+u+/ZcsWRJ33nlnTJkyJbbYYot4wxveEH/4wx8iYuOdMPd973tf3HLLLXHvvfdGa2trnHXWWXHggQfGgQceGI2NjfH000/HrbfeGm1tbXHyySfHpZdeulHW1VemTJnS/W11q7z4/v65z31ujX93xhlnrPOE31/96lfj6aefjueffz6mTJkSxx13XBx11FGxyy67RHt7ezz00EOrvaH26le/Oj7ykY/0wm8D9CWlDmxCrrzyyqTcVlttFccff3x87GMfiyFDhqw3+61vfSs++clPdpdF99577xqf1d5jjz3iBz/4QVx44YUbvOy3vOUt8fvf/z4eeOCBWL58+Wona45YWTT1PFS9ty6/vr4+6urqoqurK1paWmLChAnrfNdx4MCB8alPfSpOPPHEtf582223jSuuuCK+/vWvd39EZuLEiau9uH+xMWPGrPNEz1/84hfj05/+dHR0dMTDDz+8xtEZ55133kY94uCQQw5Z43wXGyp1VmVefA6TjVXqREQMGTIkfvSjH8Xvf//7uPjii2PWrFnR2dnZfQ6Eddl1113jzDPPjNe//vVr/GyfffaJX/7yl3H22WfHjBkzYtmyZWv9WEClUol3v/vd8eUvf/llv0D61re+FZ/4xCfi6aefjo6OjrjppptWKysbGhri7LPPjje+8Y2bTanTm4/fTdnee+8dX/va1+Kb3/xmdHR0xMKFC9f4mEtDQ0N8+tOfjje96U0bLHUiIs4///yIiO6j2R577LE1zsdyxBFHxNe//vXuj3+s72NOvbX97FnYPf/88+v9qMnee+/dq19xf9RRR8V2220X3//+99d5X9x+++3jJz/5yWpfG11rr3vd6+Lb3/52nHvuudHc3BwLFiyIq666arXMqFGj4j/+4z9WOyfXuj6m+OKPvK06d9lLVVdXFz/+8Y/jc5/7XPflP/DAA/HAAw+slnv7298en/70pzf5UmfhwoUbfCNsbT9/3/vet8786NGj4+KLL45/+Zd/iYcffjhaWlrWeiRqxMqju7761a9GfX193sKBfkepA5uwQYMGxdChQ2PYsGGx4447xh577BH77rtvHHrooclP4iNGjIjLLrssrrrqqrj++utjypQp0dLS0v3Rhre85S1x3HHHJb8j3tDQEBdffHFceeWV8de//jX+8Y9/xJIlS9Z5qHVvXf4222wTf/vb3+Kuu+6KBx98MCZPnhwzZsyIJUuWRKVSiWHDhsVOO+0Uhx56aLzzne/c4FeVbrHFFvHDH/4wJk+eHP/zP/8TDzzwQEyfPj2WLFkSDQ0NMWLEiNhxxx1j7733jiOOOCIOOuigde4Qv+51r4vLL788/vu//zsefvjhmDVrVrS0tPTKOSReihd/tv7F34q1LgceeOBqLyB32GGHjf6Vr5VKJU488cR45zvfGbfffnvcfffdMXHixJg/f34sWrQo6urqYvjw4TFu3LgYP358HH300Rv8yMX48ePjz3/+c1xzzTVxyy23xFNPPRULFy6MpqamGDNmTBx88MHxrne9q/v8Iy/X6NGj4/LLL4/f/e538Ze//CWeeeaZaGtri6222ioOOeSQOOmkk2KPPfbo1Y/d9Xe9/fjdlL3zne+MvfbaKy677LKYMGFCzJkzJ5qammKrrbaKww47LN71rnfFq171quT7T2NjY3z3u9+NY489Nq6++uruk6FvscUWseuuu8axxx4bb3vb26Kurq774z49z522Nr2x/Tz33HPjuOOOi3vvvTcmTpwY06ZNi/nz50dLS0s0NTXF1ltvHXvuuWe8+c1vjqOOOqrXj0b54Ac/GAcccEBcccUVMWHChJg7d240NjbGuHHj4s1vfnOcdNJJvXYOnxzHHHNM7LvvvnHZZZfFHXfcEbNnz46GhobYdttt46ijjoqTTjopRo8eHTfeeGP3v+l5ZGhPPT/ats0226z3vGqpBg8eHBdddFHceOONcc0118Tjjz8eS5cujVGjRsUee+wR73rXu1b7RkPyjR07Ni699NK46aab4sYbb4zHH3885s2bFw0NDTFmzJg48MAD44QTTnByZNiEVCZNmtQ3rxoAANgkzJ49O974xjdGxMoj3H7729/28Yp611e+8pW49tprIyLiV7/6VfEnlv34xz/efUTmtdde2/3NZD1dfvnl8W//9m8REfHlL395vUeIANB3nCgZAICX5fbbb+/+c89vcaP/WbJkSTzyyCMRsfJjqz1P2N/Tqq+83mqrreJd73rXxloeAJmUOgAAvGTLly+PX/7yl91/X/UNPPRPF198cfcJeY888sh1fjRt1bluTj755HWedweAvqfUAQBgra677rr44x//2P2NTi82Y8aMOP3007vP0bPrrrvGYYcdtjGXyP9v4cKF8e1vf3ud30DW3t4eF154YfcJiCuVSrz//e9fa3bq1Kkxf/78GDly5GZ50nGAkjhRMgAAazVz5sz40Y9+FN/97nfjoIMOil133TWGDBkSy5cvjyeffDLuueee7hPdDxw4ML71rW9ttK/IZnWdnZ3x29/+Nv77v/87xo8fH3vttVdstdVW0dHREdOnT4+///3vMXfu3O78ySefvM6TH++8887r/dZAAPoPpQ4AG92dd9652jervBSnnHJK7yyGTdqUKVPizjvvfFkzjjnmmM36G7UiIpYtWxa33npr3HrrrWv9+VZbbRXf+973Yq+99tq4C2MN1Wp1vV8TX19fHx/96EfjrLPO2sgrA6AWlDoAbHTXX3999zfJvFRKHVI8+uij8f3vf/9lzdhrr70221Lnve99b2y99dZxzz33xD/+8Y9YsGBBLFy4MCJWfjX5q171qnjNa14Txx9/fJ98hTf/Z8stt4xLLrkkbr/99nj00Udj7ty5sWDBglixYkUMHz48tttuuzj44IPjhBNOiB133LGvlwtAL1HqAACwVsOGDYtjjz02jj322L5eSp86//zz4/zzz+/rZaxXpVKJgw46KA466KC+XgoAG1Fl0qRJ1b5eBAAAAAB5fPsVAAAAQIGUOgAAAAAFUuoAAAAAFEipAwAAAFAgpQ4AAABAgZQ6AAAAAAVS6gAAAAAUSKkDAAAAUCClDgAAAECBlDoAAAAABVLqAAAAABRIqQMAAABQIKUOAAAAQIGUOgAAAAAFUuoAAAAAFEipAwAAAFAgpQ4AAABAgZQ6AAAAAAVS6gAAAAAUSKkDAAAAUCClDgAAAECBlDoAAAAABVLqAAAAABRIqQMAAABQIKUOAAAAQIGUOgAAAAAFUuoAAAAAFEipAwAAAFAgpQ4AAABAgZQ6AAAAAAVS6gAAAAAUSKkDAAAAUCClDgAAAECBlDoAAAAABVLqAAAAABSoYX0/HD9+/MZaB7AJmzRp0gYztjdAb7C9ATYW2xtgY1nf9saROgAAAAAFUuoAAAAAFEipAwAAAFAgpQ4AAABAgZQ6AAAAAAVS6gAAAAAUSKkDAAAAUCClDgAAAECBlDoAAAAABVLqAAAAABRIqQMAAABQIKUOAAAAQIGUOgAAAAAFUuoAAAAAFEipAwAAAFAgpQ4AAABAgZQ6AAAAAAVS6gAAAAAUSKkDAAAAUCClDgAAAECBlDoAAAAABVLqAAAAABSooa8XAMDLd/rIkVn5CxcurNFKaudftt0qK//tmXNrtBIAAOgfHKkDAAAAUCClDgAAAECBlDoAAAAABVLqAAAAABRIqQMAAABQIKUOAAAAQIGUOgAAAAAFUuoAAAAAFEipAwAAAFAgpQ4AAABAgRr6egG8NNvHYVn5F+KejPSBGdkHstYBpDt95Miazf7MVqOSs5cuqmbN/t2YYcnZ5wal/477VpdlraNtTFdy9hcrluTN7ki/Tj4yKP36iIi4cOHCrDyQqFJJzw7M2+5FS14c6HsZW4SIiMjcKsBG40gdAAAAgAIpdQAAAAAKpNQBAAAAKJBSBwAAAKBASh0AAACAAil1AAAAAAqk1AEAAAAokFIHAAAAoEBKHQAAAIACKXUAAAAACqTUAQAAAChQQ18voDz7Z2Qfypo8JN6bnK2v1GfNbqzukZwdGu3J2YWxV9Y6DmtKz97TcnvW7IhpmXno3z46Ylxy9r8XP5s1+1+3PSA5u/vgRVmzDxyc/kB/eumS5OzB2+6ctY6TZkxJzn5jzBZZs3O2Zf81Z0HW7Kam9KfmlpaOrNmwycl5e7Kump6tZu4iD854LK7IGw3URn0lL99RTf8HQxsGJmeXdbTkLQRexJE6AAAAAAVS6gAAAAAUSKkDAAAAUCClDgAAAECBlDoAAAAABVLqAAAAABRIqQMAAABQIKUOAAAAQIGUOgAAAAAFUuoAAAAAFKihrxdQC4Pi4JrNbs7owXZr/EjW7MHbvzs5u3D5Nlmzdxw4MDlb19CWnB3anncXatx2RHJ2/3mLs2Y/03BncnbR02dkzYZ1+croXWo2e2hjY3L2lUN3ypp92bMPJmdP3ir9cRsRsXDG/OTs6xd3JGenLnsmax1XdqTP3mLZ6KzZM+c+n5wdMTRv9h+GbZec/eH89Os611+WL6/ZbFiXhrpKVr6joZqcHdaVvk2tH9ietY7Fy9P3h6qRvm3qTwZW8m6bHK3V9NsR1mfIgAHJ2eVt6a95Vkq/ny7raMmcnSHn5VdD5uO2xWOxRI7UAQAAACiQUgcAAACgQEodAAAAgAIpdQAAAAAKpNQBAAAAKJBSBwAAAKBASh0AAACAAil1AAAAAAqk1AEAAAAokFIHAAAAoEBKHQAAAIACNfT1AmqhOSZkpA/Imr3zgL2TsyvGvjdr9tPP7JgeHjIia3Ysq0/Pjhianm1uy1rG8481p4dHZlwfEbHP0PHJ2UXbTsyaHTMvysvTr5w+cmRy9sKFC7Nmnz/vH8nZx195WNbsvy5rT84ePGNS1uxBjemP3ZbnFmTNHtyVnt1mWHq2eVnWMmJIxmavc9nzWbO36ByUnD2hYVHW7Ktb099vOWCLjO11pts7W7PyLS0dNVoJm5OOrmreP8jYDVlan75NjeWD89bRuSIvn6WSnBwYjVmTWzOuwNZq5m0D65DzArRSn37/j4gYMWJAcnb53LzXMZE+OmvbFAMzj7NoTd/R2mJQ3vW3IuNx3pa3m0ANOVIHAAAAoEBKHQAAAIACKXUAAAAACqTUAQAAACiQUgcAAACgQEodAAAAgAIpdQAAAAAKpNQBAAAAKJBSBwAAAKBASh0AAACAAjX09QJSDIqDs/KVqCRnV0RH1uy2bY9Pzi6dd1jW7BjSlZ5tyOzjVjQnR+sr9cnZzo5q1jIaR4xKzrbPWZg1+6kBg5Ozew/9StbsRxtvTg+3t2bNjng+M0+ugQ3p24SvjN4la/aIxoG5y0n2po65ydnLoi1r9pnpD/NobskaHTEkPVrNebgMy1tGzuy29LtIRESM7Erfps5Znr7di4h4U336jTN6izFZs/ed/EhyNvdpBtYpY3sTnTVbRdbsAU3pj/GIiLZarrsufV9rRMb2NyJiztLMtUAvyHn1NXpQ3muNmUuX5S0mR96uVrrWjNeAmRYtrd1s+g+7bAAAAAAFUuoAAAAAFEipAwAAAFAgpQ4AAABAgZQ6AAAAAAVS6gAAAAAUSKkDAAAAUCClDgAAAECBlDoAAAAABVLqAAAAABRIqQMAAABQoIa+uuCm7d+XnG1uWZQ1e/TgE5KznZXlWbNbYkhydsnSjqzZES+kRwc9nDm7PjnZOSNj3QOHZ62ifWbG7B1GZs1ueWbr5OzCIfdmzd69umNyduCgStbsts6dkrNPtN2eNZuVfjh3QXL2xC3SsxERh3c1JWdXLO3Kmj24LX0T/aHMrfn8jIfi49vlzV585CuSsy0d7cnZLW+embWOiYcOTc4eecuyrNmV1+yanN1jSt7t/ppZ05OzKxbkXSdDGgYkZ1u72rJmky/91lip2FukMz1aPzrvObRzXvr+zZBR6Ru+5Qsyb50hrcnRgXWjs0a3Lp2XnF2StymLiJzru5o5O/22ybqTsFHkvPOf9yyXZ3593jahuiz3ftr3KpmHWQwf1ZicXTwvfT8rIiKaMhbTknfLN2ZsVtuLfcLrG47UAQAAACiQUgcAAACgQEodAAAAgAIpdQAAAAAKpNQBAAAAKJBSBwAAAKBASh0AAACAAil1AAAAAAqk1AEAAAAokFIHAAAAoEANfXXB2y+qJGcHb39G1uyJLcuSs3Xty7Nmz5v5k+Ts6/d5U9bsgdvcm5yd89zirNkz56VfJ7vsOCY5+/epe2atI1rnp2fnDMga/er9nknO3vdwS9bs6XVPpYfbu7JmR0drcnSLum2yRi/qmpW3lk3UwIxN3f8u6sia/bXR6duyoVuNzpp97jNzk7Ov23PbrNn3Pz4zObt45MCs2RP+9Fxydrf0zU3se1Bj1jqenJa+3Zu8e9bo2LL9+eRs3cK8dR8S6duEQel3v4iIGD1qSHL2sjltecP5/6XfKG1RreE6ytQ5L/M6GZi+zV6+IH3s2FHpj8OIiOkZs1sr87Jm5xg+NO85rLI0/f3dzujMmj0w0p87WiJv36k98vbjyJe5N1sz1cW1205uOSwvP2bUoOTsE882J2eHNuWtY2DOc3/uIRwttbvl2+1W1IwjdQAAAAAKpNQBAAAAKJBSBwAAAKBASh0AAACAAil1AAAAAAqk1AEAAAAokFIHAAAAoEBKHQAAAIACKXUAAAAACqTUAQAAACiQUgcAAACgQA19dcFTlv13ergyLmv21l1jkrOzl96eNTu6nkuO3jbxjKzR2zzdlJxd0NySNbszIzt7Xs7k9DWv1JYeba1kTX7g4fTfsiNrckR0Zaylq5o7PdmirpqN3qS1ZtziH8ucfU1b+n3j9fPzZs+LQcnZ656bmTV74tD07MLHWrNmr8jIPv1Mevbv09uz1rE8Y3Mzsj5rdLR0pl8n4yPv+mvOyI4YMSJr9mVzFiZnBzU1Zs1ubsm7fTZdOc8Bec9zebPz5LzLV8unote+Mu8+vcsuo5OzXQPTd3ufn7Y8ax3/9LqRydkF8/IeK3e/8GRydt7MvFsnZ/8wczMZS7OeDWDjm780N5/zDJ1uaeZDZekKz7eszpE6AAAAAAVS6gAAAAAUSKkDAAAAUCClDgAAAECBlDoAAAAABVLqAAAAABRIqQMAAABQIKUOAAAAQIGUOgAAAAAFUuoAAAAAFKihry54XP3hydn2+qOyZnctuzg527BkWtbsjmjNyueY19ySnO2s2Spypa+51mp3y0REVNOjAxrzRre1J0crlUrW6Go1Y92bsKYYkZzdbtDirNkLltYnZy8YmNejL4/lydn/XZY1OoZlZNPvoSt1ZOZTNTXl5Re1pWcXZG5Uc+IL80ZnPTEvXJR3f33D4IHJ2b+tqO1WlYis55ZM6VumlXKeuWr5zH/HU3n36ccz8vMz5r56t7xd5IuveSErnyNne52x2YuIvPtJ7uyca7BWzxuwucvcdYqcVxrNmbOpHUfqAAAAABRIqQMAAABQIKUOAAAAQIGUOgAAAAAFUuoAAAAAFEipAwAAAFAgpQ4AAABAgZQ6AAAAAAVS6gAAAAAUSKkDAAAAUKCGvrrgaZ13J2d3nfarrNlTlk3LSD+YNXtwRg22847bZc1+Ycb85Oyi1tas2cMyskuzJvcfOQ1lV81WERFt7Vnx+vradatdGb9otVqt2Tr6WkssTs6e11yfNfuRV+2VnD1p8j1Zs2cMTc/uOjhvc/7cnI7k7LaDskZHe2d6dnpbenbR8rx15Nh6QF5+Qca6H88bHXtnZLccuUXW7D8uXJScratkjY6uTXcTUjv96EpuqdnkPF896Yis/M33PpqcvfuZ9OeCXcbtmrWOv095Mjl73mn/lDX7zrvTtyI3Pjwta3bOPbAxa3JE3t4Qm5PdRqXfm+oa8/bLnpudnt2ukrflezZjE5y+lxXxtn3HZK1jwrT0bdnwtrzXjEua07MZUWrMkToAAAAABVLqAAAAABRIqQMAAABQIKUOAAAAQIGUOgAAAAAFUuoAAAAAFEipAwAAAFAgpQ4AAABAgZQ6AAAAAAVS6gAAAAAUSKkDAAAAUKCGvrrgcfWHJ2fblz+TNXuroUOSs3OXZY2OLYY3JWfru1qyZq9obc1bTIalGdmGjK6vI7qy1tGYkW3PmhyZK6md+gF5D6vOto702fV62JeiKUYkZ4cMTn+MR0T84h9TkrMjBwzMmj01Y5uwxyu3y5r99JznkrPz0++iERFRGZARbkuPNg2oZK2jpbmanJ2RsY6IiPTJtfXHhYuy8nU5m5D+8ktuyrpqdyXXZ+Y7M7J777tV1uzGGc3J2fN+d1fW7Lfvv2Vy9qCdBiVnjztyfNY6Xliavr3+6oV/y5r9/re9Mj38cNboLLn7ZbAu43feOjn73IIVWbN33zV9J+ShKbOyZud44/j033HgoJwdp4j9dts+OfvgszOzZs9rzru+a6USeft81c18p8UrRAAAAIACKXUAAAAACqTUAQAAACiQUgcAAACgQEodAAAAgAIpdQAAAAAKpNQBAAAAKJBSBwAAAKBASh0AAACAAil1AAAAAArU0FcXPK3z7vRwY2PW7GFthyZnR9a9Nmv2vBV3JGdnLGrJml3JyA4ZlJOOiI70/q65vTM5m9sKpk+OaBqQObstPdueNzpLZ3tH7WZ3dtVs9qasJRYnZ09ckZ6NiJgcw5Kzy7ImRyzJyN724HNZs+szNiFLcx8wGfmcLdnilmrWMioZw6t5o2sq5zo5JHP2xMb0p/2W1tpty6i9jKfEiIgYu1V69tFH5mbNvubfPp6c/coP/5g1e+6c9OfFj73vqORsR0fOHkvEia/bKzlbtyRvv7ZtQfre1oCsLUhEV6Rv/DL3PDMms1HkPClGZD0x7rNb3n36D/e/kJz90gkHZc1etLw5OXvIDun7cBERnRk7TzlXd/2gvBc9W3al3zY7DRubNTsGpq/lZzc8ljc7Q9UWJIsjdQAAAAAKpNQBAAAAKJBSBwAAAKBASh0AAACAAil1AAAAAAqk1AEAAAAokFIHAAAAoEBKHQAAAIACKXUAAAAACqTUAQAAACiQUgcAAACgQA19vYAUu8RhWfmO9vbk7Mxq3lra2vLyOZoq6dnOlsyFR2dyckDG1JbMVWTJvK4bMq6/9tyrL0fm7EolY+GZqtVa/qKbpv8dvE1Wvppxg++7ojVr9viM7KSsyRFdGXeNutrdRSNndGcN7851mW9xVLsysnmjs/L3Zc6O1o7cf0Ghct+1mz23JsuIiIiuxubk7Le/eWLN1rHFsIHJ2cN3HJs1u74+/RrffudXZM3uWLo4OXvVAw9nzW7I2NeyR1G4Gu4TTnw6/bVXrm+e+Y6s/Ge/f2VytqFpaO5yktVl7Dz96A8P1mwdZx2/f1a+2lHDF7vUjCN1AAAAAAqk1AEAAAAokFIHAAAAoEBKHQAAAIACKXUAAAAACqTUAQAAACiQUgcAAACgQEodAAAAgAIpdQAAAAAKpNQBAAAAKFBDXy8gxdSOO7Py1Wo1ObttHJ41e2ZGtr6SNTo605cdTQPyZre15eVTDcisBesyfsfIyUZER2a+RDn3bV6aeStmZeWbmtI3o3+LjqzZ47PSebIeipl3u/oavV1QyZxbn5HN/R278uJZmms4m81H7n20lu/yjRvemZxdMihz56mavg3u7Ei/Vhpec3bWMm799aeSs8MGNWbNHl7JeO7IvCEzr20KVleXd+fo6qrlM1261ozHbUTEv5x+bHL2ick5r+wirr/78ax8qq+d/Oqs/NIVefuTOb74ybclZy/4n8dqto5cOffv/nLf7k2O1AEAAAAokFIHAAAAoEBKHQAAAIACKXUAAAAACqTUAQAAACiQUgcAAACgQEodAAAAgAIpdQAAAAAKpNQBAAAAKJBSBwAAAKBASh0AAACAAjX09QJqYcd4TXK2JVpqto6ual6+kpFtbs+bnbOUjpzBXXnrYE3VavqtU6nk3EvyZvPStLSkP2IGxRZZsyfForzF9BOdOXfTzpotI2tbVqnPmz0gI9uWNzr+kZmH3pD13J+pri59Z2GLat4jZujQ9EdjZ1f6bzn592dlrSNnT2tJS2vW5NbO9Nl1mU/7mbuTsPFV845BaKhLf0Lfe/xOWbMHDBucnB07Zous2bUyf+GSrPy8jHxD1qvXiM6M7aRXMHkcqQMAAABQIKUOAAAAQIGUOgAAAAAFUuoAAAAAFEipAwAAAFAgpQ4AAABAgZQ6AAAAAAVS6gAAAAAUSKkDAAAAUCClDgAAAECBGvp6AbXwbNyZnB0bh9RsHdXM/IimSnJ2cUve9Jx0XQxKztZn9oLt0Z6RbsuaPThjKSu6skbXVt2A5Gi1K+86oX8ZPmxgVr55aY0WEhEjGtOzi3MethHRUJe+LevozN1S1saIIXm3Tcfy1uRsW2fuamDTMnVB+uPlla9I335ERLS1pc++50vPZEzO2zYt62pJzh769d2yZj/47ILkbCXv6oM+0RDpd9RKffp+ckTEkub0bcIWDXkvCF614zbJ2W3efG7W7FqZfNU5WflFzenbstyjQzoy8zm66psywitqt5A+4kgdAAAAgAIpdQAAAAAKpNQBAAAAKJBSBwAAAKBASh0AAACAAil1AAAAAAqk1AEAAAAokFIHAAAAoEBKHQAAAIACKXUAAAAACqTUAQAAAChQQ18vIEW1Ws3KVyqV5Oz06n25y0nWkL6MiIiY35L+e+becJ0Z2YZoTs52Za6jllb0k8Xk3P8iIqpdbTVaCf3N7KWz+3oJ3Ra3p2dztzcd7enbsvr69LmVurzH1oCG9OFtHXnPMytyNqpQggEZ2cynrXedc01y9tH//kTW7PqG9C3Uof9vXPrgzH3P9o6O5Gxr5ux//s7N6eHGrNE1vd3pX7q68naU6+rS3/vPnd0V6Y+BBx+dnDX7NQfumpyd25qxMxQRzc3pD4IZN34jOZv5kjGimn59z124NGv0dsOHJGc7K3nbsoybPev+FxHR1b4iby2bGEfqAAAAABRIqQMAAABQIKUOAAAAQIGUOgAAAAAFUuoAAAAAFEipAwAAAFAgpQ4AAABAgZQ6AAAAAAVS6gAAAAAUSKkDAAAAUKCGvl7ApqyrmpcfUEnPVjNn57R3tWz66jOyHZmzuzLzOSqV9BunmnnjZNzsNZV5l2IzknvfyLlP52wTKpmPrY629K1IW2fW6H4jd/vhcc46tfX1AlaqNi/Lyr/qYz9Pzj52+RnpgzOe9yMiGhsHJGf3e99Ps2bnqMvcs+9qrs06YH1y9tlvuueJrNkDGtP3LHbcdbus2dsNG5icnbt0eXI293VdzuZpt62HZ80e9IavJ2frM3dCKnXprzK7umr5ym7T40gdAAAAgAIpdQAAAAAKpNQBAAAAKJBSBwAAAKBASh0AAACAAil1AAAAAAqk1AEAAAAokFIHAAAAoEBKHQAAAIACKXUAAAAACqTUAQAAAChQQ18voBaq1WpfLyEiIroy840ZFVtuG7e0Mz27xYgBmdNrY87itprNrq/LuwY7u3JvzXQ599ZKDWfDumRsPrK11XJ4oXIf57ApWdqVtw/Scvv5ydmm130ldznF6Wru6xWwqeiq4b5vjuWtrVn5rmr664dHHpmaNfstX/hNcvaV2w7Oml0rT81cUbPZnbkvNKr94z61KXKkDgAAAECBlDoAAAAABVLqAAAAABRIqQMAAABQIKUOAAAAQIGUOgAAAAAFUuoAAAAAFEipAwAAAFAgpQ4AAABAgZQ6AAAAAAVq6OsFbMoGZFZmLZ3p2cGNebMjY/acxW2Zw9NVKpWaZHN1dnVl5Wu3kjzVvl4AkC13++FxzuasuaUjK19fTX8+b7vjW8nZAa/916x1ALVRV83bJvzp9keTs0fst3vucpI9NXNFcnbkkLyX5AuXZ7ywq+mrGHss/YUjdQAAAAAKpNQBAAAAKJBSBwAAAKBASh0AAACAAil1AAAAAAqk1AEAAAAokFIHAAAAoEBKHQAAAIACKXUAAAAACqTUAQAAACiQUgcAAACgQA19vYC+VqlUsvLVajUjnLeW+oyldLTnza6Vml5//UiZq4bekfco93h5MdcHpKtvHJiV76pmbKE6MxcDJKmryztOoKurKzk7YOCA3OUk+8vdk2o2O8fi5vTrYyV7FqzOkToAAAAABVLqAAAAABRIqQMAAABQIKUOAAAAQIGUOgAAAAAFUuoAAAAAFEipAwAAAFAgpQ4AAABAgZQ6AAAAAAVS6gAAAAAUqDJp0qRqXy8CAAAAgDyO1AEAAAAokFIHAAAAoEBKHQAAAIACKXUAAAAACqTUAQAAACiQUgcAAACgQEodAAAAgAIpdQAAAAAKpNQBAAAAKJBSBwAAAKBADev74fjx4zfWOoBN2KRJkzaYsb0BeoPtDbCx2N4AG8v6tjeO1AEAAAAokFIHAAAAoEBKHQAAAIACKXUAAAAACqTUAQAAACiQUgcAAACgQEodAAAAgAIpdQAAAAAKpNQBAAAAKJBSBwAAAKBASh0AAACAAil1AAAAAAqk1AEAAAAokFIHAAAAoEBKHQAAAIACKXUAAAAACqTUAQAAACiQUgcAAACgQEodAAAAgAIpdQAAAAAKpNQBAAAAKFBDXy8AAAAANhX19fXJ2Wp0Zc3u6qzmLodNnCN1AAAAAAqk1AEAAAAokFIHAAAAoEBKHQAAAIACKXUAAAAACqTUAQAAACiQUgcAAACgQEodAAAAgAIpdQAAAAAKpNQBAAAAKFBDXy+AjSSnvuuq2SoAAAD63IDGvJfCbR0dydkRA5qSsws6mrPWkaWzWrvZ9BuO1AEAAAAokFIHAAAAoEBKHQAAAIACKXUAAAAACqTUAQAAACiQUgcAAACgQEodAAAAgAIpdQAAAAAKpNQBAAAAKJBSBwAAAKBASh0AAACAAjX09QI2abmVWSUj25U5u1qjdeT+jp01nJ0j9/oD+tw2WRuniFlZGz6A/zMsM7+0JqsA8qW/vK3GwKzJw5sGJGfr69NfyDRU89ZR35n+gqot68VXRDUzT//gSB0AAACAAil1AAAAAAqk1AEAAAAokFIHAAAAoEBKHQAAAIACKXUAAAAACqTUAQAAACiQUgcAAACgQEodAAAAgAIpdQAAAAAK1NDXCyhOfUa2s2ar6D9q+Tt21XB2zu0YsXncltAn0h+M7dkP3LbMPLApy9npXVqzVeQbkvEe7PKa7jxBX8h77q/UV5Kz7R3NWbPbO9Mfi02D07MdbXkvNDq6ch7n1azZlMmROgAAAAAFUuoAAAAAFEipAwAAAFAgpQ4AAABAgZQ6AAAAAAVS6gAAAAAUSKkDAAAAUCClDgAAAECBlDoAAAAABVLqAAAAABRIqQMAAABQoIa+XkCfq2TmqzVZRbbcNm5wRnZAY3q2mnl9LOpIz9bnjY6OnCsl93bPyfeT+wj0loGVjI1CRDRV25OzK6IzObs0IxsRMaRhQHK2taMta3bGpgyooYGDt0nOtq6YVcOV5BiRlV4ei2u0DugrGXv5lbyd9oHV9GfoIcPzXgrPX5y+f9OxLGt0llEj0vfLli1NX3NERFtX7mroDxypAwAAAFAgpQ4AAABAgZQ6AAAAAAVS6gAAAAAUSKkDAAAAUCClDgAAAECBlDoAAAAABVLqAAAAABRIqQMAAABQIKUOAAAAQIEa+noBNVHp6wW8NDkNWzVz9rKccHvm8BrpyMzXd6VnO3Pv+TmLyb3/5d6YsJG1VvM2CltsMSA5u3hRW3J2p0pj1jqe6UifvdWI9DVHRMxdnD4byFGflW5dMSs5O7puRHJ2XtfirHVE5GyfcmcPzsiuyJwNfaEzOTkgcz+5JSNft6J2L3pyX8fkWLw4fd3p1zQlc6QOAAAAQIGUOgAAAAAFUuoAAAAAFEipAwAAAFAgpQ4AAABAgZQ6AAAAAAVS6gAAAAAUSKkDAAAAUCClDgAAAECBlDoAAAAABVLqAAAAABSooa8XUBOVjGxX5uwa1mC5S+kPcq+OMQPTs7Na82Z35oSrebOhvxs1IC+/4/bDk7Pf/PABWbPbG5uTsw0tjcnZ2x6flrWOg3fbPjm7zZis0XHWdyYkZyfNzto6wSYoZ8fsVXmj69N3ZefVZey1bJG5i9zclpFdmjc75mTma2NQpSkr3x4tydkO+2WblUH16dlK5lNoQ/puRaxoz5udI2ert89uo7JmtyxKv1Imz12cNTtndzJjq5etIecKDNsQR+oAAAAAFEipAwAAAFAgpQ4AAABAgZQ6AAAAAAVS6gAAAAAUSKkDAAAAUCClDgAAAECBlDoAAAAABVLqAAAAABRIqQMAAABQoIY+u+ScOqk+c3YlI1vNGz2gMz3bljc6RmVkWzJnv3J0evaFeenZpZnrGJZx/TUOy5s9M2MxHe15s7PU8v6acf1FRERXZp5iDRy5VVb+N78+Jzk7YPgOWbO3GpCeHTK0Izm75T0Ts9YxZPjWydl9x++SNfuaw59Jzu5y+BeyZkfUcgMFvWFIZn7LjOz8vNHVcenZzkXJ0TGv2CdrGXPbFidnq8/mPPFHxPKmjPATebOjMTlZV83YuEdER/beKrWUfkuvVMtnovaM/dkhA/Nm5+zjj8i8UrYfmf4YmDE3/ZXgI08vyFrHLhmv68ZvmzU6Js3My9dKR+Zr9M2dI3UAAAAACqTUAQAAACiQUgcAAACgQEodAAAAgAIpdQAAAAAKpNQBAAAAKJBSBwAAAKBASh0AAACAAil1AAAAAAqk1AEAAAAokFIHAAAAoEANfXbJXRnZ+szZHZn5DG056860ICM7InP24/PSs22Zs3M8nXPbLM2bPSQjW8O7SN59+6XkYS1mzp6blX/TJ/4jObtgQcYGJCJa5rQmZ+synoUaMh+4nY0Z2fa82bvuul1GOnM49HvLM/NNycn6vY7Mmjx8xE7J2YUT7k3Oznk+Z68sojJ0dHJ28J5bZc1e8dizGeGs0ZGzfVpuW1a0/nTr5TydH37w/lmzb7jzofRw5j744jm1eZX0lU+8NSt//s+vr8k6KJcjdQAAAAAKpNQBAAAAKJBSBwAAAKBASh0AAACAAil1AAAAAAqk1AEAAAAokFIHAAAAoEBKHQAAAIACKXUAAAAACqTUAQAAAChQQ18vIElXZr6aka1kzs6wdWb+tivOSs6umD4xa3Zre2dy9snnW5Ozzz0/J2sd55794eTsgw/clTW7s6sjOXvI527Pmt1fNDU1ZeVbWlpqtBL6ncyKfsaT02uzjkwZD9sYMiRv9sLlGeHMZ8MpU2bk/QPYlGQ+Fj/6sTOSs8d8/ENZs3fZakRydsXTTydnZ1T3yFrHmKbnk7PPD9sua/Ze26T/jkeMHZg1u2VFenZg5k5za9YOOazdDXc+lPkv0p/QL3rg75mz0+/Tpx14aHL2/J9fn7mOdN+///6sfKWS/jt+7sCDc5fTL9TX12flOzvTX0f3FUfqAAAAABRIqQMAAABQIKUOAAAAQIGUOgAAAAAFUuoAAAAAFEipAwAAAFAgpQ4AAABAgZQ6AAAAAAVS6gAAAAAUSKkDAAAAUKCGvl5Aks7MfH0NZ2c4cPe8/LwFS5Kzb/7SbVmzf3bawcnZI/bcITl7y10PZa3j6r9OSs6e9M2/Zc3+6an7ZuVrpi6vK62v1K5bbWpqSs62tLTUbB3U3rkff3dW/ps/u6pGK6mdjvr0+/NKGffpjszRgzOyKzJnQz+39evPzMqPHbtLcvZjJ30sa/bSgbslZ6/63qeTs9c/Mi1rHe/aa2By9sy3vz5r9pJB49PDbVmjs7RGtXbD2awc89oDk7MPPjkla/acuYuTsyMPSF9HRER17gtZ+VSnvOvorPyv//DX5OzYvQ/Imj1/+tTk7ICoZM1uq+k2JH0t1cxl1NenlwudnTUsF9bDkToAAAAABVLqAAAAABRIqQMAAABQIKUOAAAAQIGUOgAAAAAFUuoAAAAAFEipAwAAAFAgpQ4AAABAgZQ6AAAAAAVS6gAAAAAUSKkDAAAAUKCGvl5ATXT29QJWmjo1L3/vg5OTs//0mv2yZo/bOT1/6Z//Jzk7Y3ZH1joeuP+x5Oxr9sgaHbvv8MqM9CN5w3N0dGXF6xrra7QQNiezZy/t6yXU3NIlLX29hP+zoq8XAH1n3qz5Wfkdj3pzcnbpOafkLeaV+yZH5zTunZz964T/zlrGoSP3Ss4umfNE1uwYtlt6tpI3Okt95v5KZz/ZIaffeXp6+jaklnfp91ZGZ/6LRbVYRnRVqzWZGxFxUpNjODYHbmUAAACAAil1AAAAAAqk1AEAAAAokFIHAAAAoEBKHQAAAIACKXUAAAAACqTUAQAAACiQUgcAAACgQEodAAAAgAIpdQAAAAAKVJk0aVJ1XT8cP378xlxLnxg9Ii8/b3Ft1hER8ebt07OH7L911uy2ts7k7FPPzEvOtrdmLSMa69Oz48YNz5rdsnxZcvaie7uyZvPyTJo0aYOZzWF7k60hI9uRN7qukp7NfrSs81llTZVKDd9bqKavvH5g7uj0G6ezPfPG4WXZlLc3dRkPl67sB27tNjg7nfW75OyHPvzGrNl7bLFlcvbCX96anJ29oi1rHWO2GJyc3e2g0VmzdxuSnv/Su7bKmh0Z+7WDGwdkjV7RnncdlmhT3t7keP0B6ff/iIjbHlyRnD3tPUdnzR45ckhytnFIejYioj5jv6KrPT3b0Zz3WKmvT38yaG/Ke9zWtbUkZ8//2Z+yZvPyrG9740gdAAAAgAIpdQAAAAAKpNQBAAAAKJBSBwAAAKBASh0AAACAAil1AAAAAAqk1AEAAAAokFIHAAAAoEBKHQAAAIACKXUAAAAACqTUAQAAAChQQ18voK/NW1y72QMz861t6dlbb52dOT1de1d6dtLyvNnVjOyB85Zkza4bkLeWEjU1NWXlW1paarQSNoqO2o3uynkw1lC1mrHBqaGO1ux/UYtlwHp11fThUrv7dPuspcnZi8/7Tc3WsWDRiuRsZfF9WbOfzdimTnn4yKzZfxkwOD1cw/3aFe0ZO6psVm57MP2xlevnV/8tK//Fjx2bnG1dtDB3Ock6MrbX37/0hpqt44sfeWtWvlq/6dcD9fX1WfnOzs4araT3OFIHAAAAoEBKHQAAAIACKXUAAAAACqTUAQAAACiQUgcAAACgQEodAAAAgAIpdQAAAAAKpNQBAAAAKJBSBwAAAKBASh0AAACAAjX09QI2ZdXMfHPGP6h05s2ur8/I1rDqO2BIerYr8wrs3AwqypaWlr5eApuKSno096GV+9gtUiXjWql21W4dUIDqgGHJ2TnPPZs1u2HQ0PRwXfrjtuWRu7LWMeCozydnFyzJey4fud22WXnYlDTUZeywRMQPfn1jcna3HbfKmn30wbtm5VOd+Z7XZ+Xr69Ovk5aW5qzZF1x+a1a+RJ2dmS+kC7AZvAwGAAAA2PQodQAAAAAKpNQBAAAAKJBSBwAAAKBASh0AAACAAil1AAAAAAqk1AEAAAAokFIHAAAAoEBKHQAAAIACKXUAAAAACqTUAQAAAChQQ18vgB660qPVxrzRS9vSszlN326D8taxLON37OjMm92wGdybm5qasvItLS01Wgnlq09OVuvzHozpkyM6Mx/n/UYlI1ut2SqgCK0t6Q+Ckdu9Imt285L5ydmmwYOTs0OP/desdeSYP+3ZrPysZR01Wgn0f52dGS8eIqKr2pqcnfyP6VmzZ89ekJxdtqI5a3attHTWbickZ1coov/sDtXX5+ypRnQWsLPqSB0AAACAAil1AAAAAAqk1AEAAAAokFIHAAAAoEBKHQAAAIACKXUAAAAACqTUAQAAACiQUgcAAACgQEodAAAAgAIpdQAAAAAK1NDXC9iUdWTmFyxOz44YmDe7vpKefXhF3uxaedWAvHzL0tqso/bqk5MtLS01XAeblWpnejR3Y5bzzFLNnF0jQ4fkvcex49htk7OPPTU9dzmwSRkWS5Kzi9ozdlgiYuCQYcnZ+deemTW7Vka++f9l5ZctXJ6cbc9dDPSBnEd5feYhCJ3puzfRUc3bCVmwNP1F0nZbpW+bFi7KexEzbPjw5Ozs+enb31z1mTdOVw33+bq6GpOznZ2ttVtIH3GkDgAAAECBlDoAAAAABVLqAAAAABRIqQMAAABQIKUOAAAAQIGUOgAAAAAFUuoAAAAAFEipAwAAAFAgpQ4AAABAgZQ6AAAAAAVS6gAAAAAUqKGvF1CanCss98qd3pGeHT4wb3ZdJT273+CMwdW8dbRk/I71GWuOiJiVsZb6vNHRmZnvT9PhZct8LHZ1pWcbGvNm56hmbBNaWjIWHRGPPTU9czWwKcnbw3nm6k8mZ0e/8+Ks2a3NrcnZLd9xYXK2LnMnZNjg9B2zqY8/lTU7Hvp5Xh76ubqMwwp223X7rNmPTX4hczXpcl72zJi7tGbrWD5/Sc1m5+jqzNt3ykvnSn8u2BQ5UgcAAACgQEodAAAAgAIpdQAAAAAKpNQBAAAAKJBSBwAAAKBASh0AAACAAil1AAAAAAqk1AEAAAAokFIHAAAAoEBKHQAAAIACNfT1AopTSY+2VPNGN2VkuxrzZj++KD2719C82TkG1adnJy3Lmz0w5zrpzJtdSwMyrpNaautH1wn9TMZ2LyKi2pWezbnbVXLXkbENzlkzMDAzn/4E3ZE5e+kN30/Ojj7uq8nZzra2rHUs6crY4Dz0/7Jmw6Ym56iCo/bfJWt2V8aOxZNTXsianbWOmk2uraaMdqC1o3bryFWXuY9YKzlPBb3JkToAAAAABVLqAAAAABRIqQMAAABQIKUOAAAAQIGUOgAAAAAFUuoAAAAAFEipAwAAAFAgpQ4AAABAgZQ6AAAAAAVS6gAAAAAUSKkDAAAAUKCGvl5AaTqqtZtdn5EdWMmbPSAj/9CyvNm10pD5O7Z2pGebGvNmL2/Py+foyrhP1WVeJzmzKV3mnSMy7hxdmaNzVpEx290Z+ovlNZvcsnRRVr7hlQckZ+f96fTM1QC10J6zX9GVdwxCVzX95e34PcZlzZ74xLTkbO5eWa00ZB7C0ZFx2wzIefEaEa2deXnSOVIHAAAAoEBKHQAAAIACKXUAAAAACqTUAQAAACiQUgcAAACgQEodAAAAgAIpdQAAAAAKpNQBAAAAKJBSBwAAAKBASh0AAACAAjX09QL4P8szsq3tmbOr6dkhlfRsS0Y2IqKSsY5aWp55/Q2or806cnVlXn8dXbVZB/1R7R5cjQ15D/T2jn7yQAeKM3zIwKz88ozn5+qub0vOdk65LmsdQG0MGrpFVv6Nh7wqOXv7xGcyV5MuZ09oYGPecRadGTv41RrukrVmvs6oy3zd2F/kvv7qC47UAQAAACiQUgcAAACgQEodAAAAgAIpdQAAAAAKpNQBAAAAKJBSBwAAAKBASh0AAACAAil1AAAAAAqk1AEAAAAokFIHAAAAoEBKHQAAAIACNfT1AnhpBjXm5SsZ2eZqerYrI1uyts6+XgH0nfaOzeSBDvS5JctbsvKDB6TvEA0ckD53QdYqgFppb2/Nyjc21Cdn33LYq7JmT3rsqax8qtb2rprM7W82l9eNfcGROgAAAAAFUuoAAAAAFEipAwAAAFAgpQ4AAABAgZQ6AAAAAAVS6gAAAAAUSKkDAAAAUCClDgAAAECBlDoAAAAABVLqAAAAABSoMmnSpGpfLwIAAACAPI7UAQAAACiQUgcAAACgQEodAAAAgAIpdQAAAAAKpNQBAAAAKJBSBwAAAKBASh0AAACAAil1AAAAAAqk1AEAAAAokFIHAAAAoEAN6/vh+PHjN9Y6gE3YpEmTNpixvQF6g+0NsLHY3gAby/q2N47UAQAAACiQUgcAAACgQEodAAAAgAIpdQAAAAAKpNQBAAAAKJBSBwAAAKBASh0AAACAAil1AAAAAAqk1AEAAAAokFIHAAAAoEBKHQAAAIACKXUAAAAACqTUAQAAACiQUgcAAACgQEodAAAAgAIpdQAAAAAKpNQBAAAAKJBSBwAAAKBASh0AAACAAil1AAAAAAqk1AEAAAAoUENfL4D+p1KpJGer1WoNVwIA0Dvq6+uTs8OG5L3vuWhJe+5yAKBXOFIHAAAAoEBKHQAAAIACKXUAAAAACqTUAQAAACiQUgcAAACgQEodAAAAgAIpdQAAAAAKpNQBAAAAKJBSBwAAAKBASh0AAACAAjX09QLof6rVxox0W83WARRqRMY2ZEB7enZu/lJS7fiKkTWb/exzC2s2G0g3YkQ1OdvRmZ4FCpV7eENXTVaRra6ukpzt6rIt2xw4UgcAAACgQEodAAAAgAIpdQAAAAAKpNQBAAAAKJBSBwAAAKBASh0AAACAAil1AAAAAAqk1AEAAAAokFIHAAAAoEBKHQAAAIACKXUAAAAACtTQ1wugP2rr6wUAubbM25yPGpeeXbC8I28tz7anZxdnzB2Xt4ytB6a/b/H84Iw1R8R2DcPSw89ljY4dXzEyOfvscwvzhsOmZkB6dHFXV3K2szU9C9RQJTNfrVE2IgYNTM82ttYnZ5dEZ9Y6urrSF96YvoyIiGjPWwr9hCN1AAAAAAqk1AEAAAAokFIHAAAAoEBKHQAAAIACKXUAAAAACqTUAQAAACiQUgcAAACgQEodAAAAgAIpdQAAAAAKpNQBAAAAKFBDXy+Al2bLLfPyA4dvkZztjFHJ2UGNi7LWMXTA4OTso4++kDUbNjVjDhqanJ3Tvixr9oKO9Owxr98ra/bJ7z8lOfvwlOeSszvtMDZrHa/aJj37y9/+Omv22B2PSs7+oP2qrNnPPjw3OTuyrnbvzSzs6qrZbFiXHcfWZ+UbG9OzQwelz565vC1rHXNmp2errVmjYfOWt0mIgYMHJGdbl+Q9zpszHrvN0Zk1O0vGddKeef1l6cqsEqoZO59kcaQOAAAAQIGUOgAAAAAFUuoAAAAAFEipAwAAAFAgpQ4AAABAgZQ6AAAAAAVS6gAAAAAUSKkDAAAAUCClDgAAAECBlDoAAAAABVLqAAAAABSooa8XwEszf0nuP1iUHB21fUdydtGiStYy2ltfyMrDpmTMQUOz8nPaliVn77z+x1mzXzP2U8nZ9rftkDX7v+65NTm7ZdO2ydkXnn4kax1X/G1hcra1bXTW7Gn3XZWc3aKuJWv2ov23Ss4unNmcNTvHjgMas/LPPpd+fbN5+cNFH07ONlXzZs9Z3Jmcff75qcnZhq689z332XuX5OyQIVtkzT7ylLztO/R39RkPr7qhTVmzxw3bOjm7aED6flZExMAt0l86z1nclpwdMqg+ax11K7qSs02Nea/Vnl80Pz3cnP6akdpypA4AAABAgZQ6AAAAAAVS6gAAAAAUSKkDAAAAUCClDgAAAECBlDoAAAAABVLqAAAAABRIqQMAAABQIKUOAAAAQIGUOgAAAAAFaujrBdDD0Pr07LLOvNlN6dElC1qTs0OHDcxaRuuyrDj0f/tlPLhyzUuPHnfm17NGN702fd1/veaGrNmRvgmJrfbYKjk794X2vHW0LErPZm5S60elZ499465Zs/fc6bjk7C9/8Yus2bMfWJycfTZrMpuT5+7+r6z8VoOrydllDSOzZrc1z03OTp++T3J2aXVB1jr23v5VydnOuvTrIyKiOvX3ydnKzu/Jmg19obMxPbt1Ne8J+unn05+9XrF93uuY6VPTd3Dau9LntmStIs+A3EM4MtZN/+FIHQAAAIACKXUAAAAACqTUAQAAACiQUgcAAACgQEodAAAAgAIpdQAAAAAKpNQBAAAAKJBSBwAAAKBASh0AAACAAil1AAAAAAqk1AEAAAAoUENfL4AeutJvjsrAzqzRQ4c0JmcbBnQkZ7ua89ax3Tbp2c7qoKzZsxc1J2d32Wq7rNn/eGZGVp5yHTBuWFb+weqK5Ow///PpWbNff/SOydnzvnN+1uxp81qSs/9oGpw1e8TwanJ27oS5ydmdXzcyax2Ln0jPzp+fNTr2f2X6Wt5xwglZsx/8y53J2bcc/fas2f/1wG+z8rA21z2wMCu/oJq+DbnjnluyZi+e256cHTpqQHK2MW/3JqbOvTc5W4n6rNmnvOOVydltRufNnjUv8xelX6lkZNOfmf9/OW/9N+WNHpHxCrRSSX+MR0SMHJ6enfZCa9bs/mLU8PR91QVLlmbN3nP7IcnZx19YnjW7PuN+0pl3s0ds5psyR+oAAAAAFEipAwAAAFAgpQ4AAABAgZQ6AAAAAAVS6gAAAAAUSKkDAAAAUCClDgAAAECBlDoAAAAABVLqAAAAABRIqQMAAABQoIY+u+ScOqmrZqvINm6HbZKz056flTd8RWtytJo3OZa2tqeHR+RMzlvJ4jk5o5uzZkdberRl23l5sylbxpbuwcVL82YvS4/+8ue/zBr9oaN/mpy9/76OrNmLF6Q/0AePTd/uRUR0PDE5OVtXNzQ5O/WqjCs7ImJQfXp2y2FZo++/M/2JqXHW4KzZX/3kp5Kz1/zPpKzZj716THL2gftzNtiRtQ2m/xk+Mj279bInsmb/+IdXJ2cHdq7Imv3w3OXJ2W0GD0nOHrjvzlnr6Hjq+eTss/MXZc2+fuaOGel+tNOcoVKpZOWr1dw94U1TTa+FnLtSS97oxRmzR+6c93J1WNuo5OzQhryFz6qmP59XW9NfB7blbfaiZWj6tiyW5O07Pf5C+jY1V2fNwjhSBwAAAKBASh0AAACAAil1AAAAAAqk1AEAAAAokFIHAAAAoEBKHQAAAIACKXUAAAAACqTUAQAAACiQUgcAAACgQEodAAAAgAIpdQAAAAAK1NBnl9zVZ5f8srz3pBOSs9/5w+1Zs7cd0ZScbX1qQdbsBW2d6eGO9vRsWyVrHbHVoPTsjIx1RETDqPS782dPfX/W7LPP+WZWnv6l0lCfnK12ZTxWIiJ2SJ/90VM/kTX6sQcfS86effR7smZPffSF5OwzT96XNXvoIYcnZyuLZyVnX3HsoVnrmPjX65Ozw7fNGh1D6/dLzg6cvzxrdl1H+n3qVxf/V9bsB+6bk5zdaZfRWbOfeWpeVp7+ZUlLevb//fZ3WbNnzFqUnF2cNTnPrBXpj8Xr7p5Uw5XkuXXys8nZ+qbM/bJ+olqt9vUSylSfcXt31vA6ruHruiXLd8rKT5v9dI1WEhGxpIaz062Ykb7v1K+05myfbBNyOFIHAAAAoEBKHQAAAIACKXUAAAAACqTUAQAAACiQUgcAAACgQEodAAAAgAIpdQAAAAAKpNQBAAAAKJBSBwAAAKBASh0AAACAAjX09QJKc/lVVyZnf/y1f8uaPWR+W3L2TxM7s2Z3tS1Nzj63bH5y9qNHbZm1jhXX3JicHbzLFlmzK53pv+PJJ78/a/bZ53wzK0//Um3JeLzsljf7tH8+KzlbmXl/1uzxh5yanP3G1/89a/ZDjz6ZnO3saM2aHVPmJUe3yBjbMXlo1jKWLV+cHn4ua3RE523J0UdX/CNr9HtOeFNy9szTT8uaPX/e+cnZKU+l345sAqrp0bkL8rYJGY/EfmPEkLz3PRcv76rRSvJ0tmTckP1IpVLJylerZf6eva6zhtdD3k2SJ2PZF3zppKzR7//Mf2Skl2XNrpXPfubzWfnf3HpXcnb5w/dkzc7Zuue9Go2InMdtJfPYk2r6NriuLm92V1f/2L6vjyN1AAAAAAqk1AEAAAAokFIHAAAAoEBKHQAAAIACKXUAAAAACqTUAQAAACiQUgcAAACgQEodAAAAgAIpdQAAAAAKpNQBAAAAKFBDXy+gNI1RTc7++qKfZc1+75HvTs7eNXlM1uz5M5vTw5W25Oidw57JWkfl9tuTs/8UI7Jmz4vFydkRDe76rMOkvPj/XPpfydl7L/9p1uxzz0t/vDz3/LKs2Z0drenh7bNGRwxsTI4u+kd7cnZ4+5ysZQxuSc+u2H5w3uzGpuTsky/MyJrd3pF+nfz8l7/Kmv2G1789OdvZdlPW7GeeXZCVp3956yG7JGdvvfMfNVxJnvRHYkTGJiEWL+/KXQovQ7Wavn8dEVGpVGo2m/9fDa+2ORNvSc5+/YqJecMbh6Zn2/P2nV69RXr274sGpM89+g1Z67hravrz7X0P35M1++tvelV69qbJWbOz1PBxmzu6ri79OJiurr557nCkDgAAAECBlDoAAAAABVLqAAAAABRIqQMAAABQIKUOAAAAQIGUOgAAAAAFUuoAAAAAFEipAwAAAFAgpQ4AAABAgZQ6AAAAAAVS6gAAAAAUqKGvF1CaAY31ydkH77k/a/Zee7wmOTukfkHW7DG7D03OVgcMS85WGruy1rHN3gcmZ+9akjU6hgwYlJyd1Zo5PEslM1+tySp4abbeIW+z+E8nfTA5+58/vCRrdv2A3ZOzg9tnZ83OMbxzZFa+s70tObs82pOz9R3zs9axpCt9e71bffp2LyKiq7IoObtgYe2eak/5yCez8v9y9leSs0OHpD9vUL4VK1qSs6O2bMyaPWNu+uM89xkxfdV58n7DyNiShd0EypBzP828j1Yb0x9hu71yRNbs//z+V5OzF/30/2XN/vuTLyRnL7/68uTsDmPynm/P/Mjbk7P1r94ta/YPrr0yK187Nnw5HKkDAAAAUCClDgAAAECBlDoAAAAABVLqAAAAABRIqQMAAABQIKUOAAAAQIGUOgAAAAAFUuoAAAAAFEipAwAAAFAgpQ4AAABAgRr6egEpBjbkLbO1o6NGK4lY3rw8Obvrq7bImv34PTcnZ8ePHpM1u7pkWXL22YWLkrNTBwzIWsfjHW3J2R223zZr9rBR6R3lWZ/6t6zZeao1nE2t7f+mD2fl962rT84eeswJWbP//tCc5Oy1jcOyZm+7Xfp2deaMhVmzc+y649bJ2baOrqzZW27ZmJx9+pkZWbNzvOnV+2Tl22Y0J2dHRyVrdkND+jb7mWcXZM2mnxmUF7/t/unJ2a23GZi5mPK013J45m5C+rNMRGfe6GJVq/a1stXn3JMiojP93tQwIm/01nu8Jjn7/MO3Zc1+vDX99zxx8VeyZnc0pr/WGDZscHJ24ewlWesYVZ++D/d4ZZus2Sd8IP06eeDv78ma3V9Uq3n7kyVsbhypAwAAAFAgpQ4AAABAgZQ6AAAAAAVS6gAAAAAUSKkDAAAAUCClDgAAAECBlDoAAAAABVLqAAAAABRIqQMAAABQIKUOAAAAQIGUOgAAAAAFaujrBaRo7ejo6yV0e+75ZTWbPSIWJWen1GwVEQNz7hWNebMrlfTsC08+lTW7mpFdkjU5V+7Dqv/cv4l47LbfZeUfuqktOXvrHy7Mmv22o3dKzn7nB3n3o4boSs7uMKYpa3aOJUsXJWeHNtVnze5sS98q5P6OdfXpG7+WZSuyZjeMHJCcbRyStxE+/vjjkrMXXvTbrNn0M821Gz17fmtWPuOpv6bvNtZnLKQ9Z6ciU+7vmL61jrwrOyJv56mGKjk7iBFRrfaThZekq7NmozsW12x0vOq1H8jKX3rFz5Oze786fT8rV0dd+n307W8+tmbr+MNfb8jKd7ZmbXGKVFeXtxXu6ur/14kjdQAAAAAKpNQBAAAAKJBSBwAAAKBASh0AAACAAil1AAAAAAqk1AEAAAAokFIHAAAAoEBKHQAAAIACKXUAAAAACqTUAQAAAChQQ18vgP8zOCNbNyBvdmdePNms5rz8thnrHpT5O0ZbenRJ5ui8/rMjezr9x+zn826/bbcZlpy99e5ns2a/+fA9krM7jdsya/ZjT6WvpaErbwtSqa/N+wVTZ6zIyo8e2ZScrYtq1uz2tvbk7K47b5U1e9rUecnZO267Lmv2L391a1YeekMlI9uVOXtgfeY/SJW541SzdUREW85a8jZl/Ua1WujCC1Jfl3cn7eys1auHPCuW5T33v+ef3pOcfd37js2a/YkTj8vKp5oxKe+5/G9T01/JrFiyMGv2B9/5vqx8f1Ffn37/7i/37d7kSB0AAACAAil1AAAAAAqk1AEAAAAokFIHAAAAoEBKHQAAAIACKXUAAAAACqTUAQAAACiQUgcAAACgQEodAAAAgAIpdQAAAAAKpNQBAAAAKFBDXy+A/9ORke1sy5s9aFBtZm+TWQtWu9Kzy3OukIio5sUzZSyczcqll301OXvhj3+ZNfvvt92cnH3q6XlZs0eMaUrOLnxhcdbsamv6g7euPn3uFoMrWevoaG1NzrZ35G1BqhkLv/f+57Nmf/Zfv5ec/cynP5I1e/rC9Nvyv357b9ZsNh+NjXn5royn0Epn3uzWzHyt9Jd1RMY2NSIi+sm6K5W87Xu1Wtu9PvqR6orMf9CSnLz98quyJt9++e8y18LG0tmZ/kRTV5f3ArYr50msjzhSBwAAAKBASh0AAACAAil1AAAAAAqk1AEAAAAokFIHAAAAoEBKHQAAAIACKXUAAAAACqTUAQAAACiQUgcAAACgQEodAAAAgAI19PUC+D9zM7JjMme3NadnBzRtkZytVCpZ6+jsSu8RhzTOz5q9PON3zJbze1artVsH/c6Rr/9cejhzi3vonrsmZ+uiK2v2iMFNydmubduzZi+cvjx99oraPV6y3rXIvG3GvmJQcnb5/PTrIyLi5ttfSM5ef/vZWbNhnTKe5rryNjcxoil9+OKWvG1CZ2feWjZ5uW/X9pPrr2rfiXWq5TEIHTWbvP2O6euuZP6Klbb0jfBz0/Neq0UU+lispK+7q6vQ33E9HKkDAAAAUCClDgAAAECBlDoAAAAABVLqAAAAABRIqQMAAABQIKUOAAAAQIGUOgAAAAAFUuoAAAAAFEipAwAAAFAgpQ4AAABAgZQ6AAAAAAVq6OsFsHHU1adn21oW9Yt1rOjMm700L56nUk3PZkTpf9ra2rLyAwYMqNnseydOycrnmLUwPTtscCVrdiXj7YJqU97sHB1d6Q/G9o682U9PWZa5mnQjG4YmZ5fXtWbNbmtrz10Om4uM567OlrzRC2r4xJizBdksnp49xFmHzs68Hev6+vSd9tzZOb742Y9k5S/45e+TsyuWzM9cTfrv+cKzXZmzayV3y9c/tqo597+I2t4HS+BIHQAAAIACKXUAAAAACqTUAQAAACiQUgcAAACgQEodAAAAgAIpdQAAAAAKpNQBAAAAKJBSBwAAAKBASh0AAACAAil1AAAAAArU0NcL4KWZk/sPOtOj2w7MHV4bSzPWXHNdfb0A6DsDBzRl5ectak7ODm2qT85Wq9WsdVTq0t+3aOvqPxucFXVtydm2tvYargQ2vtwd046arALoL75w8j9l5dsa0rcKP/z3X2XNHrnVqOTswrlzs2bXypbbjs3KL5w9PTnblfn6qL4+fZ+vszNvv6yukreWWunK21XtNY7UAQAAACiQUgcAAACgQEodAAAAgAIpdQAAAAAKpNQBAAAAKJBSBwAAAKBASh0AAACAAil1AAAAAAqk1AEAAAAokFIHAAAAoEBKHQAAAIACNfT1AnhpBmXmmzOyM1szh8NmrK2tra+XUHON9ZWs/F6vGJ6cfey5JbnL2eS1bgb3KViXzhrOrq/L25bVSmdXta+XABvU2Zn+aKyvz3tJ2dnZkZxtGDI4a/aQAY3J2SNOOCFr9l1X/y4r3x/Mnzm9ZrObmgZk5Vtaard/U83YrFYynwpyZvcVR+oAAAAAFEipAwAAAFAgpQ4AAABAgZQ6AAAAAAVS6gAAAAAUSKkDAAAAUCClDgAAAECBlDoAAAAABVLqAAAAABRIqQMAAABQoIa+XgAvzeDMfHNNVgH/X7v2GmOJedYH/D23mdmZ3fXuenfjW2wnJtiJYyGEE8IlKo3SUJRCVZoS6L1Vlaip1KYfWm4tmKoVVREFqSgNVkULCAoKKioCQZoimqY0wU0ckzVgO3F8jdfe9Xpndud27v0QKlBF0udxffbMs/v7fd3/PnrmzDnvec9/DteCyWyWync6nXD2rluOhrOPPHsptQdQz3yBs6ezRU4HFuHY8eOp/Pv/6l8MZ3/t/T+e3OZgGKwMlr1Ca621/f1RKt+NXw8Xap58K6jwzuGbOgAAAAAFKXUAAAAAClLqAAAAABSk1AEAAAAoSKkDAAAAUJBSBwAAAKAgpQ4AAABAQUodAAAAgIKUOgAAAAAFKXUAAAAAClLqAAAAABTUX/YCvDzdbB03W8gaQMLKykoqPxqNFrRJTm8wSOVns/iB0+3E51Z9/IC43GnT2nghWwA584VNHu7n3suPHNkIZ3/gH74nNfvbP/yfU/moXq+Xyo9HNU++2eKeJtc839QBAAAAKEipAwAAAFCQUgcAAACgIKUOAAAAQEFKHQAAAICClDoAAAAABSl1AAAAAApS6gAAAAAUpNQBAAAAKEipAwAAAFBQ58yZM/NlLwEAAABAjm/qAAAAABSk1AEAAAAoSKkDAAAAUJBSBwAAAKAgpQ4AAABAQUodAAAAgIKUOgAAAAAFKXUAAAAAClLqAAAAABSk1AEAAAAoqP/l/vGee+65UnsAV7EzZ878PzPOG+CV4LwBrhTnDXClfLnzxjd1AAAAAApS6gAAAAAUpNQBAAAAKEipAwAAAFCQUgcAAACgIKUOAAAAQEFKHQAAAICClDoAAAAABSl1AAAAAApS6gAAAAAUpNQBAAAAKEipAwAAAFCQUgcAAACgIKUOAAAAQEFKHQAAAICClDoAAAAABSl1AAAAAApS6gAAAAAUpNQBAAAAKEipAwAAAFCQUgcAAACgIKUOAAAAQEH9ZS8AwLWr0+mEs/1ebvZ4Mk9uA/CH4kfTFzluAFgS39QBAAAAKEipAwAAAFCQUgcAAACgIKUOAAAAQEFKHQAAAICClDoAAAAABSl1AAAAAApS6gAAAAAUpNQBAAAAKEipAwAAAFBQf9kLALAEvXi008mNnk/i2ZWVeTg7bMlFZvFo9s1wkpgNLFDmz5Mr8Wh/lvu752TkUIB6kveKFr+z5G4WiYsT/Al8UwcAAACgIKUOAAAAQEFKHQAAAICClDoAAAAABSl1AAAAAApS6gAAAAAUpNQBAAAAKEipAwAAAFCQUgcAAACgIKUOAAAAQEFKHQAAAICC+stegOK6yafQbLKYPeBal63op/HoPDl647pOOLt6KD53up/bZDJLZMep0XBty543matC4mxqrbVBbzGjV1Zz95vJdBTOdrqrqdnz2TAeTj5+cG3L3nAy54LPPFw5vqkDAAAAUJBSBwAAAKAgpQ4AAABAQUodAAAAgIKUOgAAAAAFKXUAAAAAClLqAAAAABSk1AEAAAAoSKkDAAAAUJBSBwAAAKCg/rIXoLjZbNkbAK3lT/PMS/fQSmr0znwezh7dGIezk53k3yESe3QP52bPxol8/Ef8P8OT/wFeAb0Fzp7Eo+truUWmk2k4Ox4l5nbjc9Omw1w+c15nf48L/DGprrPA2fH350XqdFZT+fk8+do9ANbX1lL53f39BW3CIvmmDgAAAEBBSh0AAACAgpQ6AAAAAAUpdQAAAAAKUuoAAAAAFKTUAQAAAChIqQMAAABQkFIHAAAAoCClDgAAAEBBSh0AAACAgpQ6AAAAAAX1l70AV8ZqInu0H39arB/KTG7tqcs7qXxGpqGcLWwLeAUlntSHup3U6NOnT4Szk/48Nfvybjx/9vGLicm5V+7Nt8V/xtEw9zOO9+Nn2eZsJTW7zca5PPxJFnnDm+Tig0ODcHZ/NE3NnmV26fbC0dEknm2ttW4nfob0B7m/qc4SR99kmvzl9BPvHZPcOUl1V//vez4fLnuFhdvd30/lN9bin+129q/+x68K39QBAAAAKEipAwAAAFCQUgcAAACgIKUOAAAAQEFKHQAAAICClDoAAAAABSl1AAAAAApS6gAAAAAUpNQBAAAAKEipAwAAAFBQf9kLXM36vVx+Ml3MHq21Nkxk92eTcPbCXjy7aLNMuJMcPk/mOVgyr8UFvg7TEk/qkzefTo1+5vwL4ezx629Pzb704pPh7C13vSqcffaR+M6ttTaZxX+Z589vpWafvOloPLx5KTX7oFhJ3hBGB+ft4Oq1yFvbAt/nxsNxPJx9f848JpmL1iB3iZvtxA/sUe7G0lrmtbWSG90m8b/vdga5J+B8nLl9snguv/+3D//y30zlL27vhbN3vOaOcPZTjz+a2uOW9fgdZGcc37m11t79l38hnO0mvx8yy559hPmmDgAAAEBBSh0AAACAgpQ6AAAAAAUpdQAAAAAKUuoAAAAAFKTUAQAAAChIqQMAAABQkFIHAAAAoCClDgAAAEBBSh0AAACAgpQ6AAAAAAX1l73A1WwyXfYGL8/lWTx7+803pWY/9+z5cHY0H6dmp8yz/yHzUpmkJmea1cSvhj9mrb8Wzu53s0+OYTy6wKf03u7FVP66Q/HH5MITTya3iXv+iRfC2VtffSw1++lzm/Fw8ry+tHUp9x8SVgbx7Cj7nOol8xwsmeNpgXeQ7mrub4KDfvw9dLSX26XfOuHsOHFez3dGuUUSe3ST1+/uavzdfzLNvYet9FfC2fEk95h0EgfOfJFPWP5Q+vJb0gd+4i+Fsz/yC/8rNXs+WQ1nh/PfDWff+lX3pPb4+TMPhLOXtnJv/Pf/1F8JZ9/zt38uNXs1cfQNcx+nrnm+qQMAAABQkFIHAAAAoCClDgAAAEBBSh0AAACAgpQ6AAAAAAUpdQAAAAAKUuoAAAAAFKTUAQAAAChIqQMAAABQkFIHAAAAoKD+shfgyrj7eDx7bjuRfea51B63nohn57PU6PbEZjybHN1am6T/R1R+F7L2h/vhbG+Qmz09IL/AN9x8Syr/wOc/H84ONnK7jHfi2ckwnn36mc3cIgvU3Vvc7NF4cbPbNB4dLW6Lq1svkV3kn9Yye7SWem7MhrmDbzhc3LNpUS+Xfjf5y0lcWiaT3NazzBUkufZomjjMOrnZ3ZX4f5hnr1kH5L2Xxfvpn/y2VP6+H/1QONtNPo8evxzP9ufx7JOffSS1x15ijwu5j2rtvsc/E87+0s++OzX7XX/tF3PLEOabOgAAAAAFKXUAAAAAClLqAAAAABSk1AEAAAAoSKkDAAAAUJBSBwAAAKAgpQ4AAABAQUodAAAAgIKUOgAAAAAFKXUAAAAAClLqAAAAABTUX/YCV7N/8te/MZX/jrd9TTh752tuT83uzHfD2V7rhLNb+3upPY4MBuFs//BGavZoZxTOrr7te1OzuXZMx9mue7aQPbI++C++O5VfP34inH2xjVOz77xuLZw9vHo4nJ20SWqP7jD+u3lqGj8jW2ttvD0MZ+/8pvelZrfdy7k8B8s8E17geTNNjs7mEzI/ZfZieuN6L5w9P4z/kLvT3Nl+qBe/Ox2ZrqZmb7X9cLYzyz2npp3Ez9nLzd7avBTOHjl8JDU7+ULjgPngj749Ht7PHU5/7k13hLPb8/jnktZa6/zSI+HsoSPxzzHd53P3m+FW/F5246HU6Pb6r7ohnN3o+H7IQeE3AQAAAFCQUgcAAACgIKUOAAAAQEFKHQAAAICClDoAAAAABSl1AAAAAApS6gAAAAAUpNQBAAAAKEipAwAAAFCQUgcAAACgoP6yF7ia/fOf+R+p/Ad+Lp5/aZrdJu4b7r4pnP3t33tucYvAUsyWvcDL8qHf/FQqvzmK/5w/9uP/LrdM4s8F73v/94WzH/vIr6TW6J15OJx9KDUZvozMEdJLnjeZ9/4D9Ge7XiJ7JDl7Zzf+oIwTc0+u5vZ4cTgPZ1fbfmr2sUR2NBikZm9PhvHwNPd8vby3F852Wyc1e9bij/fVLfO4Le4xWxmspPL33nl3OPtbn3wwNfuBzz4bzv7OZxLP/9ba+iieXbmwE85uprZIyv1q2sO/HP9sd+OpM6nZN2wcDmef39lOzc5YX19P5Xd3dxe0ySvnAL3lAwAAABCl1AEAAAAoSKkDAAAAUJBSBwAAAKAgpQ4AAABAQUodAAAAgIKUOgAAAAAFKXUAAAAAClLqAAAAABSk1AEAAAAoqL/sBa5mb7ktlz96/Eg4+18eupzcJu7UiUE4++1vvik1+5veeDqc/fs/9VBqNlxt3vjaW8LZf/1v7k/Nfvff+K7sOmF/+r1/J5x99Jmnw9kzZx5O7XF7/EhtLXukvvWb49mPfTg5nGvGOJmPvz3nZydk/yK4lsgeTs4eJvNRK51kPpE9spqbvZP4IVd6yd9O4nnSGfRSo4+vb8Rnd3IPeLcb/zlns1lqdi3zZS/QWmttNB6l8v1e/Hfys7/+YGr24Y348+7er8idIKPE6+W5R+PZG5Iv23NH1sPZ699wPDV7uDUJZ687mrlotdZa8mBdkMkkdyasr8cf793d3ew6rwjf1AEAAAAoSKkDAAAAUJBSBwAAAKAgpQ4AAABAQUodAAAAgIKUOgAAAAAFKXUAAAAAClLqAAAAABSk1AEAAAAoSKkDAAAAUJBSBwAAAKCg/rIXuJrt7Ofyrz3cW8wirbXM5JXx5XD2C5t7qT0++vvJB6WgTjI/X8gWXA32di6Gs/PkaX7/B/9jOHvusV9JzX7owd8LZ9/xnd8bzr7qxuOpPZ48G3/87vvAv0zNHuxeCme//2MfTs2GL2mcyCbPhLVJPLuSfKObJN7onsqNbkcSF5ybNuLZQS93J3v1evxBefylxIPdWkus3Xb2c/eyjPlomsqvrKwuaBP+SObFuLgb52c//k9T+aefeC6cfd3dr0vN/sjPPBTOXsq9FNtrT8ezmeN6bSW3R9vbDUfPfzyeba21E7fGs686dm9qdsZ66tNra6P+4j5HV+CbOgAAAAAFKXUAAAAAClLqAAAAABSk1AEAAAAoSKkDAAAAUJBSBwAAAKAgpQ4AAABAQUodAAAAgIKUOgAAAAAFKXUAAAAACuove4FlW0nmO4ns+e3c7Mee2gxn3/6WU6nZa7NZOHv2wm44O9ndT+3xwnAazr7j629IzV7Z3wlnf/XBy6nZGfOFTaa6r7gxl//c2fhz+uvfcGtq9pnffzqcPf2V35aavShbWxdT+U4vnr3vfd+T3AYOuEkuPh8ksrnR7caN+O1p2k3+vXEa36bfTdziepkbX2uZG+LrTudun915/A736PnkL36B9vb2wtnpNH4/5I87GLfOvZ3c54HJJP4a+Mff9c7U7Mc+ei6cPXMunm2ttafOxV9fNx+Jz50nj5tbevED++mV3HNk6+n4z/jWr7srNbvT/1g4O0pNbm0yyf6PuNHiRr9ifFMHAAAAoCClDgAAAEBBSh0AAACAgpQ6AAAAAAUpdQAAAAAKUuoAAAAAFKTUAQAAAChIqQMAAABQkFIHAAAAoCClDgAAAEBBSh0AAACAgvrLXmDZRguc/fxOLn/Hzavh7PbZ86nZ24nseBrPfvoLqTXaPPGIf217PjW7t7qSWwausM+dXdzs7/5770jlv+/HPhTOdtcOZ9cJWxnE34Y+9emnFrbHPW+8OZWfD+On6sOf3cquA1fccBzP3nDqUGr2ancWD8/nqdm5m2x89gu7iZ2Ts1+13suN7mbyk9zsBZrN4o9ht5v7O3NmNlfAPPf7OHVj/DPPqO2lZvfn8cPszbfdmpqdkTnKbhjkZncTZ8INo8QHu9babLgbzl5/4nhq9nwaf1BuP3k0NftzL14MZ9fX11Ozd3fjj8my+KYOAAAAQEFKHQAAAICClDoAAAAABSl1AAAAAApS6gAAAAAUpNQBAAAAKEipAwAAAFCQUgcAAACgIKUOAAAAQEFKHQAAAICC+stegD/y248Nw9mbDudm33x9J5zt9uJzT6zNU3u85nQ8O23xnVtr7XceG6XycDVZXV1J5b/jL7wtnN3eW03N/ugDD6XyUX/27W9J5S9c3gxnO7mjrL3zW74xnH34R34xNxwOuNlsmsqfOHldODvaj9+FWmttZ2+cykft7u2l8necOhTOJo+bduz40Xj4hReS0xfn6NHE3pS2vjZI5S/tx8+Q9fXc7PFwJ5wdjvdTs6ez3GeTqMfO7abyt51YC2eH/dx3OPqTS+HspUuXU7MHg/guhw5tpGa3djGc3N3NPd4V+KYOAAAAQEFKHQAAAICClDoAAAAABSl1AAAAAApS6gAAAAAUpNQBAAAAKEipAwAAAFCQUgcAAACgIKUOAAAAQEFKHQAAAICClDoAAAAABfWXvQAvz9ntXP657fliFkl68elM+mDs/EWdRPYg7c21YjZfTeW73ZVw9rqTR1Kz/9TXvT6c7Q96qdk5t4STayuD1OS1TnzvbvLPJ7NZLg9X2jz5N8FOJ37dHKzm3kMPD+Jn33Qaf3HdvbGe2iPjk49fyP2H5/cWs8gB0k0elDMH5YFyaG0jlV9di79uL09yH3pOHos/l8bj3Hv/YBC/O81b/Dl6w7G11B4Zg37mM0xrs2H8DL7ztuOp2cePHA1nt7Yup2avrsbvZb1e7s68u7ubyi+Db+oAAAAAFKTUAQAAAChIqQMAAABQkFIHAAAAoCClDgAAAEBBSh0AAACAgpQ6AAAAAAUpdQAAAAAKUuoAAAAAFKTUAQAAACiov+wFeHnmC5x9OJHN7rGfyE6Ts4+txrObw15q9tognh9NxqnZs/lKIj1Mzaa2TiK7fux0avbGsVE4O5rlXo0b6/EX430//Gup2Tnxt7h/9j3fnJo8O3Qonp2lRsOB18kcTq218Tj+3tXv566mvcSfJ//gsc1wtpv8u+dmi7/3v/cH/21qdq8b3+UffOfbU7NXVuOzu53cY3LrD39rONv54GdSszlYfvfJJ1L5b7n3K8PZR57fTs0+cd3xcHZzP34Xaq218V78PjTYih+UneSh2mnxi8XFtdwdbjZLfLqb5z4Jbm7thrPPbG2mZs9Tt+b4HlX4pg4AAABAQUodAAAAgIKUOgAAAAAFKXUAAAAAClLqAAAAABSk1AEAAAAoSKkDAAAAUJBSBwAAAKAgpQ4AAABAQUodAAAAgIKUOgAAAAAF9Ze9QD2dcHJ1ZZ6aPBxld1mM7WUv8DJtDjPp3O9mNp3Gs/Pc7NZSi3MNmSdO6P/+iU+mZn/1G24LZz+3GX/+t9ba9lY8/0Pf/+fD2U43fv621tp8NouHO7nX7R03Ho+He6nRrSXWTh5l8IoYDSep/Nmt+AXn1dfnrqa9bvzvk2+860RqdsZ0Gn/h/uQP/d2F7fGBH1zYaPiS5p3MG1drL13aDWdffHEnNfs3Hjgbzn7N646lZrdO/LwZXZd7TDJGk/ib/4mNQWr2px/dCme3Lu2nZnd78ccvd+NrbX6NX4h8UwcAAACgIKUOAAAAQEFKHQAAAICClDoAAAAABSl1AAAAAApS6gAAAAAUpNQBAAAAKEipAwAAAFCQUgcAAACgIKUOAAAAQEH9ZS9QzzycvOlYbvLZ8/HsML5Gay2zdWWL6yhHs+nCZsOXNIlH/9snHk6N7o574ezhkxup2d/w+teHs5949NFwdp54PFprrdOJZ+85fTo1+13v+VfxcPyh/qJr48CmsO293Iux0xmGs93ukdTsJ55/KZx99anrwtnM+dFaa71e/IV+y/XrqdnPXtjNLXNAZB/DRZk7Uw+cz597IZydzZMfVxPH0+7mi6nRn3o+nn3rXbl7RcZq4iH5yEOJpVtrz370H4Wzm5u5s+mpl+IfdrvJ82O1dzAOnOFkOQeOb+oAAAAAFKTUAQAAAChIqQMAAABQkFIHAAAAoCClDgAAAEBBSh0AAACAgpQ6AAAAAAUpdQAAAAAKUuoAAAAAFKTUAQAAAChIqQMAAABQUH/ZC1zNdi/l8vvzePa263Ozn7oQz66vHIyub3c0S/6PbB6uHtPdSSo/nMQPnO1nzqZmv/8H/n04e/uptdTsRXny/P7ihk8XNxqWoZPNJ/7DZDhMzR6O42fZ/3zkXGo2/58S99r0kyozmwPn3Fb8df4HT38hNXu3xe9Dw3nuM8+733w6nP3Vhw7GefPgf31vKv/IC/E73+og98LtZl/nCfN5/FDoZN6UkrOX5WB8egcAAAAgRakDAAAAUJBSBwAAAKAgpQ4AAABAQUodAAAAgIKUOgAAAAAFKXUAAAAAClLqAAAAABSk1AEAAAAoSKkDAAAAUFB/2QtczUbjXP7UoXj26EYnN/zCPBzdHc1ys4Glm81zHf3HP/1IOPu1996ZXSfsyfP74eyglzv3xtP4uQfEZV9a2/vTcLbXH6RmZ06FU0dXwtnzl0apParqJK+TC5N8Tjndrx03njy6sNkX93Kfec5txe8s3/rVp8LZjzz8UmqP3/hPfyuRzr1aTpxYD2ff9GfuT83uJ+9xizKf5x6TUfwtbGl8UwcAAACgIKUOAAAAQEFKHQAAAICClDoAAAAABSl1AAAAAApS6gAAAAAUpNQBAAAAKEipAwAAAFCQUgcAAACgIKUOAAAAQEFKHQAAAICC+ste4GrW6eXy02k8e2iQ/dWNk3mgkm4n9xof78fzv/6bv5VdZyHG0/myVwBaay35UpyMZ+HshYubuVXm8WU6qcnXhsTDB1/SO9/1H5a9wsty8+mTqfzh9UE4uzOKz72wnbvDvekd96fyB8V04sBZFN/UAQAAAChIqQMAAABQkFIHAAAAoCClDgAAAEBBSh0AAACAgpQ6AAAAAAUpdQAAAAAKUuoAAAAAFKTUAQAAAChIqQMAAABQUOfMmTPzZS8BAAAAQI5v6gAAAAAUpNQBAAAAKEipAwAAAFCQUgcAAACgIKUOAAAAQEFKHQAAAICC/jdStAuFl/4FuwAAAABJRU5ErkJggg==\n"},"metadata":{"image/png":{"width":1141,"height":1213}},"output_type":"display_data"},{"data":{"text/plain":"<Figure size 1152x1152 with 64 Axes>","image/png":"iVBORw0KGgoAAAANSUhEUgAABHYAAAS9CAYAAAAiHt73AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAD9NUlEQVR4nOzdd5hU9fX48TNte4Glg1RB6SBFVNSAGsUYjSVRY1SsiRp7jRpblMSKJXZUNBbsGtSAioIoSlVgQXqHpW1j++603x98md+un/NZZtjZcnffr+fxefBwuHN35jP33jl75xxXdnZ2WAAAAAAAAOA47sbeAQAAAAAAABwYCjsAAAAAAAAORWEHAAAAAADAoSjsAAAAAAAAOBSFHQAAAAAAAIeisAMAAAAAAOBQFHYAAGggzz77rAwaNEgGDRokH3/8cWPvDg7QvtfwpJNOauxdAZo13msAEB1vY+8AgLo76aSTJCcnx4i7XC5JTk6WtLQ0SUtLkx49ekjfvn1l8ODBMmrUKPF6G+cQ8Prrr0txcbGIiFx11VWNsg9NycqVK+Xrr78WEZGRI0fKyJEjG/Tx//CHP8jKlStFROT++++X008/vdb8/Px8GTNmjITDYRERGT16tDz//PP7fZzLLrtM5s2bJyIi119/vVx66aV12/H98Pv9Mnv2bJk3b54sWbJEcnNzZc+ePeJ2uyU9PV169OghAwcOlLFjx8rQoUPrdV8AANifHTt2yP/+9z+ZPXu2bN26VQoKCiQ5OVnatm0rPXv2lJEjR8oxxxwjXbt2jXnbu3fvltNPP12KiooisVdeeaXBrzkA1A8KO0AzFg6HpaysTMrKymTXrl2yfv36SAGhbdu2cvrpp8ull14qaWlpDbpfb7zxRqQQRWFnb2Hnueeei/x/Q19kjRw5MlLYWbBgwX4LOwsWLIgUdUREfvrpJwkEArUWCv1+vyxZsiTy/6NGjarbTtciHA7L+++/L5MmTZLt27erOeXl5bJr1y6ZP3++vPLKK9KjRw+56qqrZNy4ceJyuept3wAA+KVAICAvvviivPLKK1JZWVnj76qqqmTPnj2ybt06mTFjhixfvlwmTJgQ82P84x//qFHUAdC8UNgBmpmzzz67xm9yqqqqpLi4WHJzc2X58uWyceNGCYfDkpubKy+99JJ89tln8sADD8jhhx/eiHuNxnT44YfL66+/LiIiCxcu3G/+ggULavx/WVmZLFu2rNa7XpYuXSoVFRUiIpKWlib9+vU78B2uRWlpqdx+++0yc+bMSMztdku/fv1k4MCBkpWVJW63W/Ly8mTt2rWyePFiCQQCsnHjRrn11lslOTlZxowZUy/7BgDAL1VVVclNN90ks2bNEpG956x9X0HLysqSsrIy2b17t2zYsEGWL19+QI/xySefRLbv9XolEAjEae8BNBUUdoBmZty4cbXe8bF9+3Z5++235Y033pCqqirZvn27XHXVVTJp0iQ57LDDGnBP0VQMHz5cPB6PBINBycnJka1bt8pBBx1kzd9X2Bk8eLAsX75cgsGgLFy4sNbCzvz5843Hize/3y9XXnml/PTTTyKy96uIv//97+Uvf/mLdOjQQf03JSUl8sEHH8jkyZMlLy9PgsFg3PcLzU92dnZj7wKAZuK+++6LFF2GDRsm99xzj/Tq1UvN3bNnj+zcuTOm7efm5sqDDz4oIiKnn366zJ8/X/36PgBno3ky0MJ06tRJbrjhBnnjjTekffv2IiJSWVkp1157rRQWFjbuzqFRpKenS9++fSP//8s7cqrLzc2V9evXi4jImDFjIv+ueuFGU/1OoPr6qtmjjz4aKep4vV55+OGH5e6777YWdUT23j00fvx4+eyzz2TcuHH1sl8AAGhmzZolU6dOFZG9v/R46aWXrEUdEZHMzEw55JBDYnqMfV/Batu2rdx888112l8ATRd37AAtVL9+/eSJJ56Q8ePHi9/vl8LCQnn11Vfl+uuvV/PLysoijWhXrFghW7duldLSUklKSpK2bdvK4MGD5ZRTTpGjjjrK+piDBg2KKta5c2f5/PPP4/741W3atEk++OADWbhwoWzatEnKysrE4/FIRkaGHHTQQXLYYYfJkUceKcOHDxefz1frtr7//nv54osv5Mcff5Tc3FyprKyUVq1aSf/+/eX444+X3/72t2r/mWeffbZGbx0Rkeeee86IiUTX1LguDj/88Mgt3vPnz5czzjhDzftlgWbPnj2yfPlyWbx4sfj9fvW5qqqqqvf+OuvXr5e333478v9//etfYyrUpKamyiOPPCJlZWXWnKqqKvnvf/8rM2fOlFWrVklhYaEkJiZKhw4d5PDDD5fTTz89Ll8xq94MfX93hmzbti3yc44YMUImT55s5FRfZ/vWUU5Ojrzzzjsye/Zs2bFjh7hcLunRo4ecfvrpcsYZZ9R4HQOBgMyYMUM+/PBDWb9+vRQUFEhWVpYcccQR8uc//7nWJp4LFiyQSy65RERETjvtNJkwYYL4/X756KOP5LPPPpONGzdKcXGxZGVlybBhw+TCCy+UgQMH7vc5iuf790DsO25pxyoR/ecuKyuTDz74QKZPny5bt26V8vJy6dKli4wZM0bGjx8vrVq1qrGNn376SaZMmSLLly+XnTt3SkpKigwePFguuOCCqN5Dq1atkm+//VZ+/PFHWb9+veTn50sgEJCMjAzp2bOnHHnkkfKHP/xBWrduHfXP/d1338kHH3wgS5culYKCAmndurX06dNHfve730X6U8WyfkUO/PhZXTAYlGnTpsmMGTNk5cqVkp+fL1VVVZKcnCzt27eX3r17y5FHHilHHXWUdO7cOeqf95fuvPPOyIfwfU1nV61aJW+//bYsWLBAdu3aJT6fT3r06CEnnniinHPOOZKUlGTd3scffyx33XWXiIhceeWVctVVV0XuIpw+fbps2bJFysvLpV27dnLEEUfI+PHjpWfPnlHt644dO+SNN96Qb7/9VrZv3y5er1c6d+4sxx9/vJx99tnSpk0b9djQkL744gv5+OOPZcWKFVJUVCRt2rSRfv36yVlnnSXHHntsg+5LY3n22WdFRMTj8cgDDzwQ9+PVp59+Gvlq8h133CGZmZlx3T6ApoPCDtCCDRo0SE499VT58MMPRURkypQpctVVV0lCQkKNvDVr1sh5550X6ZFSXUlJiZSUlMjGjRtl6tSpMnr0aHn44YclIyMjbvsZ78d//fXXZeLEicZ3zAOBgOzevVt2794tP/30k7zyyivy9NNPy69+9St1Ozt37pS//e1val+aXbt2ya5du2TWrFkyefJkefLJJ6VHjx6x/eC1qP6BXkRk+vTp0qVLlwPe3siRIyNFgdru2Nn3d8nJyTJgwAApLCyU1157TcrLy2XZsmXq1/mWLFkSaQZ5IL9tjMYrr7wioVBIRES6dOkS+VAdq5SUFDWenZ0tt9xyi2zbtq1GfF8Pq7Vr18qUKVPkD3/4g9x+++2NNnEuGt98843cfvvtkcl0+2RnZ0t2drZ8/vnn8swzz0hSUpLk5ubKNddcI8uWLauRu2PHDvn4448judHehZWTkyPXX3+9rFixokZ8586dMm3aNJk+fbrcdttt8qc//cm6jXi9fxvSxo0b5dprr5UNGzbUiK9du1bWrl0rU6dOlcmTJ0u3bt0kEAjIP/7xD/noo49q5FZWVso333wj33zzjdxwww21rvHbb79dPv30U/Xv8vLyJC8vTxYuXCgvv/yy3H///XLiiSfWuv+BQEDuvvtu+eSTT2rE9x3n5syZI5988ok8/PDDtW6nungdP3fu3ClXX311pAF8dfvOD+vXr5cvvvhC+vfvL++8807U+7g/b775pjz66KM11mJ5ebksXbpUli5dKu+++648/fTTURdjVq1aJTfccINs2bKlRnzbtm3ywQcfyNSpU+Whhx6SX//617Vu54svvpC77rrLKFSvWrVKVq1aJe+++65MnDgxyp8y/srLy+Xmm2+W2bNn14hv375dtm/fLl9//bWcdtppcu+99zbODjaQJUuWRI6FRx11VK1fgT4Qubm58tBDD4mIyPHHH7/fdQPA2ZrulSeABnHuuedGCjtlZWWydOlSGTFiRI2csrIyqaioEJfLJf369ZO+fftK+/btJSkpSYqLi2XlypUyb948CQQCMmfOHLnxxhvlxRdfFLe75rc9b7rpJhERmTRpUmQyw75Ydb+c0hWvxxcRmTlzZo0PH3379pVhw4ZJ27ZtRUSkoKBA1q1bJ4sXL6717o0tW7bIRRddJLt27RIRkYyMDBk9erT06NFDfD6f5OTkyOzZsyPTyC688EJ55513pFOnTpFtHHXUUZKSkiLLly+X6dOni4hEfqv8S9HcxVAXw4cPjzRU3Llzp2zevFm6detm5O0r7AwZMkR8Pp8MGzZM3G63hEIhmT9/vlrYqf7BbcSIEerrUhehUCjSn0BE5Pe//31cH2Pp0qVy2WWXSXl5uYjsvbtn7Nix0qNHDykvL5f58+dLdna2hMNheffddyUvL0+eeOKJuD1+PK1cuVLef/99qayslBEjRshhhx0miYmJsmbNGpkxY4YEg0GZP3++PPjgg3LbbbfJFVdcIatWrZJOnTrJscceKx06dJC8vDz58ssvZdeuXZEPaFOnTt3vb4LLysrkqquuknXr1kmXLl3kmGOOkfbt20thYaHMnDlTtmzZIuFwWB566CHp37+/upbi9f5tSCUlJXL11VfLpk2bpGfPnnL00UdL69atZfv27fL5559LUVGR7Nq1S66++mr56KOP5IEHHpCPPvpI0tLSZMyYMdKjRw+prKyUb7/9NlK8eOKJJ2To0KEybNgw9TELCgpERKR169YyZMgQ6dGjh2RkZEgwGJQdO3bIDz/8IDk5OVJWVia33HKLZGZm1noX0F133VWjUNS/f3854ogjJCUlRTZv3iwzZ86Ub7/9NuoP4vE4forsfe9fd911keclNTVVRo8eLT179pTk5GQpLy+XnJwcWb58eeQrpPEya9Ys+c9//iMie4+fw4YNE5/PJ2vWrJFvvvlGqqqqZPPmzXLZZZfJlClTIl99ttm5c6dcccUVkpubG7nDKCsrS3bu3ClfffWV7N69W/x+v9xxxx3St29f651y3333ndx2222RYlNWVpaMHTtWOnfuLEVFRTJnzhxZu3atXHvttXLcccfF9TmJxr7X7IcffojEhg0bFrm7bt/zN3Xq1JjuJnOi7777LvLn4cOHi4jI4sWL5d1335VFixZJbm6upKSkSNeuXWX06NFy7rnnSps2baLe/oQJE6SwsFDS09PlzjvvjPv+A2haKOwALVzfvn0lPT098tv7RYsWGYWd9PR0ue666+SMM86wXlRs2bJFbrrpJlmxYoXMmzdPPvvsMzn11FNr5Fx00UUisvfOoH2FnX2x2sTr8UVEXn311cifJ0yYIKeddpq6Pb/fL7NmzTI+SOz7u5tuuinyoWT8+PFy9dVXG7fc+/1+mThxorzxxhtSUFAgd9xxR42vygwdOlSGDh0qH3/8caSwM3To0Kiek3hLSUmR/v37y9KlS0VkbwHnl4Wd3NzcyB0H++7QyMjIkEMOOURWrlwpCxYskL/85S/Gtqv336mP/jqrVq2SPXv2RP4/nl/1qqiokNtuuy1S1Bk2bJg89thjkULCPp9++qncddddEggE5KuvvpIpU6bIH//4x7jtR7y8+eabkp6eLv/+97/lyCOPrPF3CxculMsvv1wCgYD897//lZKSElm1apWMHz9errvuuhpfEbj66qvlkksukRUrVkh+fr689957ctlll9X62DNmzBCRvV+Tu+yyy2rc1XT99dfLbbfdJl9++aWEw2F5/vnn5YUXXjC2EY/3b0P7+uuvxeVyyU033SQXXnhhjaLjlVdeKRdccIFs27ZNNmzYIHfeead89tlnMmrUKHnkkUdqfLC95ppr5L777pMPPvhAwuGwvPjii/L888+rj3nkkUfKxRdfLCNHjlSLnKFQKHK3SSgUkn/84x/yySefqLkzZsyIFHU8Ho/cc889xlc18/Ly5MYbb5TPP/9cXC5Xrc9HvI6fInuPU/u+QjpgwAB5/vnnja+07bNly5b99gKLxeuvvy5JSUny6KOPGneFbdy4Uf7617/K5s2bZdeuXXL//ffLv//971q39+GHH4rX65V77rlHfv/739f4u+uvv16uuOIKWbx4sVRUVMgrr7wi99xzj7GN0tJSueeeeyJFnbFjx8o///nPGr8suemmm2Ty5Mny+OOPG3eFNYS33347UtRJSEiQhx9+WI4//vgaORs2bJArr7wyUjiLl4svvjiqyY/R2vd1vAO173wrItKtWzd57LHH5LXXXpNwOByJV1VVSWFhoWRnZ8trr70m99xzj5xyyin73fa+ryaKiNx8883Srl27A95PAM5A82SghXO5XNKnT5/I/2/fvt3I6dWrl1x22WW1/qaoa9eu8vTTT0cuzt9///247WM8H3/fb3Z79+5t/VAoIuLz+eTXv/61+rWhTz75JHL79Pnnny8333yz2kfB5/PJbbfdFvmt6MKFC+XHH3+0PmZjqz7yXvsAVP0rWtUvZvcVApcsWSJ+v7/Gv6msrKxx8Vr9MeKl+m/iXS5XjUbQdTV16lTZunWriIi0b99ennnmGaOoIyLy29/+tkZTykmTJhnPRVMxYcIEo6gjsvd1/N3vficie7968/nnn8uvf/1rufnmm42+D2lpaXLbbbdF/v+rr76K6rHPPfdcueKKK4yvqvl8Prnnnnsi76O5c+dKaWmp8e/j8f5tDOeff75cdNFFRuGkXbt2cvXVV0f+/7PPPpMuXbrIU089Zdyt4HK55NZbb418SP/hhx/U50hkb7Fk1KhR1jvX3G63XHDBBZHi4+bNm61FjxdffDHy57/85S9q/602bdrI008/LW3atKnxoVQTz+Nn9a9fXXrppdaijsjec8RZZ51V677FIhwOy9///nf1q349evSQp59+OvK+mTVrlqxatWq/27zuuuuMoo7I3juR7rvvvsj/295vH3/8caRg1qNHD3n00UeNO2BdLpdccskl8oc//GG/r1W8BQIBefnllyP/f9tttxlFHRGRnj17yjPPPFMv0xObkk2bNkX+/MYbb8irr74q4XBYevfuLRdddJFce+21ctZZZ0lWVpaI7P0K29/+9jf53//+V+t28/Ly5F//+peI7P1Fx5lnnll/PwSAJoM7dgDU+ApF9TsfYtW+fXsZPny4zJkzR7Kzs6Wqqsro11Ofonn8fX1Y9vV8ORBTpkwREZGkpCS56qqr9pt/8cUXy9dffy0iey/wbV+fiEWXLl3iPnJ55MiR8tJLL4mIqL/V3PfBLzk5ucZXw0aMGCFvvPGGVFRUyJIlS2rc8bVkyRKpqqoSkb1fCaheRIyX6tPc0tLS4tp8cl+jVJG9H2p/+SGpuj/+8Y/y2muvyfbt22X37t3y/fffN4n+LtX169dPxo4da/37Y489Vj744IPI/1955ZXW3GHDhklGRoYUFRXJ6tWrJRgM1vpBzOv1yhVXXGH9+8zMTDn88MNl9uzZEgqFZNWqVcZ7JR7v34bm8/nk8ssvt/79L5vEXnjhhdZeTykpKTJy5EiZOXOmhEIhWb16tfqVtWidfPLJ8uabb4rI3rs1jzjiiBp/v379+kgRJjU1tda7CdPT0+XCCy+Uxx9/vNbHjOfxMxgMRv6s9WCrTz169IgUQjU9e/aU0047LfJ+mjp1qtxyyy3W/KysrFp7S/Xq1Ut69+4ta9eulYKCAtmxY4d07NixRs5nn30W+fOf//znWs+/V155pXz44Yc1nsP6Nn/+/EjhqXPnzmoRa5+DDz5YTj311LjeVXTOOefE9ZhcW+P4aOy7c1lEIkXLm266ScaPH1/jzrdbbrlF7rjjjsj74L777pPDDz9c/SWDyN7ifUFBgSQnJ6t3dgFonijsAKjxIaKkpKTW3GAwKOvWrZP169dLUVGRlJeX1/it377eDn6/X7Zu3Vrr2M4DUdfHP+SQQ2Tp0qWyZcsWmThxolx55ZWSnJwc9eMXFhZGfvM6ePBgSU9P3++/OfTQQyN//mUT2qbksMMOE5/PJ36/X3bt2iUbN26s0bB0X7Fn8ODBNYonw4cPF5fLJeFwWBYsWFCjsGO7yyeeqt+1YPtAfCCqqqrk559/jvz//hpPut1uOeGEE+T1118Xkb0X6k2tsDN69Oha/75688727dvXWohzuVzSpUsXKSoqijSRru2Oif79+++3P0T37t0jf87Pzzf+vq7v38bQv3//WnuFZGRkSGZmZqSovr/JftU/TObm5u738QsKCmTlypWyY8cOKSsrq3EnWfVC/saNG41/W32a3RFHHLHf53rs2LG1Fnbiffys/ndPP/209OrVSwYMGLDfbcZDbQXSfY4//vhIYWfx4sW15o4aNWq/Renu3bvL2rVrRWTv+6N6YaeysjJShHO5XDJmzJhat9WuXTsZMGBAjTsq69tPP/0U+fPYsWP32wvthBNOiGthJ5ZJiQ3hl33Afv/736vF09TUVHn44Yfl97//vWzcuFHKysrkrbfekmuvvdbInT59unz55Zcisvdrr3UtPgFwDgo7AGp8MLbdkVBcXCyTJk2S//73v+oHLtu/iZd4Pf4ll1wSGek+efJkeffdd+Woo46S4cOHy6BBg6Rfv361XlyvXr06UkiaP3++Oq69NvsKT01RcnKyDBo0KPKbw/nz50cKO7t374588PtlgaZVq1Zy8MEHy9q1a2XBggU17vKoXtipj69hiey96N0nng1zc3JyIh+CO3ToEFUjz+rjzjdv3hy3fYmX/fWcqV4Y++XdAPvLLy8vr7WwE82Y6f29lnV9/zaGaPr8pKSkRIossbxG+3o/aX744Qd54YUX5Mcff4zqKzfa8bL6V0Wiuduue/fukpCQELlL75fiffw88sgjpV+/frJixQrJycmRc889Vw455BA58sgjZejQoTJ48OD9Ni0+UNF85bP6VwG1wll10ayT2t4fOTk5kd46HTt2jKpo1qdPnwYt7FRfT9WLcjbR5DhZYmJijdextjv7EhMT5YILLpD7779fRERmz55tFHYKCgoiX8EaOHCgnH/++fWw1wCaKgo7AGrcDqxNttm2bZtceumlxqjn/bFd3Mcqno9//PHHy3333SePPvqoFBcXS2lpqXz55ZeR33AlJyfL6NGj5cwzz5RjjjnG+PfVv/ZzIGr7INYUjBw5MlLYWbBggZx99tkisv8GyCNHjpS1a9dGRpsnJiZKRUVFja+L1dcdO9WLCaWlpeL3++Py4b76+yLa6SzV8+rytcb6sr+vRla//T+ar1FWz9/3NakDfexotlfX929jiPXnTkxMjDrX9pw/99xz8uyzz0a5h3tpX2+r/h6orWi3j9vtloyMDOudRPE+frrdbnn22Wfl9ttvl7lz54rI3uLR6tWr5bXXXhORvV+JGjdunJx77rmRXiXxEM3zUf14UFJSIuFw2Npcen+v+y/9slgX62sVS168xLqPzX0qVmpqaqSw07Vr1/0Wv6sPBlizZo0EAoEa/comTJgg+fn54vV65b777mv2PYoA1ERhB2jh9vVp2Ee7sLjjjjsiRZXOnTvLueeeK8OGDZMuXbpIWlqaJCYmRi5W77zzzhp9SeIh3o9/5plnygknnCDTp0+X7777ThYvXhz5TXB5ebnMmDFDZsyYIaNHj5aJEyfW+A159X4Effr0qbWBq6a2Hi1NweGHHx6ZRlS9z86+O2+SkpLU37KPGDFCpkyZIlVVVbJ06VIZOXJkjf467du3l549e9bLPlf/ut2+9dxQX8dAw6vL+7cl+OGHHyJFHZfLJePGjZMTTzxRevfuLW3btpXExMRI4XPr1q1y8sknN9i+1cfxs23btjJp0iRZvHixfP7557Jo0aJIzyeRvROWnnvuOfnPf/4jEyZMUJv1omWYPn267NixI27bGzduXFR3Ntq0bdtWdu/eLSJ77wrdn+o5oVBI9uzZE/l669y5c+Xzzz8Xkb2NxJtK43gADYfCDtDCrVy5skZfnV+OOv/5558jd3B06dJF3n33XcnIyLBuL55fv6rPx8/IyJCzzz5bzj77bAmHw7JhwwZZsGCBfPnllzJv3jwREZkzZ47cd9998tBDD0X+XfU7mtq0adMoo8nr05AhQyJfpcjNzZX169dLr169IoWdIUOGqHfDDB8+PPLn+fPny8iRI+t9zPk+hx56aKSJr8jeC9x4FHaqr7No7zSo/lUR7e63aFT/jX5tv+EXafiGsU3Fgb5/W4K33nor8udbb7211q9j7K+nWvWv80TzHgiFQjXuyvil+jx+Dh06VIYOHSoie3+uxYsXy5w5c+R///uf5OfnS2lpqdx8883y3nvvSe/evev8eNE8H9WPB2lpafsdBV8Xsb5WseTFS6zH1Hh/dfmdd96J67jzAQMG1Kmw07t37xp9kfantpzqBasXXngh8gua/bnkkksifz7ttNNkwoQJUf07AE0P486BFu6dd96J/DktLc24G6P69+9PP/30WosqIhJp7BgvDfH4LpdLevXqJeecc4689NJL8uijj0YuoKZPn17jKzXV7w6pfqdTc5GYmChDhgyJ/P+CBQtk586dkX4xvyz87dOmTZvIc7OvCFT9Arq++uuI7P06RvVGpu+///5+vxYUjc6dO0eKWDt27Ijqg0j18cvVGwHHonqD2v31DNq+ffsBPUZzEsv7tyXYd8xMTEyUc845p9bcNWvW1Pr31dfw/nJF9vZQqe0ruA11/ExLS5Ojjz5abrvtNpk2bZoMHjxYRPaO264+9a0uohlfXv1nrN6Ivj506dIl8rWcHTt2RPVLjmhe03iqvp6ief2jeY6drPovIHbu3Lnf/Oo5Ho+nwb9KB6Bp444doAXLzs6WTz75JPL/f/zjH427MfbXf6e6lStXypYtW/b7uNW/E76/Ecn18fj7c9JJJ8kzzzwjGzZskFAoJJs2bYp8MOjYsaP07NlTNmzYIPn5+TJ37lxjRHCsfvl8NLaRI0dGijPz58+v0bDTVtjZ93fr16+XpUuXSmFhYYP019nnkksukU8++URCoZBs3bpVJk+eLJdeemnM2ykrK4t8dSchIUH69+8fmQz0xRdfRHoOaUKhkMyYMSPy/wc6hrpNmzaRAuXGjRtrvftozpw5B/QYzVlt79+WYN8xMyUlZb+9pvb1JrLZdweMyN474crLy2udjDVz5sxat1cfx8/9SUlJkQsuuCAyanzDhg1x2e7XX38tN9xwQ605X331VeTP1Z/L+pCYmCj9+vWT7OxsCYfDMmvWLDn11FOt+bt375bly5fX6z79UvXnYObMmXLrrbfWehdK9ecvHiZPnhzX7dXV8ccfLw899JCEw2HZvHmz5OTk1NpnZ9/diCJ7G/VXv3bq1q1b1F9t/PLLLyP9qkaPHh35OtewYcMO5McA0ERwxw7QQq1cuVKuv/76yNSf1q1by/jx44286r8Rqj76+ZdCoZA8+uijUT129T4J+/tten08fqx+2dTyvPPOi/z5oYceimkSkzadpvot9E3h7oLqd9csXLiwRn+d2j4g7yv6+P1+efXVVyNrq1OnTvU+cnXfHRv7PP300zJ9+vSo/31paanceuut8sMPP9SIV79Qfumll2pMkPuld955R3JyckRk7yjh/Y2ttunfv3/kz7V9sMnJyYnrKODmKtamtE63rwBeUFBQ6x1d8+bNk1mzZtW6rV69ekUmvZWWlsqrr75qzS0uLpbXX399v/sX7+NnrJKSkuq8DZG9Rdfqvxj5pU2bNtX4+1j7CR2IU045JfLnSZMm1Xr31PPPP9/gv0gYNWqUtGvXTkT2DkWo7e6p9evX1/r8NgcdO3as0RD5pZdesuZWVlbKf/7zn8j//7JX1LBhw2TChAlR/Ve9KfWll14aiZ911llx/OkANDQKO0ALs337dnniiSfkT3/6k+zatUtE9n7weeqpp9Q7Yqr/BueTTz6Rb775xsgpKiqSW2+9VebNmxfV98Sr35JevQ+LJp6Pn5OTIxdeeKFMnz7d+mEiHA7Lm2++GfmtbuvWrWt8fUBE5KyzzoqMul27dq1cdNFFtd5WXlFRIV9++aVcdNFFanGq+vOxaNGiqL5GtG3bNhk0aFDkv1gnhtVm8ODBkQ8/+fn5kQLJ4MGDa53wU/1unilTpkT+XJ9fw6rulltuidwlEwgE5NZbb5X777+/1lvcS0pK5LXXXpNTTjlFpk2bZvz9aaedFilKbd++Xa655hrJy8sz8qZNmyaPPPJI5P8vv/zyA57MVf2C/Y033pDFixcbORs3bpQrrrii1kJTcxOv929zV73f1d13362ukW+//Xa/d5vsc9lll0X+/MILL6jFxPz8fLnmmmskNzd3v+eAeB4/H3roIXn00Udr/Qruzp07a/Qbqf787LNgwYIax9NouFwuuf/+++Xbb781/m7z5s1y9dVXRworY8aMaZDR3b/73e8ihZMNGzbIzTffbPRRCofDMnnyZHn33Xej7vlT/bnZV+g/EF6vt8adlA8++KBaXNy4caNcc801kfHtzdmNN94obvfej2PvvfeevPbaa0YBc98vHjZu3CgiIllZWXLuuec29K4CaOL4KhbQzEyfPr3G7dV+v1+Ki4slLy9Pli1bJhs2bKhx0dC5c2d54IEHrLeJ9+7dW8aMGSOzZs2SYDAoV199tYwaNUr69+8vqampsnnzZpk1a5YUFRVJ7969pWfPnvu9vf/YY4+V//3vfyIicu+998rChQulW7duka8kpaWlRX67Gc/HD4fD8tNPP8lPP/0Ume7Up08fycrKklAoJLm5uTJnzpwaRZKrr77a+IDu8/nkqaeekosuukhycnJkxYoVctZZZ8ngwYNl8ODB0qZNG/H7/VJYWChr1qyRZcuW1TrmvHv37tK9e3fZtGmTrF27VsaPHy9HH310jTt5jjjiiAb7gOrz+WTo0KGR8cH7PkTX9jUskb13qez7Oap/8G6owo7P55PnnntObr/9dpk5c6aEw2F599135YMPPpD+/fvLgAEDJCsrS1wul+Tn58uaNWtk8eLFNT48VP9anMje3+4/+OCDctlll0l5ebksWLBAfvvb38rYsWOlR48eUl5eLvPnz6/RC+q4446r00X3kCFDZPTo0TJnzhwpLy+Xiy++WMaOHSt9+/aVQCAgK1askO+++04CgYD8+c9/lhdffPGAH8tJ4vX+be4uvvhi+eqrryQYDMrcuXPl5JNPluOOO046d+4sJSUlsmjRosh6veKKK+T555+vdXsnnniinHzyyTJt2jQJBoNy9913yzvvvCNHHHGEpKSkyObNm+Xrr7+W4uJiOemkkyQ7Ozty55omnsfPoqIimTp1qrz22mvStWtXGThwoBx00EGSkpIiRUVFsmHDhsh7RWTvSOl43ZVw/vnny+uvvy5XXXWVjBw5Ug477DDx+Xyydu1amTVrVmR8fNu2beXvf/97XB5zf9LS0uTee++Va6+9VoLBoMycOVNOOeWUyOtfVFQk3333naxdu1ZatWolxx13nHz44YciEl3z3nj44x//KDNnzpR58+ZJZWWlXHPNNTJ8+HAZPny4+Hw+WbNmjcyaNUuqqqpk/PjxkbH1zVW/fv3khhtukMcee0xERB599FH5+OOP5ZhjjpGMjAzJycmRr776SvLz80Vk7znq4YcfbvITNgE0PAo7QDPz7rvvRpXXrl07Of300+XSSy+t0UNF88ADD8hf/vKXSMFo3rx5Nb7rLbL34mTixIny3HPP7fexTzrpJHnvvfdk0aJFUlpaWqOBs8jeYlP129bj9fgej0fcbreEQiGpqKiQBQsWWH/7mJiYKNdee621p0qnTp3knXfekXvvvTfydZmlS5fW+ID/S+3bt7c2f7711lvluuuuk0AgIIsXLzbu0rj//vsb9M6Dww8/PFLY2Wd/hZ19OZs2bTK21VBSU1PlySeflPfee08mTZokO3bskGAwKNnZ2TV6/vxS79695eqrr5Zf/epXxt8NHjxYXn75Zbn55pslJydHSkpK1K8IuFwu+f3vfy933HFHnT8kPfDAA/LnP/9Z1qxZI4FAQL788ssaBUuv1ys333yznHDCCS2msBPP929zNnDgQLnnnnvkH//4hwQCASkoKDC+8uL1euW6666TX//61/st7IhIZFLOvrvali9fbvRnGT16tNx7771y+umni0jtX3mK1/GzetFuy5YttfZYGzhwoEycODHSQ6uuxo4dK507d5bHHnvMuhYPOuggeeaZZ6IaZR0vxx57rDz44INy9913S3l5ueTn58v7779fIycrK0sef/zxGj26bF9Z/OXdI/vuLjlQbrdbnnrqKbnxxhsjj79o0SJZtGhRjbzf/va3ct111zX7wo6IyEUXXSRer1eefPJJqaiokLVr16p3obVt21Yefvjheu9ZB8CZKOwAzVxycrKkpaVJenq6dO/eXfr16ydDhgyRUaNG1dq0uLrMzEx5/fXX5f3335dp06bJ2rVrpaKiIvI1h5NOOkl+97vfRf2bca/XK5MmTZJ3331XvvrqK1m3bp0UFRVZb7uO1+N37NhRvv76a5kzZ478+OOPsmrVKsnJyZGioiJxuVySnp4uPXv2lFGjRskZZ5yx3zGmrVq1kieeeEJWrVoln376qSxatEi2bdsmRUVF4vV6JTMzU7p37y4DBw6U0aNHy4gRI6wXxccee6xMmTJF3nrrLVm8eLHs2LFDKioq4tJT4kD88sLxl9OybIYPH17jQ2TXrl3rNA72QLhcLjn77LPljDPOkNmzZ8sPP/wgS5culby8PCksLBS32y0ZGRnSo0cPGTRokBx//PH7/frFoEGD5JNPPpGPP/5YZs6cKatXr5aCggJJSkqS9u3by8iRI+XMM8+M9COpq7Zt28qUKVPk7bffli+++EI2bNggVVVV0q5dOzn88MPl3HPPlX79+sX1K3hNXbzfv83ZGWecIQMGDJDXX39dFixYILt27ZKkpCRp166dHHHEEXLmmWfKoYceGvX68fl88vDDD8upp54qH3zwQaRBeqtWraR3795y6qmnyimnnCJutzvy1Z/93VEQj+Pn3XffLb/73e9k3rx5snTpUtm4caPk5eVJRUWFJCUlSYcOHaR///5y4oknytixY+N+V8r5558vw4YNk3feeUcWLFggu3fvFp/PJz169JATTzxRzj333Lj19InFuHHjZMiQIfL666/Lt99+Kzt37hSv1yudOnWSsWPHyrnnnitt27aVzz//PPJvqt8hWl31AkPHjh3j0og8JSVFnn/+efn888/l448/lp9//lmKi4slKytL+vXrJ2eeeWaNSYctwfnnny9jx46VDz/8UL799lvZvn27lJSUSGZmpvTp00fGjBkjZ555Zq3NywG0bK7s7OzG+dQAAACAZmPnzp1ywgkniMjeO93efPPNRt6j+Lrzzjtl6tSpIiLyyiuvOP7OicsvvzxyZ+bUqVOlZ8+eRs6UKVPkn//8p4iI3HHHHfLHP/6xQfcRABAdmicDAACgzmbPnh35c/Xpbmh6ioqKZMmSJSKy9yus1Zv4V7dw4UIR2fv17TPPPLOhdg8AECMKOwAAAKiT0tJSefnllyP/f9xxxzXi3mB/Jk2aFGlKPWbMGOvX1Pb1vhk/fry1Dw8AoPFR2AEAAIDVZ599Jh999FFk0tMv5eTkyJVXXhnp2dO7d2854ogjGnIX8X8KCgrkwQcftE4m8/v98txzz0WaErtcLjnvvPPU3PXr10teXp60bt26RTYiBwAnoXkyAAAArLZv3y5PPvmkPPzwwzJixAjp3bu3pKamSmlpqaxcuVLmzp0baX6fmJgoDzzwQIONz0ZNwWBQ3nzzTXnrrbdk0KBBMmDAAGnXrp0EAgHZtm2bfP/997J79+5I/vjx460NkXv16lXrNEEAQNNBYQcA0Ci+++47daRrLC666KL47AyatbVr18p3331Xp22MGzeuRU/aEhEpKSmRWbNmyaxZs9S/b9eunTz66KMyYMCAht0xGMLhcK0j5D0ej1xyySVyzTXXNPCeAQDqA4UdAECjmDZtWmTCzIGisINoLFu2TB577LE6bWPAgAEttrBzzjnnSIcOHWTu3Lmybt06yc/Pl4KCAhHZO7b80EMPlaOPPlpOP/30Rhnvjf+vTZs2MnnyZJk9e7YsW7ZMdu/eLfn5+VJWViYZGRnSuXNnGTlypJx11lnSvXv3xt5dAECcUNgBAACAVXp6upx66qly6qmnNvauNKoJEybIhAkTGns3auVyuWTEiBEyYsSIxt4VAEADcmVnZ4cbeycAAAAAAAAQO6ZiAQAAAAAAOBSFHQAAAAAAAIeisAMAAAAAAOBQFHYAAAAAAAAcisIOAAAAAACAQ1HYAQAAAAAAcCgKOwAAAAAAAA5FYQcAAAAAAMChKOwAAAAAAAA4FIUdAAAAAAAAh6KwAwAAAAAA4FAUdgAAAAAAAByKwg4AAAAAAIBDUdgBAAAAAABwKAo7AAAAAAAADkVhBwAAAAAAwKEo7AAAAAAAADgUhR0AAAAAAACHorADAAAAAADgUBR2AAAAAAAAHIrCDgAAAAAAgENR2AEAAAAAAHAoCjsAAAAAAAAORWEHAAAAAADAoSjsAAAAAAAAOBSFHQAAAAAAAIeisAMAAAAAAOBQFHYAAAAAAAAcisIOAAAAAACAQ1HYAQAAAAAAcCgKOwAAAAAAAA5FYQcAAAAAAMChKOwAAAAAAAA4FIUdAAAAAAAAh6KwAwAAAAAA4FDe2v5y0KBBDbUfcIDs7Oyoc1k7qC7atcO6QXWsGxwIzlU4UBxzcCBYNzgQnKtwoGxrhzt2AAAAAAAAHIrCDgAAAAAAgENR2AEAAAAAAHAoCjsAAAAAAAAORWEHAAAAAADAoSjsAAAAAAAAOBSFHQAAAAAAAIeisAMAAAAAAOBQFHYAAAAAAAAcisIOAAAAAACAQ3kbeweA5sDj8ajxYDDYwHsCAAAAAGhJuGMHAAAAAADAoSjsAAAAAAAAOBSFHQAAAAAAAIeisAMAAAAAAOBQzb558iNpVWr8lpIEI/ZkRkDNva4o+qfJ7TZrZS6XnhsMhqLeLpo2miRjH5flDe/2mPFQWN9GOGj+hdtyHAmFLRsB0Oxohxef3rtfqvRLmqh5LdvVDjlczjRx2mtp+9XusFZG6K67D1NT779mgRFL2Fqq5k7852lGrMKvn79uvn2qZecAADbcsQMAAAAAAOBQFHYAAAAAAAAcisIOAAAAAACAQ1HYAQAAAAAAcCgKOwAAAAAAAA7V5KdiPZxhTrW6tcicaCUi8liy3wxaJsY8lFJpxKr8+giJx9OV7Vom39wQwwQtjcej19qYoBUnPkstM6A8vzENG7LVSOv4utXTZhEf6lHApS+cYECJx1BaD1umYmkPx5ysJsIyVUia6hA9yxpjQTUdbuW1qOv0KxuX5TyjXVaxdJqGLtf1VeMXPDTSiB20rETNvfrij4zY/bfMVHPPe/JII3Z0Zic1t8Mx5r4tLzOvxUVE5HYz9Oi/zKlaIkzQAoB9uGMHAAAAAADAoSjsAAAAAAAAOBSFHQAAAAAAAIeisAMAAAAAAOBQjdI8eWKm0ozYwh0wW/I9nqL/+8qg2UEw0at3r0xQWv2V+81GzSIiHq37X1iviT2YWG7E/laZrOZqzQZpkhxH2ktve37r2uHR69PjAUtjwGjZloO2/Fg6DU95E4djeR1iyLVuVzuQ0LG0aXDae5J10+Q15JLyW9aDVzn/xHTcQ1xcU/AnIzY4Vb8WKV+824hNy9mi5v76lkFG7Mu/Zau5u/KLjNg3oTw11/3lRiPW5fABau5/ym4zYhemPKTmAgD24o4dAAAAAAAAh6KwAwAAAAAA4FAUdgAAAAAAAByKwg4AAAAAAIBDUdgBAAAAAABwqEaZinXjHrNr/xOp5kQrEZGCUNCIBavMmIjImmChEWtVmajmVon5eD51jJJIWCqMmMdSEwsqY0VukWI19xFJN2K2SpvLU7caXLOetuXRxgKJSFgZ6WF5GrRVEtM8q7pOvxKRBCWmz2mz0JeviP52QRxoS8ymvoZXuZSNMNyoibC8EOrAvnrdETQXCUnmkaQyZLk+CCqrKtFy2VehXIN59JNKQFvYoWZ8jdHIri08X40f7DNfn8VF5pQqEZFnLv/MiA2/7SA1d3OxOdVq8KN91NyChHwjtrtEXzeuou1GbMqff1Rz//rchUbsP+W3q7nbHl+mxjU+l/n+ufn2qVH/++Ygp1tXI5ZgefumKCPwvG79eKM9twHbOTBsHpsClu1qn19Kq/TPjJXK/nbZrE9/A5oj7tgBAAAAAABwKAo7AAAAAAAADkVhBwAAAAAAwKEo7AAAAAAAADhUvTZPnpjpV+OegNlgy9bsM0VpmpWvNQQUkYMlw4gVS6mamyRmA+dMT5Kaq/RvFtseFystdxMt9bOJqebzc2OpuV8iItKcmx/HwtYoWeM1cxMt3YhT0lONmKtKf6yw23yNfVoHWxFJcJmvZ0VQb/oWUhrPpbr0tV5apjW6VFPp1NpE1FdDYxolO4/69nNp7dNFJBxTC3XUI+UQHVMD9XiorNAeMIYDunbusNEvfpoEt/JahJrqwTCGc/CzZZcYsZVV+jHguhumGLGTR+rXkB3OM2M5OVvV3HC5GVu6ZY2a27dvOyO2a5vZJFlERLucyeinpsrGzfOMWHqPcfp2rzrYiP2r1RNqboLtOqkF6dyAzYS9ynW4iEjA1lUZQJ1wxw4AAAAAAIBDUdgBAAAAAABwKAo7AAAAAAAADkVhBwAAAAAAwKEo7AAAAAAAADhUvU7FurFY784/MdGcBhW2jJYIucxd9FnGCRQpE7CG33qlmutWHq6kQp88kJ5qttHfsKtYze2baU7mWvH4i2puatAyBQV22tgLW3N9ZZm4fPqS32MOupKQW3+NvX6zy39lQH8tM5PMaWZlfn0sQ3Ky+b7wB2KovdoGmDAFQtwu5Xm0HXOYMyUiItosC54ZO4+yxOzDDLX1qJ9/6jqJyZeerMb9xcroG9RKe0+4LYdodVCi5XVT51RZjtu+RPMv/OWWg792urOtyVgGYClPRGKKnlqpDCb1WYZbaqf3pjuXK3o+5ef6ywO/VnNTE8zklLD+op14wwgjVrbiJzW3nzL0ddt3aqoktDJjnS3rpu2u3UbsoIA+YXaTVBixdh307W4Jm+v8LJ9yoSYit//9EzMYwwBV1B+mXwENizt2AAAAAAAAHIrCDgAAAAAAgENR2AEAAAAAAHAoCjsAAAAAAAAOFbfmyRNTzcavAb/eNKtS6SiZ4NE7BbqVBmg/yUI1d03bE43Yt5P0hpRrC8xY6zQ1VU4/up8R+3zuCjW3qsSMDRr8rZqbulJvctfixFJe1BrixdBdscKvtqkUEeWFswioHTD1pn57zF6BVuXR70JsYuk+qb0NHdS90qV1mhWRsPKaWVJj6hCsbSKWXtW21aixHay1npbWnr0K23OmPQ/2p4wGifZGyZrok8PaDALzdPt/yUoqTZLjRmvuqzXGFYntPahJSzEHMYiIlBQXmUHbG1NbJ/FoKqv8zJXltiOfeQKxHS20SwHb5YHl8rJJ8h9kxqZs/VLNffoyM3brxLFqrsdlNkbfvkN/xtJzuxqxYLrS2VpEUr8oM2IVAX0YSk6xOWSibTe9eXLSMYlGLHeb/kImBboZsZVV+nXWFf88xYi5/qU/D/cepgwzWVnXd6vzzX1mvBp/5s35RiyrlX5RWBEwDzip6Vlq7jH9M43Yqg3KBzMRcQfNK6WefbqruX/4x6dqHE5kOVklmB/Ws1L1NZlfYB7Lmjvu2AEAAAAAAHAoCjsAAAAAAAAORWEHAAAAAADAoSjsAAAAAAAAOBSFHQAAAAAAAIeK21SsG0v1jvmaJ9OUKQmWCQfhoNll/cfkMWrurlwzZhvok6rENlumEj093ZyAZeuhr80C2LA0T82dJj0sWzFpvcFtQyEcN9hIm8rjimHUiGUYxyuvvW7E5i7+Wc09NNUcW7F+R46au3t3oRH7uXCTmtsq2XxfbAvob7vRKWan90P79VVzTzz2t0Zs1LgBaq76/Gjj5kScNWpEEbYdSLTceDyeErNNuqprFT2WCVqxDPyK5TlDvGjnS8tZpUp7NWNZDbFIscRb3mSJaNkGlNVVcc7XarzNIHMCUP7GnfpGXMpRx6dPLDrzvPON2Icfvqdvt0iZXuOxXGUoyzrQwg45yWmtjJi/zJwmJSLy1MTjjNjKSv2I3ibBnDJ1UOvfqLmLH/7BiCX69dcsabA5sSj/J33EZ5eDzPVUtLlQze27ypz0tvw7/bPDYWe2MWKBKsvoWk+CEbp33EQ19fmJ5vSnK37zqr7dFuSSB6eo8d155mTh3TGdDjao0YkfxLINTXZdN4DGcPAgNfzH0wcasbapPdTcQMA8bvXq1lHN/Tkx34hNvuwRfd+C+tQ9p+GOHQAAAAAAAIeisAMAAAAAAOBQFHYAAAAAAAAcisIOAAAAAACAQ8WtefLETLOFoCcYfd2oKLRNje8J7zBi2/Uebiq9TaCIP4ZuxLH0+dNaWnot9TO/tQVz3TTpRsmaoPIMx1JytPzAl4y/wIj9+cYb1NyOqWaH4Zv+Zzbk2/t4SgO/tHZq6tFt1xix47//Ts1NUlreFn6kr77Db7xc37dohVpY98qGZFm7Ie2YE483q/J4YVv3ZMcdHJqr+mq5W1c0SW4qXOkjYkhupce1A0GwXE398NUXo388rSO/33bSbqprveGU/1xoxB6adYya63KZV60uV7qam+Qzz+Pf3v6Zmrs5p8iI+SyXoGu/3GPmWvq1rzUv0aVNV7Ops4jIso/MCSV+bXiGiPx87zQjduOk89TcUNj8QS595Hdq7hVHv6rGW7qft5hNkoG6uPyWS43Yiq6t1dzdAfO4N+mG69Tctz42m/oflqV/Xpu7cKMRO+8f1+rbvdPSVNlhuGMHAAAAAADAoSjsAAAAAAAAOBSFHQAAAAAAAIeisAMAAAAAAOBQFHYAAAAAAAAcKm5TsW7c4zNi2qQsERG30l3/nvJuau7BmWbMV6nvQ6oSK9ZTJUUZCpSkN/KXdPNHk21mc38REXXOVaJl+pU2C8A2PyKWGUYej7nloDZ5qimzDQxTfjbbs5OhhCc/8ria+6t//1vZ7E59H3JWm7FD+6qp4ZQORkyZJyIiIjuUn2OVJdcftIyoiBbTkay01yempyuGYXe2ynqK0uC/xDa0on6G6yFGnXodYsS2r1eOFfXJpaxer2WB+B12TmjGDhs9zIhdevrhau7VtzxvBsOF0T+Yr40aPuNic+LQR5Pf1rcR1KancVKJxbXtv9XjBecbsRTRJ8k809W8bjl5VB81d+VGcyqWbWqscslrnZc3qq+5nuatzLNkx8CtnYn1CVoul3kmbfeRfv1239+PN2L3PPBVTLvmdId2MC8wVu1s2KlY7ZXFV2U5hBQyWK9pS22rhic98rIZzLBso2NHI3TK0rVqaie/ORr73z/MVXOz1ytj+7QDXDPCHTsAAAAAAAAORWEHAAAAAADAoSjsAAAAAAAAOBSFHQAAAAAAAIeKW/NkrVGyz6tvPhQ2mzna2ji2zTQ7bJVVmo2TRERylbDSg1RE9KbKGbbeYcpGMiwlsSKlT2W5ZbOx0B6uRfZMjaEJdK+u5tpZvElfO/96/2MzuPV7fcOtzYbI5x/ZW01dttl8lfxX36Tmvv/0Y2awU081d9GWDWbQ1pWZnpYx8SpvNpflzaY9tWFbuVzZhtoLXPTjoc+SSw/cpqF0V44ZdGst/UUkVKoEbafj6BulJySZ26gqt0wbyOxsxvYoPwPq3fmnHWfEPp3xXQxbiOHgX6E3ti0rVTqUqk2SEQ/3/vMINZ683Lw6ze2tN0/W7CmyvN8Vtq22STdjyyyTSHJ2RX+F2yrKmIjIxv/uNoMv6LkHLTcbQ29wWU6YkFSfeZHSypLrSzNjuy3DYzRtkvV4srIPu7QPUCLS6yBzQa7fahuNgwZXmquGew/qYsTWZm9Tc4eec6gRWzFnuZr7zZYtRsyjNFS26XrmIDW+5Z3sqLfRlHHHDgAAAAAAgENR2AEAAAAAAHAoCjsAAAAAAAAORWEHAAAAAADAoSjsAAAAAAAAOJQrOzvbOlNl0CC9c3RdPZlpTmoo2KOP7rlXGUnV2dJlXZsOY2uM71JKWkHb8BElN2ybZqNsw20pn2lTvNy2MTnKNKiGnoqVnR19x/D6Wjux8CYkGrG2GXrujlxzkoSt6ulTYraBatqbyzarId0c4iUplp3Y4bBhJdGunYZcN+FVfdS469A1RizR8jpox4Gg5Y3pVnKtcztsQ24U2nHLdhipctgovaa4bmJx+PCBanzlpl1GLODWZzimuM0XrTygT4BwVZjn0XBIf9ET0rSZOPp5uGCXPsmiqXLauUpzxV/PU+N+v/nmTp6/WM39MmReLP3mhCH6dpWxe96QfiDJ/+hLIzYrbJ5vRUQ2r1ulxpuqxj7m/Pnrk43Y6x/nq7nlT82LersdW5lrIb9Qn2ilXc90aq2MRxIRl3KyCSuTb0VEduaZ0wBjOSWde9tYNd755G5GLGumPuHv7/eZazceGnvd1NXYnilqfFmOebHps3xq9GsjRS3nn5Dywcg6ULTM3EaV5Rqn2GFTQpvDucrG09b8UNNvxCFqbmKF+YKuWK2/h/1+cz34RJ8GGGxnXlelVuoTSPPXmddlTZlt7XDHDgAAAAAAgENR2AEAAAAAAHAoCjsAAAAAAAAORWEHAAAAAADAofQOQnHy7yxLWzSl6VXrDL1bqKvIjCUn600mK4uVlm+27qRKj0ituamIyG69v5yqjbJrlj5yqrDSJFlEb8KL2gWqzGZaJRVKh2IR0aLWxrYK2+vj0Za1rfGc0g91j/URtZqswzrjNjKtSbKNrelwgvL6av0DY1Xpjz43MYZGy2hYCxYtU+M9Du1hxMIh21HEPBKluVPVzI2rtkS7a9KuSysj5rY0cC5wVk/BZuH5595S45dcPt6IlR4+TM09Ulk7OywNc6e8oj+e5uLLLzRix1kmVbzqsObJDeWeCUeocdfcAiN21kl64+K0k80G28+frL+OecVKc1H1AkUfEJFrWTeBsN5wXeNRHs9tuSAKKFMIWo3ppOZOHPOaEbv/7hOi3i+IdGyvr7HcKmVwS9hyrlLCYcv6+HlH9Bc5AzuZV+i2QTNLt8bwgQ31yu0xG3Kv/sk2iMFcPIGAvnZCJWYTdttqSvCY1zTFIdukpOaBO3YAAAAAAAAcisIOAAAAAACAQ1HYAQAAAAAAcCgKOwAAAAAAAA5FYQcAAAAAAMCh6nUq1jX5et3I4zHjD6cqI4Es0tMS1bjXp3Tcd+n7kFtgdtW26ZBsxkJhy8wkpVu8bX8LC80pXkHLVCztOQsqUwNQu5ISywQHlzbOTJmyFqNg9AMjJLZe/rz2Dck2r6hSeX2TtJEiEtt0vBRlG7G83bX9QsOzrZsNqzYasUWzJqm54297IeoNjz62ixErqNAnQGhnxmXzF+obRsOzvN9fecGcACSiXKSIyAWXn2zEvJarviv/erYR2xPU104gVGLEXn/xQ33DUN1351w1/ui/TjNib5wyVc29cpo5FeveG8epuY88/bkRC/j1RWYd0KfQUr2Wy2OXckGUYDlf3nmt+XPcd8vHau5995jr/K77pukbhirs0tdCp9bmRKrEJP14s357oRFzWe4fGHOw+cLvslxyh5RdO7RLazV36Vbb1CU0tGC5+akmVKpM5xMRT6sMI+ayzSauNM9L7kzz34uIBJVjXKgq+nqDE3HHDgAAAAAAgENR2AEAAAAAAHAoCjsAAAAAAAAORWEHAAAAAADAoeq1ebLNE5l6Qz6N22M2T6qs0v+9X2mSVBXWf8Ss1plGrLC4LPr9ssQLS/1GLFCpN4uqa39Tj/LciNgbMENExHx9RMTe5VTjSqvbv7fS2ifTBbcpsLRwU1/2CssSiwkve4szfNxV+l9UaIuB5umoTm+9//qkemporM+DQBzsKt1qxG69a7iam/ZDvhG7e+J0NdennMR8li7HHdu1MmKBOFxXFpaYQ0uCAX279z2u/xwa11lm7AGlobKIyN9pqqzyWrqqZ2aYb/aiQn34jMtvHod27dFf390x7FuJ0lQ5zctFUlMXVq6QXWlmM24RkWCZsqaqLNc5HnNQUkg5tuzNVbbhsl3RNw/csQMAAAAAAOBQFHYAAAAAAAAcisIOAAAAAACAQ1HYAQAAAAAAcCgKOwAAAAAAAA7VKFOxrsk360n/ztK7X2sTnvyWqTOtM5KNWEFxhZqrDcDaqUy0ilW7ZJ8Rc4X17bqqzOfBHUO37mA4w/I3hVFvo+Uxu6nvpXXYt9Q9w9pUNn2duZWHC9ma+bu0fbPsb5iJAPg/HmWdBpma1DTEcLyJZZxaQgy7oEwUQdPnStGnh4TL9HNNg2JN1ZuHH/jRiN094Qg19+47o58c1aaVedAo2KO/kPl7zDWWbpm85leGHrWx7MM25bq7bVYrNbeistCyFdPdTLqqs/IyfXqvK8H8XJXRKlXNDSlrYdmuwrrsloiIDD8o3Yh1aqvvg2zaUefHQ3wMOaSrEVu6xpz6J6JP0EoI6p9ztKtb66xtn/mZXCqjn8ztRNyxAwAAAAAA4FAUdgAAAAAAAByKwg4AAAAAAIBDUdgBAAAAAABwqEZpnqzRGirbJCm9kERE8vMLjZithWhOkRnrkmk2CRMRCSsNwTxuvclxkdKVuXcn/WnetdVs4BRbS9zCmLIhkmR5hvV2lLbVo732ifoWlObfojQJ2xvWHs+2IrT3Cw1z64vSE11E9H63lldXwtqysSXHQmmUbGvBHo+HQ/S2LnhFjR967KVGrLQ8hoZ+NK9t/rwpatiXbL74/vIGPvZzIGlQ/7hzbp23saPAXDeJPv3aNMFnNn0v8uvXx9rJZmWp3mhZk6tct6PhpaebDYpFRELKNWhlwHKF4TYvlE7s30pNDSsfrILqRZJIbpH5uaprx3b6PqDJWLxwjRFzZViaXivX2FUBS4nCZ37+cSXouWFl7TT38xd37AAAAAAAADgUhR0AAAAAAACHorADAAAAAADgUBR2AAAAAAAAHIrCDgAAAAAAgEM1malYsdhdqHfcb59lTpHQplSJiBzcSum+nqBPJXEpqdqkLBGR9hlmbJEy/QqNo9IS14YeKQOP/o+2/mxziDTxaMnezNu6NzG297s2oa/csnB8yoHEb9twDJiP1nRdft9LanzNnFeNWOdh56u5mUnmaXpPBeeU5u6K836lxp97Y6YZ9BSqud4E85gTKI/DMcdnbjfk55zkNEFloqKISF5hiRFLSrR8XFBedltuRSXHraZq0/Z8Nd6zU2sjFvLo17udsswLosIKy/0DLmXhWKZiHdzFnNj19Gfr9e2iSQtXWkZ6aseG1AQ9N2Qet8J+y7GlBV4Mc8cOAAAAAACAQ1HYAQAAAAAAcCgKOwAAAAAAAA5FYQcAAAAAAMChHNk8OckTfW5yitlQWURk5U6tqbK9XS6aB1t7R+2VT7Gss7JgLFuuLzSqbEgBSwM2n7JGkrVO3CJSVk/NRVtgbzjH6NlaP/8kp5iN/lbOfVXN7XvERXHcIziFz9KgVG0w6spUUwPle+K4R/8fjZKbh7DShNSGxsfNm8/yadDtNo83Qb9+bHrju5x47hKaI9shx6vcZ1JqabSMWnHHDgAAAAAAgENR2AEAAAAAAHAoCjsAAAAAAAAORWEHAAAAAADAoSjsAAAAAAAAOJQjp2KVW4ZXuYvMSVdJaan1vDdwkgRLXBuAVa5Ov0JL5LIMgalSjkVuyuX4PwtXbVfjd02YYsT+/c/x9b07cBCXN0mN//WCMUbsmUnT63lvADRnAe1iRkS27sg1Yq3bt6nv3UFzlWC5QNam7nktkyEDTGWsDR9BAAAAAAAAHIrCDgAAAAAAgENR2AEAAAAAAHAoCjsAAAAAAAAO5cjmyTalVUosv7ThdwRNlrJEgP1yWXq4ebS4JRctTzCgNAQUkR+WbzVifcbdUd+7AwdxeXxq3JdijgA496Iz1dy3X34zrvuE5sb2u91Qg+4FGp+tHW2l35wismLdrvrdGTRbrkR9KEBYWWd2+nUV9uKOHQAAAAAAAIeisAMAAAAAAOBQFHYAAAAAAAAcisIOAAAAAACAQ1HYAQAAAAAAcChXdna2rRk6AAAAAAAAmjDu2AEAAAAAAHAoCjsAAAAAAAAORWEHAAAAAADAoSjsAAAAAAAAOBSFHQAAAAAAAIeisAMAAAAAAOBQFHYAAAAAAAAcisIOAAAAAACAQ1HYAQAAAAAAcCgKOwAAAAAAAA7lre0vBw0a1FD7AQfIzs6OOpe1g+qiXTusG1THusGB4FyFA8UxBweCdYMDwbkKB8q2drhjBwAAAAAAwKEo7AAAAAAAADgUhR0AAAAAAACHorADAAAAAADgUBR2AAAAAAAAHIrCDgAAAAAAgENR2AEAAAAAAHAoCjsAAAAAAAAORWEHAAAAAADAoSjsAAAAAAAAOJS3sXcAaA7cbr1GGgqFGnhPAAAAAAAtCXfsAAAAAAAAOBSFHQAAAAAAAIeisAMAAAAAAOBQFHYAAAAAAAAciubJQByEQuHG3gUAAICoeCy/2g3WceaDZZaEMEsCAOoXd+wAAAAAAAA4FIUdAAAAAAAAh6KwAwAAAAAA4FAUdgAAAAAAAByKwg4AAAAAAIBDMRWrOluZi07+qKbXkHFGzOP2qLmBYMCIbVj6edz3CQAAQPNs1yVGLCz6NM+wy4wFAvqFsEvJ9XktHy3C5uNdtXmIngug2clIS1PjRSUlDbwnzRd37AAAAAAAADgUhR0AAAAAAACHorADAAAAAADgUBR2AAAAAAAAHIrmydXRJLlZ6TP0ZCMWVpr3iYhU+s0mx16v3hA5FDK3sfrtz9Tc3mefZMQOHmLGREQCAXO7Pp+t9mp2LFy7eJolFw1J6SUpImJpUxnDRmLaAACgpfl3l5/0v9C6HLss1xfKucbt0c9sbmW7o/8wSM2d++HPRuypLgvV3Gu3jdD3DYBj0SS5/nHHDgAAAAAAgENR2AEAAAAAAHAoCjsAAAAAAAAORWEHAAAAAADAoSjsAAAAAAAAOFSzmoqVoAwx8gf13PoaMMMwm6YjpD3zQX30WUlZqRFLtUzFKi6pMGJdTj5WzQ0ECoxYSlKCmhsMm/vmlXQ11+WzzV5CY4vL+70JHDS0ISo2lmFzAIB68lCnRUbM6/OpufM25hixFNFzvW7zWqQqpF87hcW8yP750Tw1d+SZfc3gYvMaCQBwYLhjBwAAAAAAwKEo7AAAAAAAADgUhR0AAAAAAACHorADAAAAAADgUI5snpyaqMdLK81Ygt4bTqr8StDWLDSGxqD0EG061i2ebsTyisvU3DbpKUZse3m5mpuUnGzECoMBNdflMd9iOwPa4hPxes3FGghacj2WhY1mwZNsHuTC5coBTkT0lpZ1R0NkAGi6kpVr1rlKk2QRkTQxzylBpfGxiMiekHk9k+HWPy7sDBWauZaL6VkfLjViHstV85NdFhixUFgfaKG5IWdY1LmoPyUl5mASEZG0tNQG3hOgZeCOHQAAAAAAAIeisAMAAAAAAOBQFHYAAAAAAAAcisIOAAAAAACAQ1HYAQAAAAAAcChHTsWqCOod91OUEQFl5THMjGEKTLOnTb+y6Xv46Wq8Z7/jzdjAk9TcXgN/bcS6HHqCmtujv5nba+A4fbtDzMdbv+RzNRfOE7RMwKo77ZCvT3RD05VoGQ5TqQ+5UXnM4X4S1AcBohm56DR9WtD4081zzZjDWqu5x577oBH7dlVe3XYMImIfzqrxi3kg6JaivLFF1PlXRZX6eaZj0DxPhFz6BXLPxDZGbFdlhZrbLtm8/vJYrrv9kmDE0hP1aaBBZXro011/VHOv3sK0rIZkm35VUlpi5qam1ffuoMnSxl3Hch2cZYnnmyGf5QLKH8MFVBPGHTsAAAAAAAAORWEHAAAAAADAoSjsAAAAAAAAOBSFHQAAAAAAAIdyZPPkYEDvtlZmiUfLYylzBWPov4ym7dPH/6zG88rMt8L4O5+t792B45kNHkWq6vjvRYb162PEVm/dreaWFO+K4dHMY2Qse4tGoJylK+PQ75pGyc2H7Td0E6851YjNW5Wj5t7z1D+N2OM33aLm3nzByUasfPKXau7CdTste9eyuWPokmy7sr0pZ6gRu+XSE9XcR17+wojZRkmUaUFLX9GLx/YwYm/M2KjmpijHnGFDu6m5MxdvNoOxdJZGk0aj5BbAbV68LPp8opq6PLfUiF34x9ujf6wBnfR4xyPM2Ff/i367DsQdOwAAAAAAAA5FYQcAAAAAAMChKOwAAAAAAAA4FIUdAAAAAAAAh6KwAwAAAAAA4FCOnIpVX5h+1fydd+eLajzFY8b0eUUNO0XIp+yXiIjfMqECOm2Yhm3SiHZQtA8hin41nHac2Z3/k0U/q7k/7iwyYj36dFRzD/Fnmf8+e6Wa61N+uirbuBM0Dcrisw2H0dZ0LLlwpiMPO1SNX//vT4xYV8s2tiix0y54RM3dpsR+NWqgvmGmYqlC9fQG1KZfiYi0kiQjtkd8lq34lViFmjl5hj5lTbNHMozYzMU7LNnKkSvMUau+rL5avzae9vlMI7Z1a66au6h8kxEbJAepuQcf3MGILVm3Ts0NKOuxa5vOau5555xkxPo/e62ai3oWMi9ehv/a8lrYRvSplOPW8uV6qi3ejHHHDgAAAAAAgENR2AEAAAAAAHAoCjsAAAAAAAAORWEHAAAAAADAoRzZPDnD0g2yqAn0VdMa7jZks13Urqhcr2UWhc3O2V7LOtO2EI9GiNp2A/S1jUk8GsXW12Fk6tdzY8g2mydvzNfam4psjGGrpVIZQ7aJRryxObS7Hl9l9pi0MlueivjS9NzJfz/HiJ114pFq7gW3PW3Efp2sd2sfP3WVGfRaGq8GtMarqE9zflJeH4tKy9rppMS2lUS/D9/MWxZ9MhpcodL82GdpiBzbOzj6K1yXcl6rr3OHx61f6wVDTEkJPDLdiJ3wwA1q7tI9m41YvnXggrmelspqfR/WpRqxTLc+IGJTuNwM5v2k5s57dqP5WA//T8313vobNY5GUBZLch2vMSznQInhfNeUcccOAAAAAACAQ1HYAQAAAAAAcCgKOwAAAAAAAA5FYQcAAAAAAMChKOwAAAAAAAA4VJOfijWsQ6IR+3Fn3Sa7xEOmJb5HiSVbcpU+74ijLq3NZ76iVF87ecpgh4BlXEOaMgymJIYm7S6PPlsoFDQf0Gt5hwYC0T9eSxKPCRt1HUTW/6wOatyzY6cRy56jb+PEMccYsS9mfavmjr5hkBHbUbBdzV33aq7+gFGyPb8uZUmHGZUV0/QrG3VujU8/MDw1c4cRO3iQfqZ548u1Rqz9pb+17IUydYnpV02fMlIt1zL5o2eXdmawZHf0j2UOudmrNPpNIDZd083YlhJ9sp2EzTOb7R2szbuz5Xo95izYQFDPDjfg/ESmX9mtzykwYoV79NemVXszltK+l5pbrKyc3GVL1NxE5cDQZ3QbNXdToXIgSzCve0REfIty1DiakXOuNmPvmFM+9zJrCFLS+DWE+sQdOwAAAAAAAA5FYQcAAAAAAMChKOwAAAAAAAA4FIUdAAAAAAAAh2ryzZNjaZSclGh28Kyw9U/za43C9Ka2WstQrUmyiMgJYw4xYt/PXq0n09utfoXMjsjJSZYlX6U1+9ObycXSKFkTVpoki+hvRpokNw3ejCw1HijKN2I/f2A2SRYRkZToH29Af/Pxvpil5855PNuIJXeJ/rHQ8AaM7GHEli/YqCcrv34Z0P1gNfX7n7YasX+9+EHU+9X3xJH6X7z8adTbQBOidN62XhJV1fFkQ5PkBhdymwMiWqcokyBEpKBcaSIa0q+v9UscvSmz1jjfdu3k85j74A8270amjankX/9T4zt2FxuxwSP1Jvtby81rka+X/azm9h3YzYgd3lPftw0bzFhiqblfIiKSPd8IHTJsoJr6z4sv07ehKH9ouhFLvm1c1P8e9S1DD8c0maPlHV+4YwcAAAAAAMChKOwAAAAAAAA4FIUdAAAAAAAAh6KwAwAAAAAA4FAUdgAAAAAAAByqyU/F0nT06fGiSrNTdnvLNvKUmMfSyV+bImGriC2dZU7AUgZToAFs2xM0Ym1S9VcuMzHJiNnWQ4U2PS2szxrxJpiTJAKWqVipITNe4dL3t7iiTI2jfmjTr0REnpp4mxG79saH9I0oL9nkR69SUwtKzNd98oPXqrkX/+0pI1a+Td+F+hLTkAJI9y6tjdhy83AlIiJHpJin6W4ZqWpuu17mcSyUnqBv+JTBRuirqdP0XDQZGcq5qrxSv8rQphulJJj/XkQkf4851irFp68dX9CcvFQW0i8n/cJox/qybY85ySjRcs0gYXM1uH36xbRLmYAV9Ouvoz+gXfvoE7T8yrqJZRot4qNHh3Qj9vDxj6q5Qx6/2Ij9auSf1Fx30JyWtXjZZj1XedmL1ugTRU8YZe5DuGq5mtu9R1claltjiIfLn3tPjV980lFGrE9n/TxRHDTXZG6+PtEq/SDz2FD45mNqbsaWtWauMk1QRGR0D33aqNNwxw4AAAAAAIBDUdgBAAAAAABwKAo7AAAAAAAADkVhBwAAAAAAwKEc2Tx5UAc9viRHCVp6ZrXRgpbmlbui2KfIwyk949pbymc7tM6GqFd7KvUXw+syGwO6Ymi45vXouUUl0Tc5DiuNKsO2RQmVK4Y+jLbWjNombLkDu5qNSGe+f58l27S9VG8Od/avekS9jVnK47m1zoQicuyZd0e9XdSfZT/uNmIHe/XXbHeR2Zx048Ydau6OrdpJUNerVzcj9n1AGyuApqS0Smli69Iv5bQWtoGAfk6pCkV/QeJRHi9MD9wmodL2Qignx5C1r7W5Rjwe/dopqDZEtnBpzZotCyRM0+2609dChdLv2m05/yS6S4zYuiVvRr0HKZbe/a2UZRMu1odUrPxpshHTPmuJiKQn641xNT6XPvQEsclZvUWNvxFYZsTcPtvrYx4HMpP0F3nCRUdHvW9/feEbI+Yvbd7DZ7hjBwAAAAAAwKEo7AAAAAAAADgUhR0AAAAAAACHorADAAAAAADgUBR2AAAAAAAAHMqRU7G0ju4iIp3TzdjmIj03HMOUnKyo9mqvSmXgxIB2eu4OfbAJ6lNYXzzeBHNaQ6BC75yubaLKMlBEe4PZqqkhvzkmIKbBaUwlUd/XMW8jhtzSQKYR216Yq+Ymppod/l3q3BqRg0b+2Yi9+rY+bSusTMnplGo56KBJKM3fasQCbn18SKIySMblin6Vts/SJtGIlBWZJ6Diwhgm3KBR+JSJRX7LgU87JYRiOMB5LBNtXMoxx2c5/1RE/3CIC9uUKTOelZGmphYUlxqxkOW626ussqDLepWj7BaTiZoC2yRNbTBRarp+3VJUHv0U1yXKqeZg5TOciEiiEvNZllhYWY+umGagIlYlJfpRvr1rnRGb8fSjam5Sz8Fm0PKyHXzMiUasW7o5oVZEZPUnjxsxV+UGfcPNBHfsAAAAAAAAOBSFHQAAAAAAAIeisAMAAAAAAOBQFHYAAAAAAAAcypHNk21Ns1opfeDS9b6RctPZXY3YuoLiOuzVXmcf3s/cbm6lmjtmwo91fjzEJhDU2xGXlZlxr2WdNWR70VZpekOwQq1ZWQtqkhwPsVS1be0ds1qZB5hEl94BcNH0mUas2LITd1xiNodb/cUcNfefr3xhBjv00DdcR16PvsOBIA0wY1Gq9GV3ufUjyx6zT61ktktVczPamd1ubc1ri3abDVLR9LmVxtlJlh6gbduYx6IybcJDjHZXmQs4wPmniYj+WJxfZJkuEgPl8CQSrvsaQ93F8pb0+vRO6S6lT3J5lf76pmckm//e0nX7ML1vt6pjW3NIRSio70NAORD5vPoBMh7DNiDywxevqPHSZeZ68Kbrr9vMLz42Yq1i6G1dYInnKxdAbdvq10/NBXfsAAAAAAAAOBSFHQAAAAAAAIeisAMAAAAAAOBQFHYAAAAAAAAcisIOAAAAAACAQzlyKlZyht5OfdPGEiPWrrW+jVc+32LEpq6r026JiMhBrTcYsXVb6z5tC/GRqHT4FxHRGuwHLMMlfMo2/HEYApGRqtRZLRMFPF7zrRu2tPjXGssHw5au8KG6T8lwCpel434whkkJW9ftMmIdurdRc5OVSUZPPvKRmpuh7Ntqy365PObxsEPrVmrujp36NqLF9Kv4qFCeRn3+ncih/bobsVUrNtV5H3r0NNfpxg15dd4u6leZsnZSLL+iKygqN2JFleocozobdkgPNf7TGm2tRn+QDYcto01Fn3AJnddtXjMEQvpaSFUulErjME1Nm7tkO6PUzyptWdJvP1mNFzzwmRm0XD9WKsMak/QBWuIKmWukV5k+7VF799oGZe1WLtCzEvWDXlhZUW5ttJeIuG/Vnx/EpmrTWjV+xtmnGbH/ztms5rqqzPNEXhymlmlnj6OPPkbN/fjj6XV/wCaAO3YAAAAAAAAcisIOAAAAAACAQ1HYAQAAAAAAcCgKOwAAAAAAAA7lyObJSzeVqfHRA9sasZLSCjV3+1az0fJvelkeUGng1L293nm1RwdzH84ec6Sae8dUvXEq6k+Vpf+fVuFM9OqvsdujNTnWN6z1/vLaGjgr3ZrLA3qDyGAsHX5VLadJsk0oDo3Zzrn6fiM2539PqrmBKvMB777rHDU3rDTN3lWgr7H7nv3QiO1YuVjNRdOVkal3pMzKSDRihx7aU9+IcshKSdYPOJs2mo3+0XRYerur5xRL31MJh82tpCdZLvuULrblVXoLWy364+qN+nbrjCbJschK0Qcj5JeVRr2NRJ92LKpUc7W1Z2uyr10mWS6HaJ5cjzxu87gQdOm/5196l9loedSDp6i52kCK9Sn6eU0b9uGxHPRaK1foj//mBTXXo1yfu2yTMhAfXn30w52PfWLEDuqYrOYGlONIom3AiRK3DbvRrprXbW7e1z7csQMAAAAAAOBQFHYAAAAAAAAcisIOAAAAAACAQ1HYAQAAAAAAcCgKOwAAAAAAAA7lyKlYrrDe/vr75QVGbOQhrdXczLZVRsyXZMZstpfoYyje+t7ch1H3MP2qqYilN35QmSgiIuJXRmvZppJozfj9lnEP2pQmf52nX6Gh9Wivd/0f/eTHRuytZ+5Tc7VXvXVn2yOaU7HgPOVV+vSfHxavNmL9evRWc93KAaeiTD+G5FumrKFpsB35tbOSMnBPRPQ1lZ5gOwua8WRLbrHtAdHoAgF9+lWbNHNaVl6JnptfUm7E0lN8aq52jeOxjP4sLTPXI9OvGl7GHb8xYnse+FTNDStHooDlRfsxx/wMNbidfgxxKccbv+WoN+Pn3UaszXh9EpP6WDePizoXB6DTQD2es9wI7crXp+tJpvl6+vfoU621ZWK7S0WrFmT/uMqS3Txwxw4AAAAAAIBDUdgBAAAAAABwKAo7AAAAAAAADkVhBwAAAAAAwKEc2Tx5a5ke75pitkmatzJf30a53oC5zpZvq5/tIi70ln56Az9XUF8jMTX7i6HHZJBepk2C1uovllahAUtnweCa14yYp8/4GLaM5qzcb1llSk//FavW1u/OoMmKZQCAxt74mIbIzUG5ZQZIeqrZtDQz1WyoLCKyp9RsqlysND5G85H5999GndszUY/3UmJLd9fP8SbxNrMBNBrJli163G1eC3tdKWpq1Z5iI1ZPn9KbPe7YAQAAAAAAcCgKOwAAAAAAAA5FYQcAAAAAAMChKOwAAAAAAAA4FIUdAAAAAAAAh3LkVKxu6Xp8U7HZZT3MpAdUk5Csd2T3lJuj1ipclrdHOKa5WGhhdpXqx5xu7c14cO2raq6n90Vx3CM4QcgyzQaoTpsUwm/osE9m595qvCpoHmDadEhSc/esXB3XfULzkqgvGwmbg9ekp2UbG+K2N2hsIy+5SY0veOXvRqys3Jx+hfjiegAAAAAAAMChKOwAAAAAAAA4FIUdAAAAAAAAh6KwAwAAAAAA4FCObJ7s9ur1qJ6tzbaC5YX6NrbTU7lFCvvNJskiIm7lnZDu9ai5xRU0T24O6usQsGXHFjU+sNMhDbYPcJ6sDh3VeO7OHQ28J3Aat8unxkNhfwPvCRpb0fb1Uefm5+rXOEBtKpUmySIiWk9lS59lNCNpme3U+NgbXzBi/Q7uquY++9cT4rpPLRl37AAAAAAAADgUhR0AAAAAAACHorADAAAAAADgUBR2AAAAAAAAHIrCDgAAAAAAgEO5srOzGcwCAAAAAADgQNyxAwAAAAAA4FAUdgAAAAAAAByKwg4AAAAAAIBDUdgBAAAAAABwKAo7AAAAAAAADkVhBwAAAAAAwKEo7AAAAAAAADgUhR0AAAAAAACHorADAAAAAADgUBR2AAAAAAAAHMpb218OGjSoofYDDpCdnR11LmsH1UW7dlg3qI51gwPBuQoHimMODgTrBgeCcxUOlG3tcMcOAAAAAACAQ1HYAQAAAAAAcCgKOwAAAAAAAA5FYQcAAAAAAMChKOwAAAAAAAA4FIUdAAAAAAAAh6KwAwAAAAAA4FAUdgAAAAAAAByKwg4AAAAAAIBDUdgBAAAAAABwKG9j7wAAAIhecnKyGi8vL2/gPQEAAEBTwB07AAAAAAAADkVhBwAAAAAAwKEo7AAAAAAAADgUhR0AAAAAAACHonkyICJupcQZCjXsPriUWLhhdwGAA5SXBxt7F+AE2q/uGvi8BqCFSPaYsSrLucqn5FZwXmvuXC7tk46IshokoH4qEpGweRJzu/T7VEJKbnPHHTsAAAAAAAAORWEHAAAAAADAoSjsAAAAAAAAOBSFHQAAAAAAAIeisAMAAAAAAOBQTMVCi2KrZDb0BCyNNgHL0hOeaVlAi8YRAFFoAuc1NA+WYTYS5lDU8mgjjEREPeB4LVfdfmUCltuyyEIsMifSjhkul/5aBrRzlSVXE7Kc7LR9aO7HLO7YAQAAAAAAcCgKOwAAAAAAAA5FYQcAAAAAAMChKOwAAAAAAAA4VIttnlxRVWXEQmGlmZeI+P1mp6WwpZNcq9RkI1YV8Ku5CV5fbbuIeuC0XpLNvMcXgAPCkQH/nyshQY2HlesctExej3nNGghGfxyJxxGnrvuARqB91LG9ZOXKX/gsydrHLbclV7sFwWkX8xCRGAfVhGMYH2NZOi3x6MIdOwAAAAAAAA5FYQcAAAAAAMChKOwAAAAAAAA4FIUdAAAAAAAAh6KwAwAAAAAA4FCOnIoVsLTV9rrNOtXMFYvV3HOf+NSIXX/hr9XcUDBgxCryN6m5M5b8aMSYfuUA7bsZoQR/sZqa1qqtEcvfsEbfrjvDCCW18qipfkk0YsH8Hfp20UTEMjIC2OujV+81Yhlu/bx21v3vGrHCNVstWy4xIl/95x41s8pvTms8+dJ/WraLJkM55DD9ChGWX9fWefpUHE5r6j7ol0P61CQ0vATlBaq0TSsyPyuJPhRYF7J8JPVoi48F0tSF63zM4Fr6QHDHDgAAAAAAgENR2AEAAAAAAHAoCjsAAAAAAAAORWEHAAAAAADAoRzZPHnhR0+r8aPGjTBij/z9UjV3R26RERtz61/V3Hvf+ZcR+89DZkxEpG2G2ezpqOP7q7nff/WzEQtaGkN7lMbQzYX2o1mehrrzJOnxXVuMUJWlcVd+QUH0jxcy11lFfvT/vKF5lNciWF+vRbNAczfYTb7KPCeJiKz4YooRa9NriJp7ab9Cc7tbzSbJIiJZ7c3Yt59MVnOLK82Gu3edeZCae/+HtmbNaHANecixXXYo5wSv2ftfREQClXHbG0TDdr5uqn3+6YHbNLgsQ16qlEXiU5oki4i4lOvrqgo1NT3VjBXbjhVuZd9ClsUb5oIVLVvzrRYAAAAAAAA0cxR2AAAAAAAAHIrCDgAAAAAAgENR2AEAAAAAAHAoCjsAAAAAAAAO1WSmYgUto3c2l/iN2H9fvFDNvXCU2WY9L/lgNTejXzcjdvzoGWpu4Vxzqsgpx7RVczt1G2zEOmcmq7nX3/eEEbNNvwoEzefB67F0sXcYbViDFhOJwxAH67itWLZc1/EStredMmnAZRk1Eq7jqBHbEwwgbs44IlONZ3YcZcRWLP1azR13ai8jds1vOqu5PmWyybr8PWruwentjFjAcnhkKlYLZTtdKpcpAW+amuoJmBPcgkxCqjcuj35yD6vPeRzGYnmUWH29vvV2YdiyaJ8c/LY3u7ZwQvpnGvUa1qK41Iz5tFFZIuLXki3X0S4xpz2yPGrniuHzgJZbb1OMmwT9yXG5zFUVbiILjTt2AAAAAAAAHIrCDgAAAAAAgENR2AEAAAAAAHAoCjsAAAAAAAAO1WSaJ3s8eo1pdV65EZu9zWx8LCJSUmw23mo39Eg1d8nzzxqxVq37qrllO8zGXZ4uKWpux859zO0q+yUicnzAbMrkV5okizTv5l+Wvtn1w5Wux8MVWrJtI0rMbNi2l7auo28wV+cmydbt6uFgc15oQAN78Hv9vPbg888YMZ/WhFRE/DE0Ir3+FLOp8hOf5ai5HZRT2NChPaJ/MDQrWpt+69lHO2f7zSbJItK8L16aoHBDn8QbshE2a6n+uC3Xuwnm55ckt37RHqoy2zKHg/p2/co1c2ZIvzbOTVY+qpZr1+wskdrYmiTHMg4mXMfPa7a7Ser4SUn0T9m6Mktc+5ndlvdFOGzGbc9vuK5PWoy4YwcAAAAAAMChKOwAAAAAAAA4FIUdAAAAAAAAh6KwAwAAAAAA4FAUdgAAAAAAAByqyUzFCgb0qUI7cvcYsbNHDFNzP5q9zIh9efflam76yDOM2Nb3pqi5t0182Yjdfs2lam7rlLeN2K8uuFbNTe6RYQZd+mgUn9uswXm9+ssXCMTSS7yFCdmmV5nd/EUKLbla//VkS67WuT/JkqtMRLNO8Sq2bAPNQoISsy1dNFkPPv9l1LmxTL+ysU3A0uxURkN8/v3Guu8EmozDepmxjVv03CJ9IGf0LMenhhyaBDvtSqIpXEXYZo8y3aj+qG/1oOVzQ7kZ1+dR1V1uqTmBuKG5LOMpw/E4QTeysOVNVdf3mm0ilfZq2uZDxTI36tpT+hmxpz5bEcMWohcKNexEq3jgjh0AAAAAAACHorADAAAAAADgUBR2AAAAAAAAHIrCDgAAAAAAgEM1SvPkUNBs3eX2aM1rRYrKKo3Ymx98oObOWGl2BSwv0Peh6IuPjJitIdi3i5abQY/eYKugzGyw9fELz6q5Py+YYcTO+t05am5QaeDkS9A6rKJWrfvo8YKtMWxEawmWacnV1onSNFtE1FaGNElumWiUjHqntS2lZWmjqONL8eSd+kAJjy/XiL09abOam9HFbOrf2q9fFbUbfZgRy3PtVnNff1k5tyqNu1G/muqVBEccB7J99IjhuiUz2fzMl5GWpubuCpkf5Nwl+naVXs8xdXAPB/RkrYmuWxlq0xLF0vL62nV6k+OObrMucEfPwWpuLI2SL1u+2oh1c+sL9e5+A6PeblPGqgQAAAAAAHAoCjsAAAAAAAAORWEHAAAAAADAoSjsAAAAAAAAOBSFHQAAAAAAAIdqlKlY2gQsbeqTiMjPP20wYmt3aCMkRMpXzDNi6d07qrkl5UpX7F35au6M2T8YMW9Q75zubpNlxKqKzG7fIiKrf/xZjWs8Svf1ZcuWqbkDBzaPzt511uZXZqzU0kpfdtXxwfQaqTuxixELVdrmrylSk/V4aXn024DjDDGXjSzZ1vD7gej1bW9OFVqVp7/XwzFM6ag/zKNpMmJ4Ka4+1TwnXDfhRzXXl9LKiO1+bqSae8MjC4xYL/NyRkRE7nr6J/sO/pI+QBTNRJLPvB6v8HNsadqUz1AufVpr61bmzKOSAm30lH4Y0zNF9lSaHz8TEvVsf6EZy0jXDyzl/rqdXKsq9X0IBMzPqKGQvs7dbv0zanOgza/WP+Hqwll91XhOZWHU2ziiU6oRm7tdn82V3LGHEVtRrH/Wby64YwcAAAAAAMChKOwAAAAAAAA4FIUdAAAAAAAAh6KwAwAAAAAA4FCN0jw5pDRKdivNgUVEVmzYYcQGBBbquUqseFOxvhPu6BtsVa03mycf1HGEmrt1h75vdaU9Zx4PXQlr06aT2fkxb9lOS3YnJbbdkms2SRVfVzUzUel9XB6yND5u1dmM7bY1IaR5clOgHbX0NvCx6daurRFbsi03DltGffEriyFV6zQoIiVNonky6pXWPzMOPWVvGNHPiD39id48efElRxux2Yv1oQ0nHWkec35ca2v0bw4hmDTE/PciIpcvieG4VU/PWXPlVZ6vRMuva0vreMxJTdMbwroC5kEuQZThJCJSFUuXVcQmQXnhq2xXI8qJKbxHzSwoOPBdqpVyHby7UE9NaZVixAIuy+efkOUznybBXNO2w42++lvewamub+F/t7Y0lnYlRr2NkDKAyfp4bRKizm0uuGMHAAAAAADAoSjsAAAAAAAAOBSFHQAAAAAAAIeisAMAAAAAAOBQFHYAAAAAAAAcql6nYmmTnET0PuKVVQE1d0+x2cr//QUb9AdUJyqUWnbOnGzk8ujds8Nh8+fYtnuJvl2tUXtQGY0kIokZ0Xf21p4z21SsQEB/LluavGUfmcGuf9CT81ebsdJ2li0rXfcT9bdSeUCpnaZ01De7R5skYVm/aBJO6dbLiLnT9NxA0DzmLMnbpeb6k9KNWJcu+gSGMe3NaTRVIX3CwEdLlpn7FZc5Xli3w5wglJxomQChHdFjORvbJtzEMqSjvka6oV7d98kaI/byeWPU3JmF5rXSks36lCr/HvO6ISGkX0v8/bDeRuy74DY1F/UnoLzfe5jDQEVEZO3uOj5WuX5wqQya1y2JDGxtGnyW3937tWtNc/LUXmVmKN1ysirW1ojtZKVsw6Pvb5k2Za2wfkZLJiY0yrBoR7OtnI7KR6gNWcr0XxE5wWd+rtqwsVLN3b6t0Igdon/MlvX9zWv0k7zmVEcRkc/m6dfjTsMdOwAAAAAAAA5FYQcAAAAAAMChKOwAAAAAAAA4FIUdAAAAAAAAh6rXLlFud/R1owq/3qQvIyP6LmxpKVr3pOi7SYaCeqPLVG/0T1N5OPr9LSkqMoMx9NrMzs5WU/v16xf1PrQ0z772shq/+vSTjVjY7F/7f1LNXKXBtoiIlMyLcs9EXOlHmkGlia6ISLhobdTbRd3ZlsInm9cr0ejfxL1b650up8+1NIhXvLktL+pcNKzySv38o50aw7H0grQssXAMzZNdSq7Lcsq2zEFAbWJpZB2Ds37TxYhVVOaouWnK63Zspw5q7rlDzIbINh9lrzNihyd0U3NfW7oq6u3W13PWkozs116Nl7vNxqBh67lK+feWY1lloRKzHMu6tFceTzsQici2nVHuGPaqUt7sti7WieaBPi2gNEkWEVdChhkL6q9ZOMV8fYNBfTEEKpXBIJZ1k1hl7oMk62u3uGyPGUywrPOqGD4fKifBWD7jNmd+S9xdZj7vvcv0c9VGbbuW644t2stWruf2XmleS6+O/rDnSKxKAAAAAAAAh6KwAwAAAAAA4FAUdgAAAAAAAByKwg4AAAAAAIBDUdgBAAAAAABwqHqdihULl6U7fziGMQket9kBPknp/i4iUlJSoTyWbndJpRFLTfDpyS7z50hIiP5pdlt2gu7r8eH16a/bA6+8bcSmTHpKzV2+2JxGZhnsIK4OfzJi4ZJ8NTekjLT510tvqbm3n6ZPU0L9sDXR/+0hKUZse7kZExEp2mMecyRUFfU+HJyub9ejjDI6uJ2+3Wnron881J9Ypkxpk6pimn5lO3Uo22D6VdOX7mttxIIefapoqTYpx7J2fOdPM2Jv3jFczfV7zDmBnVKT9A2LMhXLtiZZf3XmVq6DRUR6dmhlxH5aV6jmJikDZt2Wy9jB3cwXM6dcfyHLQ+biG3ZwRzV3284d+gMierbxZMrnonJLqqvcnN6bZPn8E3JrC0dfj+liHi88Lj23RFlOwSpl+pWN1zIdrEo/bmr4DGbnszy9ORXm+922JDtEP1BazDOgSJrlIr1M2YfC6B/KkVipAAAAAAAADkVhBwAAAAAAwKEo7AAAAAAAADgUhR0AAAAAAACHapTmySGlQ2M8GlN53OZ2A369U2BKmtmI1G1pkZqRlhr1PpSWFxixguLoG5banof5CxYZscNH6o0NYedN0Bs8epPTjNi5F1yu5t75xRlmMEtvACiFMTQAzDOb1D3x2ifR/3vUG6UnuoiIlJaXG7FDuuhr4a05LxqxFcu31Wm/RET6n3KNEVttLiU4VLiODWXr+u/RtKSnmpdt/rxSNXfxtKVGLKWVvt0Hx5qxrT+Y1x0iIs/PNGMJnfXtqliT9cbj0buQpqSajW2HD22v5m5cttoMJuiPV6g0SrZdMe8qNGM/Ld9pyUa9qTRfswTLRzDt/OFL1Ac5eN1+I5aYkqhvuJXSaNli4oVHG7Hd27equff+5ycjFiyLvkmyTX19bm0O3B79AtkVNuOpbj03z292VY5hRoSUWpLDSrPmuq+Gpo1VCQAAAAAA4FAUdgAAAAAAAByKwg4AAAAAAIBDUdgBAAAAAABwKAo7AAAAAAAADtUoU7Hqq5N4isdsi12udMQW0Sta/lxzopUt19bPPdjKnK7Upo3eBXxTXonyYHruqFEjjZilEbkEY2kl3sIUbVmrxpPT2hixUCszJiIy7JjDjdiPsyfXbcdERLJOMkKnHnOEmvrSB3V/OEQvPdN8X4uIjBxixn/K3qDmPvLsl0bs1gefq9uOiUhGqnmEKirVx85kpmQYsaA+REVVEu5v+Yu50W+kBUn06gfpygAHaRyYC2761oi98vAxam4HZVLVc5/q281QBkZ+X6HndlaW9YYcPRf1x62Mawwnt1VzN69ZZcS6drZMjc00Yys3x7ZvGq9yMZ1iGceUJ5aLd9SZR/mckZzeWs3N35NvBkv2qLltOrQzYlu37456v/Q9ELniIXM6bH/LFL76WjVMwLKrqtKPIwk+Mx62TJ/WopX6ZbeI8tFZ0vXUpGIz5rNc85Y1k0MOKxUAAAAAAMChKOwAAAAAAAA4FIUdAAAAAAAAh6KwAwAAAAAA4FCN0jy5vmzNLzdiWRkpaq5LzKZO3raW1l1hMzfg0ptF5eaaTcVy9a3qQvp2tWgz6fPUoP776Ydq/Ljf/MmIle4pUnPXbdxmxI4+9Tr9AZUetvnF+mv884qNRuyoYZ3U3Jf0R0M92VqodWsTefFTMz68m35YTfb5jNgD11+i5iqHHMleqTf+fvfz2Wpcs6dMX9PRo0lyLOLRJFlr2hgK6c2x0fytVJaUOxxQc0NVZuy6s/TtasecEyx9T/9h9m9GIwgpL9o3c5aoucePPMiI5VbqjUyz0s3uon0P0q84PUoj0nJL0+31O5V/H+JKtsFp16WW6900tbm1fv4JKJNbOisNlW1yduoHnBfOTzRif3mjUs31Kg3FA9rBDXFjuxop9Zsxn/ppVm+enKxfdquqlCbJIiLaKgk380MOd+wAAAAAAAA4FIUdAAAAAAAAh6KwAwAAAAAA4FAUdgAAAAAAAByKwg4AAAAAAIBDNaupWBqfV2nZLyI7lOlV7Vqn6htR2nUHGEriSDNnr1bjweB/jNhxY89Uc2995GUjNv2DSWqu1oy/jWWZPXzd80bskmMz9GQ0CYVKbGeRPqHmtvufMmLnn9hB33DYPOi0tkwTQPPGBCzsT/sMc+KeiMg1X5ixd67opea63Oa1UmZ7y/iQb9dHvW9oWKlJ+u9rZy7aasRGDumq5h7SpYsRm79xs/6AyvVxkuVUdeHx5mSu/3xl7hfql0v7WBRMVnNLqsqMWGt92LAUFZgzgFNS9M9g2qzfNhl6rjYB6z/n6dfGF75Vt8mf064z136sTn7SnJzbnOkrR8ScU22nnWlsVz7a4cV2l0ozH4Cl4o4dAAAAAAAAh6KwAwAAAAAA4FAUdgAAAAAAAByKwg4AAAAAAIBDNfvmyVrzWhGRzllpRiwnv6Se9waNrVWqviACwQQj9sV/X1dzv//vhLju0z7fvvuPetkuGlZuld5KrkxpJffiFzvre3fQiGwnWL29NnBgwpaFFvzgt0bMc9an9bw3aExb9+jtQlsnmr/H/XqR3hA5z5wtIqF3TlBzld7J1jb/7nNmWP4GDSkQVF4ht+VVUzrYllXpTY4rA+baKy+qe/tar8dcZbYmya8pTZXHx9BQeeWWQjXet2urqHNbGrO19V7aitKOFyJcE8UTd+wAAAAAAAA4FIUdAAAAAAAAh6KwAwAAAAAA4FAUdgAAAAAAAByKwg4AAAAAAIBDNfupWOUVeq/t1ETzR+/UOl3N3V5QHNd9QuMpLFTGPYjI0iXLjVivnr3re3fQDCV56e+P/5OoT0hL85jzIkrKbOuG9YTaBYL67+jcbnMiTeijk/XcM6bFdZ/QOA7K1ONbCs3xRiXmoEYr20SrEwZlGbEZ2fnRbxhNg3KsEBGRkDkxtjJgm4NUN9r0q1hztQlY067rcsD7tI82AeuGD0vrvN3mIMkSL6unx3MpL71tAnZLxB07AAAAAAAADkVhBwAAAAAAwKEo7AAAAAAAADgUhR0AAAAAAACHavbNkwMhvaNSZVVVA+8JmgZ9PZQUm02Vs7/5tL53Bs2QP5Rm+ZuCBt0PNL5Apd6dtESJuS3NIEOWnpbAPsu2bVfjvdv2aeA9QWPzuPXf1/bIMo8v28v1g0teDL2PaZTcTNiazyqN/lO9qWpqaWXdBs0EgvXTAffkJ7fVy3axl+0SJVGJdUzRc9fF0GmZRsm1444dAAAAAAAAh6KwAwAAAAAA4FAUdgAAAAAAAByKwg4AAAAAAIBDUdgBAAAAAABwKFd2djb9pQEAAAAAAByIO3YAAAAAAAAcisIOAAAAAACAQ1HYAQAAAAAAcCgKOwAAAAAAAA5FYQcAAAAAAMChKOwAAAAAAAA4FIUdAAAAAAAAh6KwAwAAAAAA4FAUdgAAAAAAABzKW9tfDho0qKH2Aw6QnZ0ddS5rB9VFu3ZYN6iOdYMDwbkKB4pjDg4E6wYHgnMVDpRt7XDHDgAAAAAAgENR2AEAAAAAAHAoCjsAAAAAAAAORWEHAAAAAADAoSjsAAAAAAAAOBSFHQAAAAAAAIeisAMAAAAAAOBQFHYAAAAAAAAcisIOAAAAAACAQ1HYAQAAAAAAcChvY+8AADR1lf36qfHEFSvq5fHyex1qxLLWr6qXxwLQcrhcLjW+a9IxRqzdZbPre3cAADB4PB41HgwGG3hPnIU7dgAAAAAAAByKwg4AAAAAAIBDUdgBAAAAAABwKAo7AAAAAAAADkXzZCBGpQebjW1T1+mNbQt7HmLEWm1YreZ6vdHXWQOBUNS5iI2tUbImNLC/EfP9/LOaW3qIud3SCr9ly+GoHktEJEF5PNvy0H62+moADSD+tN7HyQl6k8kqt5lc8p+xam4waB5zkhL17VZU0rwSAFB/aJJ8YLhjBwAAAAAAwKEo7AAAAAAAADgUhR0AAAAAAACHorADAAAAAADgUBR2AAAAAAAAHIqpWGi2ivuZE6nSV+gTqQJ9zElXiWv0SVeBcPSd2gtCVUZMnzMiElZGGVX21ic0edeak4xsU7WYoBUbczaMSIIyXUZEJBQy10JlX3PdiYhUBgNGzOfRHk1E3OZr5l2uT9vy9+trxFwufS34Q5bHA9CkuC0nCrfy1q60nJO+v2eAEUtM0I8BZaWVRizk0s8d3gQzFjBPdWgBVg4aasT6Zi9u8P0AAHDHDgAAAAAAgGNR2AEAAAAAAHAoCjsAAAAAAAAORWEHAAAAAADAoWiejGYryW/WLfUWuCJJSqPksj599GSle+WKbgepqaGQ0hBZaXZrE6rSm1dqFdk9SgNoEfvPrElZYTZlbg4q++lNqDVhpcFwWGlmLCLi91eYMUuv6lBQ2W5YT3Ypa6zikB5qbpWyDz6v3nk1HDK7nlZYnpukZroWmoNESzxdieVaclcvvMmIHTLisQPdJcSZ0pd9b1yJfXdvfzW3/0FZRiygHIdERJRTlQQtuTGdVNAszOrUWY17lIsR24CI6MdOAIDPEvc36F44DXfsAAAAAAAAOBSFHQAAAAAAAIeisAMAAAAAAOBQFHYAAAAAAAAcisIOAAAAAACAQzEVC47n761Pg0pYu9KIVVlyv8gvN2If79Ifb/UeMzcp0TKFKBAwYp1T9NkQPpc5gWRca/Pfi4hU9jYnayVaphi5vdHXb71KbiBgGfPUyLRJV7bnQItXHKpPJ8sJmh33EwJ6F/5v1m02YulufWZRVajSiLkth+BKMV/3VMt2y5XtHtWzm5obUKZ7dfYm6fsQwyQx2/Pe0m3O/rsa7zbogTpt13zFa49rtAlYS767Vs0dcvRTMWwZcWEZLXT8qC5G7L5P9qi5PdqZ46sOzVij5pZWVBmxsYeZjyUiEgiY57BZy3aouWJuFk3cz4MHGLH09FQ196BOnYxYcMnieO8SGourrRlr21VNffX64Ubsojtfiv6x2g7V4z7lGnT70ui3i0bRTontjmUDtumLlmGNGu3TT9P8RBM/3LEDAAAAAADgUBR2AAAAAAAAHIrCDgAAAAAAgENR2AEAAAAAAHAomifDUWKpRBZ3723EfGtXqbn/SjCbzXo8ZWqux2d27lpRqbctzRCfEaso0bfr9Zrbfb5c7x52dgczrjVUtvEpjaWdJsGjPAeWhr/hUPTd1g5SXodZK/XGoD28aUasNFCi5iZIghHr3ra1mrs9N8+ItU5PV3N37jH3d9sOvZnqYd3bGLFgWG/mrXWYS1m1Wk3V+nM30Z7bDcraJFl5vtyWZrkZnc2m2eFK87giItIpo5URK6nSj03FUmTERp/zopq7ea35c3TrrTeGbs5cyuE4HEMjR/uGzdDBmXrqptXbjFhKunlsERFZtcrM3dFNv+zz5JuxdWXmvxcRCSrv7e56D3bZVE/Nk93KcxbDYR616L90uRH7ub95PSUistPFx4jmwHvBk2r8pnG/MmIVAf26dEs78/oiP/y0mpvl6m/EHnnzYzXXH9bOd/qB5Y5xPdU46k+mfvqR8gTldSvVB8KoJ9KwPrQkFi3xMpQ7dgAAAAAAAByKwg4AAAAAAIBDUdgBAAAAAABwKAo7AAAAAAAADkVhBwAAAAAAwKFoZ1+dNvJCJE5jLxCL8OCBaty7dJkRs71sa0rMMTMvZnZXc90uczLQI4ebXftFRJJSzO0W5uhTk1K8Zgf4oGX8Tf/vzElVZ3bVJ13N31NgxA7eqk+6aq5d4b3Lf446t6qvOdEjrI2iEZGyoFnv7pCit/0vKTMnDvmUSWgiIqvvOcOILS7VJzsc9ehHRuzNPw5Tc097fpYRm3fLiWruIVMWG7GsNfqkK22VatOvsNec1Q8asbGH/E3NTUoxY20P1bebUJBhxEp27FZzywrN401uhT4Vq0LM81q79volgTYBa9uyO9TcLgP/qcabA+2IYbs68Pm0N4ue7feb8V/1N6ehiYikZZiT9HJ36+ef5M7m61leqU/BS+pp5h5Wrk8wyVSOh8EqPfc/88wzkC9BP/Z6PObzUFGhpiIOBvY5QY23STfXXv8f9Ymifz2/gxEbWXGsmpuzxTzfbds5t7ZdRAMJbFVOSiLy0AxzQqf1oPfjN0born910nOPu98I3fLMQj03QzkvcTHSdFjWQ0lJ3adaIXa8MwAAAAAAAByKwg4AAAAAAIBDUdgBAAAAAABwKAo7AAAAAAAADkXz5OpoktxkuJQmySIipT0O1rLV3GDIbBKZW6w3jnxvdJoRS2llNi0VEdm5zWw2W7xnj5qbGzLfYmGf3mRy94hDjNhcn6WhXV6uEavqbem+qnBZOk571ugNmJuioPJ2tVWqw8rP67Ksm4zVa4zYn84aruYmf7DIiC0Y0FHNLXxtmhHLzMhUc9eee6QR+/YrvbHgzIGtjFj610vU3OvWmD+bx9J8XGM7RGqvRUsz+pB/GbF+QwepuSmLy41Y96O6qLlhpYGt/zi9qXr2mvVGrOKbbWquSDsjsnuX3pQ5XYmlZpnHzOYupKzzlGS9Gb72lgjG8Eb5foP+xly5TW+UrDPXjt4GXqRrhpm7sUjP9YrZBLdVavR75bYce8PK85Oo96KXSr3vPCz69x1qxLp10Ucr/O+r2Uasbfv2au4zb2w3YpeenaXmLlz0nRHLlFZq7h4pVOOoH0cmf6rGf/hfthksMM9fIiLiLzZjbbuqqd6D2hqxwHdb9e0GzWOTt71+7RRQxz7o1/2Ijz1x6JE8ONmMLbUsM9SOO3YAAAAAAAAcisIOAAAAAACAQ1HYAQAAAAAAcCgKOwAAAAAAAA5FYQcAAAAAAMChmIoFR0nbuM6I2aZB9U03O+kn60OmZGaJOf4jb+4HerI5kErclq7wvbsnGbGVqyrU3A5Kk//0NkqreBEZmWIm2waueFxm/dZrmX6lHRD0GV5NU9khvdV4QB2KEH1d+82PzOlXIiLpyoiZ0uX61Bp9/og+dmbpsi3RbsAyA2KXnqxMowkyDTAuTjzOnNgXCOrv9e8lz4i1XqZP7ihVJu4dMf4wNbdoubkaNqmZIqNHmbkdPd3UXFfro41YcjK/FxIRKSuvn4krq7bpa6eVEiu0bEObgKXP8BIpKjVjtoF5ldo+KP/eprLKcjDTxDC1D3Ydk81X7fOvvlZzWyeaseI9ndXcXmPMFfXKe3PU3A6p5vkuv0x5MBHr+Q71Y978mWq8lb/MiBXargq1S4ndK9TUgD6AUaccAwK7lGskERG3cs0cYrxSfdJndIrEMmN3WwO+RLYBjjGcwpo0rswAAAAAAAAcisIOAAAAAACAQ1HYAQAAAAAAcCgKOwAAAAAAAA5F82Q0SbZ+ibG0eXV7fEZswOYNam6fkNlmcs326B8r2dKRsqzEfIuFLe+6lWaPVJF8vaPYB8o2bs1Uui/vfUQjsrR1GzVzUIHSGdpRbCvEfMKSVsXQ2s3SyLG4Snkky+uboCzqCkvT7cRkM7myVP/Zgsra81neQP4AjZLrqir/YTU+6igzvnh9oZobVppPzphZEPU+/PDjV1Hn2prlzpmnN/nWtE75TokOjvrfI3a2d2phDNtQDk9WsfWANhveVlrP2noT6KhxyIqLLYXFRixoznYQEZECrTt2eJWau37WRiPWoY3eEHmHch71KU2dRaT5dDJtkszf6Ydy9UEOhfW8J1GJpYE6jZIbXCxNkm3McRKxSbPES5RYcz+0cMcOAAAAAACAQ1HYAQAAAAAAcCgKOwAAAAAAAA5FYQcAAAAAAMChKOwAAAAAAAA4FFOx0CTZBmH4ex+qJOst81M2mFMcjj+si5q7ZMNOIzZkhD5lylVh9lRfvMycciMisn6X2ZM9aHnXHTyivRn06OOY7vrenF51q3V0gBkfXlqoZnq9Zq03ELCMhGqCklavU+MVh/aNehs9uiQbsU05+qSFsLJQs/SlILui3gORYDD6UTDtlGk2u2N4LMQmFNLfDx6P+cbuW9VazV2hvEKeDvrjZZjD/aRgq57bv6M5A6vUrR/HAm3yjViCORxQREQ2Z8cylgSx0iaXpVtytUF6sUz5sF30WQ5bFpZJRmh0Rw8Zqsa/X7nCDMbhZUzxmisnVGU5kJiDucRlndsX05g2xMDV0Ty6hHdoY1mbCOdcgrZIlksX7e0uZTFst3+qHj9HuZz/JFvPXaiMhsywPJ4+F855uGMHAAAAAADAoSjsAAAAAAAAOBSFHQAAAAAAAIeisAMAAAAAAOBQNE+OQrLyLJXH1mkQMfJ69WadiWvNhsiVB0ffGLd3r45q/Kufthmx3IWWZnK2zluKFKWH4J4KPXfdPLO9bmoPSxPCGCSuNZsmehJa2FvfFX3z19IKsz1pVmv9+corMA8Euba+x0oZ3ZOg75e2u95kfcO79b7OqCcuj/77kF59soxYRSv9NVsxx2yeHDT7t4uISGmPqHdNEtzm8WJnqX4cy8sxY/3H6NsNuhLNYPT9vcXj1p+zoKURdUvT3uzXLsWW93UsjZI1tksXpUe32qgZTVt+od4C1FUZfafkzspHgxzLygmGzJNVZVX0B4dD09uq8exiywERdRbeoRxFtItVEZEypfssWqzx3czY+s16bh8l9xVLrmaspSvzQVnm2ergtvrZapFyndPcP75zxw4AAAAAAIBDUdgBAAAAAABwKAo7AAAAAAAADkVhBwAAAAAAwKEo7AAAAAAAADhUsxqNk+X1GLGCQFDNDYuZ63LpuQnKWKyKUktfbWXIRwzDQ/B/AgH9WQv07WfEQmE9t0t7s275wgeL1Nw+3c1RV2ty9ekSooT7d9VHZWnDIbr49Hrqz/mFRqx0Y/QTCTyp5poWEans29+IpW1co+ZWVTl7Sk1lP3N9iIgkrjAng9nszjPf2wnKUCAREeUwIiHL6+tRJl0FLc93UBuL5bZM9koxH89rOeoEypz9+jYF/qB+nrjw0guM2PMvv6HmDhnUzogtyTYnZYmIVG00YycM6qzm5laakyGGttPmHYnMXGaOi/h5lpoq+bvPN2IuX/ST5ly2tctyFBGR7coErEzLr90SY3jOtKsU2/WItqptv/nTDoe27VqGQCIOnr+vvRG74p71aq5bezV9+mLa7TdXg8fycSEQMnP9lfrsNrdymbQ5YLnOQj1SjgxlDb8XcJ7XlKlWv2uj57ZLNI8Zf++unynKPGY8V7/UktXF5vVEQoZ+trq50jzG5VtObC/rl2COwx07AAAAAAAADkVhBwAAAAAAwKEo7AAAAAAAADgUhR0AAAAAAACHalbNkwuDZpMkt+hNG8NKo+RWKQlqbn5x9A1s3UrTU1v1LGhp+gsRr1d/3ZLWrjRiZQcfquZubG3Gfbv0JrolReZrfFBSkr5zSnhHod4isrIq+rXTJc3ccDhLz83JNx8vbGnE61tp/syJSlOz5iCWJsmxqKrU427lkBEO6K+DFtV6JIuIhP3RHxtcPvNYFoq+ry1i5LY0Aj5utBkbffif1NwTjnrKiI3o01F/QOXh1uYq3XZFpHWCebbJr9QX77Be5uPZGtFnJqcYsaBlMEHVnoeMWELmbWou7PZYmiRnKL2wfXrffFXYpV+R5JdH35VZWQ4StBwjKywNMFF3V9yzK+pcj/K6e4KWhaMsEaW36d5U62QBU7DEXAxlYbPhO5oR27UIH3+ajVuuPkaN3/XEt3XabvtMPf7Q3Og/V41tpQSj/+eOxB07AAAAAAAADkVhBwAAAAAAwKEo7AAAAAAAADgUhR0AAAAAAACHorADAAAAAADgUM1qNE6Sz2yz3jo1Wc0tqzQnQISt7dtNrZP0CVouZWJKlWVcRIlligREAgG9Zb7Xa9YiE1aZk7JERPyH9ov68UoqzWkNPre+Dy6lnb8WExGpDJr7m5GqT6KoqDSnQwTDeu3V5THjlVX6+BG38pxVVgbUXOhSEvRjg19Zp7YZH27LpDeNK8Hcru34pEVDVYycqD+259Z8JTzKe09EJK+kzAyG9O26feZp2jKYS37alGfEDu7YSs0N+5UpSCH9uOBWjjeBMn2l+1KVsU2ImyLlaXdbDjqZ2mBHy+SzDOWSxu2xTBVV1uqeWKZf2Y6FlvM+6s7lMt/vacn69XFJmT7lU6NdtyRoY9NExKVMwAqp8yLhRG6vea6yHELE7zfPNW7LtFaXclgIVnEN21S0StfP+S//8wQj9vW0RWrujEUFZtByXru4uxkrsRyylEsX+fu1R6q5A2//Qd+Iw3DHDgAAAAAAgENR2AEAAAAAAHAoCjsAAAAAAAAORWEHAAAAAADAoZpV82SP0rzSbyldZfQ+2Ih1TU+t8z589PzlRiywc6Oa2+nEf5pB+sjVKqw0frQ1eExauyrq7XqVRsnWNo5h80VyefSGyJlaD0FL88rSErP7ZFD0jpTaFtLWr1Zzte66bkv31ZClgWtLZ3nJROs/K/pSkITkdCNWURF9k0qbsLJEPFKl5sbS3xQiVUUPm0FX9E2wA0qTfhGR0Rf0MmLfv7VJzW2bYZ6m/Zb36WGHtI1631auzjVitnaUi3/aasTCtqdBebP8+P2Nauqwoybadg/W37uZa8p22eDzmQej3cWxHAX0dVbnswRNkhucdm4vLitXc7WXx9YE1+sy12nIcl4LKNdO9nXOGnGaUMA8g8TykSYUl6Ee2kJlLdWngF9/vxcrB5Jho7qpuZd9ajZPHlOnvdprlhLb9kzzaJJswx07AAAAAAAADkVhBwAAAAAAwKEo7AAAAAAAADgUhR0AAAAAAACHorADAAAAAADgUM1qKlZxldL5vEjv+t+rjzkB67s5C6J+rHa2fSg8w4g9/dLHejITsGIWDJqvscerj2sIBqJ/gg/p1sqIrd5sdmnf+4A+I1RSok8h0iYkVfr11IwEM9amtT6pbcPOUn0jGuVtEbKNeYLKk5amxlNKSoxYmV9/bv0hZT1WWtZNDBIyzH1zlVmmYsVj6EQLkpBxa9S55QXmBC3b+ywYMn+ncvSfeqq5P7yz0Yi5d+WruQHleBOyHZpSzANOvxO66Lkec38PO/JRfcOKIOe6mLksFwhh9fdx+jrbFdMErOjpc2eUE5iIiGVCHxrWQR3MiXlbd+apuT5l8l9IG78oIsqhTFIt73fzbCnidusfQ4K2AxcgIknmZbiIiFRYrr9Qf7K/+16Nn3/R8UZs6Xr99XnoWPM4cNvsul+wHqmsk3FHDFFzv31/SZ0fryngjh0AAAAAAACHorADAAAAAADgUBR2AAAAAAAAHIrCDgAAAAAAgEM1q+bJGluPWJfX/Ithhw3Wc5VGcn276k1te3Y1m0++NWNTLXuIugoG6t4sbd7PuUasdZr+9nArnSNTUxMtWzb3rXW63uy5KL/SiMXUJBn1pqSwWI0neM01kmjpIVpZXGbEXEkpaq7HZ9bclcOQiIi4lb/o3a3j/2vvv+MtPctC4f9eu+/pLZmZZNIbIQQSQIqU0EQQQQVEXsVGs6B4EPVVVPQcD6AoHkTsgMJBX3oRkZpGQktCCpPek5nJ9Jk9M7uXtX5/5Od7eL2vO641u8y+93y/f15zzbOevZ973c+zrr0+1xXm3nzvrvggzNrg2vYbLUdO27QyjPcFC6p5Yt4INaX4LzWtmbjp6eiOvDn89f96X5j7uM/ljZL1X59fhbd7ai2CqQvxpdfsdjG7f/feLNZb+Ntu9IzTaMTPQ0G/9jRRWLytVt4MVZPkJSTuqj4vxgtDSFh4e6Ku6Cml9/zdlVls5bJ4EElPf75Q/uzZhcbqwWCcm++P74tf2JbHfneJNEku8Y0dAAAAgEop7AAAAABUSmEHAAAAoFIKOwAAAACVUtgBAAAAqNSSn4o1mjfhTyml9M2rr8ti55wSd+uOurpfkw8YSCml1Dj9Z9s8Mxa7rmg0REppaCSfMrNyMJoNkVIrWDwTU/GYgHxmEotFV2+8FiZn8g1moKc3zO3vy4/RKk0ECcKlKUTROr353niKF4tXoxVPdbjrgf1Z7MyT14S505P5euzpi/emjmYrmYC14FYXpusdDvaGeO7Z/FnA4TfMo9I1G2/mK6q/K95HotXQaBSObJEsXoWpZymYZFbk+h6XvnF7HP/+8/O1MzyST/9NKaWN69Znse374g/areArKY85O35GP3FdvijftbSHYvnGDgAAAECtFHYAAAAAKqWwAwAAAFAphR0AAACASi355snLBuIfcXg8b+p017bh+T4dKlKqeq4dyGN7jxSa4LIk9HfHXQHHpvLY+HQQTGneOpwWXo3aRB0BU0qnbl6Xxe7dcWC+z+b/Q0/MhTcQ92BPBxfBrcZ6WBpahRbqjaAh8kTQUJklpJMmyfA9JnbH8ZVPymPDh+LnnFd9fM8cntHxzTd2AAAAACqlsAMAAABQKYUdAAAAgEop7AAAAABUSmEHAAAAoFJLfirWir640/vw+AKfCNWZmo5nf3Q38nrohuX5FImUUto3YtLAUhAM0UsppbR8MI+NjM7+9Xq78/U0NWMWzVLWbMR7yOqefL855eT1Ye62Hfvn9Jw4dibjgUXp5JX5Otl9JN4b3H14JMsKk9emG/l6ahVuP+PGMsJxbXpZHP/U5/LYq350Dh6QeUS+sQMAAABQKYUdAAAAgEop7AAAAABUSmEHAAAAoFJLvnny5Ex/4V8mFvQ8qE+jK25m2mgVulqyZJXaFo8EjSO7+uLc5mT7r6dR8vGn1eouxPP9ZnW8NaVtc3lCHFPNmTg+GuwNpSa4hzW25RGMT8cfAaZa2m7zCEpfCfBofFzqKtx/0uo89JlrPdvON9/YAQAAAKiUwg4AAABApRR2AAAAACqlsAMAAABQKYUdAAAAgEo1tm7dqkU1AAAAQIV8YwcAAACgUgo7AAAAAJVS2AEAAAColMIOAAAAQKUUdgAAAAAqpbADAAAAUCmFHQAAAIBKKewAAAAAVEphBwAAAKBSCjsAAAAAlep5pH+88MILF+o8qMDWrVvbzrV2+F7trh3rhu9l3XA03Ks4WvYcjoZ1w9Fwr+JoldaOb+wAAAAAVEphBwAAAKBSCjsAAAAAlVLYAQAAAKiUwg4AAABApRR2AAAAACqlsAMAAABQKYUdAAAAgEop7AAAAABUSmEHAAAAoFI9x/oEFpNGoxHGW63WAp8JAAAAwH/NN3YAAAAAKqWwAwAAAFAphR0AAACASinsAAAAAFRK8+TvoUky36unO45Pz8zuuN2F487M8rgAADAXoufg2T4Dd6o7mGsz4+MahHxjBwAAAKBSCjsAAAAAlVLYAQAAAKiUwg4AAABApRR2AAAAACplKhaklIKm+/PW+b80/So6B43/j09dywfz2MhYmDs93ydD1Tat6gvjuw5PLvCZALAYlT4Mhs/Bpa8ENOfoZP6TaAJWYbhsMlz2GIg+vKS0eD/A1Ha+HfKNHQAAAIBKKewAAAAAVEphBwAAAKBSCjsAAAAAlVr6zZO7euN4M+ieVEhNU5204wrb8Hbw/zkWFkPPrMVwDiwO3cE+MnUMzoO6LF+e/62my59vAHgExefPqEvxIuhQ3FriDXCrUtvvvLbz7ZBHPgAAAIBKKewAAAAAVEphBwAAAKBSCjsAAAAAlVLYAQAAAKjU0p+K1exgloyxM8etNYN5bHgyzu0ZyOuhM414pFqzlR+kORa3ZI+a/Deb8TmwtE2NjB7rU6BCIyP5htG3zFTGpWTbZe/MYqc857fC3F1f/J9ZbNMLfi/MPfK1P81iK5/5m2Huoavy3NXPiHOBxa846GoRTMCKNJf4ZKPjTW8wfa2jgdQF0bdXlvrHKt/YAQAAAKiUwg4AAABApRR2AAAAACqlsAMAAABQqSXVPHnZimVZ7PAd/xbmDu28P4tteOKr236t5Wvy10oppQcvfW8We9SLfjXM3btrpO3XY270Rx2KU0pDY+0fYzpoUJoaE3FyBw3e9IKD40XQKbDQpXLtsvw2fbArboi8MvhbzfL+uLH7wdHCnsWisPcb7wnjg43CTSywbtOGtnNXrFvbdu7gypVZbPq7fxvm9jz2F9s+LgtrePcfxP/QyPen0iCHVjD2oaer9DST5y4/8fdLp3fc6wluE9OLoZlx6ZPjEu7TP1/NfXnYfP0ul3qj5Ihv7AAAAABUSmEHAAAAoFIKOwAAAACVUtgBAAAAqJTCDgAAAEClltRUrJE7P5/FDo1MhbmjR/Je2Xd97K1h7jmv+B9Z7It/+sth7njf+iy27VufDnMHzn5+HlzCXeXnQjQPpDQjZKAvj41OFpKjwTGlLu3RQJt4mXUmON+i4OcovZmj+RSa+c+f1p3/PYyPHBnOYnffvT3MfdGbvpLFduzeF+Ye/tbvZrFV3/e2RzpFFkpv/LeT3mi0SWGQzMHR/KawedXyMHdyPJ+0eHA4nn61Pthv9pf2x+7g9WZMdZxPpelXK56aT9mcuOFvwty+i/KJVOPX/VWYOzOZX/wDV72r7eOOfTufCMriMbb3D7PYzffH7+HBYG9oNOL5MhvXDWaxA4UHjCP78vGjY3vie9Xgifl97XgT7QDR42dKs3+m6+pg0lVzvj6n5B+fHrZ/fl4u+v1G069SMrV2KSl9o2WpTNDyjR0AAACASinsAAAAAFRKYQcAAACgUgo7AAAAAJVaUs2T+096dhZ71MY4d89QHhuPe0yGfuJ1fxbG12zI4xc/9sz4IBolF5UWZicN4qZLjUAjnTQ/nmWHrWLzu07ON9BJc7f5asB3vLnjS3+cxR5qPTHM/e7d38hi/WMnh7n/+MfPyWLP/5mPhblf2pq3ADx0x8fD3NXn/XgYZ340ZuIGuNOtPN4qvIOjvu6HpuJNaHBgRRYbmcybdj8cz2OroxdLKR2asjMstIlm+82pb31wVxi/8mN5A9qBJ74hzB29/t35ORRHE+SOtJ/KPBrdmw/7SCmlj1+dN+o//4T4fb17JN+LhifjC3z79qEs9qgteUPllFIaHssfsu94YDzMnRp6RxbrXfM7Ye5StZDbbqkh8pZTNmex7dt2dnDkDp4256lJckl0x510q+tYf2Hvnwh+wZtWx7m7Ds3d+fxXCo85qYMSwKLmGzsAAAAAlVLYAQAAAKiUwg4AAABApRR2AAAAACqlsAMAAABQqSqnYpV6rOe921O6fXecO8sBROmhUnxfHtt+2b1hbk/qz2LTS6Yv9+x0MjCsNA1qtte4OBCkk/FTgflquq+Z/8L7t0tvymJf/M5Hw9yvXHpDFnvFM+Ljnrct79v/mFPj3F988//MYq/5qRfGySyovu6+MD7RHMti6/viDWcmuON1NeL7xP7D+bSs0jYW3UenivMiOhkbGL1W/DekmdmOGFzC1j/vt8P4aSfmsYt/5M8LRznS9uste/x/y4MdTLo68am/0n4yc+Lu61+bxx7Ip1+llFLX6D1Z7H1fjyevXf5X38pim7uXh7kDy/L39p4D8XEP9eXv99e85fvD3ObUAo9IIvSW/5FPJ7uxf1mYe+CbV2SxXXffHuZe/YXLstiWJz45zN29elMW+5u3/GKY+9rnevZZaH/+5peE8ac+9owsdqQ//qSyMngiGWzGuft37sliq07YEOYe7s1vYmv74ueyC176v8J42xqFG2Zrlh8aO+QbOwAAAACVUtgBAAAAqJTCDgAAAEClFHYAAAAAKrX4myf3502OZibitrjDQWzWDXRTSmdsWpPF7ts11Pb/P1yI92ocuWi0xh/MYm9+46+2/f///INfjf9hIm8ieGj/HWHqm974y1lsVaFT+Ls/dGnb50anogZocfOzN//5/5MHO+j8/bFr4viK/rxZ7XBpIwm8871faD+ZeXPzLbeF8b179maxUzauC3MnGnkDwT2H4ubJe7fvzGIbTjktzF0zuCKLTXXFi/ekVXnuiZvXh7mhrsLfkJrugUV5f+2UUkoPhPH2myR3pCduBtk1vTaLNWdKDSIPzuEJ8b3OOOvsLPaJT10Z5v76P+bPDEfujI87uSuPDS2LGyLvGc1jK/LlkVJKaTh4IP/dX/hGmLv/twuTT1hQv/wHb82DD+bPy3Nh+3Xfbjv3tZd+dl7Ogc798PefG8Y/8YmPZ7GxAw+EucPBo8A7fv8Pw9zLHsifcz7wwfy1Ukrp8FD+rDUXdYHQAjdJLvGNHQAAAIBKKewAAAAAVEphBwAAAKBSCjsAAAAAlVLYAQAAAKjU4p+KVZiAFYlmdOyfg1M4oSc/h/vm4LjdwfSdfBYORy+vW3ZtWB1mHmjm1+LP/z7uuv+G3/zFLHbXv/9RmPu6P/xwFts3EXdO/8A/51MrXvbmnw1zmU/59fmb3/qVMPOX3vne2b1UPNwoTS2L1umh2b0WC+47d9wfxk/duCGLnfL7A/FBmsHfX1YNhql//fS7sljPj5wX5q5MK7NYVzgRLqVVh/fF59ammWYHo+KOQ0+5aEsWu/b27WHuzPh8n83/0b2yPz6HAweCaHxvZf788YfyCVh/9L54ytSZp67JYudsHApzxzYGwcLtZ8/9eWzV5nw9p5TSijX5s/SB8XzqX0opnbI23yNTuic+CWbtJT/2rDD+0U/9WRYbbDyx7eNe+a+/H8YveUn+zHzZp/84zH3Oj/1226/H/NqUD8hMF/5EvkZSSul1L9iUxd71xfi4X/m9R2exP/lwPOHvrX93eRZ7zmN7w9wvfjeP/cEvnBqfxHXzM+1tofnGDgAAAEClFHYAAAAAKqWwAwAAAFAphR0AAACASi365slPfdxZWWzbnXEDtT1js3utZ5yzLox3TefN3S7YGDevvGV3+ycxntpvDM1RWL02CzX3xe20b39gbxbbfmhnmLu2O7/GH/+rt4e5o0Gjy3t3xsd9x0c+lcVe9UOPC3M/+a4PhnHmx0B/octxB1Yty2OHR+PcqbBBaqkO38wip22Icx/Yl+cyf1714meF8c996do8uCJvZpxSSmlPsPZm4us4lvJFVmrI3wr+ZX+KO/Oe393J34DyBsw9Pd1h5vS0psoppXTwyJEstmXDqjD3gd2H82AHUxd6lsfx7mBJTRyI18Oznv6sLLb1pm+GufvzH40OzRx6Rxj/7b/OGyU/euOJYe7Oq/PG6rcejF/v3M157M74sSX00K1x4+/IllPi+Orl8bMP8+MZP/x9Yfz9//C59g/SlzdQ/+w3o0brKZ11Wv4Z6sOX3dr+a3FM7B3OY3H785S+dv2uLPaHP3V2mHvzbflzzoeuvSHMjT4573oovgk+LS8hpN03zcVYpcXLN3YAAAAAKqWwAwAAAFAphR0AAACASinsAAAAAFRKYQcAAACgUot+KtY3b9qWxZ50zslh7vCevG3/5kYrzG208prWzt3x+IbBI3m37VZ82HRafx6Lpk2klNK9zWBSyEypvzgdO9R+5/MXXfLsLDa0byTM7evLL+i65fFEm/Fgnf3Mi348zN05nq+zd/cXFhoL6uf/6B/CeE9fPtlh9WT8ht8/mq+FxmC8BTeCraExGI+zOW8gn/62Y6o0JqeD0SZ0ZPP6/Fru3B9PfbpzVz4p5JZf3hjmHm7li+G6O+OpM12NgSy27V8uDXO3nHZ6Fpuajse0tbriqVbMjTvuOZTFTjwheJhIKXXN5FPHNqzqC3MPB1vR+Gg84S+4VUUDzlJKKd36nauy2FCwTpkbM9Pxc8BrX3B+FnvVsx4V5r7kxX8TRIMRNymegBWvsJSiMyssmzQZ3O6254/4KaWUnvf87w+ilxWOzGz95mv+NIyfcv76LPaE11wc5j66mT+LfPh9fxfmTk/nm9Pn/zWewHX+z5yXxc6diJ+5P/vR68I4cyP8hFr4isiBrvx55O+v2hPmbujK70uTY/G+d1rwKDwSfZ5OKR0Kno9bo6XP2fFnvtr4xg4AAABApRR2AAAAACqlsAMAAABQKYUdAAAAgEot+ubJKU1mkR9+4SVh5sc/9uks1lVonhy1dxsI28Cl9MDhvBFpoR9yOm1d3kx1pnQK+4OjaJ58TEyN5Nd4Rd7362GN/BrvHYkbUs6Mj2exocJhVwYNmIcnS01wWQyWr8wbnMbtclNaHcS6C6X1TcUdJvdQM2+8qtft/CndNPcWGiVH/uW/vyKLfXi69P/zG0hXoTtpb09+4VuFTv8fCppXNrp7w9xr78vXWCemiz8bJfsOxxe5qze/nnsK959IX2983MmJ9hv175nMn1N6ej27zJfu7vianX1G3hj05lvibsQTwS3llI2rCq+Yv16jGa+PU/vb33O2TQUnUbgJrlwWDwtgYe1/8GAWG3poKMy9M4hNF7aFseFgLRzMXyullEY+eziLbWv/EYn5VrgWQ3vz+1J3d/wssCt4zpkqfHg+mH+sSmkkXmgnjOeDKu5c4jNpfGMHAAAAoFIKOwAAAACVUtgBAAAAqJTCDgAAAEClFHYAAAAAKlXBVKzcW9/zL2H8bb/0oiz2/g99Pszt62t/bMzmE/qy2HQz7sA9Np5P8Xr5jz0/zN36wUvbPgfm18jIaNu5XV3Bte8utFkPJkb0NuMW8qMTw1lsZnqJt2+vXH9vvoX2Bdc8pZTGJ9sf43Drzr1ZbH1hSkj36nx8W09hKsnsZhuRUjQv5mGdvFOjddMs/JmlNGEmcvU9+fSQp58VzWNLqa83f8Gu7viRIDq18gwke9ZcaDTi33Bv77IsNj0V37/6+/PVWrw6waXv64tXezRstKsvP6+UUpoeHym9Iu3qYNM5+8w1YWrPVP58se1AfOC+YOxeq3AOD87k97U1hRMeCY67aW08fvTQkXwvY+GNjgTPLcEzR0oppUPRuKL2lb5pMHzIxL0a7R/PN6hGI56Klc8a7syKwv40Opav35El/ojiGzsAAAAAlVLYAQAAAKiUwg4AAABApRR2AAAAACpVZfPkkpHJvMHWz/1k3lA5pZT2HZrKYhNjeaxT7/vc5VnsbR/4Qpzc3T/r16MzQe++lFJKzQ6aaTWj5GJf3HxNzn6VsVhEy2liPG4Od3B/3rq40YgXZE9vbxY7NJU3Zk8ppemdmpMupLl4/04H+8X0ZHzkkSN5Y9zSdnP+2jy2/0DcMvvAUB7rKfTE1Lpy4XV3x03Yu7rzPaOvP98vUkrpxT/whCx2946DszuxlNKNdz6UBw8dmfVx6VBw++jqiZvsbzllUxbbNDER5ram8vjEzOw7jt68YyyL7T0YN/7eN97+gBMWWKlJcrAeN5yyYtYvt+/BfN24K9WpNAui/fE1seEl3hC5E76xAwAAAFAphR0AAACASinsAAAAAFRKYQcAAACgUgo7AAAAAJVaUlOx3v7+L2axt7z6B8Lc7pRPrvm7YKJVp9YGpbLTtqwPc2/ccXjWr0dnGj2FsVhTx76lelcwBKKp8f+itnvXviy26aQTw9yVK/LJNT1D0bSHWDwTK6XDwfScC0+Pz2HrPTvbfj3mzzfu2p/FnnrmqjA32hduyZddx04JhjLuiYfkhBqN9v8u1NWK53jZ3h5BV+H3G/0uC9P1Lr/uviy2/6Hdszmrhw0Ek5d64sfJRjBFsqs0njIw04rfF2nmQNvHqF1X4fresi2fiHjyisKkq/F8klHpOoxO5e/Mwzvj4/YG+9NoB2/stfFAt3D6W2dKU7XsOh2JtqHCWMa+lfnF3Pfg8OzPYcWyPLYqGAGZUkoP7Zj960HFfGMHAAAAoFIKOwAAAACVUtgBAAAAqJTCDgAAAEClqmyefMbGdWH8FS94Vh5sxs1JW628Edxv/tTzwtzmTN78b+eBuJXpx758Vf7/+4JGgyml1J03vkszU3Euc2KmGdcyG115Q71Cv8/UF7xrJvNe3EWlvpEaJS8N3Y24EXejlcdn1hb2hpTn9hcaaKYD+T6iSfL8KbX0nG379ZmZwoYTeGzcG7twEnET0e178w2ng97JqVXaIAO2ts5NjY+G8e5l+Z7RaMQ3oOGx/De/en3cdLSrN783Dh0JnlFSSq2ROB7mBrEOlnpK6fhpklzSyd5yYDJoNJtS+va9Q1nsyefEgz2iZ5RVmwfiFwxyp0YLz7FD+Xos9GROreB+2Rm7TmcKzaaDB9OeZfFdsL+nL4vNLIuvY3cwyGSg0Ej7cDRkYjjeH1l4fYWlE/Rgn/VzEv8139gBAAAAqJTCDgAAAEClFHYAAAAAKqWwAwAAAFAphR0AAACASlU5FWvtQDzp6iOf/bcs9lMvjidd9S5bncUmxwuTHoJpNCesjdu3/9ZrXpbF3v7+T8bHTf2FOPOmMCihqzdv6z5TGFPVDOfitN/rvVlIjYYezXowBAuuu7AWDh4az2InnFCYStKd19ybxVEy7U+oYfF6cM9wGN8V3O4u2jxYOEq09uIJJgdSfB9lcVheGEI0MZG/3wcG4+l6R47kE6UGlxce+4Lb3apC6qGB4G+C4x2NumIuBG/twWhsZ8HoePyMs/WhfFTV406K11gjeHBZuywek/PgUL52v/DVXwtzd+48FMaZL4WH40Z+LZdF7/+U0uFgQmdP6VYVvFxpmFpqRK/n4XixmCwsneBjVTgpi7nlGzsAAAAAlVLYAQAAAKiUwg4AAABApRR2AAAAACpVZfPkvfsmw3hvX96V6YMf+fcwd0fQpGvlYNzwrRNHxjrpDJU3qGO+xddnZqb9az89PT9N2zRKXhpKPY7PPuWELHb3tr3zfDYslNm1VC+//09Zkcdu3Knx8ZJXuCXN5D3Y08hooYH6dB4aOhQ/P1GfR2/JGxpPF4Y+RHYMtb8Wbnpo9k36b7r597PY9oeGwtyu7rjpOwusla+n6d72PzpOz8mtSmP2KgVv4aihckqaKs8l39gBAAAAqJTCDgAAAEClFHYAAAAAKqWwAwAAAFAphR0AAACASlU5FevEdcGYkJTS7gN51/4DU8FYiILOJlpRpdLwqxnXnrkxMRNP8xjoyuNnbjkxzL13+545PSfmTmnS1WxnuJx58vowvn33/iwWTcpKKaVtw7M8CRaNYBhNSimllcG1P3R49q+3fkVvFts/HIwPZVHbvW+o7dyzt8QbSW+zP4t9/Y6DbR/35lvz6VcpxRMjt5y0Jsx93GP+qO3XY2GN7jXRl+9RePiJPn53Bc/BDzMWeK74xg4AAABApRR2AAAAACqlsAMAAABQKYUdAAAAgEpV2Ty5qyvugLt5w6osdsLK0TD3hl3jc3pOVKI7bxCZUkqpkTf0GuiJm3mNj2soSVkrxeuju6uw9lgSZtv6r1XolnvGSevaPsa2Ow/M8ixYLEp/dWsGDSlXDMbZw8NBt9oCjZIXr65Vvz0vxz10IO62fubJa7PYCx+/LMz9wvU7sthjHq3x8VLWPxDvNxOj7e83LCEdPPysKjwGD+nHPWd8YwcAAACgUgo7AAAAAJVS2AEAAAColMIOAAAAQKUUdgAAAAAq1di6detsh3kAAAAAcAz4xg4AAABApRR2AAAAACqlsAMAAABQKYUdAAAAgEop7AAAAABUSmEHAAAAoFIKOwAAAACVUtgBAAAAqJTCDgAAAEClFHYAAAAAKtXzSP944YUXLtR5UIGtW7e2nWvt8L3aXTvWDd/LuuFouFdxtOw5HA3rhqPhXsXRKq0d39gBAAAAqJTCDgAAAEClFHYAAAAAKqWwAwAAAFAphR0AAACASinsAAAAAFRKYQcAAACgUgo7AAAAAJVS2AEAAAColMIOAAAAQKUUdgAAAAAqpbADAAAAUCmFHQAAAIBKKewAAAAAVKrnWJ8A1KZnbV8Wm/7vN4S5T/nVi7LYtxpTc31KALAguroaWazVaoW5hTAAMMd8YwcAAACgUgo7AAAAAJVS2AEAAAColMIOAAAAQKUUdgAAAAAqZSoWx5WuVb1hvDk6HSTHx5j+s1uy2JN/7oIw91t/eWMWu3jswjD3hpXNPJgPH3mYwVqLV6Nw0YyHAZaAZnN2e5ktEgDmnm/sAAAAAFRKYQcAAACgUgo7AAAAAJVS2AEAAACo1JJqntwTdOT7iy3fDXMbXXnuvsnJMLc3yF3dHTfh7QpyJ8fi475x98VhnDnSm1+LsElySik1gq6NjfjtcdFP5Y2Sv/1Pt4a5j3vd+Vnshg/eEZ/DYNBUeWw8zo1OrfCjMY8aQW28FTTBLukuxGei1yrkaji6tM32vV7680209jRlZwFokgywtK1c1pfFjozGn4fny/KB/LP6yPjSftDxjR0AAACASinsAAAAAFRKYQcAAACgUgo7AAAAAJVS2AEAAACoVJVTsboK42F+duX1Wezqg3HunuF8ck1vcexMnrtiWZz5jJc/Oos1Lo0nc713841Z7Fd2XhTmdlKB62Amz9LQW/rtBKM3pgvjOILr+X2749Ez1773O1nsia8/O8y97m9vzGJPeu05Ye41E3lu+p2Lwtxwek08qM2km/nUyQSsSDT9qvhas3spjoGu+Bb76JPPymIHxyfi3LO3ZLGp5nCYu3zNqix2w/UPhrnLuvNzu3f33WGutcdiEwxBNW0LYKH1x+GxqWACVqnqEO3dzcJnu+i5u3DckZngA9CywnFHl8anZ9/YAQAAAKiUwg4AAABApRR2AAAAACqlsAMAAABQqSqbJ//0wE1h/MBUdxZrFrrp9QQdZfcXuswOBO2Im6PxuX3hQ3kD56e+9IIwt/srN8cHCSyNlk5zoLfU4DpIHcy7CU9FzbxSSk8NepF+8+/i6/OkNz0mi13zrm+FuRf/wkV57kdvj4/7hkflucvj3PTaPLfYPDmKa6g8N6LSuDcr/39nblofxm/dtiOIxg2Rd+69f+5OCJYIjZIBjr1GPGcmNaPPHpP55/SHk6NJIh08TBfOITS1tB/SfWMHAAAAoFIKOwAAAACVUtgBAAAAqJTCDgAAAEClFHYAAAAAKjW/U7EahQlGsxxn0OyN61HLgtieI4fD3OUp78x9SnGsUH6+k0EspZS6e/LO3nd+KZ5s1DeZ/xx/vWVrmDsxEUxzKvwe3vTQxWF8SWhGv/f4WkwdjidgRb75D7dmsbNf/egw95q/uCaLnfHTTwpzb3jft7PYhlcFE61SStf8wy1Z7Mmvi3O//fogWJh01VjZl8VahelgdGhpN9enA9Hd7t5dE4XseAJWaNnmPLR2RZg6PbI/P6+BeDLXxK67gui6wkkcKJ3dca9R+PNYa5Z7Q2F2SLjlrC7kDgWxVdGDUkrpyHgeW1t4JDoQLOvSvErDqxavEwtrYU8w9bX0YSEaRnNGIfe+Ns4J/rNob7GvLCJ98e7fnAjuYs14fFUj2GBanUy6yj/mPCz6qNPBzap3IE6dCu6Xi4Vv7AAAAABUSmEHAAAAoFIKOwAAAACVUtgBAAAAqNT8Nk+eZZPkkn1H4savwylvHNkstCAcDjoqTRTqXA+lvVmsFbZqTunc6VVZ7Mh0/HvYEMSmp+OuTj3dUROqMDW9Z9MNWeyNu+pqqNxYEV+LrqC71cxYYZ1Fv8p3fSdM3fzivFFyT6E51qODRsmr+uPc+y55chZbPxLnrvvJC7LYt9+bX8uUUnri4fx6XlfooNkaC94vnXRCBP5L4S7UHCpkR/elvPF+Siml0Z15KGhumlJKmx/9jCy289arCucQ0SS5U7NtklzS1RPfA2em8xcc6uC4hwtrJxI1SS7RzHRxOyloAvpQYS1E/UJLvUJ/MOiU/CVdko9L0bopbSGd7BdRD3fjPzo3Xw3uW6XPYB18oOioUXKkkwXRwQ+8mJskl/jGDgAAAEClFHYAAAAAKqWwAwAAAFAphR0AAACASinsAAAAAFRqfqdiFUSduTvpyv2F9Pgw/voXPC6L3XjnQ2Hurffmk64ee/JgmPvU9fmkq2tu2x3mPhi0hb/ggtPC3I9964E8titMPe50NeIVEU7A6qDV+1mve0KYes9NeewdN70+zP36FV/OYs84Lb7G79qwIot97LoHw9y0YiwL3fnSeJrZvqhTe+n3EMWnCrnMm9nueyVRdX6eBvUwZ84NYn2F3Gjcw21hZmcTsC7KIpsLK7Ir5Rvkjg5eic7NNFeG8Sc881FZ7KmnnxrmrjkhH5V47slbwtyb7tiWxR6zPl6TtwTD0+7bG49CuvSqy7PY0J4Oxm0xJ/YHzwyfekqc++Fv5bHSzhJNwHrpiXHuufljd/p64SbYyU7G4hA9lg4WPmWOBVOQeqPxVymlSc+rc8LkwuODb+wAAAAAVEphBwAAAKBSCjsAAAAAlVLYAQAAAKjUvDZP7qCn7Zz4+y8GHXDz3oFF39qRN69NKaVmEA96JKeUUhoP/uGBoEnyXOgq1OWaS6B16sxoYZVEi6q00Abzxo/3/GHUiDSltR/N3wo/t/3vw9w1a/LYV5bfH+aeuDI/7jW3B13jSv4pDt//viBYemOVfj/Miz87IY5/dzSPfWgkzr1ocx67cWec+45gj7trOM5930wcZ74sL8SjbpBnhpl9Kd8vJgvNk//hE5/NYq/7v36ucArPyEKHw0bNKZ0StkreFx830NsTd8WcmtYVs6TZjBsXf+dr324rVhavyTVbTspiQ9vv6uC486OncAOb1gq0I+PveEMWO/t3/irMfX4Qu7jQ231PsGV8ak/755XvQg87O+VDS+5Oh9s/MEXzNcghEjVJTimltcEt4aDbwXGrO4h5XD06vrEDAAAAUCmFHQAAAIBKKewAAAAAVEphBwAAAKBSCjsAAAAAlZrXqVjz1WX9R77vcWH8s9cGU7HiIR8pLctDzWBqTUpxt+7xwmHTkdI/zINGPP2qK2h536xtUFapHXpvUItsFX64seDi741Tn3vSGVnsgZ3xBIaxoXzk0KYz4vFGX70hHwlw8pr4HLonz8piD47Gk2ee2pf/Hr7ZOBgfmHkT7Q1vfuX3h7l77/hGFvvQl+Pj3lSYgBX5tZ/JX+/Oa/LXSimlfwyG55g8MDdaO+/LYo2TfqSQPBEEPx+mTqafbPscBqaCPW+qNEnmL7NIT3pTmHly6s9it7d9VqZfHZ3CzSqdmEXO3XB+mDl+6tOz2IPXvy3M7WQC1iUpv19u6bogzP3n5r+1fdyI6VededGT4vilt92Zxe4pHONvgtj3FZ6lzz4nj93YwTC1q4r/YgLWfJntO6r0jYBOPmZMdfDgEb1ebR9pjkfRLMzSk0Anz6GdTdBayBlwi4Nv7AAAAABUSmEHAAAAoFIKOwAAAACVUtgBAAAAqNS8Nk/uirr4ppRSM29c1EkjrBNWR62TUnrcKSdksZu2xQ0I152QH2PD8qCjckppz1De6HLt6lVh7n378ma3q1fH9bNDh2bZ/qvw613Sokuf9ycuOykOn/C1vB32J2Z2h7nPSKuz2C1539SUUkqPPy2P3fRgnDvTylsZnhmnplWH8waaRdHvTC/TORE1bGv8Zdy4ON+dUlpROG7enjulU9fGuQPB6xVSNUqeR5dfm7cT3rbtc2HuKVuCjaHoX7LIr7/1L8LMBx/MN5fX//ofhLl//+d/lMUOpf8V5l76SKfHvCjvDflzwx3bPx7m7r/ptiy24cnvCHOf+9QnZLFLv3ltmPvvB76exUauvzfM/efnza55Mp2565Y4/mvXfKXtYwwGj7dPOr3wesHMhv/27A1h7rsvj4dBUJe5aFwcNdadi6bMzK++4MJNFj5PzPZjxsrNcfxIB8NFlnqj5Ihv7AAAAABUSmEHAAAAoFIKOwAAAACVUtgBAAAAqJTCDgAAAECl5nUqVjOYftWpn/ihfDbE+/79+rb//+MvPiOMD+/O+3Xf+dD2to87tG8ojH/fxfkco3078olLKaV0KD2UBzuYJNZoxLkzM8dbF/DSeLC8bjm4OZ4LdO22fLTDRb1PCXM3rt2Txa7acyjMXdGfn9tMK74+T+7OX2/14LYw98SN/XlwOj+vlNI8v8uPby97Wj5/asvBYExISuna0Ty2fs3yMLcRzIFo9faFuT/aytfe7VPRzImUvnyTcWjz5TkveWEWe9ZP/WmY+2vvzCdd7VoZzU1L6bzufOEc3Bdfx72r8zd776p4v3nlX+XTik4O57Gl9K43vCyMM3/iK5HSypRPFmoMdDAlseDGG+IJWJHl6wrjJQP5DMmU4rslc+HOkTh+XjAds3tNnHtxsGVcU5j8GT3mX31NYfpVMOrtSYU/L19zOI6zsNYEsaFCbjSAdXnh8bwRPKIsL0y4PRI8tq9pxNORj7TyZNNA5040AevLb3tamPuCd+XTE5vBc3BKKfUEj7cnFxbP3Y180zk7utGklG4fiuNLmW/sAAAAAFRKYQcAAACgUgo7AAAAAJVS2AEAAACo1Ly2Ve0qlo3yhkilRssf/fdSC8HcYBC77YZCx7fAskI8+iU1Utzl6+Yb7m379UIdNJxuFZrwLmnjeVPZ1F9YaN15y7SNLy8c9/35muxJN4ep9we/9tdfcnaY+4xTNwfR+Lq95ys3ZrGDjfhn274+aJQ8EKamFPfuZg5867q8UXJ/3Lc4tPtA3OnynrBx5FiYe0bQf3lyWpPkxeC6r3wgjDd7X5MHG3Hz851BrL8nbhz5lbf8arunlp7x6ndnsR3The6VLBpdffm1Xz4d3BcLTlsTPSmldOuBQlfLwPLgttQoPPAd6uDcmD8rgueDCwuNlkeDnqXNQgfaeybzWOnJ9KLgHKZKsy9YFCaCWDC6o6g0y6Ur2Ba649ta6g/W3njQJDmlFM9SOQ4/Ki2k6en42fQvfvXiLDY5VbhuwefZu/fGn/9vvzv/XF9qkvy/fufCLNY3ED+kv+EP2h/MtJj5xg4AAABApRR2AAAAACqlsAMAAABQKYUdAAAAgEop7AAAAABUal6nYjWLwxDmp0V5b1CmWrGiL8wdHg1a+RdMduW/pr7C9JCe4BwKjd7TWDMaPVBqId/+JLHjzkRhoQWt+8ejFv8ppYvOOiv/7yvjcQ0TE/naKV2Kn37XVVnsta98TJj72EedlsV6W/H6vfrCG7JY92CcOzPe/lqnMwen8zf8TGE9nrZmdq913so43go2mF0Tpa3d1KOFNDIaT3W49t//NouNFa7ZhU94dh4s7DdPfcFv5ecwHo5YS4fuuyOLfffyv4kPTMcawe2jk0GWvYXpemeekO8vI+PxnJr+8PXan1J10ar4uM2e/IebKIxfvCcfHJimPbosuO5g7OvEkTh3WbQVFdbjSPB48eQVcW4rek8MFJ6QxwrTc1hQ0W6xvHDJJjsYgDcUDO5cXnhs6Q3WzWRpD7G3LLhGd3zhtm7dn8We89IXh7m3b8snXW1cFb/ebZ94Zhb7yAPxc87BqXxRzuxa2s/BvrEDAAAAUCmFHQAAAIBKKewAAAAAVEphBwAAAKBS89o8uaQragRc7HjVfoPhnqCh1/CR9hvHzhROoTtoOFpq6zbSQfOwjrp8BV0Xo+aMhdTjU9AoecXyOHX1inzxjI2MhbnfveauLLZsZdxZ8Fnn5x0L77np3jD38ttG82ChSd1ZL85fb+agJskLLXqr9fbGF+1I8H7dfTDeSaKK+12FRpfxlrO0m8PVojW8LYyPxT2VQ1svu32OzoaFNNv78FTQXDSllPbsyw/casSNi3s25h3XJ4bj3LPW5/eUI4XdZdv+/OSWFZ5Hose16FktpXBGRJq0lc2J4bH8l9sbz1tIm0/Jux8PHQqeT1JKlxQanEZawY1tpq9wgL1B120WXPRUOVH4ABR9oCx9JIqeccYK7/Wg73caKOw3hzvYdxvBh6iWD1AdW3NiPnwmpZROO3djFvv2VVvD3A/+49VZ7PuefU6Y+82vtX9uX/rCze0nLxG+sQMAAABQKYUdAAAAgEop7AAAAABUSmEHAAAAoFIKOwAAAACVOiZTsZqFqVax9nMPBVMkVhd+wpmgq3vUeT2llPqDgUfbCxMroiEDp6yIRw/cM9zBFKPg16B3e+emCl33t23LJz6cfHK8Is46LR+t9f9cPRTmDgSrajya9JZS2nzOGVnsmRefF+YePv/BLNY4u/31dPf4K+J/2P72to9BSidtztfCrt3xyKMDwbiG0nu4k/f2ymB7iaaPpJRSYSAOUInB4LY0Fg8sSkP781F6D3Uwka0kn5mUUm8HU7GapbGizJufeMEFWexjX4wnxtx5X75uoqGdJdH6SCmlx5yYL5IfeOpjwtyv331V+y/IvImeRQpv9XAWZ+sxnwhzH9qfTz1bsyZ+QN9w2y9lseE5+ABkAtbcWHdG/B7+9F9/MIv98A/Gn2n+26//UBZ769s/PbsTSyktPyk/t6k98b63VCYw+sYOAAAAQKUUdgAAAAAqpbADAAAAUCmFHQAAAIBKHZPmyfMl7MdX6PLVFcSnCrlRw93VhXM4FMQ6apLMnHni3jw23h3nXvOh27LYy95yUZjbmmlmsZ98xtowtxGVTptxPfWfr7ovi330J/JYSimdc2fe0bvxlrij912vjqKaJM+Fe7bnTSZLm2rUpq+nsOdE4VKbvyO2l0XsrEL8ngU9i1Ani4xF4+6852ja1B/nDvTk95qTC51tG418QRwYibscD+e3wDDWqe5gTc5Yk3PiDz6RNww9J57rkaJL+ejCuokaYY+VmpAGHbb/6KOaJNem1Dw5bLR888vbP+7OOF5qxt220lcY5mDPIqUzToqv0Kff/dNZ7OoHR8LcbXfln8He8YfxkJfo83urEQ+7+e23/lMW+8HHnRjmfummPWG8Nr6xAwAAAFAphR0AAACASinsAAAAAFRKYQcAAACgUgo7AAAAAJVaUlOxIs3CRIWJ3nwcwOBMPF4mGBaRWqVJDaVpACy4607IY+cUmp7ff2oeW/m6+O3xkW8ezmKv+6Fzw9zunnwM18xMPGkkpf156H/GmWvyYUzp2pWFwzJrnQxV6GQLmIupWCYZLV5nPulFYfze676YB5t3Fo4yGMTGjvqc/l/WzZJxaCKO75rId6hTlrd/3PXR0kspjcaDTdpWGE7JAjtUmKgYPSadW7gJRo8z/YUL/K0dxhAtBYVtIc1yWyhP/gxinXwroWnZzau9O24J45u3XJDFTiuMcX3aMy/MYpc9sCnMbcXz18LcnZednp/Xc/4wzF0qfGMHAAAAoFIKOwAAAACVUtgBAAAAqJTCDgAAAECllnzz5JLVE3kDp13H4DxYWHed2H5uf1/cjOuffuOZWezn/uxrR3tKR+XalVML+nrHu0KP445yo3ZvQW9TlpB7Dw7H/xBd957T4tzpB+bsfFiaCj1wQ9tm2+F0LnSyoTJvSn/ZjeYw3DnewYE9nixppebn/UGs0Nd91kqNlm0tC++EjfHklmYz32HWro9WSUqnfv/vzek5Hc98YwcAAACgUgo7AAAAAJVS2AEAAAColMIOAAAAQKUUdgAAAAAqteSnYjWn4/hMECsNTNozVydDVcYm47pnY1ned/8Dv3FJmPvqP7tyTs+JYyPaL0pK0xo4/jz5UWeG8W/PBLNC7v3neT4b6lL6u1s+Um1dX5y7d/LYj93rDsbUzNgkF4WNa+IZQncN5RdodeEYh+bwfKhDaUBaNC2rr5DbySS/SGkLsbUsvHtvuzuMn/eY5Vmsq2fLfJ/Occ83dgAAAAAqpbADAAAAUCmFHQAAAIBKKewAAAAAVGrJN0+eKsQHF/QsqNG+IwfC+NlrNmexnrgHIcehUwbi+LZSx0GWrN6BeDE8/QkXZbGeS54Q5l7xj78+l6dENdpvfLxu5Yowvnf/4bk6maOmUfLiNTMaX5zog4HLyH/oLcSjWTUejZe+yeEjYXzrt76exf7l5m3zfTrHPd/YAQAAAKiUwg4AAABApRR2AAAAACqlsAMAAABQKYUdAAAAgEo1tm7dqtk9AAAAQIV8YwcAAACgUgo7AAAAAJVS2AEAAAColMIOAAAAQKUUdgAAAAAqpbADAAAAUCmFHQAAAIBKKewAAAAAVEphBwAAAKBSCjsAAAAAlep5pH+88MILF+o8qMDWrVvbzrV2+F7trh3rhu9l3XA03Ks4WvYcjoZ1w9Fwr+JoldaOb+wAAAAAVEphBwAAAKBSCjsAAAAAlVLYAQAAAKiUwg4AAABApRR2AAAAACqlsAMAAABQKYUdAAAAgEop7AAAAABUSmEHAAAAoFI9x/oEAAAAABqNRhhvtVoLfCZ18Y0dAAAAgEop7AAAAABUSmEHAAAAoFIKOwAAAACV0jwZOhRVQ5sdHSFuCJaShmAAzI3GYHcWa43NxMn9eW6aKOQCtKGr8Ljb9LjLf6G0dmasnUfkGzsAAAAAlVLYAQAAAKiUwg4AAABApRR2AAAAACqlsAMAAABQKVOxOL70FmqZXflcq/6ZvjB1YnpylidRaOneH8RKL6UrPMDS1Ve4V00GMxiDgVYppdRqBVOtSscNJ2B1MMHRsEfgP2l4/3OUWk03laPhGzsAAAAAlVLYAQAAAKiUwg4AAABApRR2AAAAACq1pJonb3jWdVmst9AstxX0Xpqejhsy9fTkDZwahZ5OMzP5Mbq64uPu+uoT44MwN6KGkjNB48mU0oqe5VlseGJkjk/ovzARxEql1yge9b4EYHGL9vOoSXJJae+P4sGggLIOmlTqZwn8Jx5LOVrN1Mm9iv/gGzsAAAAAlVLYAQAAAKiUwg4AAABApRR2AAAAACqlsAMAAABQqSqnYm1+zg1hfGc6OYutLxxj//7hPHfDmjB3vJn3de8tTLqaCHrAr1m5Iczd+LzvZLHdX31CmMsjKK3ioKF6Y1mcPDzc/gSs3q7ePDY4Fea2mvm0rbGx9l9rYFUcHz8cBKMpYCkZSzCPurr7slijKx6ZNzMVXIju0ni9fPE2euK12wjq883psfi4wLFT+lPaQg7/WOhBI538+dAQFIAl4Td+9uIstmxsKMz9Hx+7L4u9920/H+YeGc6fb8fuuybMnZrIP6u/49P5ay0lvrEDAAAAUCmFHQAAAIBKKewAAAAAVEphBwAAAKBSi7558sk/cGMW23Uo7ig70DiSxfZPFpqI9uQNcPfv2hmmbjjlpCx2cG+cO93Ka2WHhw6EuRvXxQ2YeQSdrNi8r21qDU/P+hSmmnmj5KliP+T2GyVHxoc6SC41T47iGirPiebMZB7s5HfbQW5rOk62iywNK0p9tIMLXGqN3R/sj1OFLa8/iI2lwklYZZ3r4M9mXX35Jj1yy+lh7uA59xzlCR0brTvOyWKN8+6Kk6PfmYbKUIX8U1VKU4VbSl+w501OxG/23uD+E48r4Vi4/i9+JYx/9vpbs1hXfz5QJqWUfvPlJ2Sxv/3Hq8PcrXf8axb7vZ/+hTB3opE/Lf3uK7eEuW/7yFVhvDa+sQMAAABQKYUdAAAAgEop7AAAAABUSmEHAAAAoFIKOwAAAACVmrOpWKe9PO9aPjl0U/yiqx+bxaYOfTfMnRy6NoutXfGCMHd8zzV5cCLund7bl/dvbzbj8SHN0YEsNj0dd28f7M1/pY3RW8Lc3V99WRjnEYSTnwr1yUKH/WNt/ar4bbf/8CwnduXL9GHRVILh2b0Uj8RkocUtuj4Le22WBbGpwilEW15/acvrYAuJdsdo+khKJpAclQ5uP83JfOJdR9OvuqN5NCmlmdlducaqeIJJ63D70x4b5xQmYEV6g4XdXJz38aVtvvbIaD3NbnIoC2+wO74BNRvBGpmO183kRL7nrS683qEgVvpWgt1i4T3xz28O480HHsyDfcG44pRSOmNTHhuN5382Tv2ZPLhjKD5u92AemxmNc5cI39gBAAAAqJTCDgAAAEClFHYAAAAAKqWwAwAAAFCpOWue/MAn8mZrp7wsb46VUkrTh/KmyjOHrwtz9177uiz2+bf/aJj76SvuyGIDXXE3yeHJvMXW+pVxo8B3fSlo1DR+IMwdC9pMvveXvxnm/sqtYfi404ia/hZKjlF4ZqrQLm2Wvf5W98cNKZ/9xI1Z7DNf3972cRuFDqenrcpjDxxu+7DlrnFRvL+QG3VqXdp9xtoysGJDGB8fjpq7TRSOEm23peam8d4ZO/bNgOuycL+bnkIf7dHZnkIHHSLju5qWpXOm9BQVXfs56ELdtzLfvCePxHvOzq/+aRYbOhg3pLz+vh1Z7Ky18Y3ixFPzRpdn/uBbwtyOlO7lLLC1QSx+5k1pcx4qzg84EgRLb6BZDpOgIxc/7uIwfv0X/y6L3bY/amec0tpl+bU8YX3cEvnX/+TzWextb/6BMHd4Ij/u//7opWHub73p/w7jzJ8XdV0Rxke35LEVq+MPd7sn785iJwzGe8CWYMvY9uj43PqCW9iqwqSZf7ohPkZtfGMHAAAAoFIKOwAAAACVUtgBAAAAqJTCDgAAAEClFHYAAAAAKjVnU7HCgxfKRlNHvpPF9l6TT78qeclbPhPG1wcTffYVhst09oP/RhYpDRWKhl78xl939GLHnUZXfjWaU3E39JkoXJrAMEvnpb4wftvWXbM67r7C0KRHD+ZjsUZ74rFYe6Pfw+QsTuo/GEoSGh/eNwdHma8pHyZgLVpzcWmiSXVRLKW0JpjkNzQSj2LqDW5iU/HApFijsPG2jq/1WPw1RL/24rSg9l8vmoD1xl95ZZi7+Xm/mcVe+bTzwtyDX8+nit69YWWYu3son270v/8unkbz07/wJ3mw9HvoZMDf8bXM5kVXCsbWpJROPO+lWWzXHe8pHGVnHipcmzPT92Wxe9O1pdNjAd1wUzwSqLH5SbM8cjxdNvq09J4/eUecOmM062LR1ZU/fHztvviDdjg7bXv743s7GThZ+pZK/HFrvJC9NPjGDgAAAEClFHYAAAAAKqWwAwAAAFAphR0AAACASs1r8+RSb7td337trI5b6Iec9sy033lvKkjtpOdjof9taGm3aZq95mgHTWXDrlmFTqLN0krJRUcYnxgJc3s7ufiBtYVeclvG8kbJfYXS61dndwrlN1H7v7LjSuuez4fxxlkvyoOnFQ4yEMTyfqUppZTe+JpXZ7H3vP8DcfK5QWywcA43FeLMizlplx3dlwqN0ocm40bJkY4aJUeOsybJJWGT5GLy7F9vyyn5m/s97/1I2///I0GT5JTie2DXvrxJckrxkIiwSXJJ6ffQSfNk5sCPhdHVzZOzWHlkxE8EsfhNcW86NYud+8S48fed1725+IrMvb6B+OPg5Phs72IdbJCaJC96zeBzVdgkuSSeSRN+zWTah+ej4hs7AAAAAJVS2AEAAAColMIOAAAAQKUUdgAAAAAqpbADAAAAUKl5nYp1/8cL04o6EA2SKfVo7+/O61QjM/GYHwM9KhWWImc/yimf1ZDSdwu5LwjO4aHCevqlHzovi11+44Nh7r/syMfUvP3sTWHuV+8OZlREE0VSMlWkQxtPzSeC/No/fLL9A8SDZFJa2/4h7rz3rvaTDwSxx7f/35kj5z0/j93x5Th3eXBvHDGSbkmJ7lWlvTiI3/jPfxqmvvwd786D23a0e1apr/BYtmnLxiz2qE2rwtxof1q2akWYe+s9w22fG/On68I/ymLNrfeGuXfcFYzMW/WOMLf/SfkaecqzXxjmXvm7b8tid11XGuHIvGn0Z6G+qfj+UxjAOD8ahYfY6AOb591j4tRoelW+nFJKKT0UTd6cgwXV251f/KkZF/4/+MYOAAAAQKUUdgAAAAAqpbADAAAAUCmFHQAAAIBKzWvz5Llw8ob8FHfsi9snlxolt2ugJ+7GNT6dN2UqpKYglbkUXeLCKo76eU0UDvuE8/IGgJvvPhzmXh6cwxtedEGY++gz1mWxu+7bFuZ+9ofyhoPv/sylYW5H9GTtyKq1m7PYBz/0b2Hu9Zd+OIs9/rmvig8cNDn+y7f/Sph61TV5g+3/9ce/Hea+6bf/OA8WevYye6WRADNBo+Qnv+qvwtxbP/WGLNZbOm7Qv3ZmNM4d7s6P0jUxFeY2m0Gwr3ASC9pBc4noCh4SOnhA6O4dD+N339x+o+Q1QWyocD9ozuQr+55d8UK7f28e+/lHrQ5zO2qeHP2pMVqndKx51kV5cOvvF7JfnUUe/8qfDTN7TnhMFrtwy5ow98r0/izWlZ4a5npsmUetfEPvaSwrJJfG1cyD4lSb4MbUiu9ruifPr+kV+X2tMdXB7zyaiJRSSvHtLjTTdI0fiW/sAAAAAFRKYQcAAACgUgo7AAAAAJVS2AEAAAColMIOAAAAQKUW/VSse4IJWGduGAxzd+wby2LNwk/YGwysaBU6bS8PYo1CU+6x4LhdhdxST3c6VGjaH03Auv/vfz7M/co3HshiJz8hbtN+T9Chf3ogvpqH7z6YxZ56wpYwt7FzdxZ7xuPziRMppXT5l67Pgws4vGApu+um67LYox9zTpj75B97Ux7cfGqYe/pgvhn9/rs+G+ZODOWr96uf/2aYmzafnYW2dMfrcfv2fJ3TmU6mtdzy4Xz6VUoprX91Pi3rgQ/EuWkoiJX+JDOZX/dmb2GOVzP/SZY967fC1NEvv7PwghSFkzPjcZq/8wtrs9iFr4gnFm3alI9J27UrnuA4FMS2nHRimDs1nU/KaTXiB6jnXXBRFrt235Ewl8XhlHWnZLG9F348zF150UlZbKp3U5g7eiR/xrni1vxZPKWUXvyau7LY8sfn96+UUvrIG14bxpkL+YeS8Ub8ANkdTMvqb8X7wljw1N0oTKmKdsJWYQTe6u78U9jUYHwTHB7eH8aZGw8dzq/nysJIz4Hg0WO6MP2qESyInsJzTjTRs1HInQhyo4GVKaU0s0SGbfnGDgAAAEClFHYAAAAAKqWwAwAAAFAphR0AAACASi365smRhw7HTb7WrR7IYjMznbS6jB0Zbr/N8frleRep7p64eeXOoUIXKebN6a//xzB+9bt+NIvNzKwJcx/bytdfX3f8Vnr+B77e9rl9/p0vyWI/WFg7/yNqnsy8ufXmvOljSik9/uILslgz6uyWUoraBfb1x13n7ty/LYuNFbayi044IYt19/aHudu3F06NthVaEYdKN9iDn/vNLPak/ztuZNoK1s1MK+7y95pLzshiZ511Vpj71n+8NIvd/oGfDnM5ClPBNSp0g3zH+w+0fdiB4L196uY1bf//VsqbJKeU0vre4Hxb8bPPnQfuz4Ol7pWRQrNNEyXmz/RIfn1XnZfvFymllIJH0x0H94apB5p58+SSPYP5vapx5Q1t/3/mz/hUNG4kpUZwxxsr7CGxuFPtTAdv9qGZoDH78BLpdLsEHClcyr7gltDdwW2i9Cg9EV36wnLoD16vtHI0TwYAAADgmFLYAQAAAKiUwg4AAABApRR2AAAAACqlsAMAAABQqSqnYnV3xV3W9xzJO7UP9sS5g/3t/+grg0lXre54NkormFay+3AHox7i0y238WZOPP3Nn2k796Z/+uU82Iov3PZPvTGL3TsUr4dGIz/GRT//122fF/NnsDDF5fobbmn7GKecsjmLld7u55+TTw8Zm4xP4sDBfCrJg9t2tn1edKaTLXqskLu2kf/LdCv+O0urEdyrCn+SWbEiXze/8/4rw9xGVzDBcap0xsyJ6cKYjw6exLqCUSHLVg+GuYcPjeTBwrPErdsOZ7GTT1pVOIv8ID2Fe2CoMO0xTc1+iimxnp586tHQ/l1h7pqVJ2ax7r7CgT/1wiy04aeuDVO7x4JpSp2MGWTBtVL778lGsJG1ChtOoxFc+MI9MNpvOjkv5ldvYeufLA2IDQwG98Bm4V61PFgmxWG0gdKE2aXCN3YAAAAAKqWwAwAAAFAphR0AAACASinsAAAAAFSqyubJzZlSl6S8g9NUM+7q1Ap6uI1PTXdyFmF0pjnLrkyaJC96j/s5DY2PN2Md9D8v2aah8ZJQ2qKjeN6u9GHNyTx7ZP9DYe7Kky7MYssLAwQ+cNn9WWzVsrVh7oHRfflrrVkZ5h4cOhLGmSMdPHpEzxiH9h4Kc3fuH81ipb7F/UF83+68oXJKKU0EjzlRL9Sipd69chE6NJrfxPqX583WU0ppy4WbstiBoXg3O+uNt7V9Dvd87r158L5lbf9/FrdWJxtZeCO1L9Soq7T3d7AcxjrIje4//B++sQMAAABQKYUdAAAAgEop7AAAAABUSmEHAAAAoFIKOwAAAACVqnIqVjT9qhSfLgzQmpgOxmLNyUiqvFZWahg+U5isNZvXethsj0unHvu4OL5sMI/dFQ8aSftvnbvz4XjSm0W6u+IxXsWBgsxa9Kt92o//tzD3nGe+JIvtOjgW5vb05fv8v/3Kv8QnsXx5FuqaXBWmvuwDL85iJ771ijD3r179hPj1WHA9jWCl9eZ7QEopbQgu/Z7C/acT3cGT44ufEd8EP3P5TbN/QWZtdPjqLLZs+dPC3O3b82lqOz/wmNmfxIm/HgStDzoX73gpzcEAUzrUbJU/5bLwfGMHAAAAoFIKOwAAAACVUtgBAAAAqJTCDgAAAEClqmye3NuIGzKNNdvvDNrdyH/0Zis+btRSudS+uRW00Jy/9lE6oXZqvlp8fVf/P46ZvF2gJsnzp7T3R7798XeH8euD+NN+77Nh7oqVeeyH//KVYW4n96qZtfnfdf7q1RcVslks7nko73585klxg+zu4OJvXBvfBRutfPU0CxvJniN5TJPkxW36K7+Txbpe9o0wtxFMHTn5F+4Kc5uT+dPT4YMHwtyRz/x1EP1ymAuPRJPkRaTw2Tl69piLEUU8Mt/YAQAAAKiUwg4AAABApRR2AAAAACqlsAMAAABQKYUdAAAAgEpVORVr5UA8qaGrkdephibi3JnWdP7/C2WuRtDaOxggkVJKqSd4ufyVOFamv/raMD74vPdlsfH5Phmqce6ZG8P4nffuXuAzoSalv5yMBbEr3vUjYe6HLn0oi33wy7eGuZ1MofjCL15U+Bdqc28wKavk1I0rwnh3Tz4ta2a6MC/yyKG2X4/Fa2wm3qGGPvTYLLbxZ7aGuVMT+W62YlUwyi+lNJI+3MHZsZAajzDr97+OcDxb1hevndGJfKVMdbB4Gj2lEkW0JuNz6JrOP4Ev9aGxvrEDAAAAUCmFHQAAAIBKKewAAAAAVEphBwAAAKBSVTZPbpS6HLfylkgreuOGSsNBB6fmHHRU0ih5cZtoxY0jl3ozLWZnYmriWJ8Ci9xsb6bThW7tP/n9J83yyByv8nbIKT24W+NjHjYxWnhiff6XstDuD104L+fQfste5lMr3C1S8qmG/0qjK363dgVv7u7CG34m+BDWChofd+p4/GznGzsAAAAAlVLYAQAAAKiUwg4AAABApRR2AAAAACqlsAMAAABQqSqnYnV1xae9evlUFtt7ePa99ft68jbek9N69tdoZjSOD1/+u1ls4NlvC3OPxy7rx7u1608I4zPNfG/YvuPgfJ8OlVg2GN+rJsfyaQ+Dy/rC3LGRyTk9J5aeE9evC+N79h9Y4DOhKpOFSUiN4G++z/1qnHvp82Z1Cp6kFwvTrzg6U/lH75RSSssG8tjBUXPw5ptv7AAAAABUSmEHAAAAoFIKOwAAAACVUtgBAAAAqFSVzZNTK26+1Ep588k1K+Pc0aHxtl9Oo+SlY3r8SByfyOPX/sWPh7lP+LWPz+k5sfg1unrD+AkbN2exNetODHNv3nrHnJ4Tx0YnLSaHgybJKcU33u6Bwt9ZZjp4wfZvaywhA4Pxc865W9a0fYw7tw/NzclQjVWr4vva4eFg3/IYvKQ1GqWmtkFuK2663dSA+bjUKOwNU8Hch77CRmJExNzxjR0AAACASinsAAAAAFRKYQcAAACgUgo7AAAAAJVS2AEAAACoVGPr1q163QMAAABUyDd2AAAAACqlsAMAAABQKYUdAAAAgEop7AAAAABUSmEHAAAAoFIKOwAAAACVUtgBAAAAqJTCDgAAAEClFHYAAAAAKqWwAwAAAFCpnkf6xwsvvHChzoMKbN26te1ca4fv1e7asW74XtYNR8O9iqNlz+FoWDccDfcqjlZp7fjGDgAAAEClFHYAAAAAKqWwAwAAAFAphR0AAACASinsAAAAAFRKYQcAAACgUgo7AAAAAJVS2AEAAAColMIOAAAAQKUUdgAAAAAq1XOsTwCWgt7e3jA+NTW1wGcCAADA8cQ3dgAAAAAqpbADAAAAUCmFHQAAAIBKKewAAAAAVErzZJgDM83WsT4FFome7kYYn46WSAfrpnjcGWuvNl3BpVzoLSRaTVbS0tLVk//trjndjJO7g7/zzRRyAf6TRnBTabmp8P8RP8d6+pg7vrEDAAAAUCmFHQAAAIBKKewAAAAAVEphBwAAAKBSCjsAAAAAlTIVC+ZA0/SQJa2TPv7zNaWqeFzjjRat0l9OFsMQvfAUugvJM/N4IoR6Tl0exqeHJvPg4akwtxmO4iusyk7uYSuDY0Sj3lJK6ZDFU5srrrwii8004/XRFYxCevaznj3Xp0QFOpqAZYTW0hfdaoz/nHe+sQMAAABQKYUdAAAAgEop7AAAAABUSmEHAAAAoFKaJ0NKafYdtvoK8fEOjhF1LtV4cjEorYRlK3uz2KH9fxrmRo1MR1rx+hibybfmk/rjOvwZj8tf7/7bd4W58EiifpYpLfleg8femnwfCZskp1RslByLrtwcXM0jQSPd1YXO26uDfeuQYQML7auXXprFurrje8pM0Ki/keJr1gqeW6644oowtxk0x33OszVaPi61jsOutsebxbDNH4dLyjd2AAAAACqlsAMAAABQKYUdAAAAgEop7AAAAABUSmEHAAAAoFLH71SsTgYQrVyWx46MzuXZcMzNtnV6J9OvSkzAWqxOOGlFGH/x7z8xi/3833w2zL35oYks9ss/98Iwd8+BA1ls67XfCXPP/vGTsljPJ8PUdPetpmUtpNJQiD8+PY89c1Ocu2VNHts/HOdOBoOUVg7EuQeD3Kd9K85ljgTTr1JKKQXTgsJYSumEl9yYxcYPxpOyjozlF3nNCevC3GYrv/9MDcfPOdHj05qz+sPc7Z+5OA+WJmgdcg+crcsvvTyM3/HQ7iy2vj9ej1NjY1ms0VWY/DmT39f6lgfPzCmlmWCNXX7plWHus597Sfx6zIvSX/mje1hheGKHT9H5kUvnEB23NMGxeRxOQYLv5Rs7AAAAAJVS2AEAAAColMIOAAAAQKUUdgAAAAAqdfw2T+6kR59GycelZcvjZpBTo3mzwKk5aNjWGzSDm4vjMntPf8XGMP75K7ZmsXW9+8Pc227KY6+//Bth7jNf+pws9vXPXxbmzhwMggu8s0eNDAu9X4+5ruBc56vh4tu3xPFXnZXHCu1kU39/3rT0lPVxI9M77sm7Kp9UyN0UdMXc9+K43fOGz00Xzm52FvJaLLjVhUbJgcE1ebPZsf6PhbkH9+bNj3u7S+1M86bKQ7vjh59lm87Iz2FiR5jb1cj/Jjh6W3wGA0/5dhYb//ZT4+Q1wcY1ND9rbym44vK8UfKtO+LO6ievWZ0HozdgSql39aosNlhombt/6HAW61+1PMydDv6WPDqdP0+llNK/f/HSLPZDL3humMvslRr9R+Zkiw6+VtDs4CQW6/MFHGu+sQMAAABQKYUdAAAAgEop7AAAAABUSmEHAAAAoFIKOwAAAACVOn6nYs2T1cvySRiHRvPJFBwbpdkh/cF1mwymX6WUUvdAEByLjxtVTpsDcT11aiYfCbCiMCpneDyOH0+ia1kalBBehw5e64FG/B4+f2U+AeuKL8THWP/0wSy2fzReONd8J5+A9ajTV4S5t+zPp6A86lFrwtw//fhvZLFXP/edYe7e7fm0kyWhk4XTgTddkMcuKgxGujmYZFa6S3TtmMyDA0EspdQdLPSb7oxzVwYv2IgHAaZPPSdfuy+9rLDptXleKS3xySbRiJdofFxKqeeifLrRxvGTw9zuRv5LOzAW3xDWbMgf8Sam4ilp3VN782BvfOFWBofob8U/23BvcJGb8aSrnlX5Hjc9FE95Op5cftkVYXwyGCF3WjRZLKX0oh9+4Vye0pz5/OfjG+ay5fkiu+yyK8Pc5zznkjk9J75HeL8sPUlHCpt8Jw9gs36CK5inZ4HqdPIVj9n+2gtLpyu6TXRw2OWFn2Gk/dtwZ88j87Qk54Jv7AAAAABUSmEHAAAAoFIKOwAAAACVUtgBAAAAqNRx2zy5P2hK21doFDg8kXda6mnMhLljY3lHypWFBppH9FRecKUFP95Bg+vp9nuGhr20BsfjDltR365ha6Qo+n31dNCktdT+77Ktb8liP/CLfxLmTh8JgoX3+/7rg4UT9xBN40Hf4lvWxk1Eu/O+tun2q4bC3If25scY2ttBk+S5aDp3jDXnqendioG88/BjN8UH/ve78jf2xSvj414TLJsnxX110+1B/9snbopz7wlyz9oQ5z60rIOO8cEaCfrCP5wa3XOnFkkHwsA5v5g3op4cuyPMHVjzmCx24MHvhLlHhq7PYsO954S5Izvy3LQs7no9PhxsMKU/580Ei2owPu6hrmVZrH/q3jB34qtPyYP98Z14+nCwplbFEwR6B/LmulN7Org516Qr3ni7go231CT51378h7LY+QPx3n/H7vw+seGkU8Lct/zUY7PYxz5zU5g7MJNfnxe9KD7fj3/s4/k5nHBimEuav0bA4THm54ZfeHRKU7O9QZce9ip6bpkThd9D0I9/Tn41LwgGSnzxljg3usLnr4tzbzuQx6ImySVz8rwaHWORrDPf2AEAAAColMIOAAAAQKUUdgAAAAAqpbADAAAAUCmFHQAAAIBKVTkV68zVcfyll5yfxZ5/4eYw94wLzstiPQMrwty9ux7IYls2xONDNq/Oj/HPX/hWmPuqd38tjDN/CsMl5q3D+aaN+UiaPbt3hbnNaF0fio/bF5Rkewpd4UcL57YUTc/BQJ27rszfl+99+dPD3EuvviuLXfWJh8LckSC2Nho2lFKaCgbB/NDj46kk//bpbVlsd2Ga2o7L3pm/1kScG+kq/C2gORdjpRZIo5H/DK05OP8/+k7+i/zLeKBP2hJMe7gjX0oppZSmgv1mXX7JU0rx9Knewj62PzjuCfEQpHSklU/PKaSmiQ72x1Zpj12k7v/Uqix25k/GO+zebfkErO6RG8Pc8WtelwdHglhK6W9f9+Qsdu+D28Pc6+/el8XOPy2eLPSX3/7N4Bx2hLnRRLTfffmXw8y3RpvyYGm8Xh7qXRGvtKk9x9OdLX5TPe/Zz277CJ/76r9nsb842Mk53BhGf/efPtfJQdr24694ZRb7wz/4/bb//+qV8QeFQ0cKD1W1W8DJO6VvBES/8WhwaEopxXOFY8Hgz9JMxlkbGY6e1FJavmL5PL3iAiqskdkunf7Cdl6agNWuaPrVorGIJ6r5xg4AAABApRR2AAAAACqlsAMAAABQKYUdAAAAgEpV2Tz53kLvsz/719vaij3ssrk7IRalqOViJ409i82xooaohU5wuwqNkkNRl7neOHUyaI6rStuhQsO3Jz7lGVnsf//9p8LcjweNkkvXIbqUU+Nx7oXPPzmLvf/zO+PkqagDc3zg62+YXZPgZm3dbgOtqflp9DwYXOChQhProb2ze60DHfwIjQ4aJu4pNtLON7i+9k+h/KaYrKfpdkopTe3J31dDh+JfWvPwjVnswHW/HB+4J3oUmw5T//Kz385it+yJDxu5fW+h8/bIG9s/SOCtnyj8w/og1kHn1Knhwptosv1j1OSKK67IYnt2t3+BG414sMe9B/NG2vOmJx5aMti9JouNRd3hU0pp4J4stGdX/Dx1xeVXZrFnPfuS8vkdL+ZgAEgnjYujeGF+QLi7Fd7pYbx03OhmM9PBcIRDI8Nt5/Kwjj5XLbD1G/PYgcJzd2uJ9FX3WRAAAACgUgo7AAAAAJVS2AEAAAColMIOAAAAQKUUdgAAAAAqVeVUrPlSmvLx2hddmMUueMxpYe4b/uTf5vCMmI1oVsnjTsunDaWU0q0P7MhipQ79XcFEj1LP/ZMH8979O8YKI0Gig9Q1NGZJ+MZ38mkc7/3oHW3//3iFpTQUxErTJb785Xw9pjUrCtmrgli8cNb2dTClLdTBOJvjzFiwYawrjO44EPwaS39lme0WsCgGVizhfaz/YPwu3n3tL+XB0oiyQ/mMmO/bsjpMvX1HPrpjSzwIKQ0uz2N3PRDnRtYvj2ZLppQG87trKxqfk1I6EP16OpnWUxott0S1gt/BK37iFWHuxjUnZrEVq04Kc+95cAGnYg3EF3hsOJpSuyw+RiPfPP/67/42TH3FK/+vds/s+FLYbqLbUmmL7uT+URg2NC9KTyK9webSyVPLquWl5yxSSumBj/9CFjt1XXyfaDz3PfNyDi98Uj517wvXxFNj9+/OY6cUjluYF1kd39gBAAAAqJTCDgAAAEClFHYAAAAAKqWwAwAAAFCpJdU8+W9+7+VZ7Jf+5yfa/v/vfPOPhPEvXL41i/3wC+MGdc++MG9md/nWPW2fA3Pn8Wfk1+L6+4KmtCmlNcvzBn5dI6NhbtQgLs5MafWKvCXdjlLH3MDKQvxI+4egpNAV8O7tI1msORTnRm0fSw3YVgXt2YfSZCE7MDRc+Ic8PpjibqobC71Qmb3eINYoNYkNlJpX9gR/fpmep2bEnfS05WEPfmZd+8lr23/kOm/TmjB+//68efL2kbhz8fl9+c3mxEKT4/3BfWlVX7SqU7pvKF8pj+mJW6ceiHr2ri2stKG8ifTxppM94w0/9uQs9qf/+7Iw98xTL8hi2x68JcyN2lWffvq5Ye7mYOrI1kKP/jf84huz2Mc++a9h7vahvBlqqY12w5+oOxI1Ey4tu9k2RC7teNE7fWW83aQjwYXvKpzwVCv46Tq4gXV3FyYekFJK6frb7sti63/0iQt6Drv37W079+Lg9nzDgTk8mUXIdggAAABQKYUdAAAAgEop7AAAAABUSmEHAAAAoFIKOwAAAACVamzdurXYL/zCCy9cyHOZtYvOycc97Fm2Psx9XO/hLHZwf/yrmBjJ+7cPDMYt2ccee34We1J3PMPo7z9zZxhfrLZuzaeDlSyGtRMNAHr+M+Lu7V++6rosNtHBay0rTBtqBt38G4WJNh0My0r9wfJrFN7Js51qMBfaXTuLYd085eI89guv/6kw942/9M9ZbDQtD3MHUz5tqzTnamV3XnM/MhMvnBX9+R530RNWh7lXf+PewisuTjWtm05EczeiSSWdagQjdVqteGPoC/6uU5o60xXM7Cr9Vah0jIVU273qVS/J5x9++F/bn324vhGPk5nszlfVkTkYqXbminzUyGhPvIJ3DeVTvBazhdpzrrzyyjB+ySWXzOq4f/6a54bxX3//pVnsCeEsv5RuCGLN4ty+aH+Jc6PfWPvv1M588pOfDOMve9nL5uX1arpX9QeXfaKwcUf7fCc7SGkqVjN4hu0qjISb7mSs1Sy3t8OH43131arSjNrZqe1eFVm+Jo5vWJ0vtFNPjWbJpjQ0lK+U1mS8KJvB01JXYZrZYG9+PXcditfZtvvnadzoPCmtHd/YAQAAAKiUwg4AAABApRR2AAAAACqlsAMAAABQqVJfqyqN788bKq3atyvMvS9o0lXoTZruGmq/HeSjDn83i30t7tPEPIuaH19622iY+6ynPTaLjR4ptbbNF0qrcI2vvun+wjFyz3jc6Vls+cq4Ce5V37gpi80U+ssNBLHF0FB5sfpW0DnyW0GT5LK8SXJKcaPkFT1xw7cj0+230h2e2J/Frv5GHmPxiG41pb+yRG/r3kLyZLP9JpPTs+wyWfrfUTvWxdBQeTHrpFHyyauDx7ZmvF8MpPzGtLLUaDnq9F8wkfKGyN2lGxALaueB+LnlNT/8+Cx2ZDi+V53VCp5xCk3YP/61u9s+t0c/8+ws9tS18TPO33/2O20fl86UGiVH+hv5zSZq0l8Wr5vRZr7GmoU1tqwrf04q7TZjsxxD0NnPRkopTRUmzQwdzBfaoYOFZvrBBS1dySPt3y7T6mB7aU4t7XuVb+wAAAAAVEphBwAAAKBSCjsAAAAAlVLYAQAAAKiUwg4AAABApZbUVKw7DkxmsYGeuMP5pv483kkz9HMG4prY5GTex/uBsdlNH2HujBbGAXz9rvyt8LNPGQtz77l/Zx4sNFl/wQV5bLLwrutr3Z/Frrw6zo2Wamn5Lu3+78fWqoFoqlU86ao5me9PpWk2kRWFvSwFk5AavfHkmyPR+o9PtzySgFnrZHJUdNWnO7ildJX+fBMco5PJXKVT8Nei+ZZfjenCw0thJwqj+4JhShtXx0eIhtd0dbDQugtj3WamPCvNVk93fMfftSuPtyYOhrmtRnSvitfYLz1tRRa7byq+/xwa3pfFRkbiyVyztWHDhnk57vFmLJiQNlB6qAwmaBUfTAOD0f9P8bSs8cIErdlauTJfzzyyyfijUpoMxu9uWB7nNoNL39XBJV67Mo43glvKcGGK11LhGQwAAACgUgo7AAAAAJVS2AEAAAColMIOAAAAQKWWVPPkrqBJ13ShAegDI3lHpVLz5O4gfu9E3OQv6GOqee1icuSuMNw4ksf++V/jQzT78ti6dYOzOKmHnbwqX6yPOj1uXvm137soi53w2m/O+hzoTFdXfn2mJqfD3KgvaKlVaLQxj0/HO0nY2LbQJDykSfKCi37lcbvRlII2psV+lFE86H35cDyIddBnuXi+2t/Or+7gltDbiO8TXYN5I9CumfgKnV1oahm5e+dQ+8kBTZLnz/jBB8P4YPCAO9WzLMzdvCKP3/rg3jD3luDZKd61Uvra3Xmj5LVpKMydrb1780bNdK4RPI2Mp/gZJ7rZ9BQ+AEXPOFOFm1Xh1VjsgmsfNemfCwfDfej45Bs7AAAAAJVS2AEAAAColMIOAAAAQKUUdgAAAAAqpbADAAAAUKklNRVrpoMxH93BCK2p8ACdWRWMChkuDKgxF2JulCbE3PeXT85iZ/7qt8PcqKF6PC8ipUedcWIWu/6OPWFuNKukdN3POWlDFrv2+niyQ7OZz9UpTXXrit4DJiHNiXNPW53F7nrgUJg7PZ1PCpmLaQ8DwXU/+9RNYe7ND+ya1WuV3msm/3Wmk71/WXBPGS0dIHpfF+7yvUHuqr74Cu+fyK9w6ZrbbubXGRvzSVf3786nDaWUUk8zXyh37hwtHLk/iMXTtiI/cP7GMP6V23a3fYyIPaczfetPDeM7rrszi520Kd4cdgUPRNFEq06dvmlLFlvVE4/JObRnPIsN9BQe6IPFsLa3tM7pRPQ+axRmInYHTzTruoMxsimlZiO/lvumx8LcL3zj6ix29z3xvvIDT3psFuvvbX8fO/3tzwrjjffF0+YoCy5xcUpn+OAwFx+Sg8/6PX3xmpwen5iDFzz2fGMHAAAAoFIKOwAAAACVUtgBAAAAqJTCDgAAAEClllTz5EijK/4Rp6fzjsZ93e3Xubp64mZchycKnZJZcL3B9XzTK08Pc9/1kfvz/194dzRn8gZxTzw/b6icUkqtoPPcmuVx467uqYNZLG+3+7CenvzkokZlKZWbKjN719y2N4utHIiakKYUbS8DhQ6gUbhZyJ0M4rNtklyiYenciH6PvYX36VRwS1lWaHIc/almajq+al1BOGqSXDhssa1utA9NmRQwZ668LW/OfurquJlp9Jhy7knL4wMHN6s7dw61fV6zbZJcslT3nEsuuSSMX3nllW3nRlb1xU8NL37GuVls632F4QzBQ8OPPunk+AWDC3SoMDHkhnsPZLEfeHreUDmllL67PW/2PFp4IPrEJz+ZxZ77Iy+Lk+lM9ABZ6IA7HSyGfTNxQ9roDnbeySvD3Bd+/9OLp8ext7zwWWk0mA7SKOS2ogkLpc8uUbx0owgenJdKk+QS39gBAAAAqJTCDgAAAEClFHYAAAAAKqWwAwAAAFAphR0AAACASi35qVjThYkgkVYH8xdmgqlaLC6NrrxuuW/3/WHuL/3oKVnsU1/ZFubeeXc+2eGCp+T/v+RwIX7td0ay2PSHnxnmNrrytvBBiGOgtIuMBoMkBnvjaTbR1ImewtizqWhsEtUprZvo6vY147UQ7Qt93fGRR6ajMRSxaAZKozQWiwU3Uxgfcuu2oSx2zsZ48kw0aqSUe9fuI1msuzdekzNGoi2o88+I7wf3PJDvA6duWh/m7n9oZx7sXx3mRkOT+gbic3vLU07PYr/1j9fEyYErgolhKaX0rA6mhtGhVrSeSh8do5tCfJ+J7kp37cj3lZRSGuzPJ42OTSztyUY1GQmmX6UUD68qTe9tRccofaYJH0gKucch39gBAAAAqJTCDgAAAEClFHYAAAAAKqWwAwAAAFCpJd88uacRd3WKeipPzbTfPJnF7+Rf/HoWK13hN7w0fyu8+kfPCnN/63lbstjan4+b+nVi9ANPy2LdQQPolMo/B8des9ArdE2w2w511Pi4/Wa31Geygzd1J42PSzq5+dtvFrfuQuPILcGmEzU+ngulJsndvXlD1Zkpe1nJJUEj4E6aBn/p2vj6PveJG7LY7tvGw9wv37E7iz24d3uY24mPXdV+7pe+enkW0yR5cehOhc9VQWwuWqdrlLx0LC88eByZDIKdPHh4SPl/+cYOAAAAQKUUdgAAAAAqpbADAAAAUCmFHQAAAIBKKewAAAAAVGrJT8Va0RfHhzRZPy797I/GUxX+6lPtT7V6x7/ck8X2f+CZYe6nv703i73o4nVtv9bYeDw16cTX5xO/huNBBSy0mXjiy1AQXlOYZjOkw/9xp3TJo7++zMWkkU4Eg43SuMFGi0crXhHNVr56Tl4dPxTtOBSNJZk9E7AW1kXnnR/Gr/zOnVlsdLA3zH1wbyfTGnNfvvSKWf3/lFJ6/nOfNetjMD/m4vEkevTx2LO0RNdzKh7ExxzyjR0AAACASinsAAAAAFRKYQcAAACgUgo7AAAAAJVa8s2TTyw0hxuamF1zOBaPThquDQ0dCeM/8uzHZ7HJ6XiNfOGqrVls/au/1sFZsJR1d7AiNUnmP/QX/swyFfTFLf1FppOmyp30Wp/W/3ZRmy7sI9Mz89MQmYVV6LEf5xaa91941llZ7MZtB47yjP6PK6/MB09cckk8pIKlYaArXpEjzfYfaDz6HJ8m+gv/MLagp7Gk+cYOAAAAQKUUdgAAAAAqpbADAAAAUCmFHQAAAIBKKewAAAAAVKqxdetWzckBAAAAKuQbOwAAAACVUtgBAAAAqJTCDgAAAEClFHYAAAAAKqWwAwAAAFAphR0AAACASv3/ANKPCbuHUuwFAAAAAElFTkSuQmCC\n"},"metadata":{"image/png":{"width":1142,"height":1213}},"output_type":"display_data"},{"data":{"text/plain":"<Figure size 1152x1152 with 144 Axes>","image/png":"iVBORw0KGgoAAAANSUhEUgAABHcAAAS9CAYAAADN3LXJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdZ5QcxfX4/TuzOWi1yhkFBCgLhIRIBhGM8I+csU0ywQSTbNKDbZIB22CMMcaADSYYMMFEAUaAQEIggiSQUEAR5bw5h0nPC/3VXbd2Z3Z2d7Srnvl+zuGcKlVPT9PTU91TW/eWb/HixREBAAAAAACAJ/k7+wAAAAAAAADQdgzuAAAAAAAAeBiDOwAAAAAAAB7G4A4AAAAAAICHMbgDAAAAAADgYQzuAAAAAAAAeBiDOwAAtNOjjz4qY8eOlbFjx8qbb77Z2YeDNtr1GU6dOrWzDwVIanzXACDx0jv7AABEN3XqVNmyZUuTf/f5fJKTkyP5+fmSn58vQ4YMkREjRsi4ceNk8uTJkp7eOV/t5557TqqqqkRE5KqrruqUY9iTLF++XD7++GMREZk0aZJMmjSpQ9//rLPOkuXLl4uIyN133y2nnnpqzO1LS0tlypQpEolERETksMMOk8cff7zF97n00kvlq6++EhGR66+/Xi655JL2HXgLAoGAzJ49W7766iv59ttvpbi4WCoqKsTv90uXLl1kyJAhMmbMGDnqqKNk//33363HAgBAczZv3ixLly6V7777zvmvoqLCaV+8eHFC3qe2tlbOOOMM2bRpk/Nv8dzzY7nxxhvl/fffd+onn3yy3Hvvve05TAAdgMEdwIMikYjU1tZKbW2t7NixQ9asWeMMIvTs2VNOPfVUueSSSyQ/P79Dj+v55593BqMY3Nk5uPPYY4859Y4e3Jk0aZIzuDNv3rwWH/TmzZvnDOyIiCxYsECCwWDMwcJAICDffvutU588eXL7DjqGSCQir776qjzxxBOydevWZrepq6uTHTt2yNy5c+Wpp56SIUOGyFVXXSXHH3+8+Hy+3XZsAADsctNNN8n06dM75L0eeughNbDTXjNmzFADOwC8g8EdwCPOPvtsGTRokFNvbGyUqqoqKS4ulqVLl8q6deskEolIcXGxPPnkk/Luu+/KPffcIwcddFAnHjU600EHHSTPPfeciIjMnz+/xe3nzZun6rW1tbJkyZKYs18WLVok9fX1IiKSn58vI0eObPsBx1BTUyO33nqrzJw50/k3v98vI0eOlDFjxkj37t3F7/dLSUmJrF69WhYuXCjBYFDWrVsnN998s+Tk5MiUKVN2y7EBAGBqaGho8m9du3ZVM3cSYf78+fLSSy+JiEhGRoYEAoF27a+8vFzuvvvuhO0PQMdicAfwiOOPPz7mzI+tW7fKSy+9JM8//7w0NjbK1q1b5aqrrpInnnhCDjjggA48UuwpDjzwQElLS5NQKCRbtmyRTZs2ycCBA6Nuv2twZ9y4cbJ06VIJhUIyf/78mIM7c+fObfJ+iRYIBOTKK6+UBQsWiMjOsMQzzzxTLr/8cunTp0+zr6murpbXXntNnn76aSkpKZFQKJTw40LySVSYBIDU1rNnTznyyCNl1KhRzn+BQECOP/74hL1HXV2d3H777RKJRGTy5MnOPbs9fv/730tpaal0795dpk6dKi+++GKCjhZARyChMpAk+vXrJ7/85S/l+eefl969e4vIzr8cXXvttVJeXt65B4dO0aVLFxkxYoRTt2fmmIqLi2XNmjUiIjJlyhTndebgTXPMB8ndFXb2wAMPOAM76enpcv/998vtt98edWBHZOcsogsvvFDefffdhD5MAwDQkttvv10eeeQRueqqq2TKlCnOc1ki/fWvf5WNGzdKTk6O3HHHHe3e30cffSTvvfeeiIjccsstUlhY2O59AuhYzNwBkszIkSPloYcekgsvvFACgYCUl5fLM888I9dff32z29fW1jrJaZctWyabNm2Smpoayc7Olp49e8q4cePkhBNOkEMPPTTqe44dOzauf+vfv3+TOO5EvL9p/fr18tprr8n8+fNl/fr1UltbK2lpaVJQUCADBw6UAw44QA455BA58MADJSMjI+a+Pv/8c/nggw/km2++keLiYmloaJDCwkIZNWqUHHPMMXLiiSc2m4/m0UcfVbl2REQee+yxJv8m0v6khy056KCDZOnSpSKyc6DmtNNOa3Y7e5CmoqJCli5dKgsXLpRAINDsuWpsbNzt+XbWrFnjTDkXEfnFL37RqsGavLw8+dOf/iS1tbVRt2lsbJS33npLZs6cKStWrJDy8nLJysqSPn36yEEHHSSnnnpqQsLNzATpLc0Q2bx5s/P/OXHiRHn66aebbGNeZ7uuoy1btsjLL78ss2fPlm3btonP55MhQ4bIqaeeKqeddpr6HIPBoMyYMUNef/11WbNmjZSVlUn37t3l4IMPlp///OcqDNQ2b948ufjii0XETbQZCATkjTfekHfffVfWrVsnVVVV0r17d5kwYYJccMEFMmbMmBbPUSK/v22xq99qrq8Saf7/u7a2Vl577TWZPn26bNq0Serq6mTAgAEyZcoUufDCC5v8QFqwYIG8+OKLsnTpUtm+fbvk5ubKuHHj5Pzzz4/rO7RixQr59NNP5ZtvvpE1a9ZIaWmpBINBKSgokKFDh8ohhxwiZ511lnTr1i3u/+/PPvtMXnvtNVm0aJGUlZVJt27dZJ999pFTTjnFyVfVmutXpO39pykUCsl7770nM2bMkOXLl0tpaak0NjZKTk6O9O7dW4YPHy6HHHKIHHroodK/f/+4/39tv/nNb2TatGkiIvLUU0/JpEmTZMWKFfLSSy/JvHnzZMeOHZKRkSFDhgyR4447Ts455xzJzs6Our8333xTbrvtNhERufLKK+Wqq65yZhNOnz5dNm7cKHV1ddKrVy85+OCD5cILL5ShQ4fGdazbtm2T559/Xj799FPZunWrpKenS//+/eWYY46Rs88+W3r06NFs39CRPvjgA3nzzTdl2bJlUllZKT169JCRI0fKGWecIUcccUSHHkuy+uabb5xZNb/4xS9i9tfxqKiocMKxjjzySPm///s/efTRR9t9nAA6FoM7QBIaO3asnHTSSfL666+LiMiLL74oV111lWRmZqrtVq1aJT/5yU+cnCmm6upqqa6ulnXr1sm0adPksMMOk/vvv18KCgoSdpyJfv/nnntOHnzwQQkGg+rfg8GgFBUVSVFRkSxYsECeeuopeeSRR+TII49sdj/bt2+X/+//+/+and68Y8cO2bFjh8yaNUuefvpp+etf/ypDhgxp3f94DOaPehGR6dOny4ABA9q8v0mTJjkDA7Fm7uxqy8nJkdGjR0t5ebk8++yzUldXJ0uWLGk2tO/bb7918gp07dpV9t133zYfZzRPPfWUhMNhEREZMGCA88O6tXJzc5v998WLF8tNN90kmzdvVv++K6fV6tWr5cUXX5SzzjpLbr311k5biS4en3zyidx6663OinW7LF68WBYvXizvv/++/P3vf5fs7GwpLi6Wa665RpYsWaK23bZtm7z55pvOtvHOxtqyZYtcf/31smzZMvXv27dvl/fee0+mT58ut9xyi/z0pz+Nuo9EfX870rp16+Taa6+VtWvXqn9fvXq1rF69WqZNmyZPP/207LXXXhIMBuV3v/udvPHGG2rbhoYG+eSTT+STTz6RX/7ylzGv8VtvvVXeeeedZttKSkqkpKRE5s+fL//617/k7rvvluOOOy7m8QeDQbn99tvl7bffVv++q5+bM2eOvP3223L//ffH3I8pUf3n9u3b5eqrr3aSwpt23R/WrFkjH3zwgYwaNUpefvnluI+xJS+88II88MAD6lqsq6uTRYsWyaJFi+SVV16RRx55JO4BmRUrVsgvf/lL2bhxo/r3zZs3y2uvvSbTpk2T++67T374wx/G3M8HH3wgt912W5PB6hUrVsiKFSvklVdekQcffDDO/8vEq6urkxtvvFFmz56t/n3r1q2ydetW+fjjj+Xkk0+WO++8s3MOMEnU19fL7bffLuFwWMaMGSPnnXdeu/f5hz/8QUpKSiQ/P19++9vfJuAoAXSGPfcpFUC7nHvuuc7gTm1trSxatEgmTpyotqmtrZX6+nrx+XwycuRIGTFihPTu3Vuys7OlqqpKli9fLl999ZUEg0GZM2eO/OpXv5J//vOf4vfriM4bbrhBRESeeOIJqaysVP9mslfvStT7i4jMnDlT/QAZMWKETJgwQXr27CkiImVlZfL999/LwoULY87i2Lhxo1x00UWyY8cOEREpKCiQww47TIYMGSIZGRmyZcsWmT17trNK2QUXXCAvv/yy9OvXz9nHoYceKrm5ubJ06VJntYxdf122xTOboT0OPPBASU9Pl2AwKNu3b5cNGzbIXnvt1WS7XYM748ePl4yMDJkwYYL4/X4Jh8Myd+7cZgd3zB9vEydObPZzaY9wOCyzZs1y6meeeWZC32PRokVy6aWXSl1dnYjsnOVz1FFHyZAhQ6Surk7mzp0rixcvlkgkIq+88oqUlJTIQw89lLD3T6Tly5fLq6++Kg0NDTJx4kQ54IADJCsrS1atWiUzZsyQUCgkc+fOlT/+8Y9yyy23yBVXXCErVqyQfv36yRFHHCF9+vSRkpIS+fDDD2XHjh3Oj7Rp06ZJ165dY753bW2tXHXVVfL999/LgAED5Ac/+IH07t1bysvLZebMmbJx40aJRCJy3333yahRo5q9lhL1/e1I1dXVcvXVV8v69etl6NChcvjhh0u3bt1k69at8v7770tlZaXs2LFDrr76annjjTfknnvukTfeeEPy8/NlypQpMmTIEGloaJBPP/3UGcB46KGHZP/995cJEyY0+55lZWUiItKtWzcZP368DBkyRAoKCiQUCsm2bdvkiy++kC1btkhtba3cdNNN0rVr15izgW677TY1WDRq1Cg5+OCDJTc3VzZs2CAzZ86UTz/9NO4f44noP0V2fvevu+4657zk5eXJYYcdJkOHDpWcnBypq6uTLVu2yNKlS51w0kSZNWuW/Pvf/xaRnf3nhAkTJCMjQ1atWiWffPKJNDY2yoYNG+TSSy+VF198scVwm+3bt8sVV1whxcXFzkyj7t27y/bt2+Wjjz6SoqIiCQQC8utf/1pGjBgRdQbGZ599Jrfccosz4NS9e3c56qijpH///lJZWSlz5syR1atXy7XXXitHH310Qs9JPHZ9Zl988YXzbxMmTHBm2e06f9OmTWvVrDI09fDDD8v69eslPT1d7rrrrnbnups1a5a8++67IiLyy1/+Uvr27ZuIwwTQCRjcAZLUiBEjpEuXLs5f8b/++usmgztdunSR6667Tk477TTp0aNHs/vZuHGj3HDDDbJs2TL56quv5N1335WTTjpJbXPRRReJyM4ZQrsGd3b9WyyJen8RkWeeecYp33vvvXLyySc3u79AICCzZs1q8mNiV9sNN9zg/DC58MIL5eqrr24y/T4QCMiDDz4ozz//vJSVlcmvf/1rFTaz//77y/777y9vvvmmM7iz//77x3VOEi03N1dGjRolixYtEpGdgzj24E5xcbEz82DXTI2CggLZd999Zfny5TJv3jy5/PLLm+zbzMezO/LtrFixQq0sksiwr/r6ernlllucgZ0JEybIn//8Z2cwYZd33nlHbrvtNgkGg/LRRx/Jiy++KD/+8Y8TdhyJ8sILL0iXLl3kb3/7mxxyyCGqbf78+XLZZZdJMBiUt956S6qrq2XFihVy4YUXynXXXafCm66++mq5+OKLZdmyZVJaWir//e9/5dJLL4353jNmzBCRnaEBl156qZrddP3118stt9wiH374oUQiEXn88cflH//4R5N9JOL729E+/vhj8fl8csMNN8gFF1ygBh6vvPJKOf/882Xz5s2ydu1a+c1vfiPvvvuuTJ48Wf70pz+pH7fXXHON3HXXXfLaa69JJBKRf/7zn/L44483+56HHHKI/OxnP5NJkyY1O9AZDoedWSfhcFh+97vfydtvv93stjNmzHAGdtLS0uSOO+5oErZZUlIiv/rVr+T9998Xn88X83wkqv8U2dlP7QonHT16tDz++ONR839s3LixxdxgrfHcc89Jdna2PPDAA01mh61bt05+8YtfyIYNG2THjh1y9913y9/+9reY+3v99dclPT1d7rjjDjnzzDNV2/XXXy9XXHGFLFy4UOrr6+Wpp55qNndKTU2N3HHHHc7AzlFHHSW///3v1R9MbrjhBnn66aflL3/5S5PZYR3hpZdecgZ2MjMz5f7775djjjlGbbN27Vq58sorncGzRPnZz37W7kTCpl2heXuihQsXygsvvCAiIhdffHG7Z8xWVFTI7373OxHZOZh51llntfsYAXQeEioDScrn88k+++zj1Ldu3dpkm2HDhsmll14adWBFRGTQoEHyyCOPOA/or776asKOMZHvv+svvMOHD4/6w1Bk59KeP/zhD5t9IHr77bedsJLzzjtPbrzxxmbzKmRkZMgtt9zi/HV0/vz58s0330R9z8520EEHOeXmfgSZ4VrmA+2uwcBvv/22yXKoDQ0NzoCR/R6JYv5F3ufzqeTQ7TVt2jTZtGmTiIj07t1b/v73vzcZ2BEROfHEE+XGG2906k888cQeuzTsvffe22RgR2Tn53jKKaeIyM4wnPfff19++MMfyo033tgkb01+fr7ccsstTv2jjz6K673PPfdcueKKK5qErWVkZMgdd9zhfI++/PJLqampafL6RHx/O8N5550nF110UZPBk169esnVV1/t1N99910ZMGCAPPzww01mLfh8Prn55pudH+pffPFFs+dIZOeAyeTJk6POYPP7/XL++ec7A5AbNmyIOvDxz3/+0ylffvnlzebj6tGjhzzyyCPSo0cPiUQize5nl0T2n2Yo1iWXXBIzseugQYPkjDPOiHlsrRGJROS3v/1ts2F/Q4YMkUceecT53syaNUtWrFjR4j6vu+66JgM7IjtnJN11111OPdr37c0333QGzYYMGSIPPPBAk5mwPp9PLr74YjnrrLNa/KwSLRgMyr/+9S+nfssttzQZ2BERGTp0qPz973/fLasqpoKGhga57bbbJBwOy7Bhw5r9o0tr3XfffVJUVCRZWVly5513tjiIC2DPxswdIImZ4RTmDIjW6t27txx44IEyZ84cWbx4sTQ2NjbJ37M7xfP+u/Ky7MoB0xa7khNmZ2fLVVdd1eL2P/vZz+Tjjz8WkZ0P+dFCKVpjwIABCV+OedKkSfLkk0+KiDT7181dP/5ycnJUmNjEiRPl+eefl/r6evn222/VzK9vv/1WGhsbRWRneIA5kJgo5ipv+fn5CU2guyt5qsjOH7b2DyXTj3/8Y3n22Wdl69atUlRUJJ9//vkeke/FNHLkSDnqqKOith9xxBHy2muvOfUrr7wy6rYTJkyQgoICqayslJUrV0ooFIr5Yyw9PV2uuOKKqO1du3aVgw46SGbPni3hcFhWrFjR5LuSiO9vR8vIyJDLLrssarudOPaCCy6ImvspNzdXJk2aJDNnzpRwOCwrV65sNnwtXj/60Y+cv+5//fXXcvDBB6v2NWvWOAMxeXl5MWcVdunSRS644AL5y1/+EvM9E9l/hkIhp9xcTrbdaciQIc5gaHOGDh0qJ598svN9mjZtmtx0001Rt+/evXvMXFPDhg2T4cOHy+rVq6WsrEy2bdvWJCxmV8iMiMjPf/7zmPffK6+8Ul5//XV1Dne3uXPnOoNP/fv3b3Yga5e9995bTjrppITOLjrnnHMS2ie3Nznx7vK3v/1N1q1bJ36/X+666652P4d98sknTr6tK664IqH5AwF0DgZ3gCRm/pCorq6OuW0oFJLvv/9e1qxZI5WVlVJXV6f++rcr10MgEJBNmzbJsGHDEnqs7X3/fffdVxYtWiQbN26UBx98UK688krJycmJ+/3Ly8udv8COGzdOunTp0uJr9ttvP6dsJ6bdkxxwwAGSkZEhgUBAduzYIevWrVMPcbsGfMaNG6cGUA488EDx+XwSiURk3rx5anAn2myfRDJnL0T7UdwWjY2N8t133zn1lpKY+v1+OfbYY+W5554TkZ2rlOxpgzuHHXZYzPaBAwc65d69e8ccjPP5fDJgwACprKx0EkvHmjkxatSomLPvREQGDx7slEtLS5u0t/f72xlGjRoVM3dIQUGBdO3a1RlYb2nFP/MHZXFxcYvvX1ZWJsuXL5dt27ZJbW2tmlFmDuavW7euyWvNVe4OPvjgFs/1UUcdFXNwJ9H9p9n2yCOPyLBhw2T06NEt7jMRYg2S7nLMMcc4gzsLFy6Mue3kyZNbHJgePHiwrF69WkR2fj/MwZ2GhgZnIM7n88mUKVNi7qtXr14yevRoNbNyd1uwYIFTPuqoo1rMjXbssccmdHCnNSsoetW3337r3IPOPfdc2X///du1v8rKSicca+TIkZ0SNg4g8RjcAZKY+eM42syEqqoqeeKJJ+Stt95q9kdXtNckSqLe/+KLL3aWe3/66afllVdekUMPPVQOPPBAGTt2rIwcOTLmA/bKlSudwaS5c+c2u5R7LLsGn/ZEOTk5MnbsWCf0Ye7cuc7gTlFRkfPjzx6kKSwslL333ltWr14t8+bNU7M9zMGd3RGSJbJzRsEuiUyiu2XLFueHcJ8+feJK7mkuhb5hw4aEHUuitJSDxhwciydZprl9XV1dzMGdeJagbumzbO/3tzPEk/cnNzfXGWhpzWe0KxdUc7744gv5xz/+Id98801c4TfN9Zfr1693yvHMuhs8eLBkZmY6s/Vsie4/DznkEBk5cqQsW7ZMtmzZIueee67su+++csghh8j+++8v48aNazGRcVvFE/5phgU2N3hmiuc6ifX92LJli5Nrp2/fvnENnO2zzz4dOrhjXk/mwFw08WwDV2NjoxOO1b9/f7nuuuvavc/7779fduzY4SRl3pNXggQQP77JQBLbldxYRJpd8Wbz5s1yySWXNFkGuiXRHvBbK5Hvf8wxx8hdd90lDzzwgFRVVUlNTY18+OGH8uGHH4rIzgGOww47TE4//XT5wQ9+0OT1ZghQW8T6MbYnmDRpkjO4M2/ePDn77LNFpOWkyJMmTZLVq1c7y55nZWVJfX29Ch3bXTN3zAGFmpoaCQQCCfmBb34v4l21xdyuPSGOu0tL0/PNPArxTOU3t98VMtXW945nf+39/naG1v5/Z2Vlxb1ttHP+2GOPyaOPPhrnEe7UXKib+R2INXC3i9/vl4KCgqgzihLdf/r9fnn00Ufl1ltvlS+//FJEdg4grVy5Up599lkR2Rkedfzxx8u5554r3bt3b9f7m+I5H2Z/UF1dLZFIJGqukpY+d5s9YNfaz6o12yVKa4+R1bJa55FHHnEWPbj99tvbPZP1008/lbfeektEdubxMv94AcDbGNwBktSuvA27NPfX9V//+tfOwEr//v3l3HPPlQkTJsiAAQMkPz9fsrKynAfW3/zmNypPSSIk+v1PP/10OfbYY2X69Ony2WefycKFC52/CNfV1cmMGTNkxowZcthhh8mDDz6oHpDM/AT77LNPzKSuzYmVs2VPcNBBBzmrFJl5d3bNwMnOzm72r+0TJ06UF198URobG2XRokUyadIklW+nd+/eMnTo0N1yzGbo3a7ruaNCM9Dx2vP9TQVffPGFM7Dj8/nk+OOPl+OOO06GDx8uPXv2lKysLGfwc9OmTfKjH/2ow45td/SfPXv2lCeeeEIWLlwo77//vnz99ddODiiRnSsvPfbYY/Lvf/9b7r333mYT+CI1TJ8+XbZt25aw/R1//PF7zHLga9eudVYXO+mkk1oMwY3HriTegwcPjpl/DYD3MLgDJKnly5erPDv2MujfffedM5NjwIAB8sorr0hBQUHU/SUyFGt3vn9BQYGcffbZcvbZZ0skEpG1a9fKvHnz5MMPP5SvvvpKRETmzJkjd911l9x3333O68yZTT169Ei6+PPx48c7YRXFxcWyZs0aGTZsmDO4M378+GZnxRx44IFOee7cuTJp0qTdvgT6Lvvtt5+T2Fdk50pLiRjcMa+zeGccmGEjzc2Ci4f5l/1Yf+kX6fgksnuKtn5/U8F//vMfp3zzzTfLeeedF3XblnKsmaE98XwHwuGwmp1h25395/777+/kF6murpaFCxfKnDlz5H//+5+UlpZKTU2N3HjjjfLf//5Xhg8f3u73i+d8mP1Bfn7+bl1hqLWfVWu2S5TW9qmJDmN++eWXE7oU+ujRo/eYwZ3i4mJnQPPtt992EiC35LbbbpPbbrtNRHY+/z399NNO2/bt20VkZzid/WwYzbRp09Qf2BK98AOAxGApdCBJvfzyy045Pz+/yawMMx7/1FNPjTmwIiJOssdE6Yj39/l8MmzYMDnnnHPkySeflAceeMB5CJ8+fboKrzFniZgznpJFVlaWjB8/3qnPmzdPtm/f7uSPifaA16NHD+fc7BoIMh+id1e+HZGdoRlmctNXX321xRChePTv398ZyNq2bVtcP0bMpZnN5MCtYSatbSmH0NatW9v0HsmkNd/fVLCrz8zKypJzzjkn5rarVq2K2W5ewy1tK7LzR2CscNyO6j/z8/Pl8MMPl1tuuUXee+89GTdunIjsXIrbXA2uPeJZ2tz8f9zdKwwNGDDAyYeybdu2uP7QEc9nmkjm9RTP5x/POQYAtB4zd4AktHjxYvXXnR//+MdNZmW0lI/HtHz5ctm4cWOL72sm5Gtp+eTd8f4tmTp1qvz973+XtWvXSjgclvXr1zs/Dvr27StDhw6VtWvXSmlpqXz55ZdNlg9uLft8dLZJkyY5AzRz585VSTxj/fVu4sSJsmbNGlm0aJGUl5d3SL6dXS6++GJ5++23JRwOy6ZNm+Tpp5+WSy65pNX7qa2tdcJ4MjMzZdSoUc6KQR988IGTg6g54XBYZsyY4dTbukR1jx49nEHKdevWxZyFNGfOnDa9RzKL9f1NBbv6zNzc3BZzT+3KVRSNudLOl19+KXV1dTFXzJo5c2bM/e2O/rMlubm5cv755zvLkO/KSdJeH3/8sfzyl7+Muc1HH33klNu7alFLsrKyZOTIkbJ48WKJRCIya9YsOemkk6JuX1RUJEuXLt2tx2Qzz8HMmTPl5ptvjjmbyTx/iWDOSkk2PXr0iDvMcc6cOVJSUiIiO+9Tu1bgs0On493fihUrnIG4QYMGtfneB6DjMLgDJJnly5fL9ddf76wG1K1bN7nwwgubbGcmPTSXhbaFw2F54IEH4npvM29CRUVFzCSXu+P9W8tOdPmTn/xE7r33XhERue++++SFF16IO69Hc2E25nT6PWGWwUEHHeTk7Jg/f77zeWVnZ8f8kTxx4kR55ZVXJBAIyDPPPONcW/369VPLN+8Ou2ZuvPjiiyKyM7HkgAED4l76tqamRu666y6ZOnWqyslx8sknO4M7Tz75pJxwwglqsMv08ssvy5YtW0Rk5zLDLS1pHc2oUaOc0KKPPvoo6uDOli1bErpMcLJqbaJar+vatauUlJRIWVmZbN26NeoqTF999ZXMmjUr5r6GDRvmrEZVU1MjzzzzTNTcG1VVVc4SzLEkuv9srezs7Ha9fpd169bJ22+/HXUAZf369eqPJ63NL9QWJ5xwgjOo/sQTT8jUqVOjJvR+/PHHO/yPCZMnT5ZevXpJUVGRbN68WV577TU588wzm912zZo1cYcWYed3ddf3qiU/+9nPnMGd008/XU499dRmt4t3f48++qgzuHPAAQfE/ToAnYewLCBJbN26VR566CH56U9/Kjt27BCRnT9+Hn744WZnxkyYMMEpv/322/LJJ5802aayslJuvvlm+eqrr+J68Danp5t5WZqTyPffsmWLXHDBBTJ9+vSo4S6RSEReeOEF56+73bp1U6EEIiJnnHGGswzu6tWr5aKLLoo5xby+vl4+/PBDueiii5odoDLPx9dffx1XSNHmzZtl7Nixzn+tXUkslnHjxjk/gEpLS2X69OnOv8da+cec1bNrkEVk94ZkmW666SbnL4bBYFBuvvlmufvuu528Ac2prq6WZ599Vk444QR57733mrSffPLJzsDU1q1b5ZprrnEeik3vvfee/OlPf3Lql112WZtX7DIHl55//nlZuHBhk23WrVsnV1xxhdTU1LTpPbwoUd/fZGfmv7r99tubvUY+/fTTFmed7HLppZc65X/84x/NDiiWlpbKNddcI8XFxS3eAxLZf953333ywAMPxAzH3b59u5MkXkSfn13mzZun+tN4+Hw+ufvuu+XTTz9t0rZhwwa5+uqrnRC1KVOmdMiy3qeccor06tVLRHbOULrxxhub5FWKRCLy9NNPyyuvvBL3QJl5bnbN6myL9PR0NaPyj3/8Y7MDjOvWrZNrrrnGWdodAJBYzNwBPGL69OlqqnUgEJCqqiopKSmRJUuWyNq1a9USqv3795d77rkn6pTx4cOHy5QpU2TWrFkSCoXk6quvlsmTJ8uoUaMkLy9PNmzYILNmzZLKykoZPny4DB06tMWp/kcccYT873//ExGRO++8U+bPny977bWXE56Un5/v/JUzke8fiURkwYIFsmDBAmfVp3322Ue6d+8u4XBYiouLZc6cOWqg5Oqrr27yIz0jI0Mefvhhueiii2TLli2ybNkyOeOMM2TcuHEybtw46dGjhwQCASkvL5dVq1bJkiVLYi6BPnjwYBk8eLCsX79eVq9eLRdeeKEcfvjhakbPwQcf3GE/UjMyMmT//fd3lhbe9UO6pYSKvXr1cv4/zB/fHTW4k5GRIY899pjceuutMnPmTIlEIvLKK6/Ia6+9JqNGjZLRo0dL9+7dxefzSWlpqaxatUoWLlyofkCYIXIiO//K/8c//lEuvfRSqaurk3nz5smJJ54oRx11lAwZMkTq6upk7ty5KjfU0UcfLeeee26b/z/Gjx8vhx12mMyZM0fq6urkZz/7mRx11FEyYsQICQaDsmzZMvnss88kGAzKz3/+c/nnP//Z5vfykkR9f5Pdz372M/noo48kFArJl19+KT/60Y/k6KOPlv79+0t1dbV8/fXXzvV6xRVXyOOPPx5zf8cdd5z86Ec/kvfee09CoZDcfvvt8vLLL8vBBx8subm5smHDBvn444+lqqpKpk6dKosXL3ZmsDUnkf1nZWWlTJs2TZ599lkZNGiQjBkzRgYOHCi5ublSWVkpa9eudb4rIjtDRs4444w2nlntvPPOk+eee06uuuoqmTRpkhxwwAGSkZEhq1evllmzZjlLy/fs2VN++9vfJuQ9W5Kfny933nmnXHvttRIKhWTmzJlywgknOJ9/ZWWlfPbZZ7J69WopLCyUo48+Wl5//XURkd2a7Nn04x//WGbOnClfffWVNDQ0yDXXXCMHHnigHHjggZKRkSGrVq2SWbNmSWNjo1x44YXOkvbJavXq1c5M2V3s6/1Xv/pVk9ddddVVCUkMDiA1MbgDeMQrr7wS13a9evWSU089VS655JKoYSa73HPPPXL55Zc7g0ZfffWVEzayy8iRI+XBBx+Uxx57rMX3njp1qvz3v/+Vr7/+WmpqalRSZ5GdA07mFPZEvX9aWpr4/X4Jh8NSX18v8+bNi/pXyKysLLn22muj5ljp16+fvPzyy3LnnXc6eQEWLVqkfuTbevfuHTUh9M033yzXXXedBINBWbhwYZPZGnfffXeHzkA46KCDnMGdXeJZLWPixImyfv36JvvqKHl5efLXv/5V/vvf/8oTTzwh27Ztk1AoJIsXL465asfw4cPl6quvliOPPLJJ27hx4+Rf//qX3HjjjbJlyxaprq5uNlzA5/PJmWeeKb/+9a/b/UPpnnvukZ///OeyatUqCQaD8uGHH6pBy/T0dLnxxhvl2GOPTZnBnUR+f5PZmDFj5I477pDf/e53EgwGpaysrEkS4fT0dLnuuuvkhz/8YYuDOyJueMau2W1Lly5tkq/lsMMOkzvvvNMJ8YgV/pSo/tMcuNu4cWPMnGtjxoyRBx98MO4QsJYcddRR0r9/f/nzn/8c9VocOHCg/P3vf5c+ffok5D3jccQRR8gf//hHuf3226Wurk5KS0vl1VdfVdt0795d/vKXv6icXdHCF80/BonsTGDfHn6/Xx5++GH51a9+5bz/119/LV9//bXa7sQTT5Trrrsu6Qd3ysrKWvyDWHPtP/7xj3fXIQFIAQzuAB6Vk5Mj+fn50qVLFxk8eLCMHDlSxo8fL5MnT46ZyNjUtWtXee655+TVV1+V9957T1avXi319fVOyMPUqVPllFNOifsv5Onp6fLEE0/IK6+8Ih999JF8//33UllZGXUKdqLev2/fvvLxxx/LnDlz5JtvvpEVK1bIli1bpLKyUnw+n3Tp0kWGDh0qkydPltNOO63FJU4LCwvloYcekhUrVsg777wjX3/9tWzevFkqKyslPT1dunbtKoMHD5YxY8bIYYcdJhMnToz6YHzEEUfIiy++KP/5z39k4cKFsm3bNqmvr2/yYN1R7ATI9ipa0Rx44IHqh+SgQYM6fKlYn88nZ599tpx22mkye/Zs+eKLL2TRokVSUlIi5eXl4vf7paCgQIYMGSJjx46VY445psVQjLFjx8rbb78tb775psycOVNWrlwpZWVlkp2dLb1795ZJkybJ6aefLiNHjkzI/0PPnj3lxRdflJdeekk++OADWbt2rTQ2NkqvXr3koIMOknPPPVdGjhyZ0HC8PV2iv7/J7LTTTpPRo0fLc889J/PmzZMdO3ZIdna29OrVSw4++GA5/fTTZb/99ov7+snIyJD7779fTjrpJHnttdecpOmFhYUyfPhwOemkk+SEE04Qv9/vhAGZudWak4j+8/bbb5dTTjlFvvrqK1m0aJGsW7dOSkpKpL6+XrKzs6VPnz4yatQoOe644+Soo45K+OyU8847TyZMmCAvv/yyzJs3T4qKiiQjI0OGDBkixx13nJx77rkJy/HTGscff7yMHz9ennvuOfn0009l+/btkp6eLv369ZOjjjpKzj33XOnZs6e8//77zmvMmaImM+Stb9++CUlOnpubK48//ri8//778uabb8p3330nVVVV0r17dxk5cqScfvrpagVEAEBi+RYvXtw5vzAAAACwx9u+fbsce+yxIrJzxtsLL7zQyUeUWL/5zW9k2rRpIiLy1FNP7fZVAHe3yy67zJmhOW3atCarJYnszJ/2+9//XkREfv3rXzNjBACSAAmVAQAAENXs2bOd8qhRozrxSNCSyspKZyXAvLw8ldjfNH/+fBHZGcp9+umnd9ThAQB2IwZ3AAAA0Kyamhr517/+5dSPPvroTjwatOSJJ55wEvdOmTIlasjarlw4F154YdS8PAAAb2FwBwAAIAW9++678sYbbzgrQNm2bNkiV155pZPDZ/jw4XLwwQd35CHi/ykrK5M//vGPUVcsCwQC8thjjzmJin0+n/zkJz9pdts1a9ZISUmJdOvWLSWTkwNAsiKhMgAAQAraunWr/PWvf5X7779fJk6cKMOHD5e8vDypqamR5cuXy5dffukkxM/KypJ77rmnw5bWhhYKheSFF16Q//znPzJ27FgZPXq09OrVS4LBoGzevFk+//xzKSoqcra/8MILoyZJHjZsWMxVBgEA3sTgDgAgoT777DO1EktbXHTRRYk5GCS11atXy2effdaufRx//PEpvQKXiEh1dbXMmjVLZs2a1Wx7r1695IEHHpDRo0d37IGhiUgkEnN5+bS0NLn44ovlmmuu6eAjAwB0NgZ3AAAJ9d577zkrz7QVgzuIx5IlS+TPf/5zu/YxevTolB3cOeecc6RPnz7y5Zdfyvfffy+lpaVSVlYmIjuXNN9vv/3k8MMPl1NPPbVTlv6Gq0ePHvL000/L7NmzZcmSJVJUVCSlpaVSW1srBQUF0r9/f5k0aZKcccYZMnjw4M4+XABAJ2BwBwAAIAV16dJFTjrpJDnppJM6+1A61b333iv33ntvZx9GTD6fTyZOnCgTJ07s7EMBAOyhfIsXL4509kEAAAAAAACgbVgtCwAAAAAAwMMY3AEAAAAAAPAwBncAAAAAAAA8jMEdAAAAAAAAD2NwBwAAAAAAwMMY3AEAAAAAAPAwBncAAAAAAAA8jMEdAAAAAAAAD2NwBwAAAAAAwMMY3AEAAAAAAPAwBncAAAAAAAA8jMEdAAAAAAAAD2NwBwAAAAAAwMMY3AEAAAAAAPAwBncAAAAAAAA8jMEdAAAAAAAAD2NwBwAAAAAAwMMY3AEAAAAAAPAwBncAAAAAAAA8jMEdAAAAAAAAD2NwBwAAAAAAwMMY3AEAAAAAAPAwBncAAAAAAAA8jMEdAAAAAAAAD2NwBwAAAAAAwMMY3AEAAAAAAPAwBncAAAAAAAA8jMEdAAAAAAAAD2NwBwAAAAAAwMMY3AEAAAAAAPAwBncAAAAAAAA8jMEdAAAAAAAAD2NwBwAAAAAAwMMY3AEAAAAAAPAwBncAAAAAAAA8LD1W49ixYzvqOFLG4sWL49qOc594nPvOw7nvPJz7zsO57zyc+87Due88nPvOw7nvPJz7zsO57zzRzj0zdwAAAAAAADyMwR0AAAAAAAAPY3AHAAAAAADAwxjcAQAAAAAA8DAGdwAAAAAAADyMwR0AAAAAAAAPY3AHAAAAAADAwxjcAQAAAAAA8DAGdwAAAAAAADyMwR0AAAAAAAAPS+/sAwAAAAAAJJbfp+vhSGL26zP2G0nQPgG0HzN3AAAAAAAAPIzBHQAAAAAAAA8jLAtAyspPS1P16lAortfZHWcw1rZpek50MMT8ZXQu+6864Thfl2bV4/u2AAA6ktnH22FYQ4cOccpr165r83uYoVg+u63NewXQXszcAQAAAAAA8DAGdwAAAAAAADyMwR0AAAAAAAAPI+cOgKRWkJ6h6rVhN0OOnWMn3yjbI9+VRtmOLy+w6vVGOcgaoegEsXIgxJtjp6V9tjV3DwBg94kYnfWwoUNV25o1axP+fj7r5sBjD9B5mLkDAAAAAADgYQzuAAAAAAAAeNieFZaVY9XrjHJXq62iFfvNMsoNrToiYLfLtOqNCdqvOUs21WbIFmRmO+WqxnrV1tuYP7zdet0FRvkFq+00o7sstxY/P8DattAo306sShT2wtrmFRtrcXmbfRszr/bUWqxbLX+7G/bf0qdifhKt+QSBjjBw/Fmqvq241CkHg9YVu/2TqPtJ63u0qod9bj8T2Rr9dUBHMcOidkcYls1ebh1A52HmDgAAAAAAgIcxuAMAAAAAAOBhDO4AAAAAAAB42J6Vc6cuRltrcuzYyLPTahsq3ZNWt2GdattvzH5x72f14hVOefjY+F+X7MwvXqJy7NhSKQTaXqI51v/9diMYPWLlfakxXne39bqtRts+VluGdQTlRvlWa9s5hUOc8pTy3R8Lv+dKVD4csrvEp8AtdqtULePHueVsKwnYVx/G2GWWrk480i3nWE8XMz82KjoNFrAbDXRKW5ctUi2hxmKj1t163UijvEw37VipqpFwtlEbYO1nczwHCYiIiN96mIk3l02rliI3H3v2sLR05v8Hy6kDbcPMHQAAAAAAAA9jcAcAAAAAAMDDOj8sK88o13TaUaS8jdV6/uNzj37plLOyuuiNT/7MLU873Gp7W1UXrHfnWM5d9J1qO2jcqDYcqTdlWMOoAbVOsR1UxFzU9goHAk7ZPpsNxpzkOmt8+3RxXzd2aLZqe3WtG0vyW+t1d1jv8ayxEHWx1TYzpUOxsDvF7Dm6u6FYY8fopjGPuDdfv1/HMX91mBGuUm7t01rNftS/3SMISolq2/+nPZ3ywo9iHSiQQBmFTjHUWGs19nZKhX10n57RxY05LFrdX7WFwvajs3vf8ElX1RIhLKvDJMOTlH3M8YYptSqEaQ8KxbLD0Lz4mQF7GmbuAAAAAAAAeBiDOwAAAAAAAB7G4A4AAAAAAICHdX7OHfLs7BEG5dvjfG2MfJ12kqqeNa1tu0k2sc+mbjWXIg5YL/SF3SQXwZAOnI6V1yfdCmwOhs1kGd5fSro1V+spRsB5xAo+n2Gcli+36PWaK422j/uqpEmyxUqr8HPjdK+z3p/lPbG7mN/yJpdZuVvsGdBN3bq5/xDI0DnWJhjLpH8zW79u9AG6Hqqtdsq9C/JUWzH3enSCL2Y+65RffOQZ1XbeHWc75X98ovPxXPajvZ3yIdc8qdoidiK1avemHf76TtXks2/MaGJApn4+2dzYtptkMtxad8vzQYxkRAvfuFw17X/6P5rdbneJd6l3IB6FOblOecXmb1Vb79wcp7xso+7E+/dxcwsu2V6k2nLCOo+a+Nyhk+f+fLtqeugfzxm1zru4uesAAAAAAAB4GIM7AAAAAAAAHtb5YVmKNfUpr8ItN5nSnWGUrTnm9tp6XY2pUdW9dFtAT79KXcyN3J2C4Za32aW+MVZr9DUsAzHeI9hk7qv3Q7FM9qxjn9/o2kL6hH5ulCvFYpzeyhjLhb7Ywuq2W43T3WRpU4neBrSHeT01mYlv9A8zv9Ztm04qdMoVVsjJjo1uecLEEartmznLVb3mZDekqyBDNcmmBc0ccDPSs/QLgw2BKFsmIWtpeZ/Zj9j9e5NOz4jnDce8iaSUcy450SlvWLFVtT380t+ivu5fbXw/X8bv2vjK1NXWMCzEyTq9oXmXOeWFxVZHnWWUdWS6SKauRuZd4ZS/L9GNw49+uJUHmYJ89jrwsb4HsVJn8P3ZpbzODa/t030/q7UVP8QSoVWfb2IxcwcAAAAAAMDDGNwBAAAAAADwMAZ3AAAAAAAAPKxjcu7ESjKRawR4ZvfXbaUVEl2MOPwuWbpeZgaOkmMnHmbof4zUIyIZOgeDBHQOhhyjXNfOY/Ian3HhR2LExGZ0maLqp/7f+U65rEGftRlvXh11P5HK7ap+2iVvufup00mrPnnnl1H34xV2yglTVSh6zokmeXZ2AztU3RRv1K2VfiP299AzyDi0O5lnNNtqM6/JbOvPOqti5cMxPrJv5q+M+f7rlsRsjktS5tgxzne+de6zMh90yj875gXV9qf7L3LKB5x+o2r794O6fty5bj7Bnx76jGp76L2FTjk5+pH4bVixrbMPAdijpE16om0vtB6rfOMfb//BpLLW5GDxWfliEvD41CQvX/t32QnsOSrhKOVO0IE5dmzM3AEAAAAAAPAwBncAAAAAAAA8rGPCsmLNTKprcMv5VfHv01xizJ76VBFjWndyxjrEp/vJul46Leqm+rTYl4mxjPaAfrppnQ7LMoOKUu3Um6FYVqCgdDPKOcP01MH/vnyJW7nyctW2+b83OOUr/v5f1VZeWabqb/73527l0l+1fMAeY37rC9L0MpyVMcKyvCI5vh/WMquxwmnjFivgKLXEmpDc9Ky4PXB9fSuuLuOL1r1/b9VUvkWHvCRiEnR6ur7fBIPBKFt6iHFiqq2TVO13+/QH3tafaK8Brzvl8cPGqLbXXv1Q1bdVzHXKf36vrQeafHL6u3fbui2lbdzL7ujHEI9TD99b1d/57HtVT4LeYbe7/bIpqv67J2ZF3fbff3OfOT8rrVVtR/QrUPXzfv73dh8b4mT/jk5AhLs3w7Bs+obqNx4fwm3tHPzWb94276jzMHMHAAAAAADAwxjcAQAAAAAA8DAGdwAAAAAAADysY3LumLpZdTNNSFjn3Dn4QLf8ZdUQ1ZZm5NTI6KKXTPeV6kjCfoVu3OiammH6/b9fE/Nwk0q1zksifc9zy9uej/FCHW/Ya9JZTrl0c7lqiwyYourhzbOccnLkEGkbOwOMuTD5h4/dodrGHnqMU779AL1Y4XerVjvltJIG1bZ2dfRr+Zmpxap+0ZMxDtaDYi19bsswTmmgjUHHybGEZEfoYtWrjXL8n5nPX+iUIxGrH7N7lkjq5MOwc9yYub0axOaep1j5z3rotApSUumWS60cO12791D1itISp5yfq/dTrdM3RJUUOXZi+Mmx+6j6f2ascitddW6Xb5dvcMovf7petU0YEOOOmmoJ7gy+vfdV9brvV7Z/p5mFut5Y1P59ppjWZEobamy8ds1W1TY8T2+7vEbQgqL8wXFve99Ls51yQVDfRVYNjH8/aJ8WnzF56GxWrs99Cqpu5ikoOmOuSyevoJ4IzNwBAAAAAADwMAZ3AAAAAAAAPIzBHQAAAAAAAA/r+Jw7Zbp66/1TnfIfbn5ftX1VbEYdrlNtZgh5qKs1RmUF867fbgTwBlIox46t8VVVze9+tVOul6mqrVd395yFwzqHRdUWNwlDV9EBzxErRreu70lGY51qq98+I46DTg52eKx5iZ50vD73+w50k168ef8rqu25cje/VKh3oWo79ec/VfVBA93g9N9fp/eTbFoTftzWPDtqKNyOySUJTxSlqpaWM9Yph+pWqDZfxkC3HNavC0eMXCSZVn/vK9RVn5sHJtKg8zVIWOdnSzbxRpjbKVjMLEZmjh2bL12f+4ryElUvzHS/CDW1fAmaM3PFDv0PWdc7xZ9Omq6aPl+23Sl3DelPraIi39rzKU7p2Emfq5YZ84znniTPvxOxcuz0GHOYU65b95VqyyrY2ykHq7ertnCemy8svVznBwtn6MQv2Xu5+wkXLVNtJZWpkwPMlpHj9gfZ1s+N3HT3vOSk6VxTNSG3nynJ1DnWMvrk6P3scO8VudZ9uTiV+6DcPk5x/qq1qsk3wC1npOnkaGs2uH2Fb++9VFtg8ypVl55uMauwj2pqWK2/T2idFL5y26U64D4FZWRkqbZAwLz56Yf2rBy3X/E3Wh2J9XwfCLp9V8inE9xFInEmF9zNmLkDAAAAAADgYQzuAAAAAAAAeFjHh2VZRue5y5/7euu2SLk7Mc1e2TO7v/svNetizzP25blBMLnWyry1xZKyZv1+ilOeevMW1VZirEqf6dMTBMNBd/pa6XYdSmfLHjjIKRfkdVdt9Sk8azPHuKBLKvXSv+FKNy4iYM0H7JHljsduLdYhETZzQqK9eDR28ls9YCRonG/ruveH3XMfsuOyrDm0vihlkaRYZbHNRhx6nFPeNE+HXjUG3E4n4NN/d0gPu1+Yxnq9HLctPd8942m5esp5fXVyh2XF+p6bvUx6lr7wfRH3nOmJzCJmwER1Y+wQk/qI+zn5M/SVnx5wXxtrsfO0NH23D4WSK46otlTHjffI+YdTfv8Lfd2X17tTvINWR1JaqUOi+xS85pS/WGCd4RTudM75gxuO/tT5E1VbXaObJ8Dv01d+bY7xWWyN/bASLnX7pJC/p9VqhYamkPw098aYmaYv4GCje77rQ/oGGoi4F2zluvKY79E9x+2hGtLtu22jpKxa95pd870OZeuzlxseHbaegfIC7ueydtb8mG/R87Bx7n7q9blukBR+wDdkNbkpm328vu5DQbcezLSvZWu/YaM9ojv4BrP7T+n4Liv0yujiw2EdChoOueFcDaHYAe6Zme6O/NbTTOMe0uUwcwcAAAAAAMDDGNwBAAAAAADwMAZ3AAAAAAAAPKzTc+5kG0sldu2l4+P2mnK4U/6+RK+hnmvEGA78kV6WsqpUx+wHy6vdffYuUG3zn9NLhqaSiaee6ZRfefYZ1Xb535c65b75+vym+90cCKsG76fahlsJG3w57iX2wO3Hqraphyf38tyxpGe412hdWOeUqDNiZDPSdMBsacC97vOs5VhrAjqXQ8SIP28IWTkYUjoO15VhnZYGv3FiItbYt9nWwlLovjTjtcEUTnhhWV7h9gc/Ov4U1VZT5cY5L9mwSbX5jFQvRVuHq7aCQTqRWmbE/T798KDDVNt/nr2jdQfsMWa4tx3qb16FmWn6ws8zgtEr63V/FInRWeTk6EcI8xsTCun8PLEzCJivS64cO7aKOn3uM43UOUErCVjErEesfEe5uv8vqnG/PxErZ1Uq9/c9891r+6LHZ6u2wKw/OuU3Z+r8IrlmTotRA1VbxK8/i/SA+5n++A9vqbaHTh8kqarMffSW/XrpZBT+bDfnxY5afY9MN/Lb9e6ZrdrC9j3beCbq6dPvUSUQESlZti56o/0n/lh/8rfaiucscsrx9u+pxnq8V/fMhgbdj/j9xlms1512er51b2hwdxyx+/cU7u9NAes3kd/vXsB+qYt7P+nW1R0Ouv1MMLxnnmxm7gAAAAAAAHgYgzsAAAAAAAAe1ulhWb2GukvpHTlFL9e3pdqdslbz8RLVVmfMdC1ZpadMRaw5atnGqmYjzpis2mIv9Jc6Bo7cR9X/9xf3cznmtoWq7frjuroVe/a3de7/cNMFTnnqB/e17yCTSJ0xVTNszWdNN05h0JrS6TPmW4bCeilce6S2MdZ6wxCRZhZKNWaH+6zYK7Vaqz0H2ZqZGTZCsRhBd2VJd6fcGNaBQ6tKipxy0crNqm3SEROc8pBBdgycPvlzZ/zbKf9n2QdtPlYvMhf3jDVZOGhF+NT43c6izu6QjOnf9nVfV5eYTiYnx73319XFP13ai/zWSQykuY9h9vR6n88999mZOuY5FNTLtQZCsZepT1XmKsGZWTrEp6GruzR6yYonVJtautu67u3nnIDxFXnjjS/adqBJLmBdnnlp7j8UPzJBtZ1wzzfmK2Pu90tjxe21lW09uuTWu7uu5/dyn+HXrKhQbb365Dpl+x5iP/YUba2Nui12CllR+VW1xlOnX59Rv9GvpOnsIhKx7rWNyR29nBDW6RV/mvuEFAzEXu7c1OQpZw8NxTLxuwMAAAAAAMDDGNwBAAAAAADwMAZ3AAAAAAAAPKzTc+74+g1wyt988rhqGz7ejcP16VBpCW8wa7Hj37qNdsewjti/ULU9H9dRJr9DrSWD585348bvOUMH7P7qF6fGvV9/WqFTPu6gwapt+hffxn+ASSZoBOnbEeVmqH+e1VYdYzVutF6snsNeCV2d8BZCbn1Gz2ov3ZrKamvcjvvjjf1V2yF9ejnls2+8SLU9+IcbW/Eu5gdnZwlInUD1WJddvZ3/wu+elzTrFKnqbgo1T/Y8O6aw3SH43ZPqi1jL0BufU720kCPAvOy5OTjWPn2pU+5z2iOqreshJznlLumXq7aqYPwXuz/DzVMSyM6IsWXqWlOu6/v2cMujrvlGtS1rRe6cbONe26uHbisqiX8/yaZLd/d+mu4rUm11pe4JHjaiULWtWV4e93tk5bj314a6PT8PSWew07OYTyRpVtvHRmLHctHLeJfLRlW/yL+f+x4eyAHTGZqc+5CR76iFvJmtaNwjMXMHAAAAAADAwxjcAQAAAAAA8LBOD8vq1n0vp/zCY79QbX/4l7uMbZpeBVTMVUD9BdY+B+ol1TPEnfJ98emTVNvPr3g/6rGZs7a8NymrZYN+8Fun/M4DZ6q2NVvdKYE9uug1+e7/6ztOOWJN7y+uKVP1P931c6c8fd7WNh9rsgmKuwx0trUgd8C42PTETJE8Y8Z3yAqfCFhT8c1mveh0M0uAo6kYoQ0+e2lcqz1CKFaz9iuodspjjtpLtRU2ljrlG889SrX1HvKGU7ajWoYP0eFdZ58wub2HmRRaM+s4YJxTu1/xG38CahLkZn9Hkv2muRuYQTxhq2PxGScxZJ38Xvk6/GdHJUuhN6c+u59TXr5ynmrrnuVe7FVBHQSdl17jlH3Wdd69f29V37Cp2ClXrJvf5mNNNoWFbufRI0ufxNxM94JeuFF3FpP3ca/tsLWGelGd/pv0uu3ufutTOAzLVt3ghmI1WA+SPXu557e2oVq1Dejn5sDIytU/ERus5bg3b7GfUNESc3lue7nzoyJuo/2M6U/T/8AzZuvFDF/zu4MMPuvkR0KJuc7N/UYiu/cBiZk7AAAAAAAAHsbgDgAAAAAAgIcxuAMAAAAAAOBhnZ5zZ/oMN/bz+BMOUG1nnezGMdc06rURv/5gm1MOWaFr9UV6WdV58251yum974n72JI9ZUBppZsf58RfvaLaXvr9GU65V1ov1VYWrnXKadbw4MBIrqrPm/u5U540UX++qSxiXF0BKyOOz8iI0yNPt1U1uG2ZGTpgNy2sY9prjOQ95NiJj5nFws5gYeYesUKlmyy5mDoLbrdOTZHbb3/98UzVdvghBzrly/6i2/7wwNVO2W91OiEr8cvlt7/glP/xu5+2/WBTSCDGBRsxTm+L98Rkv2nuBoFw9JOflen2SBkR3etUNnCy47Fg1SKnPKxOPxvWj57qlK9//E3V9tAvfuhWrFNdvW2Hqp9+n/va1285tU3HmYyCxjPJ9lrdlud3T+qR++k+fdla9+5rP9+nW8nwRgx2y8vXt/FAk1BavltutPKzFJe6T4SN1sPh4L5uPxOxcuykWw86OcYDUx0pv+JiPrbXN+rzmZ5m5tzReV/sfDERlj9PrLB7ATc9s/Y8mBgJOWPY3Xl2TMzcAQAAAAAA8DAGdwAAAAAAADys08OyzvmxO03p62+7qbYuw9wwntn/eanN7zFsrz+0+bXJLLtvoVPevLxKtV10l7v08KqP4w9lQ7yMaceSYbW58za318QIqAoS/JNosWYWm1FvbZuUiQxjucm+PRpU27dfuKFYi+e+qtrefea63XtgSahJ6GCMbc0Z4PbMYSZ/d56GRrNHIu6hLTZsdcs/OjxHtRWv/9ApP/TrJ+PfqRXmQihW82qMbAr7DNFt1TVup7NoRdvvqNsJxWpWcLtb3nsf3bZpi1GxHjHXb9P3ZSSYsRZ6Voa+uzYEzHr8d15r1XTu2dHEetBJsqd6Zu4AAAAAAAB4GIM7AAAAAAAAHsbgDgAAAAAAgId1es6dt1542ymfesaxqu1/b/Xt6MNJKSWfznErvXWc7aqPV3fw0aSWLKPcQC4FpIi1q790yuVb+qu2A8cXOuXFHXVAEJFmws/jlJgFQlObP9Mth+1bAckT2s1XtdkpP/pMmWo74ZjB9ubN78Oq87HExzxPK9fptr5dOIu7VW+3d/5+le6Zpxzh5p6aNbuuww4JIo0N7nWfka57lizjF3lDMP7vB9+k+HTkUuSdjZk7AAAAAAAAHsbgDgAAAAAAgId1elhWRoE7XfDdGR+otptvntbRh5NS9ho73inb0+mrsgc45YrlrwoSy5yMmWW1FWa7X8vt9daaq9itzM8ldSZwdqDMfk6xLKDP8Gffruvgg0k+bQ3wzM52F06vqw/F/TrCsNovbHbxfvtuYHxHQtaaxYhLfq9BTtlvXbDvv/99XPvgXtA2PvXnYx2CUhdKM2o85yRcUfTeeVPATHmxdvcfCxx+47IPhXTPQj+ze2VmujHQjY3JfT9l5g4AAAAAAICHMbgDAAAAAADgYQzuAAAAAAAAeJhv8eLFhPkBAAAAAAB4FDN3AAAAAAAAPIzBHQAAAAAAAA9jcAcAAAAAAMDDGNwBAAAAAADwMAZ3AAAAAAAAPIzBHQAAAAAAAA9jcAcAAAAAAMDDGNwBAAAAAADwMAZ3AAAAAAAAPIzBHQAAAAAAAA9Lj9U4duzYjjqOlLF48eK4tuPcJx7nvvNw7jsP577zcO47D+e+83DuOw/nvvNw7jsP577zcO47T7Rzz8wdAAAAAAAAD2NwBwAAAAAAwMMY3AEAAAAAAPAwBncAAAAAAAA8jMEdAAAAAAAAD2NwBwAAAAAAwMMY3AEAAAAAAPAwBncAAAAAAAA8jMEdAAAAAAAAD0vv7AMAAAAAACAVhWv+7JT9eTfEva3PavO18Fo0Iz3bKNfrNqvqBczcAQAAAAAA8DAGdwAAAAAAADyMsCwAAAAAABKksvJ+Vc9PS3PKduiVWa+vfkC1Zfrs4CtXIBiJ2maGbzX3nikrI1vX04zYq4Y01ZSeF1L1YM3uOqjEYeYOAAAAAACAhzG4AwAAAAAA4GEM7gAAAAAAAHgYOXcAAAAAAGiF8vI/qnpumvvTOt2vc+VUhtz8LeVWXp3C/BudciSs8+hUWFMxso0cPOlWPp7WLKmeqvxZen3zcGOeU87I00l1AuF869XVu+uwEoaZOwAAAAAAAB7G4A4AAAAAAICH7VFhWfbEpzqjbB9oQ4z92CNWmUa5XtBa9vkMd8pRoLXMiZrRF0oEAADYfcZ066rqS8oqnHJBl36qrbJqa9z7zfC7yxYHwqEYW6I59gLbPCvGp7z0XqfcJV3/Qt0Rcc9iv7wbVdtDpX9wymdG9K+pV6vc8K7ZVljWgsagqlf73V9m9xTeotpC1W5Ylr0UekxGeJc/91fxv84rstxiuCZLt+W6oViBhlzV5EvXYVgRf46xozrZEzFzBwAAAAAAwMMY3AEAAAAAAPAwBncAAAAAAAA8rNNz7ph5dmqsNjPisDWRtHZOGPLstA85dryJ2GkAAFqWadUbW/Fa86+kPC+59jNO6oa62qjbBWu2tfk9ctLdXweZAd1Ww0NQizhF8QlZy5ZXNbo9RFq+zqtTsvbXbmXj/6fari8rc8o3G/miRET6+t0LeENGnmqTgM40mxE2eh3z/URkyva1TnlW76F6P0aSpbT8JF8m3R7hCLp5dtJy9PkMBdw8OpnZuq9qbMhRdckw8uw0tOfOsfswcwcAAAAAAMDDGNwBAAAAAADwsE4PyzInRrVmST7zwINRt8KexJqBKKxaCa/y+/S4eDjCZHwA2NNkmBXrIfO2ywuccn1IN95zjps04KZH9NT7B67T0/ZPu3q7U/7oO72fqkjqBr6sCrhhEOFIg9Xqnqdaa9ln8wy2dPYqjSiI7CZ/r+a+nEjZVj3ZU16Yy4jb16HPWP7cDtnKry11yrkBfQ3etGqzU176vV5i+4fD+jnld4br111epnoyuaD8e6d85N59VdvU7oPd47S+Ev68JA/FMoX0cud+IxQr1GgNfxhLmjem6ZC4dCtpTDC7i/G6Kr0fKzS0szBzBwAAAAAAwMMY3AEAAAAAAPAwBncAAAAAAAA8rO05dxK0+leuUbZHmswIwx1WW4FRLpWO58t0jzbSmMJxvWlddT1UEXVTcuwgWZBjJxH2zCUksXuQJw+dQaVAsBJn3P54ZdTX/f4J91lmQH/d9uejYr1j6ubYsZ0+9Rin/Or0/1mt0c9TW89gPTl2dqtkz7Fji5WfprLqT1Hb/p3m/kL9btn3qu3AajfPTs2sItW2dZ6bv2VLiU5SunFEF1V/4Ag3M9WwNfp318HdBzplO+VXqNrNI2TnufUnw9LoPndUoVs/nRutptwth8P6KSRonIwBXXSOnYLu+i02l7ifU2WoQLVlZbv3lAYrHU9HYuYOAAAAAACAhzG4AwAAAAAA4GFtDsvyWeNCkTZOh1x7k7v02+wVeors2kp3GbNgkQ6+GjbIXaZya7VeTq5fXo6qr6x2p7f18enlGC/+bA9Zt8yrYoRhof0yreFXMwJw9OiBqm3p0k2qnmV8uxuIg3BM6OWWvymKvl0sF0/W8/Sf+mpLO44oVcUKw9rXqq+MsW0Pq17StsPBbkUXBK/aTPfeJk1DsUwDjPLmqFvZCq16uarpB6bjTzjdKU9/99W43wOwhYxl0UVEqgLub8lIug4xP9p4cF//+jbVtjzkxv/88NKRqm3Fh+7v3DNz9W/VQFDntRjZ3f3+zH9po2o7dLJZ03FZPiMYyw7DChshW14N0era1Q3FaijWbZecOMEp33H+eNVWXOXGUBVv0QFrRx4+SNV31LrLpo8/9TG9nz1kyswechgAAAAAAABoCwZ3AAAAAAAAPIzBHQAAAAAAAA9rc86dRC3/3S3XzYcTKNLLj61c6tYbuunXFWx38+wM06lHpKyiTtVXf+GWv7OWtGyrlF7+HB0m1mVm59ixkWenebHy7HS5z41PrqqycsLc4+YAaynHTt797smvqdSx0uZ+Uo+5nOfPdVM3IydC+k26LW9vt5yvlwiVqlxdr73M2Oc9um3liXEdZaqp/ZN7Do/5fD/V9sWbC5xyvnXp1lmX9qZb3UeK4z7dR7UtnrmsnUcJRGPmSGAp8j1FppzqlBvlTas1/jw7pvKYrfqBafq7a9r0HskuUd+WDONWHLSeVe0luL1I5dmx/oe6WHl2TPuOvNkpl1qP6VnGlIrQI/pZJiDWDdXQb2/9nLP1L7VRthS58W9vu+9R9YBqixgffkO1bvNqnh1TRXn0tsde/6bZcjJi5g4AAAAAAICHMbgDAAAAAADgYW0Oy2qrlbfoqdp/+3yVUw6W620fM1ZG/2hv3bbQmL323xW6baI1a/9fxnTBV7rqtudiR7YkubYtRWnqPvAoVS/dNNvaIvo0Q6Aj5Ft1c3JtjdVWdcuxbuW0f0Xd54H9dSfz9RZ9ndfc/CO3cvzzLR9k0vJZ9WFG2Qp7K1tvVH6j20YscYoHTOqumhY8+JX1HgvdYhFhWM3Jz9b1fW9yP6chskC1nXTsEKf8vxnrVNveowpUffjv3Jt2b0ndMKzId3epum/0HUZj2/Y5qK+ub9zW/HapKQliQJLQf1673CmfeYbdH1gP7rtF9NCZVGZ+W9KsP/GHjN9LQ63b91rraxYwHntyrV+TtUmQFiAtzw1TKq/4vWrrkubGKKdZ4UxP//anTvmKe15QbcP3dUPT66v0c+Pqze4z0YmH6Hwj73yxTtX32dvdz7rvq1RbwKz49IdoVtPC+gMNG2Fo/jzvh2jZhuUNd8oNNRWqbbPEyNdg6Z0/xClH6utVW1Fwz7gxM3MHAAAAAADAwxjcAQAAAAAA8DAGdwAAAAAAADysw3PufLutWNXz891D2JGvgzSrn5jklL98ZZ5qKytyc16EIzr/xfYMncuh8rFxTvl/zy5q5REnj659/0/VK7a5MdAZPh2bHIhY+TAMI/Zx8+w0dN9XtfX16zjG7zYk93JzncnOZkLWgeYFrHpDzK1nucU3hkTdqm8PnWtEtpRZW3zoFqf3ifmOyc2+Kt3lO7OP1jHs9R//zagdqNoyevZyyqs+fVy1ZR9/jt7PdLM2xXr/WVGPNJUccYhe7vx/M938Fx9ceapq+8UiN9/RuDHdVFtDvb5v1Iibc+eXRx6g2q79ROfySWaBbJ1LoW7RTU45Z+yf4t+R8YTWt5c+9xu32X0O0Llev1/nmjr9DDf33DczPlZtE4492qiNVG2RuoVO+avZS1TbhIk6b2emuhdPtI6oUlJFW58HQ9YS5mY6towc6z2s1bfN90iGHDs2MwdNk/MZ4wSXVbu/g+znzYrlbn6cgcN122rJcMqlpdaTqy9LVeuMPDv79dObLtka/dhMfn9qze9YU7M6IfvZUb0uIfvZnVLrkwUAAAAAAEgyDO4AAAAAAAB4GIM7AAAAAAAAHtbhOXfOelbHiR9W6Jb9uXrbF+9yY227p+vgz/rKOqcc8un49tXpOgfPI1cudsoDCiVlVWz7n6p37+LmzikYMlC15Ve5ccxb6/Vnlt67r1MOFpXrtvy9VP0nR491yt+VrVNtCxd80vJBp7oYgdRNQn7t+Nlw2N4iJdkxz37jnHbJ1209Brp5LRor6lRbTZ1bn1Nco9oK++l46EDE7a/yfdWqbfvWJAxOj9sqpzSm71rVsnLST5xyoO8/VduBPVc65dLuP1Bt3XrkqfqcZZOdclbhfaqt4dvJApF1K9ereuQa90txzJc6N862IjdvRaS+XrX50/W1vOxst3zmFyskVWUO+52qT/3x4U6553ArB1dX9zEss06fz/IiN6/CytXlqq2gi+7vK/O6OuWMdJ2vIbBJ90FoJ591Y46Q8U5E5PSb71D13//seqesc+zYlqmaLycrynYtmd/G13mffQXe4D56y+KKDNWWXez2DyXWr8Ccbm7WnbTtur8fpFOsSa8+bh9Una4/s3fW6ucnL/Ln3eCUQ9V/Vm2RGEl3fvXQO075wKG6v1+2drtT3rpG9yOj+7g/goMB/bt2ZG/9GS7b7j7ZbomRY8fuqtRhW23m/y+8jZk7AAAAAAAAHsbgDgAAAAAAgId1eFiWbV65Wx5tLbMXznCn9ZVZ0wHrjaiI5U1W7dbT2cabK4hGX+E75TTufYFT9le9qtpqct25e3mZegnW+kZ3qubqlW/EfI/qxhOccppaZBG79Ouuw0ok4F6kQZ+e+ml+DTZXWuE9VhhWtwJ368xsPWV2+44qSVVh45SGdVchxd8Xu20xprNWl8XuSHJz3CmzBEQ0ryC0UdUPGvpjpxzM+Ui1ff6qW28sezjmfo/4ydtOuUtWsWp799tWH2ZSqg3pfmXoC2Yo8xbVFklzvwh59hzvRh30+H8z3EeKEDdbx7xFpU45J033034zFMuvQ8r79nfXuF3z7ffWXvVnuNdQ9/7aUKsf7bbTC+1k/znT/Cjs/t5kR2BYYVjm16I1SyYnu6HD3et5cG6BaqtpNK77NH29Dh822Cl/uWyxxNInz30+zQnqG/q6htRZCt32Z+O0TR2q+xxfX/eC7Wk96Pjz3D79DR2928SpRqSQL1gffUOPCtcaoVhN+gD3vNkhW2n5bnhTQa4Opzpo/ICou+zR3Q2tHT5+X/121ra9Zn3tlLOslAwffuN+cHbEqHlswao/STLr3kXXq4wuJ0vfauUHh45yyoefrEP/7ceeP978D6ecbe1nxx7S5TBzBwAAAAAAwMMY3AEAAAAAAPAwBncAAAAAAAA8rNNz7pgHsMAK0S806n30yp7iN+IIf2AtoV5mrX0cNMLNl1r7SWWN4uZhyRh7mWob2nWTUw6XF6m2OiP684ybzlVt81fr5W8DPjfIMXPAj1Xbqr+NbOURJ6eqSr2sthHKKxlpOtgz1uVbkKW3DTW4WwfC5L9oTlWtHt/OMJIwFPawYtGNcnWpDmTu1VX0tsZ669tL7WQOLFEvIjLnHb1sbkONuTR6f2vr6EvjZspYVf/0RXcZ6khkSVsPL6n5s/StP5Tm9tPZaTrBnXn1frdBJ8Yb0V8HnGdnuXlfwtk614CUlrf+QJNE6Q43506WlRtNjPtrwEq/lmF0M0P31v3Iho26D9r8nbEeblqsBDIpLFbXG7GSJ/iNje3EFf4Y5zecwkl2LAN7uP1BJK+3aiuuLXfKXYJlqm3lsqVO+cLxh6m2N1cuUPVITYVT3sS9tVnvr9W5iB6c6n4uc4v1dR82HkDvOE7fC1YU6bw6kXT3qejlecmX18uf6+anCddEz6tj59wJ1zzglE878QXVlhV074uNVl66UMA99/c/9KZqO/WYyapemNPD3WcXnc80XHOt+/9gLW9u/n8k+9LnPXv0UvU++W7fXFdTp9pWrNjglN+7+h+qbd8ROl9Yj975TjlTclTbjkr9e7mzMHMHAAAAAADAwxjcAQAAAAAA8LA9KizLVm6WY0WVtBRqFWqhPUWNnnSAU+7RRY/zVW1zY93mvHW1ais0yout9UMj1oJ9FUb5Vw9cqtpmxH+oSS3Dil4YbCzfd8he+nz2GeSWm0wMt5ZNv/2Mnk75XzP1tMLLn1zjVtL0Zx8KuVOb09N1WzCYbNOe9f+P2ZUUlVjL3UYpi4gUl+u6/h4wTb85DTXfWf9ifhbLVItPehi17tardqh6JLK9/QeX7Ky1PTMz3bC3+lp9Q60yZuJ362otsV2r91NWboSYEhnkKtrmFBsz9YnxGRGHYWsZ1YARFbF+Y/Tlt0VEQsYyrxKkz2mWzwq9ihgPh379oOiLdQqtMC07ags7LZ79oVOuLFqt2swnkiMOGaPaVixe7pS/XP21auuTrkODVrbzGFPRr95PvmXLO5odpmXy593olK848xjVVlvt5g3pm6+fy8ur3c/lvON0OKJ9Pz30qOHu+2Xo5/RY4VbBgHujCFTqpdAzCm6K+jov6l+gw9WChW44VVYv/cOrosI994VWmoW0NH1vmLf8e6fcp4cenDh0hXtDXzBev868T9i3jIaGoCQSM3cAAAAAAAA8jMEdAAAAAAAAD2NwBwAAAAAAwMM6PedOthFHWBkjbjk9QwccBgNtC3K20wCkcqh05dzHnXLgqN+ptl793FhFKyWMyoXU0hnMMs74W99sbN0BpogyvSKfVBspL449QLfd+Ub8+z33YDf/xW3/KVZtKhI0FD2PTvLl2Gm7iBnXHLDOi504KdBSIjCI2DHG5u1I58aISPQ8Ok0jlc1evq/VtlUgsmadXrZ2v6Fuoq/q+gbVVlHh9hZWxhKJlQovpW+uMUQardw5RjVdpwiQYGtSY8TKccRnsVPETsBo9OnWEvUxT1msZ1XrSxJM4ZyP3frt7ZT7yVzVtsEor/t2iWpbVWvWYueiMDOw5fr00t2bIjF7KDTH7Ees/kisZ1WT3+qAwknW6dh5bEJGzp20WDlugvqkZeW412hZuX5OXDD7M6ds57u0n9MnjhnsNtXH+GAsmYW3xL2t12UFSlW9dofbl1SF9PDHt6vi/31qfjKbZui8RUfKdU65rhNTWzFzBwAAAAAAwMMY3AEAAAAAAPCwTg/LihjDS/nW9FVjUdUmYVhtnYFMWJarPuTOH+5ds0i19R3orgVnB5hk+93XhcP6Q0uzznDIOMPnHKDbfv+fVh1uyuhhRPjs11efs/Mnu+fTXtV14l65qt41z91ga62gvexQLNVGGFbr2VPmexrlLVZboVHWvXbT6eDlRo0wrHiEjWXow9ZTQWF3tx+xl4euqNf9fyD+2eEpJaObe40G662TaEzdHjJA/71tzQb3c/Fbn0vQ/vqk8sNMmyU+7DiVw7Bsz7y2wClPPWKyantnwTanvKRqvWqbNNANOamv0p3KgZMGq/ozM+Y55VLCsByvnVPolM94uTz+F5r9SCv682QLw2pJrFAs05Nvfq7qF514pFPOztX9/YHHTnHKTVIiWGGj6ZnuPeX6P7wa17Eko/R8XQ8aj+LvL69RbWeeMsIpL/1mh2o7ZLy7tHygWoeCbqyqVPXtO9xwr72XXKfaCoe55bGfqSZZfLh0GGbuAAAAAAAAeBiDOwAAAAAAAB7G4A4AAAAAAICHdXrOnW5GGGHYSohjhqZ3s5ZCL4qxFLqdV8dczY+UAK5hPdz45LVf/E+15R55glP+xzR9ri8/2V3Kz+/TayU2WjHPB1/4oVP+/U2Htv1gU8g24yK97Fl97k+b6JZD1gqhH6/WiXWufSnRR5YczP4htaLE93BpxqK2IZ1zxycFTjkiFaot4ivU+4mUJ/jAkt+mYrfvqKvS34pevdw+PhTSCUUK8/QjRFGdsYw6Ce4cfuN/3p+tT0yGkcho3XadV8Fv5F+zUi5Iepaum7kGdkMqGaDVuuW5ffXqDfpvyVNGd3HKx3Q9VbV9uvBdp+wv7Kba5i5dqOq/Pf4Ip3zP9NltPdSkc9Axbvk16arazni5QtA5hg8tdMq//dtbqu2nU918POE0K6mmNRXj6j+8kOhD86RgtfUP5nmynjnOPfkgp3zmm4+ptkN79HV30S1DtQ0r0J/FdiNdz4YLrLEJo7uqK+28hx5m7gAAAAAAAHgYgzsAAAAAAAAe1ulhWcXGrCUrykS6GENPscKwbPaWhGI1LxR2l87OyStXbRu/fMMpX/736Ou3hSOxl4D+8tkpbTm01BYjbuiN+R16JEnJnGBp9znmZEwWN+9gYfNvDQWqKSIbor4sEmGKebuF3Y4mJ8+aZlxUb28dH/tGnMLxkA1lRiVH/8/nu7dhqS+Jf59EXmFP9/JSN37huCE6vGr5Ojee4rNtb8bYy44YbSLfbSUUqznfzMlzyqf/qFS1Pd7ghmld8Sb3z47kD7uhzfdfe6pqu/nhNzv2YJJRjBtjqNF94v/oJb2E+THn/jUhb19X2vI2HYGZOwAAAAAAAB7G4A4AAAAAAICHMbgDAAAAAADgYZ2ec2dwvlveaC1pVkJQ+W61+LM5Tnm/iaNVWziHONzO0r+3W96yvfOOI1nZeXZM5NnpRBEzt0uj1Wiu+9wgSKz+PXo45a0luu/PMe7RddWxvj0tSLE8O6Z9DxvglFfO2azaKkgKiCT16LWXO+UrH37Mak3hDqEDfLvC6Gcadb6jC050769XvNlBBwQREaksczv8Hr3yVdufrjvFKd/0V71MOtpv+zo3+V2/A3JV2+yX3Rw8R5zTivw7kT2zH2PmDgAAAAAAgIcxuAMAAAAAAOBhnR6WFTTiIPpn6rZexmynZcRLJJw/x10OcdXSTaqt9+Ccjj4c/D+Z4Wyj1sZliNEmuUb0Ty3RPx0qPf84pxysfqQTjyT11NdUOeVhvfSNOBJx1zBf2p6wrBQWCRU65X0PLlRtdbXuud+4aEMHHRFERHx+9++bkTB5ABItP7+7U37u179RbY+99Y5T/nzpwo46pJThz3H77cXby1Xbv37vE3SOddu3OeVI1qBOPJLU89H8pU557/76N64vnFzfCWbuAAAAAAAAeBiDOwAAAAAAAB7G4A4AAAAAAICH+RYvXrxnruMFAAAAAACAFjFzBwAAAAAAwMMY3AEAAAAAAPAwBncAAAAAAAA8jMEdAAAAAAAAD2NwBwAAAAAAwMMY3AEAAAAAAPAwBncAAAAAAAA8jMEdAAAAAAAAD2NwBwAAAAAAwMMY3AEAAAAAAPCw9FiNY8eO7ajjSBmLFy+OazvOfeJx7jsP577zcO47D+e+83DuOw/nvvNw7jsP577zcO47D+e+80Q798zcAQAAAAAA8DAGdwAAAAAAADyMwR0AAAAAAAAPY3AHAAAAAADAwxjcAQAAAAAA8DAGdwAAAAAAADyMwR0AAAAAAAAPY3AHAAAAAADAwxjcAQAAAAAA8LD0zj4AAACwZ/hB5Geq3hgIOWWf9fegLzOf6YhDAgAAQByYuQMAAAAAAOBhDO4AAAAAAAB4GGFZAACkkMy+eap+wIYznXJtfVC1RSI+pxwKB1TbIYGLVP2LjFfcSreQapOyhjYcKQCgPey/4ofjfF26T9eDkUQcDYDdjZk7AAAAAAAAHsbgDgAAAAAAgIcxuAMAAAAAAOBh5NwBACDJZPTJUvXAdjfnzZjVP1JtlVXlTjkS0okVIsafgHxhK+lCUP99aP/K453ywt6vt+ZwAaQUM6ELyVzaK82qmxnP4s2xY+NTAbyJmTsAAAAAAAAexuAOAAAAAACAh+3RYVlHGOXZVluvbLdsTx0cY624+rWxQVUCjisZjbHqH5/mlmsqdNtePd3y5iLdlt9d11/82i3/Yl1bjy6F+azJthHjK1uYrdvKrQ/Kb2wb1ssbA53thIN0/d25bjnwB/13h4xb3YnlkRnHqzbfsdNVfd5t7msn3d3WCenelNHH7RN82+tVW3quW/7mm+WqLbvOfV296Bto3z793H1InWrbVqq3zZdqd9twpmpL6+n2QQ3FqfW5ALAR9NNeaX43tC1kh8zGUGCUK2Nsl2HtMt9qN58qa+J+99Tit5aTVx+T1cZXAonCzB0AAAAAAAAPY3AHAAAAAADAwxjcAQAAAAAA8LBOz7mTN2CIU37pnr+qttDCp5zywxOvVG37n+8u5bqpWsfvf/eX81W976DznPJbn89Tbbf987bWHXAS2c8o32Yl3enZ1U3QsGB9rWobMtCN2A1l6Yjd9Jwuqj600M1y9MJ+qkl+uqIVB5uisjJDqt7QYNTr7YBd67XpRo6LxoQeFtAmf7rO7QR+0Fd3AGbOnXn+6DlZgj0LoraJiFRmua9d+Pdc1bb/L2rtzZNWY6H1D782yguWqKZ6sxvvl6Patn2/yq0UWDstLVHV8kzj70V/1p2O7xp3v/5eul/z+9zXBXfoXEEAUguLpO9e9WYqx1DUzcTuiVvVM5v5N0tb80LvM2dNxEyFxMWN3YSZOwAAAAAAAB7G4A4AAAAAAICHdXpYVk35r5zySVe/phtHuFP4s15/SDXlTnDnmA/c7w/6dV1HqWratoedcqhuUhuP1PtePVJPt1+73F3WNr+X3vbPb7vhC2PH6bZ/z3Xn8JdZa8sXdNf/0LuHWy7bqrf9+Idu+egPoxx0sjKXOI/Y82LdSckNDVaTOY+zPvYkWTMUK8P6pgdYGb310oyx8BBLObfFz4e5oVhdr9NtW653y/1v0W0N97rlqsdfUW01VmRt3m+NbV/Is44gucOywiG3T5jYX4evLenjdibBet2xBM3+P00vdy4R474RqVZNhcOyVb28yO3/ffp2I/sOc/u1pWt0yBbfpuY1zHvCKaf59FkKWreNNL/72WdMsr5c2K3SM9xyMNB5x4HUEo5z+fPMGM9/ugfXoVe5Vlur7p4pFopl4n6GzsbMHQAAAAAAAA9jcAcAAAAAAMDDGNwBAAAAAADwsE7PufOHU92Y8hULNqi2nK7ustrFEZ3LpUf+Yqf89hod5Hz+uExVr+1d476u32bVdseLrTzgPYHfWgI7zrhb21nG8ufLrKWyT5/onsOXFujGG490yyf9V7/uibG6vrTcLZ86KUu1bQs1SSgTH7XOYNt20flirD+5G9ZHJMdOApBnp90aY/w5wXfAEKe84K/rVFuWkULko8v163pbKWJM4bVF8R+cZ7iZEDL661u4T90L0lRbsLebiy5o3/rDbl989+O6sxjSs9Apf7te36P7ddEf6A3ndHXKkS46Y0NI1rlH1lvnQvL5zLLeZ2CbldgtiZV/9hdVD4WNLBc+654R0veJkHFjjCz4h2rzHWB9adAu2Tn6+1NfZ94buE/sYp4l+6yYT+l29sC2PgHl6kd/qW1sfrtkEe+S8Y0xnv9iZW5s1dLntjiXW09K6jeKvp+Z6TZ7dNMXbHGxccat+6DPr+uREA/1iI6ZOwAAAAAAAB7G4A4AAAAAAICHdXpY1m9fcMOrmszc+64ixiujt/3xvVjvWBbHUSWnMz+JEb9gSfO581mt2d/yGysUyzR4uq6nG8OHwXAbw7CaiHcyaieLdZixDnvsRKe4T78TVVNdnTuNc1NZsX47nw7DiDS41/p+3VertoGZ7vfno9kLYhwMkDi9r3XL9l8W+l24Lq59HPOPlrZwv3hdf7sH9w9t5obqBLbolvQ++U55/nfWva7rfk7xqnt10wcfL3LKD1uhDHsP6umUu/fuqdqe/Xi5qvd7yy2PGN5btc00w6d76s8l3e/2XYG6+O9TyWDH+39yymNOvUW1lRa7H4b9sOZPs/7BeIBaPfOhxBycB1lB67vlCaG+jpCI5th9eqyzZIb8FHbVC3KXV8QICIqRliDZw7ASZS+jbH9G5i3FDqUbZq2bnmZssN46941xhmI9fuvDqn7FH66NsqWHhKNWJGKcFxWGZYvYr2tbuGdH9IfY8zBzBwAAAAAAwMMY3AEAAAAAAPAwBncAAAAAAAA8rNNz7sQMy4w19NTW1SaTIQCxjUuft0bIvDLsc9aKuOZgrCusrfHRHfD/nwhpxgUcas0Fu3i+U1xllFsS66ysaKEeVbqV2CGYZGtaZuiqz1iZMs0Kh27N/3p6d6Nco9siRuqpRGWh8oqIcZHuvm+xN/qHtjM7VZ0xIRIx8tXY989Dv3SKn+Xopu/r3O95N2s94fXr3NxetRW1qk0vdi5Sa+TD2FhWbbWay5/rzj8UdvtHv7XkazjJl5buPfUmp5yXm6/aao3zlJnbRbU11kZfIn74aXdY/6LW5m31MXpJsn/792RtvbJi5thp8iaJ/4RjpK/ao8V7vodY9Vg/rYYZt5dq6w0i1jO7mf5ooLWfNfEdmlzx0ENxbom2oD9MTczcAQAAAAAA8DAGdwAAAAAAADys08OyYjKnBCZqGIo5ao5sYy6qHR4SCUh00aMC2hXClWxCkTgnzfbSX8O0Ivekdvr04GQLwxKRyJKXnbJvzDm6zbiegzH6ivNPPlbVn5s2Q9WDpUbZWj40lXTvputZRsTP1u1t22dhd12vsKJTYvZdScG9SDN6Z6mWgBmyENbf3aMGueVtpToeMW2Ae9JKt+ilyM2PcIsVlmWr6ee+fzjGtn7RoV8+IxQrVJ5iNw3jo6ipt8JT8t0wrcZqfaFn+3XHUp/lvra8yg5zSe5QrETItOrmVRhZ8r5q842Zqurmd6TOegaqj5j/wAPoLuONfrxURxzKxvXx72dif7ecXajbPvsuvn145SknzacvrlAkvuvJ3mqHUbZu0VJlPAMN6KXbthXp+gajPCSuI2kqVL1K1dPS7CC5PV9Bno5zrm9w76GN9m+kOPXorT+ZL1+9TdX3OeJXbdsxUgIzdwAAAAAAADyMwR0AAAAAAAAPY3AHAAAAAADAwzo9507c0ciEjCdceqYb6FxfF31Z1SaMGNImK8vH+hDtocQU+kzTrROl8rkU6aBcM/77uScuVm3nX/a0UbPW8Y6R4Gjx88er+tjzpkfdNtmljTsvemOcKRHe/vCT+N+wFau8JptM6ztfW9T8djuZ+WOiLxJfXarrqZzFYv/1Z6r6N4Nfdcp2HolzTpzilP/43BeqLbjZLe9ToF+3pdItD+rbQ7Wt2VKi6o3Gfkb01fspsVdGN0ww/j/m5TwffcNkZOaI6mHdFKvcxlEje6qm7SX6y1W/w+1oMqx1iQOb2nWEScvMalEWYzvfmONjtOo7cUWTDil1cu5kWfWMbl2dcnVZhWo75lS33LVcv+4OI+fOxg/vVG2DfqjrRxofzXDrESjenDteEW+OHRH9486+m5pdcR/7PTLc67W0XPcxEZ/un8zjaWveosZG7+dYq6ypi9p2+y+OUPXf/X121G1v/tlBTvmfLy9UbX97YZqqRxY/5pR9Y6+M5zCTkj2I0cYUR63ihR6dmTsAAAAAAAAexuAOAAAAAACAhzG4AwAAAAAA4GGdnnPHjFfz+3ViknA4ejSbeeAtpW5JodQurVJt5NnJTNNtAeOk2Xl1MtLcf4lkW5dQRG/dWGfE0+6pwYkdINjG//fzL3sqRmv8scptzbGTlaWj6BsaoudC8Ypw2M1jkZutL/zakBE5HlBN0i0/0ymn1esI80JrmLwiz/0e5DTo70RtY+r0SNt0ShbJyHbLuRm67wgZ11bY6nQyjXrAugTTrb4ry3iPOisAO5zk+Y/C757oVia9ptqueGyWU95/L507J7faPanl9fpiLihwM4rUBPXJ79ZNn/zKMvd7saY4epK1cHH0vsvn0x9+pBV5Jrxg5L5dVX3ZSiMXSanuG/YZ7iZAasjSOdYKu+vPomSHW+5Wpb9bO2LksEolJ0+dqurT3n8/xtbx5QATEdkRszW5+3vz22qfJX+te22//Ncfq7Zzrnsx6j5DKx53yluLKlVbZMV/9Pvv95P4DjTJ2b2teevLtR7T93EfZaTRes4xfwtErN9gOVm6Psh8U7tLjzP5yZIlS+Lb0ENy/e4Jf/V/X6u2rkairxwrSdU/3zS31R/aU8/oXD2P/dOtDx+Uo9pWb4yeAyjZ2JfZXsZtcot1bWcZ12vIeqzIMX7rRBr0C33WtmHjPWoCun/viJw/8WDmDgAAAAAAgIcxuAMAAAAAAOBhnR6WZbKnAJrs0CBz2n6MlyFeVkhctjEPzVr9UHzGtM2aamvemyXXmL4WtPbT2Na1E5NM44KXVD0j3QhfCOq5rm++Oc8pP/Dsf2Pud/Zrf3L349Nf9axDfupWYsw4T4YwrFgaG6JfhPbId3m1+1m01OX4q90t6lM5HtESiLgxU/l2fFW+GeKjz36jMXe80Q6tsubBdklzp9dmpOn+qbw+uUIk5uW8oOoTa40QhbrzVNt8Y4nxijp9HoYPdhfEjfj0uQ8Z1++yNHvScbaqje3q9jONVkxcxfZipzzJOrZUWv58yHC9TvmwvQc5ZaublvISNySl+5bNqs0OVxszdbTbZt1sp320rE3Hmmyqwjq07ZKLL3bK4ZCOkVi96nun/OnnH8Tc72U/u8Qpl9XoPufVV/7d6uP0klh3tzqji1+3TF+/15880in7/Po55+Qf/8YpF31jxfZarj9lhFPOzNJfoPtfSb6Qn2hi3dky/Vb8T9Dtm7OsRcwbQu5vgfWB2PfLoRnuPTs9R3+3pCq+GOgDD5wY13ZeUht2z+/Gbfp+mpfm3jMbrX4604im2hGM/ezds6sbilW8fU8JBup8ecbpLkjTv2urjFgs+8k/VO+e79i/akXSjQ26Wffsoj3ko2DmDgAAAAAAgIcxuAMAAAAAAOBhDO4AAAAAAAB42J6Vc2c3bWxmciDNS/PsZecDxonKsZYaDttryBlyrbDbiBFSmow5dsxle9u6ZO+GzStUfdu6Uqdc26BjpfMLujjlL9bpBVhfvfuXqv7RDHe/uRlF+k3jTKWT7MsSx1qiPjNNj31HjFPRYMdKZ+gvic/ooBpaiFtPKcYprQjmqqZwRY1T7poRf2fRJU/XG41cPo1SYG1dKclsfq67TPBEK6+NKSNTX/hbyqudcnaWvpbNWmSHPn8FQwpVvbrWDUbPzIyRQ89nZ9FLHcFqvUztgH6FTnl7cblq65Ltrlk8bZ3+Tpx42FC936Cb4yIYaClrQGqa+eE7up6g/T7x9L8StKcklpWpqvuO6eeUG2r0pnsNdq/tX34zQ7U9dNnhqu7LdZ+RAmF7PW6IiDRaiTP793bX495eVq3aMs11n628eAO76CW3/cammfZ60XHy+5P7XlBVp6/JKqPcPVv/BA9luOcw18rdklugt02vdfdbHEjCH1dttMO4ZHt2sX7XGie/0crka27ZI1c/A1XV6vNrPt/3sNJZkXMHAAAAAAAA7cbgDgAAAAAAgIftUWFZsdgT/lozAZAJay0LxjhJtTFPoJ7aVhtIrrCdjvD5XL1Mbe+8Xk55ZX2xaivf5M75+91VP1FtSzbpkIk7//GXdh9bsoVhtUZ9yA6nij59uLFJ6FXqnrfY3FtOZp6+/QSMyzeiZ/BLTZ3xdwh7xdVG63NRU5STOwwrlvkxlhfPt859dpo7xXvldh0jsV9/N7StcFihaotE9Llf1+he95kR64MyzM1+LmpbsguGdajD6i3bnPLGYr18sK/W7e8HDdVhjIs36SWi1693r/uMPGuuuOq7Urdv+r/J+6i6zwiD+GDOatV21LgeTtmOHIlE9LT997/VIdJo6pk3P1b1nt26O+VGayHvyhq37xi9bz/V9uRs/TktWeF+fwpz9QeVbZSDmfbPHfezT7c+4Pr6PSS2IkH8mfr/r2xbuVPeq2e2aqs27p8HZ1uh09Z+5xbVJuT4UlVpK66z2srkuiZ3F/OpI93qt827a8i6Dw42vwYhfa67WLfTwUZ04iH767Y/zorjIDsAM3cAAAAAAAA8jMEdAAAAAAAAD2NwBwAAAAAAwMM8k3MHnckKXDSXfQ5YcaBZ1iXVQJxoSw458Yeqvunzb5zytq06yvkPT/zbKadu5oSOkmbVYyWf4tOIS8BddrXRpwOZfTnumuaVtdbauMG2LSfvS7OWuwzxOYmIHDyyr6rPX7nFKY8drK/7eSvL2vQeJx86SNWnFZVE2VKz/+LUtk9+zzXzs82qftLR7rLPpWk6585366PnjOpj1TO6FDrlb5+7WrWNOvV3rTvIJPW/r1ap+tlHj3bKR48vVG3vL4zvehURMVO91KZYFxNvNqdDRo9U9TkLljrl7B69VduyVdvjfn+zt8rP1EfQYKSECTZGfxZN9qfUqir9fxgxlnquDOpzdnzITSiSkaHzpt2+Q38us7/82in/6d86p9Id5x/tvl969F58wkOTVD3thaibIoqMbP0sFahviLJl8jPvmBXW7XOAmcvRetBYq2+9Fv0cOaKn+50p3kPTOjJzBwAAAAAAwMMY3AEAAAAAAPAwwrIQB2uyrQrFskK2UiwMy1wq3OfzRW2LZZ+DLlH1x35znlPeuKFUtd189f855Qy/njL75AtfqPq2kjYuz+o3JjqHY4UiJbtU/n/fTYyviM+XaTUZ59vuRow/Q/isu1akUaIiDKt5j761RNUn7ueGRQRDegr9hKHuUuh+a8ng+d9XRH2PaZ9vbNOxJVsYVktqjaWH061HspEjujjlLGsp54aInoq/fZkbykgYVnyKtxY55YqKKtV24qRuTtkX1td9YZccVX9ulg61Q1NP/W+pqh883l0KvTSgQ0HHjXH7I1+a/ht0dZXuIdascZ9zNpW39yiT03arV80Luec7r1Avd/6/cjc+JSwB1XbaiF6qfsTBB0Z9z7cfbfVhJg1/mvtsHg5bDzNx/i5ojUB9jIegFLNvH7dv7j2wh2orLnLjNBu26d9Ww92sABK0PrKuOboPyva79+wnbtRpNZ78yYetOt7dhZk7AAAAAAAAHsbgDgAAAAAAgIcxuAMAAAAAAOBh5NxBO5HTItGuvPdFo6bzvlx/0aVuS73Od/GT/ztF1R987gmnnK3T80i9CqW28ialdJ4d7E7myuShgM5xkZHp5hcRv5WPJ2zElFvh5dbVKxG/cVuz493RrIyQ+52f/325apu8T1enHLHyik3ep0DVv1rlrguamaUfLxpTLB9bvD7/fINTrrO63oMO6O+UQ9a13CXN6tSD+vuEli1f6+Zd2FKvT/7xvdw8JfXVdaqtMcBzT3t9+W1p1LZxI/s45XQrz1eXTP03aT6J1qsz+uJZq4pU2/jehU4508p3tKZE5+BB87pmuOeprD7Nak3Q83W6sd8gz+y75Ge5y8Bv2lCm2vr2dp8xG/zdVJs/031dk3ypVh8UzHVz+fj2kBw7NmbuAAAAAAAAeBiDOwAAAAAAAB5GWBaaZ85CY95rXOJd+rxl0RcDfuiZJ9u0x3prNm1utluurecDRsfINCJJ6nSkg4R9RliJ9RVo1RVKKFarNUTcv/Mcsk9P1fbFquI27dMOwzLDtAjRal6+VZ+7YEunHEeq8Ge6N8IugWrVNv3bCntzA0sPN6dJiGzcW+stFy3bnpgDQrPSjVOfZX1I3+4o79BjSUZlboSP5OTpkKn6GjecKtKeEC1CsZqVFnDXNO9VUKPaNm5ynztWVTRI29W2vEknY+YOAAAAAACAhzG4AwAAAAAA4GEM7gAAAAAAAHgYOXfQPNKwdJpJ/fs55Xlb4s+5YI/URs/cI1Jb37pjAhIhYKRaycnRbfVxhjHnWEvh1jXGutIRj5C4H0wkoh8LDh7eyyl/uVovm9sa5Nlp3rAhuU553ff6S2Dm4NEZYZAIdUbaBbsXyTO6mRq6mIQbc4D7nLOE3FIdqk6ynHJY9MNgplEms1Tb5Bs5japrrEafkSuH31kJt77Izd3Yr5t+Vhxe6Hb4q2KlVEsCzNwBAAAAAADwMAZ3AAAAAAAAPIywrBTmi1IWEcnOdP+ltpG5g23h87nnsDXLpF97zVlO+Yq7/qnaAj53WmHAWsI8nLCl2FOX3xjuDjMVP+HMvyaEArqt0IhBKauSqAjDSrz6WqOvyuD8dqS8wj5OefiATaotYszbX7SZsLZEmzRqkFP+ZOEy1RayH4rQrLY+dfTI7umUJ+xbp9rM+8T8lWVtfAdE0yXb7UtK9Klv8lsAbeBzlzvPT9PfkPQMt6283noIQruZC5yvL9PPMqtKzas7uX8vMXMHAAAAAADAwxjcAQAAAAAA8DAGdwAAAAAAADzMt3jx4uQOPAMAAAAAAEhizNwBAAAAAADwMAZ3AAAAAAAAPIzBHQAAAAAAAA9jcAcAAAAAAMDDGNwBAAAAAADwMAZ3AAAAAAAAPIzBHQAAAAAAAA9jcAcAAAAAAMDDGNwBAAAAAADwMAZ3AAAAAAAAPCw9VuPYsWM76jhSxuLFi+PajnOfeJz7zsO57zyc+87Due88nPvOw7nvPJz7zsO57zyc+87Due880c49M3cAAAAAAAA8jMEdAAAAAAAAD2NwBwAAAAAAwMMY3AEAAAAAAPAwBncAAAAAAAA8jMEdAAAAAAAAD2NwBwAAAAAAwMMY3AEAAAAAAPAwBncAAAAAAAA8jMEdAAAAAAAAD2NwBwAAAAAAwMMY3AEAAAAAAPCw9M4+AABt5bPqkU45CgBAB7Of3oKdchSpIS1NVf2hkKqHO/JYAACIgZk7AAAAAAAAHsbgDgAAAAAAgIcxuAMAAAAAAOBh5NwBAADYg/lzrX8IZqlqWBo67mBSTFqa9XdQK+cOALRWIBjQ/2CkzWwM6kxeVlW65rn9fzCkE66lp/HTPtUxcwcAAAAAAMDDGNwBAAAAAADwMOZuAV7ls5Y+ZyV0AG3g7+2WJ/fVbV32O8opB+tqVNvHn85V9Qn93fI3yxJ2eClEL7ktfjf8J2xHXYUIw+ooYevmyq22/dILj3DK2VKl2qrLlxu1OtWW03OKqteVrXcrobWJOjygzUIhN4bKDul868tvnPIbH+mbZOWWDe7rMrNVW+7Qrqr+weffOWXCsJqXeesbql589wCnXJB+UNz7qY3MU/XPP9/ilI897JQ2Ht3uxcwdAAAAAAAAD2NwBwAAAAAAwMMY3AEAAAAAAPAwAvUAz/JZdTIB7E6hoJv/Ii09LcaWaC9/mj6/Zth6MGgvQ6y/BxH1NeA70ZzRE3V9aekhTnle4xeq7cXjj3TK11x5p2rL3utIVV+W+YlTPvas8aptxn+/bcuhppY069o2qul65XMJhq3Ht4heDhcJRDfSbr26j1T1wn7uSa3aYuXc6bKPW6lapPeTa23b4N4cQr4hqq2icl0bjhRtwdOo65u3nnHKmT6dO+fi/5vslOsr9VmrMZc0j1hrn2frbQvDGU65IEu3VTa4Z9/M/yPSNAdQskm75u9O+eSih1Tbax/f6JSP+ckBqu2j/yxwym/foduefm6+qr/47j+d8iW//olq+9fv/9O6A95NkvtTBgAAAAAASHIM7gAAAAAAAHgYYVnAnsae32oy57pGUnnia8czQ7HCYR0+4fcTptVafp++0MPG9RyxphIHQsa2TeZ/23+jcD8bn98K2Qqn7nfmz0+75ZXf6LaiR91QLF+ubjvr0jud8umX6LavXv9E1TevdsuHn6TDsJ77PuCU++2dIdjJ7DlCoehtwSYrn9thWGpP7T2slLDpkxec8oDeeqnhLxaudMqHXvAb65X63DcufM0pZ+5/RuIO0ON+eqAbglK491DVVrT9S6ecMaSvaitZvc4pZ/t1eOem8g2qPmWKG+5VuaNUtb35VeuOF22XandWM9wpEtH97dDCIU55TP9Bqq1wiHsfrA/2Um3+wCqnvGF1rWobd1BvVS8rz3HK1bVdVFtprXvvtcOwQkboV1oSLqH+xPAPnHLu6HNU2x+PvdMpDzjBik0XN3zu1a8zVcuzd/1d1S+79YdOeXhkgeyJmLkDAAAAAADgYQzuAAAAAAAAeBiDOwAAAAAAAB7mmYC7rjqkUCqqmt8O8Lw4g5cbN+jEGRlW3K9v8KREHREs5Nhpv3CMnFGRJl+CSLPFnaLnF0nlHDv27f2beQ845Xnz56i20r3WupV1etnPnse4S332KihQbdUH6Nj0rE3znPKdj+vkPbdd6pnHjQ5lXr3Z1imqN1K7pFm5puyvT8TYUypf9bF8M/2vqt572BCn/Mp776q2Q0e5OWLeffk+1XbC6deq+vRvlzrl6nn/UG35ky5v07Emgxe+XudWgvvoxvXd3XL5l7pNDnJKvpwy1dKnd39VX7Xa3U/FstltOUxEY//5P9zsVinJzGUTDNarti1d65xyeWOJahtYPswpL1s2T7VJxOjkrVyCO2Zu0tvmD3SPpYfOYWfeK4IhnR8s2e8NS5a598EHb/6l1eomrlv47tdWm/tM/+w7va22rar2xB+WOOXDRg2SPREzdwAAAAAAADyMwR0AAAAAAAAP2wPmSbtToXx+Pb3+wn5u+X1r1c+AUa+t022Z1iqrZ+a75U+ydNvmbfEeJ9Axype7U5SXr9ThEweffINTztxrgvW6/6l62eJpTrnb2JPbdCz5XfNVvbqiuk372ZMU3+WepzUl21VbhhHGs3T9etU2olcfpxwJ6xiJjEw92TXod5e7lKxuqm1gT/ec9r3t9DiPOhllq1pBnns7qqzR11l2rtup19cGRGuyNrpTysrU4XMFXd3ljouK9LK5ySYtXc+h/8N5hzrl+7rotufu/69TPuHEU1VbzXp36vg/Hlyl2k4arpc33mbES/c6bIpqq6yN72br9+u/OYXD3osFiH5FxlZvPeeYjzKBVsynz7Ce7AL2qukpauq5d6h6ZXm5U7YfhmuMclYP3Yfbn+9ll9zu7pNV6A3uEufpa2aplmCVG2aSla1DGxrq5zrliPV8v03fliVTFjllv6+PagtH9P0dreS9rrfDhIJupxq0vvPZuW5bdnWDaqve+p1T3nvceNW2aaW7hPlfntHP8zdePlXVC3KMMK2g/v5U+fKcss+aw2GGk/msnqxpOLz3PPj4O218pfkhbo26lW3Odxvb+H67FzN3AAAAAAAAPIzBHQAAAAAAAA9jcAcAAAAAAMDDOj/njs+Ncwuvf0E1Lb3/Yqf8iwodt9j9MndpyrEn3KLaZjx/t6o3vOPGWV9QqoNIj3+1lccLJNjZpx+s6gN/+H9OeWimzi9y8nGDnfJnX29QbadefL6qL9zqfrcmDNf5Tb5ZrZdujCYZcuyE//yRqu91wxVOOT9Pd4HLQ8vcinWKeoibX6REZWQQ6SddVX2r6Nwkpv4yPOqx+W84JurrksGTD5/hlB94aJZqW7Gm3CnbC81nGnl27Cu3wIoTrzRuaw2NOtnIjs33OmVf5pUtH7CHWannZK9DD2p2OxFRJ/zFt9+Mvp1eCV3eXr9W/4MZtv6Wvrl2eyu+m21Whj7yuoaGKFsmP7P3v+BAvez8v79ujP66lM6xYz/WuiejyMixY4t1lTWUlMVoFdmuzndbMy4ln0jIXZrcl9Y16nYN9VbeCn+hU9y45C3VNGjUkareaJ5fcuxgNwlbS4r709x+prpe9x41q9ynlC57H6ratn7v5tFML/9WtWUZXddVZ1+v2nKsfqWozL3u00R/f0YecKB9+I5QyP0NbObfST2ZVj36/dSLUvmTBQAAAAAA8DwGdwAAAAAAADys88OyjBmV6zd9o5rG/M2d6rbk9XNU29aN7lJljdZyfYt36GXMLv+nu8Ebj5ymN371jdYcLZBwW7ZXqXr1ZneJ5sXWtR1qdLc9dJRennXFDr20c/kG98ulv1mppb5BT7fcJJVOefQBhapt1Kpcp1xuhWxtKTFDULqotoxBuarev8YNLdlWqqfl14m9lHfquOW615xyQR99DiOZ7jkLNeq1RSsluir7H3zG9GkrIqKhJLmm3sYSiERfxzbXuvPXqhnn3a2tjX4l1gfRhB0YFt91nwxhWFnW/3q98b/+WK+LVdvztW4oSX1NhWr7Wj5zyk3DsHTw4vniTsXPsP5ud7yMcMpnyzPRDjtJ2DFp5vR7+xyaoQ7tCZ8yz3cKrx/t03GbsUKxlGwrELe+3CnaYVgx9SrU9aLy5rZqomfPnqpeXFwc/3smsTsunKjqdz07v5OOpPOZYVgiOryprr7W2tq9h24zwrBERGSA+6wYbNCvqy82+qMC/Qzkq9T9U/pQ93giRbrP+3bB1xKNGYo1f77+PCdOnGhv7gHRw3BjS+5nQWbuAAAAAAAAeBiDOwAAAAAAAB7G4A4AAAAAAICHdX7OHcPNf5ur6tcY4YfTN+Sotu++duMYc9P1GNVr03Uc4XlGuSRDLwmNxGpbloXU1li0VP+DGbKvU7lIjnGpb9+hz25WtZUzwAjZ9RXqpkh5fMfm8+nlFyMRbyzrGv7zx075y8VbVNt1Z+ztlP/64TLVJpVuDPTee1u5Ryrcc5GdqTO9bNiWpbcNuJ9N1956ycVnJt8Q9bgjxtLoviRYFv2EI4eo+rufrHPKJduaZMtxZehbk99Y29m+AnOs5TxrjVh4ydfbLlqzTlJFSIfsq2VWa2OGpZdGbWnd4qGp2/vXx/hf3y80XNWH1WxyymtkqLW1+5zz3C9/oFrO/8tsVR9tXOyVVt6BvZvsN3Uce9jhTnnGnI+t1njvZy0tb57CeXYMGTm6h8gtHOKUK7ass7Y+0S1mrdZN9cudov0X6CZnuuBHRuMGq7G82eO0JUWOnZYu0Xh3k+eWN6eV6zbrF2Mk3vQmSSAc1lee3+9emVu36+vnymPdfIKPz9im2iLGM6ZU2+9ifGiVK1VL1732V/Wtmxe6lVakjzH/P9LS0mJs6RXWg476FWrfiBOVY23Px8wdAAAAAAAAD2NwBwAAAAAAwMMY3AEAAAAAAPCwTs+54zNCdD/5/EvVts/hXZ3y/P+8qdrWGfkasip1LOSS93Tunn77u0Gkix55u62HmtROHJWn6ou/q3HK5da2vYw8MMECHWPtt+JS+9W7QbmDx+yl2v7zuR0fnZpKy3W9+95uXqjBUq/aAhH3K5tepQN2rdQj4uvllg/oqXNWfVNeF9exeSXHjq2i2o3DPXhsP9U2pOgWp/yPmeeptoL93HwYmyr1+e2e7Z6LOitWumdvffIr0gYYx1Km2g4/Ym+JxptnO7r/zdbf8ZEjC5zysmWV0V8Y0MH8sTJaqBw7llzrczrsB3+Jsafk1hArP4J5+cY42S2G9qdOSHub9e6m+/R/95/glGvTequ2vG+fc8qNpQ0x93vFfvs75eodOllbXo2Ra7AV+RmSgZlnp1uhvg+WxboP+o2LOcN+VLa+TA3uxe6z0lhE7JQQSSxQq3OPVBj1XlZOmKLIO8aGus38lPKtvIMVtbreWPleK48ySVn97edPus8Zjzytb4T9Q24fVJzWVbV13buPU+6yVXcWN07ZR9W7F7r7XblZH8DTX+hcM15k5qexb2eBoNtWU6P7g8dmrIq6z3Qj1WDQzpMkZuehG4u3LNGbxrifp2e5+7HSZqr/DzNvkIhIyE7U5wn6k+mZ5/4mranX/3/hkHsPDfl0htg041yEfNaPKasTj4Tc70Vmhr6n1AXi+221uzFzBwAAAAAAwMMY3AEAAAAAAPCwTg/Lihiz/gI1eurTiu/cafsBa/5aMOBOiau2p5HX6Gr9eneaVFqIueLNWbFRn7QjD3GXgQ6F9RhgWtid0vnveU3W8lMOPbiHU549nzCs5uRYyzX3Crjnt866XH1+d7rlmmI9HdA2oo87/7O2um1TBb26FHrX/Ojj1t0K3RCFQXl6jnek0l2StcDaRZURgTish26LhHaoerkxuzajUM/TL1STzr1xPtsqEtGd89qVMUKx4pXeZC6z4gu659Sawd/SS1NXjFAsMzol3NLlmtyXc0yx/lJmnt4x3/8u7n1eMqW/U148b7Fqu36Ujlcp/O7BuPebqnySpeoD+7j3goj9CWa6j8fV1Tokzu5G8ow+PhjUX4LtJaVtONLkU2T1DebZtruN3HT3ZltUu/vjCHv27KnqybA0+uezvnfKfUaNVG0lG904uOywvraLqt1noL++p0PKbZcf19cpDx1bqBuTICzLDlsyBYyQrfwu0X9K9+qmU174jN7DfpyuDrltgwq7qDb7O1JV7T5Lha3Q9B3Gcuv268z/o3nz5qm2CRMmiNfl5bt9R32D/r/Pynd/bNkpRELGw01FfezfS72y3c+0wTrDdfbq652EmTsAAAAAAAAexuAOAAAAAACAhzG4AwAAAAAA4GGdnnPHVFoUPfA/PSP+YP406/+qoszdrxcXeusIxsryIiIy9QcjnPKGUr10q4SNHCJWzOZvf3W4qudVuK9ds61EtW1Y1/rjTEbhdB3vXVPixnv3HTpAtaX73Gt52fqtqm3iqD5622w3Zre+QS/7J7I+rmPzSo6d1kj3u/9PQSs+dmAfd1nQVVv1+qxpxmU/v0i/bkChrpsrJ0asNeojRgYOX5PsDcmt3jgvLSwuHJ2V0yLWfuy29HT3X4KhuN8x+djdgfG55BZYS4QaF3NVhb5HdzFyloiIpBvtVUGdKyOYwqfb9PNj+qm63+ee33BE9xU+o/996DudQerqw3qp+uVHu31XyMrB8OQn29t2sEkmPTNT1f0Z7nmqqLFuBo3uBVtbpu8FmVYuutqu7rnPyI6dCy9V9exiLe1c5dYzraRflcHoeXYy7FtmpNmiiMR/T0mGHDu2/Qe55TfeWabawsY57DNsmGrzh91cXk/cP1y1zf5Cn6fiTPeh6JWZy9t6qJ5k9tQxUtaJhPU9Mi3d3bq00rpCjX5l5cYtqilP9H4Cee6zTI9cndenabZB4y1i5BFKBr26uc8vdUH9yQTr3fMdCuhzHzZ6j9x0nZstI03vp85YCj091+p1rJ/LnSW5P2UAAAAAAIAkx+AOAAAAAACAh+1RYVmx2OETsaTybPu26mYtx/3vNz53yu+v0m3HGavlHX+gbps/+zNVnzTZndZZXtdVbywVApGqKj3Gmt7FDdMqKtJL8pWXu/FzXfP113fler1sZVWNO3Uw+YKrWhIr3Mk93z6fPvebtrnXZI510hqMmeJ9rUs5ZG3bI9Od2pyZqcNcfBHj2KzXhZMwDC4aX5r1D0ZoUEaGvrYDATOgVp+jWN293RZs4OYgIuKzToN5SdZaN9s0o5qhZ4ZLjRWyG95DlgHtDDGn5htqanSfnpHhfhFqq60lWDPcMKJzJuvw3SIrPPHjOW6YbpoddgcREeneXS8vHDL6lb7Z1nXvN5Ys7lVg7Ul/2stWbjZq5e05xKRVXGXf29x6Y5M40egdScBeUt24hRdm6Pt5WYP7OZnfMxGRYcOGOOXlK76XZBPKd59BKvw6TKd+rVv+YtEa1XbkMXs75efe18+UkbA+v5/OXC2pImwtnR1rmXRTpnXdBY1Qoa5pOkw0ZDz25GX2sN5P77emstopb62LHsaYZr3wgw9mOOXjjjs26uu8qq62xilHQvr5pHt/99pevWqtauvVr79bscJu7TXri4qMFCMV1bInYuYOAAAAAACAhzG4AwAAAAAA4GEM7gAAAAAAAHiYZ3LuIPEON1ZA3LpZtwWNUNBfn12o2n7/Snnc73HiFPe13+9Infjc1vjBpBGq/slXS5xyXb2OlW6yXGsMZqTvsw9cp9rOu/Gvce3DHv2NN69EZ/PfcLRTDv/5Y9UWMfLxDO+lk+es3OIu9anSvIiIzwjftdJdSLp1ooJGaoeD9u4b/UCt0N70G5MvBjoa+/xmZrl5Fxobol/ndvaLSqtu5lGKRLxyxXYsO7WTz6j7G3RbyPgorI+sKfN6zi3UbTXlcR1bslu0qVzVDxhY6JR9Vn6ul5cYsf12uiirzxlirIZbHH0l3Kb5BExJnvOrX7dcVd9e5p4oX0Rf3d+t2OiUc6xliGut9W7NM5qXoZfRrQ5YXyg04ffr/j7cim7b/MaUNkR/YaN1w0nGPDumI8+42Cn/ZNXfVdvTRuKivRp0ws1PPkru89JW8ebYsfXJ16/bWmnk8srS/e2OilKnbPfS9rv7092+7IwDu6m2/35l/aAzmHl2YqQ99KweA0Y75brA16qtbNtKp9x3wN6qbdvmtl33OdYHVbeH3EKZuQMAAAAAAOBhDO4AAAAAAAB4GGFZKewLYwVEezrepEJ32dV7b/4/1ZaZ96lTTkvXc9LGj9hL1ZdvKHfKDXvIdLU9zQvTZqv6XgO7O+VIvR5/7dktT6Kpq9NTkmvq3WV14w3DsiVjUIu5NOR7F7ys2vZ78HinnG31jpURd+p4ljUsXm/NvM80ltF9/Oi/qTafGRaRjCe4jcxQrFjThe0wLL/1N4owoVitZi6Fbof/+I0PI2zfKGLFbaZwGJY9pd689S3epNsmDHZPYjCgX3nuWPde4LfCqcqL9XX+5Sp32eKYi7MmeehVLDO/WKzqI/d1n1dy83Xo1Yj9Bjtln3Xu6+t1GNGadW4YBGFY8TG7jnSryw5nuec7M0PfiANW/+Qz40bp+h2fvDvTKR97ykWq7fs+FU75X/e/rtp6GFHkaVZXUV6l642xwj8hIiLfrNum6gN7u7+tqgL6gh3Us7dTDoX0zTYQ0jfbokr3w4gVhhVLMoRh2TavdcOr6hp0v21GZo4dqpeaDza4obYR6x5ZUrIl6vvtKWFYNmbuAAAAAAAAeBiDOwAAAAAAAB7G4A4AAAAAAICHkXMnhZnxlvaF8N7n7pLQvon/Vm2v//UCp5yZnanaGup0LPrNf53VnkNMSRu3u1lFIlaAefdCd9nKqnKdWaFLoV7mtUav1pqyzGXRRUTq7v/QKWem6fHtOuP63VymmqSPsby5ndbF2o0s3lDjlDMydQaZiJGBI+2GY6IedyprTSx4hEQL7eY30o2E6qw24+bgs5IhNUnfwkchIjrHTku+XeUuf7twh247e2KhUw5biXy6dNX/UCpordxst+Oe/80q1TZmxECnHLFy7uRmx1hOHnExu4pGqy3P+AZFrPxGdr67at2M/yeQd5BTrlmr8zoeNcF97hj1wPGq7YbfTHfKGdZlHrHqxfOvdco9Jz7c1kNNKWkR9yZaUVWs2nLT+jhlX5r+bZXus5JNCQ/4zcnPrTFqhaotGCl3yovmz1VtKlOadQO30rFJtQdOPTN3AAAAAAAAPIzBHQAAAAAAAA8jLAsi0mT1W+lZkOGUKyr0vNfTr/u3YPfx+dyglIjkqLbS8uiL3JaWsy5lPHJu/mHUtr5d3fJeXXXbhgppEz+hV3ExZ3y3JqxlD12J0lMi5hLc1vq3YVZ23q38xp/YDuqn216ZX96hx5JqGo1Hm/3331u1LVz4vaBz1NDntNsJx7r9+IMP6GWfpcgN07rhD8uj7qOliDdCsVov7HM/l6H9+qq2tVu32ZujlSor3HA2Y2V5EREJl3dzymvLizrqkDoFM3cAAAAAAAA8jMEdAAAAAAAAD2NwBwAAAAAAwMPIuYNmfV/B+pKdZd8+hU55+Ub7c8g3ytHz76Bt+ha48bollXqB1kFGDp6Nbcy/g+jIndN5ImbStQyr0UyGZCdnQ7uNGNbTKa9Zp5fGnWzk4Plqa0cdUeqoMXJNdUnX6zyPHzvcKX+7eHWHHROQCJ/94xmnfMGR3VXbjfeWdvDRYJfcTHcp9Abr8X5o3/5Oee22LR11SEklmOE+qFdUhVVbz97u8/3areTcAQAAAAAAwB6KwR0AAAAAAAAP26PDsnIK3WmydeVM2u9Ig7Pc8nqWpexY2VVOsaBLF9VkThyvqBIk2I46NxSrR57VaHRBhGUhmaQZF3eIiNwOlZWV7ZRH7tVNNxod/ldbyzroiFJHQ6Vxr83sqhvDgt2oR457cZfU8XyfaKNO+oFTjvh1yGGPSUbIzxJCDjvShgo3nUKfbvmqLUJweruFGt0+vU5nVpBtO0o6+Gg6DzN3AAAAAAAAPIzBHQAAAAAAAA9jcAcAAAAAAMDDfIsXLybIDwAAAAAAwKOYuQMAAAAAAOBhDO4AAAAAAAB4GIM7AAAAAAAAHsbgDgAAAAAAgIcxuAMAAAAAAOBhDO4AAAAAAAB4GIM7AAAAAAAAHsbgDgAAAAAAgIcxuAMAAAAAAOBhDO4AAAAAAAB4WHqsxrFjx3bUcaSMxYsXx7Ud5z7xOPedh3PfeTj3nYdz33k4952Hc995OPedh3PfeTj3nYdz33minXtm7gAAAAAAAHgYgzsAAAAAAAAexuAOAAAAAACAhzG4AwAAAAAA4GEM7gAAAAAAAHgYgzsAAAAAAAAexuAOAAAAAACAhzG4AwAAAAAA4GEM7gAAAAAAAHhYemcfALzH53PLkUjnHQcAAAAAAGDmDgAAAAAAgKcxuAMAAAAAAOBhhGWh1QjFAgCg9R4buEzVw+GQU/anpem2UNgp+0Tzp1l/mzPuy1dsGtmuYwQAAN7EzB0AAAAAAAAPY3AHAAAAAADAwxjcAQAAAAAA8DBy7gAAAOwmZp6dYKBRtfn87t/YQsGgagsaOXf8opPdHX7meFX//L9LnPKjA79TbVdtGtXKIwYAAF7EzB0AAAAAAAAPY3AHAAAAAADAw/aosKxsa6ipPtz8dq1lLiHKKt7N61Kwr6rX5fZxymkVK1VbQ4MxdTxcotrSeh+u6t0iG51ycdH69h5mcvJnqWrWvnlOeXx1pWpbs8099xHr+1E5vJuqB7YZ0/8ra9p5kMkp3VpgOKi6xEAr9pRp1Rub3QrYE9h/1UnQrRb/zx8HLFX1sqDbl6zfvlm1NRqfhs/6ZHJzcp1yoFF/Sgsefl/VDz19jFPeMUffl4HONvq8i1X98QPznfLhR+2t2nz7Xxd1P5//7XpVLwu5z0gnXP9UO44QAJIDM3cAAAAAAAA8jMEdAAAAAAAAD2NwBwAAAAAAwMM6PedOhpHyIlE5dmzk2WletlGuqtR5daSy2CkGpdR6ZZ5EE9qxWtWLZVsbjy65XfKvOU753Zf/rNrGnXihU/50+pOqbfacaU550mCdL+aQcx9T9YXfvuCUDxutl8Kd8fv7WnnEySlo9w4+Y7w7YnePQYnOZ9XN18Z6HdDxyLGze3X16b+brS8ucsp+Kz+XX0JOOct6JMsJu59UWiik2tL9uaq+4HX3Hp7m1+//N2Np9Axf9L/pXbFxRNQ2oLXyhxQ45euGV6u2T2e6z0Bllfr55IGfZDjlG/+jc9/NW/C5qg/oN8Ap3/LjI1TbfS/ObuURA4D3MXMHAAAAAADAwxjcAQAAAAAA8LAOD8vKzNB1vzE/PBCytvWlOeWgP021hY2QCV+kVrVFInras/k/mZGhlyiua81qx0mmXtX6WK3bjfIA1ZIh7lKuQdGfS7YVhlXnN14b1kvAprJ/vXCPW+k1SbVt+8urbmXE0apt0innG5WzVNsX7/9Xv0mfKU5xxvy5bTrOpJeWreuhBqNiL2/udlY+K7AlLV2HdwWDPmNbjTDR9mIh747kMy7gCBdvXOpD+kTtCJrPHfp6zfO7TyiRsG4LN7jPNg3W41pVuEzVu4gbAlMf1qGg9QF3v/40fWx+v/sBPzZwmWq7ctNIgdDltFF15f5O+ed/nK8bs9wfA/7/6fApf9a+biU7S7Vd93Sxqmd23eqUw+GubTxStIX5teArAew5mLkDAAAAAADgYQzuAAAAAAAAeBiDOwAAAAAAAB7W4Tl3QlZgZnq6u5xnZkjnzmmMGEl4rGVA/eLGsHfL0fvMyNF5dQJG+HlJZSsONsnl9HaXn6wrsvKLpBn1iI7fD+Qe6pT91XoJ9TqxkyoVuuWwjpUWaZCU9fF7brnrh7qtwjjfa59rx5u8Y5RT+Fxb/GnuNRpukkPE/AfrnBlLD0fCuq8KBu3kXe64ecTKSyViJRdDKxHd35HMPDt9unVXbfUN+l5bEahxK4HUTdDzy616aeeLT5vslF995yvVlmfcaitqVJPqOU7cv0C1fb5GP8zkGKlJhg4dotqemrsu5vGiBXQ5bXJIrptLp16vhC6Zxp+Wu/XVbct3lDjlUb10W6nuciTPSLOTF9qo2qbxvL9b8bUA9kzM3AEAAAAAAPAwBneA/5+9+w6QpCwTP17VcXLaHNldWOIuQbICKhjQOxETJlQ8PfV3Joyn3qlnTpjDISYUBQUDYEJERMl5YZdll815J+eZzvX7Q6/e93lmurZndmZ6qvv7+et9962urn27+q3qmvd5XgAAAAAAQmzmw7JURMJwv1mi2W1YU/J+7OmAV//mF6LtRRe+cjKHVnVGBztMxVMhUzISSxq0lp48VMhJ7oCDYNF+2dn5qVpf0rXCiqo3QmKMQt4OodLhVEEvHCne5qrn5HZI6SSH2UhU7rOgY1orWc1Rsp7aa1V0WJsagxKLTDmzYyqPquq19/ZMyX6iEXlu5wuVfW7/+LeP+uW8urYOiCGo+PX0unU6xsRVdTPIb+rcNdFDBKbcvXsDGu3wqt7im+3cd4g3sYckIp4BFGWnH8kU3Uobe6Wd3H5mEjN3AAAAAAAAQoyHOwAAAAAAACHGwx0AAAAAAIAQm/GcO1rJeXbiKurNWmZ1Qjl2WJXYGF1iVfQy5SVy1RqWngyQdh2T/8JzuuW2szRWcaaNOQXt9BP68etEUlPYXxm9n2o+74NEak25MFp0s4Sqe678YLJRa9niXECungAFlYfErkciFf5cPrV1AhurvEnk2fmn4jlZyq3Sc+xo+Vyp17qJDMxBn+fs+axnsyucU/zyljXyHui7G/bozYu6Mn6qX95+qsxL9cX7GI+mFfcyAMalH3FM7jfn2Kvp7P/tWuG/EAAAAAAAACobD3cAAAAAAABCbMbDsv7r4/9P1I9ZNscvv/7Nny7+wqyOpzLrib7jUx8ULd/66BeL7yev/8tBa35XlkfuvkfUX/qxn/nlnX95bFL7vOw1MiTu6p99XdQ9x14KfYF6dfuk3jOM9Nlr1wMn+B1O9IL9Wh2hUVWKx2I2JmXLYNYKxYrJZ99xK5Qkqj6X1JjPyVq2uE6NOSVGaY1Z+tz6DHXIViWEadVZ5ckFskGSk4kXHLnML7dvKz3kxHbxs04X9RvveHBS+8HENdfUiHr/mEFn9k8VL7f6hiNE/b+GzBL1798wT27cbL4vTr/+vsjA3A9lH/bLn7mvzqlWUXWfkSc6sGwSVoR5pniEeSBXfZ4enydCZamq7/RLL59zlGj5ZfdEUgEYF81bJeo3d26f1H6mWvh/EQAAAAAAAFQxHu4AAAAAAACEGA93AAAAAAAAQmzGc+6M9g6K+kP79fLYxRTPjTOwrado20T2U+nmLV8k6td+wuTLOX+TzLmT2ndX0f0sPfEVfvmoM04TbW13nyfqPTvtnAxqyeIqMqHUOXGrfDhdZn+7q+20t4PFveJrpQ6m1T9Y6XncnFrevEj5n2+i3t8qj0xR51d4vHupeXbq5p8hX9fxwNQfTAVYuGquqA/129dJmTOk1Hwt23sGDr0RnLjK85WoMYP6cEr3dWlXh+GUHqziql7NA35x9lA8PLSr6HafcTrlP/QH7VV+hn1W+e1VnDFM59jhjJw5jXNkfbj38PfZNFf+ROzv5FNEmOwUtaxn7tw/e8kbRNsvbyg9504qO+yX3/S8t8jGv5JzBwAAAAAAAIeJhzsAAAAAAAAhxsMdAAAAAACAEJvxnDtf+cZPRX3pyc/0yy98/ZtEm9u1zy9H5swXbV5qyC/vrZUZMC5811tFPbZ1i9nPQrm2/c0/vKqUw64Iy5atFPUDO0y/fPzDMm6wuetdfvmg1y7aki0ml0OsX+YBeM/rXy7qR7W+17xf9KBoe++7/r2Uw64IOl1K8SwwztSlJqrm8OgS89MkRUYGx0lH6s0u8kOiLWpv21Av2gpZ+YlGCua5uZcflduWmGMjEqn0Z+8tqt4XsO08v5QZ0nnadO6R6s3tZTu4vUvU66xL6OLly+W23SZBg5eQ/XnkMpPMoa+tVrQtO3uNqDcNme/M1r3yc0qrfHuVLKtG+CZr7Ignk6ItUjDb5l31nXfNWOHl5D5dVw5ytUmT5yfryZxK3SPVmwfG7qX5SxeItjP3mtb72mQf1dRZ34N9MoFJXI3Nq/Lmy3XXXDn+pLpKzStZeSZ7C2Jflb2Yq1rleR+13iTwvqrCDarTbNUyU96j0knl7Nt2PeRYw9NQl/wEZSYxx0lYw0xa3XMVqvgyXG+dspFaec1MjJr7wVRUntuJOqvzh2Xf629Bc5354LrViT8wUloOvWoTd/W94uTUxOsPvVGZVfqvBwAAAAAAgIrGwx0AAAAAAIAQm/GwLO3AY3/zy8cskUu3FhJNpjI0LNqGB8x05Qdu+HHge5z7ErPkd7x7IsumV7ZFK1f75R/84kbRllhiJgE2F44QbXXzGvzyS847P/A9fvGrm/1ya3pOwJb4PxFr/uWYCcnW1NdDBffYX2697YSWZg8jt2hFdGJWTTSOZ8101oIrh8da61H40JAM2dIKrpmv7Kph1nXNfGXPK31980LBfGoVEbJVu0xUXWexX/YK8nNZeLQJKT2t6XjRli/IPrzl4d+a/egwl/SGSR1qJUimTHnlajkWz6k305ULKphiZNic67sf3+IEOfYkc0059YQVou2eu9aXeqgVZzBt5s3XxuV45LnmXI+okJOcdW4P5nXQiaxHI2bMKRCaOK7jlrSJ+q5m008LIjIsa8cWE7syPCauWl5BC2vq/PJZS+SU/Tv+VL1hWbbg4Kri23q50q+R+qpY8fc5AQ5akYSNzbL3a+KmT3MF2Wu1NaZt1/bgvm+ZZ/abUcNT98HSP7dKU2t198CoDMsfsUO2VJ+lhsxFOn+Ik3fIinKuhNvB6aAjOu0zUkU1O3mrE71CcOfHrf7Ww9MEbumnFacEAAAAAABAiPFwBwAAAAAAIMR4uAMAAAAAABBiZc+5E7VSKzx4+69E2/xVp/nllpZ5os2zAubmrT1HtC2d0yDqo139fnnd/bdM+lgr2ZteeXHRtptuf0DUC1nT9z2d+0TbXY/KetZaee6Nzz5j8gdYRewUInrpSZuOYVerKjp5az+zJAx0Bono2qJb6fwii5vNCdszpPIqWOVmtR/9lDwVM/sdzcr9RK3Y3nx+AvkEKiywevnas0V9aYvp1T2dMk+F55rg9N/d/XnRtuL4N8v9nHC6eV1cXjf2PlC9OXdGrND/OSObRdvD+01+kXlNLaIta593NXKfC+fLpaW7+/r88uKUg3H0Z2Q+nLpIaflxavXXXw34qZzZz0ih+kb8Utz1wJOibg+/+voZSCVz2L1hu1WezJFVJvuU1enPPPuy6AZk5FGnst408DOs4q/BiJUWsCUuO2LlUtNR/QX5eylfMD8LL3u9HN/v2dwu6jFrSfXCgEwg0+30O9UqYd24jxneI1FrO/mlKFjn76i6TtTH5TLe9tenKZkQbQdVjtpqpfPhJK2Epg118mbGfqbQMyT7fl6r7PuI9Ru4cygt2mbLkFNZvxYAAAAAAACqDA93AAAAAAAAQqzsYVk5ayZfSs1n6jy4xy9v3a7muo4Wn8rcqepNC8x0/3hS/ZczOQfBXnw+4VTlohe/DTKBFUOrwETm2Bv7B8zrCt7kF1L99GXn+eWe3h7R9tVfTm5J6EpbCt2Nt4r61g7z/xt0F4q2XJ9Z9zN+5LtF20514bj+yq/65QVNMjbomSdfMbmDrQBLjjLLyXsJeW6/+rlr/fIj634n2h7bak/bl1P4D+7W079NLMCXr3uLaDnl1VdN4GgrjFjbWTaNWHPx46oxMGArMPSK+JTxqMgGp8Uxy5a3FOS5bA8rERUf7an+fPS6C/3y3AXHiDb3/K9P4kgrRMB57wUuPVz8+j12qWHzDxOIcq589aZ/W+bKQPLubrNO+qadA6LNbTPlTbvlvYtOE5DrdTCOlnmmv6Oj8jdm81wT6rb+Tx8VbR/90h0lv8cVP7rBLxOGVZq0dc1MD48GbCl19k7kl9jsEP5fCAAAAAAAAFWMhzsAAAAAAAAhxsMdAAAAAACAECt7zp2GNpN3YbhXBnCmB6xl93KTjyEfaDdxoy0tiYAtUQo7U8ayVhmF+7iKTXSt2OmEq/IJWGtaFoLyB7hq/V2PNXYRzA2K9Y9aw15exkMXvIxfrlP5GUasBBhRlROgRr3Jf3/vjlIPtWSVkGfHFonUi3pD/YhfHuyRn0t2+zeL7udYVc8XvuyXn3nhiyd/gBUm03qEX75l/QOi7dy0yWl3zY/+LNpOPPe5Jb/H8Lab/fK7PvqZiR5ixYrX1Pnl3IjMj1Cwxo5ErfxOZEdLz6WQiNf65VqVHGMwY66ZgdfaMX/vm3zesdkoXifrPX2mfyPqbrjTvpU5RMqF9i5z3diQWDzJo6s8dn6cWEKelF7W6tSo7HwvTy7MwzZsvrsbt8jfVsccYcaK554j+/7Pdw06xehPpb7RlDM5uZ/saPV+hvHG+aac3iXa+jo7/PJz3/Qz0XbbX2+b1PvpX7WZcbdCNamsXwsAAAAAAABVhoc7AAAAAAAAIVb2sCwvaZa89Ty1rp4IrZChOYmmpPU6Fe4z2F/0/fr6mLB2uOxPqfcQS8TZS4am9WzwsWtaFtkJYVg4DDqiM2DKt71pPiLn8NfXmtfpM3d4VI4rX7KigT5wk9w2Yr1LoYqXKN5x58dEffHpl/vl0VytaKtZ/Xa/7KnwtFSLXFK9Lmld1g5ObppzJercY0KvjlkmYw6TbqdfPvHcD4i2h+/6lV92VZTO/j17RL2uwez3qT3Fr8PVJpkz1zB9B2J3aSorW+utc9lT4VQjWXntzeZMPa/2U3pwVWWFYWmDfcXbFqp10uOtJkQunZWL0h9bI/uprdW8du3L/nPyB1hh7DM2k5Hnqz2KtzXLa21P/1DxfeYr+xydKs89v8Uv721Pi7Z6a+n5E4+eL9oKI2asitXK70RtU5uo3/jHvVatesOwtL27d/vlhCfP+1TehJ/fdsdfRdvZp5xsKmq8f3DDZlHP5YtfU6pZQEaGqsLMHQAAAAAAgBDj4Q4AAAAAAECI8XAHAAAAAAAgxMqecyfaaBZxq8sfI9pyXSbGMB6TeVcyA6OmonNqoCSjfU/55dqWo6f9/WJR+UHl8tUcEYnysZ9py/h9e7HWdHpEtBWsl0XUoBNTY5CdZ+cHL28QbW/6ZfF8ArY/vntJSds5juO84Ov7St52ttq/3crf0v0r0RY99h1+OaKGjY7+HlF/8dlcEMazuGWeX96VkflwGtIDpuKuE21P3X+fX465MvdItiBzMrhn/rep7CztPK8Gbc0m70J0UN52daVMrop8TvZvPmJyC7rqT3E1CbmfVMbk1TjEyt34p6g14K8flX3f7JrxP1qQ14kn0vLDWHzpn+y9qnexxyPykvwfexjv7hkQbdGY6d+IyrFWUMN7PkcOnvE0NJlcdEscOd4P9ZhO3PBUn2grpMz3YHREficyPfKe6KQ1JlfSYxtkWzWLW2NzLCIXKs/2m6Xma9S9zNYn1pnXqWGkVdU7GeTHFfSrUubj0XNbKmscYeYOAAAAAABAiPFwBwAAAAAAIMTKHpaVy1rLAhfks6bmJSf45fbdTxTfCdE9kxLLNBx6oymkw7DsMC1CtDAb2BNo9QT6rJi1GXy+RiLm3NZhWN97mfne/fuvioeubNrTJ+rHLmsp2lYRCtY84/pLRNPwpm/N8MFUnpYm07+79snFU5/IWHO+1an96vd9aToPqyr0D5p7m8Z6ObLY0UBDaqq9HWqFqVeIWrfAefm59I9McoHhuIobynJvM56gXrFDrfIVFi4xU45pa/TLT6Q6RFvD/Ca/fOOtBw7jXQjFGk8uZ8aSlAobTFlzKnLq3E6xpvkUKL4Yup0+IetV9rjCzB0AAAAAAIAQ4+EOAAAAAABAiPFwBwAAAAAAIMTKnnOnNm5iEwficrnzwX4CEKdTn1vrl72+LtHmtsyd9vcnzw7KQuRZkHG3IwFL1RaP5HUcN1J8+e2IarPz7ExkuXM7z857fj1c8uvConnBQr/cv0PF8idfb8rpn8zQEVWWR+9+yi+vWibbhqyUDIMOplp9szm3c45cXnjJEnOfs3m3XLIY08vLTMN6wlmWOy+N/fODPptqiUu+45c/fs4zRNvuzv1++caVpd+DoDRDwyZXWp1cCd2JW7ecnPXTofjvympKf8bMHQAAAAAAgBDj4Q4AAAAAAECIlT0sqy7Z7JdrrbLjOM7i41v88n237ZupQ6oa+fSAX+5QK65ef8vf/PIlFz5zpg6parhFylplL9Y3fbxC0PzL4uGeNdG4X07lZfhE0B71+5U6+/MFX2dc+z+Nte1+uX/l0uIbbpqBg6lAyVZT3jck29auWemXO9btmKEjqh6pwU6/rMeG3i5G+XI5cplZLnrbnoGALTHVIlZQCt+Aqffzd57jl3+hbjKHh4LuOnG47Ej8lLyNdPJB8f2YVomo6fxMhacFYeYOAAAAAABAiPFwBwAAAAAAIMR4uAMAAAAAABBi7vr16ys78AwAAAAAAKCCMXMHAAAAAAAgxHi4AwAAAAAAEGI83AEAAAAAAAgxHu4AAAAAAACEGA93AAAAAAAAQoyHOwAAAAAAACHGwx0AAAAAAIAQ4+EOAAAAAABAiPFwBwAAAAAAIMR4uAMAAAAAABBisaDGtWvXztRxVI3169eXtB19P/Xo+/Kh78uHvi8f+r586Pvyoe/Lh74vH/q+fOj78qHvy6dY3zNzBwAAAAAAIMR4uAMAAAAAABBiPNwBAAAAAAAIMR7uAAAAAAAAhBgPdwAAAAAAAEKMhzsAAAAAAAAhxsMdAAAAAACAEOPhDgAAAAAAQIjxcAcAAAAAACDEYuU+gEn7xja/+PS3HCma7qmZ6YMBAAAAgFnMdf1i1JVN+YLnlyOubCzo/Xie/hcAswAzdwAAAAAAAEKMhzsAAAAAAAAhFp6wLCsMy3FkKNY935VtZ4/IMK1766bvsAAAAABg1lHhVa5VzxfGBFv5CocKu7L3S4gWMGswcwcAAAAAACDEeLgDAAAAAAAQYjzcAQAAAAAACLHQ5Nw5+01qufMrn/LLp71e5dj53yfVq4+brsMCAAAAgFnPC8izM7EdkWcHmI2YuQMAAAAAABBiPNwBAAAAAAAIsVkdlnV22pTv/d4W2fbm1abtyidk29tlGNa9Seu171jtAABmm2ar3K/aWqxyn2prVPXBKToeAJUsapXzk3zdRF8LzDjCp2albS+R9eYaU+7slG3z5sn63Oum55hQGZi5AwAAAAAAEGI83AEAAAAAAAgxHu4AAAAAAACE2KzKuXN2Vtbv/c5mv3z6m2SunHuv3OiXT/6341WbXAr9rLeZ197nyNw95OABgJmn/7JQcAYCNo7aGyojU3REACqZq+q3fOFNfrl932bRduk37ir6Ol3/ybvP8cuv//pdDqaS7m3yxyA8dr9U1puTpjyYkm1xu1wo3uY4jrPf2m9OfSWW/2YiR4hKxMwdAAAAAACAEOPhDgAAAAAAQIjNqrCse698StSf9qaj/fKD35dtZ73HtN33ZRmGdeq75FLo933lUb985ntkGNb975jcsQIAJq8wZqJxdtzt/rFxd9GmSCwhN83Zc52Zwn/Y4lZYRJb+nEl2QAo9f/j++Lk3iHp6+6/98hxXjj/eT5/rl91L/yzaTpwj9xs7+KBf/vGLmkXbG37bP6ljrXRXf9OUWxtl24svM+V3fuU+0fbN954p6pt6TPnYtik6ODiOM40Bca615wpcpn2HFTLVUiPbfveIKbeptofXmfKxJ8m2+26X9Ze/wJQXJmVb32us97828FBRoZi5AwAAAAAAEGI83AEAAAAAAAgxHu4AAAAAAACEWPlz7nzbLD+58iVHi6YRKxRz4RtUmxUeXXeJzLHz8Cb5Fke88RS/fP83HhNtJw2YwMbHmko6YgDAJCxYssYvD/VnRNvw0H6/fMLZJ4u2zsFWv9yxQea/aF6xVr5JtMEv9g6pXD375PiPEpBnZ8bov7bVWakphg7xMUStss6VkTuMYwo7+yb3FZ+WY8eDH3+6Xz72g7eJtsW3F+/wR/JniPprfmHyPu77+nly49/+tsQjrWzvvelqUf/tQXMtcB+Waze/8gNmDF96QObY+dJPvivqH/zsbr+8feQ5om1V3bMndayVwB4P1Krajp3qZdlCmbPuqYPyumybWA4eezQL2NJVe62AHDxRq8O3qJRbK5aYck59MM9/niln1KB94bmyXsib8pB6/7nh78JpYZ9pEXXa5YNOUXVh9vQXahZi5g4AAAAAAECI8XAHAAAAAAAgxMoelnXkq47xy3r292//9Em/vPrlHxdtTcuX++Xj5sg5Uo88ukfUe+zKk3J9udGBCRwsAGDS2vdtKGm7J+69S/2L/XcIOd73bn1YbZt3MA579dknvi+a1u0xF8L29r2irZA3E/yXJOVc8QOeXMs1EjMX8TnNS0TbqRe+c2LHWyViC005f1C2xQPWQh8zrdxaTrohLduGVL2aHL3YrBPc07tftB37wf16c1/HUyZMa0mj7OyOvgdE3V5Efcm7CcMaz9I1chn600/Y7pd/mzxStM3r/Te/XPseuZ/2/32rqD/n/J/75aufXOPgH4KugqNWOSgM6/CiewJiVyo8bGh+vSmPDMq2b48s9stDGTmupNOmY2JJ2fbfc/eJ+ld6zfX1o3WyLWnF5I28Tr5/3TVFD7vieVaX6jCsSMKEJxYy8jsRFIaVUE9RdDhduTBzBwAAAAAAIMR4uAMAAAAAABBiPNwBAAAAAAAIsbLn3Nn2LVOOflzGGK52Plb0dU/t3mUqe+sC30OEPMpV052n3neIAwRQsbwDMgA5cpIJUPaG5BKhzkjx2PQxj8nb7NfVqv2MOjgE3Z8FE/QcjcvrRD6rsgvYzVHZVNVrQlsx5u7xby7fcVS5uaq+YKcpX/e940Xb2hWmfuff/ijaTjnlAll/6c1mP18/SrSd/qGtEz/QCrFlv0k4lA3YTrOHin2DFZ4kZAa890i9kHaAqFkKfWVELvS84//pjV81+YOqKKUvVP6Jy025JSnb3v2F0t/xf95hys3qZ9h7vlj6fsIup/LaxALz2hTP8xXkV2P+xeTZCXo7nXOnqgUM4zrPTqlmS44djZk7AAAAAAAAIcbDHQAAAAAAgBAre1iWPfc1P9n18Qojwe1Ra95hXq0J2uDgcLSqKbG9Px9/O0y5I+fJsKFtnZObVlh15pjiQw8/Jpq8Drs2gf7UQ1eXXaneMCzv0U+K+v/8eL1f/sTXbij+woClJ//rA3Ip3E9+9kr1plZ5lk6ZLYtYqynnest3HFXIjg7sUm1dt5vyiedtFG3b/2xe+b/XD4u2dy7aJupb/2LKpz+7esOwlsZl/dwLTvTL193yeOk7sqJclqvwzt2MKyXZNfSkXz6iQS9THrBYd96EYu0e8yfoMTG7kzm0ClT676e6r5ggn+gN/65ae0rfzzev98vuby5VrdVzP5pXp/Ld55nyM/4u215wdrNfzuXkC//8oDnvz1Dv8YCqX3hWk18uZOV34M8PDzmYvGUtsr5Hd2cIxn9m7gAAAAAAAIQYD3cAAAAAAABCjIc7AAAAAAAAIVb+nDtW2pCgSNqnqbZHrHJro2zrHZR1O8/OEkeu17cveYh8PRVtsVWeyPJ8q/xS4/lPFy2Dv9J5NALiqnFYMsPEmk+KNT6ccfEVRTeLJGROo0LWxJAnk7ItrVchHTXbxuqbRFNueKDEAw0/vQr8a55rlmhuH/lP0XblVcXXYH3ZK0xegOb5zbLthS8Q9V/9QS4ZjX+agjw7br1cN9cbVTnsGJLGZV8Fr3/zHNF2yQu7TeXTMrnLIzsP+uX+pOz7e//yhHyT91nlD03mKCtDfb2sb7zP5NnRKRaDMlO4VgqTWJNM5BPpkYuqc9r/U1xdF3usc3tC94Lmpv7MVfKe/Z6dKoddzlxP29RvgR79WwCO4zjOByIvm5L9fNC9ZEr2E0b2j2dX5fn66Pbir3vLsn6/3D9PnrB/ftCUGxapnR6QY87/O8Kc9yNz5X5ufbj4+1eT3JM/EfXYca8vuq338Ff88he++iPR9sLXvlnUT3zBu6fg6KYXM3cAAAAAAABCjIc7AAAAAAAAIcbDHQAAAAAAgBAre86dJStNuVu1paxnT+uCopozQdl6HMdxTOziAUfm2DnuZFN+svg7VKaY6YuP/+Bm0bRwqwk4vzcu+/OMp5ucO11nnCjaIt/5D1H/z71P+eXf9WVE28suOHlix1uhFqtv4f5c8W1XNZuNs57Mz7CixRP1nUPmc6vNy7ZRWa0u1mk4phtaTNEdkOernVYnm1VtrhyDPCtNQDXl2NHqj/2YqH/0C//ml1NtC0Tbv7/HjB1ujcyOEXPMl2LjWWtFW/PpJ4j6W45Z5pczrswBcfVXvlXKYaMIbzh96I0Q6McP9sh/eMwUb/rhCtF0zTqTCy/RJBN73dtVo/aT8otf+obczwecnRM9zNDa3CfrbzjDJP5q6ZRtfXtN/pZBdTFonGfuG5tUvot56j1r55tyNiETjd29V+WIqWRZefNy9PJz/HKd2jQo2+Uxi6zt5sokSiuS8n501xNmjO8ZlNflarbc6rZ69ROp3TrXl8pUXk7KOl3dgHtRx3Gcbuvy2qAuDTvlV6bi2GdhRP3kvGOvKZ8zV7a95Hq7JpNCnW8NLG5Gdv4Faj8v/kXx/eQuNeVq/ka8+D2fFfXbf/4Ov9wUk9fP//rKj/1y3+6Dou1XP/2NqH/svS/yy/mIvC5/5gr5W7pcmLkDAAAAAAAQYjzcAQAAAAAACLGyh2XNf4Up73udbItZE99ynm4zetOHWojSzA8sqMdZ0ZZDHmLlypnpZPvaU6JpdJnp8HlpOb/ysftv8cvfe9FJgW8x8vnr/HJf+hBzPKtUS0yGjjTGTH/nZOSVMzpi+nB/Nrg/l9Waz7ehQS6r+GRfhc+ZLZGrlzDvM0Uv4NF3YcyqrnIMcq12/RbVvGzup/7zh375Q5/7oGhLea1+ORKRA36tVf3MWZc6Qd7z2Q/75aZINccfFherl+OB3UtqlrGTsC62w4cYNyK11sZJ+QUq9FXzBHFjr5zx7Zz0XFP+2OA20ZZuNBeATR3BS0mfcoEpfy+/c7KHV3G60qbfOlXYTstS8z1oVgO+Z0VXPXRA7lOPKmfWmyn+I4NVFIY1hry6xRJmMDlijryZSees+xd1nxMrmDCT9Y/KkBN9PV3RZrWpxu0610MV2T1systV6JV9Pe1Ww3LC+hrsOMSQbf1MGPPbqtLZ/93aa2SbfTrXqnP7OVYIpz6ZE3VmHJnT3Cob1cbnR0zIrr5miywBarAasX5n16njrjRD2/aI+rvffqVfdtW94b5uc53oHnOTfoeorZ1v7nNqatQHPEtU2dcRAAAAAACgsvBwBwAAAAAAIMR4uAMAAAAAABBiZc+5E7ViBZfOaxFtPb0mBm5um1wO0XNNUFz7wQ7R1rpgkajHXRNbl5SpBpyGs1UAfFUxuV5Ozj4hWn7/x6v88ujmXtHWE7ViDFV4+TNOkwte3nr9m/1y05ZhB2PlWuTXsC1mAqT3dw2Jtqh9/qr0F3NU3K1nhZSm4jzHHU9MjYBZq0/jroqltQL6M3mZ76hWxUNn7SBoTwbwFqo56Y7l8x/+oqg/eO8v/fINv/mDaMtYff/JL71dtLk7Zb6wvj6z3vEVX/z+YR9nJcoNy8EjWWuNDzE5VmR0wjv7dSrJRTppbdtPjp3xNCQbRf3x3QN+efl8eZ8TidjjjMy5c8JcOT7lIubi0KKWeRXJxKrM7x8LOA+7zPfg6CbVZp3a586XTbvUV6Kz14xBG/smdnyVLJcxHbV6uVzLee3qVX554x6Z1CiWN2PQE3fJPFQvP2GJfJO55p4z6snPet9D5v4+PaLW6q4iuwP+6/PUrWHWuj9ZpX4vpdQ9Z8oanjqrLL2dzv1ks7uivr5FtCWsPh3KyJtBz7ppv2ad/E7867JmUY/XmwErqe5VIxHrN1twqraKtq1H/uYsFEyfLZ7bItqOtnJ33bt5t2g7de0yUU9av3v7PXn/6TidzmzALz4AAAAAAIAQ4+EOAAAAAABAiJU9LMuWjssloSPZLr/clpOHur3PhKvUJOTcweGuLlHP5Isv37onaG5dxWv3S9/5zCdES96aynfsy48SbS+ZY6bXuuerXXqyQ9/1jXsP7xCrQP+wnDPbN2imZtbWy7muQyOm3KYezerZlw/e+F9+eeGCFtHmnvL+CR9nJcqp1eQj1uzWnCt7NB4z53YsJs/zgis/p1yqyuYoT4HTz355uQ+hakWsWMHRwdLjBtOeOs/7qngOeIn6BuRU8ePnmTCtkbzs++akuSd61nIZ8pxXy07fv7vfLxccPVUc47FH8acGim7mPDXtR1L5dhzoE/WdnQ/65QOD8h49O2gtUS+jGJ1bt8k0DANPFL+/dxyzn4gKpCmMWdC+Oo2o4d4eObqDutZxnLzoQj1XoLLjz4POHrutoEKXR60ObmuUY/pIxnT4S4+eE/iOc5tqrRYZlpUaNmFZrorQraa0AKOefKaQrDN9+JAKvbI/pqh6LrDuCbmkej4EfcjMHQAAAAAAgBDj4Q4AAAAAAECI8XAHAAAAAAAgxMqec8deZXVRgwwOPLDI5HbZ3y/zkuSsPDpJFeY/Jto8Yj3DmmzAoZuUda+yllXcOCLra6xlQU9rlnGL7/7GfSXvd+58E7zY1UGM83jaB+UJPKfOxM92q89lyO5C1Z3z1H4PdplvwrIXkGNnPDplSMTKGZWPysZ0QB6dXNEWTAnr5G5csEA0DW5oF/VknRmvauLyk+nvL3H8jzTIemFo/O0qRGoaTuB4Xa2oZ0dGi2xZXZ5QeYlObDX3Mi218pbszj2DJe/XXsk7IH0MLFN2R2LdYrbWLxRNvYMHHTjOW9/+WlG/6ts/8suttXK8farTGm/H3NDLRDD27f3LX3iWaPvl7x7yy+TYGd/wmH+x/+Zf+u+lSETOFShUU3IXxU7Z0jMoT+AW63fuUFpeCxJbus12jfI7MTAo70EKpy7xy9t2ypww3kq7oo6tivLMdg9kRH1OwZyjSfmz1klbm47JHBgwdMRluiMnO0vSDjJzBwAAAAAAIMR4uAMAAAAAABBiMx6WdboKM4lY0528J+TSZANxMy1tyapm0ZbZZ17o1sh5Zo1R+cxqsNssC5dYIpqczL5DHvI/D66ywrAO5ZQzTUjcJ7+7UbR97LLFfrmhQS7lV9sqw9fe+aknpuHoKlsua6azDqvpgEnrVM+pthb1bW5rMvMO88xILok9dTuqQlXy1rAyZtFP3b/097g2PHGzX15zwkWlv7DTFAc724tv5zhOOmM+uLRe57VUFR6GNYZnX0MDTt5DTem2XkoYVolc02m7uuR5d84Scz3Vy68OZeUAtbVrlswHn2VOsZbS7lVRbjun6k2sz6b6wrBKGzve8Z8/EPUTlpv7ey8ub16OXGzuK2Pqfn5gRN5jHug2oSzX/670lAGVrsQRfRyTu2YWCtUVnG7/b1VkjujvuzrkdfCiRhOuHE/IV6aPMvHnB9WnllY3+Hbw5/3d6hO2LgUFFdYYkdHSlU2dkoNDpjNy6nKZtNY/1yGcQaFWsyUMS2PmDgAAAAAAQIjxcAcAAAAAACDEeLgDAAAAAAAQYjOec+dBmaLFOc2KV3tIBS7WuSZBz/ZtMha9vnaOX47l5DOqfKZ4YgCdY+fkflNeJ9P6VLVrbusyFRXOubLeBLHXJeWHNtxdXXG30yFpJaIak8rF+oc6dZrvUl1/xEWfndoDqwKeFW6uQ2kjcdPhnvpk9IjjZR2M4x0fvckvP/r4jaLtlBMvnpo3yVXvEqyT5Y1JGlVsw+k9jmr0VI/J56dXfV6QNeuzRgryPqfOlR8GGY7GV1dvleOybWfP1LyHvfLwjqnZZUiNuRIW3XLPPnNPP6AutqsXmHvMgivvMevjnOmlmGtlgukcu7hzURHHvs+R9KfL8vL/MJG0Kw115nO5dr3Mz3XxapNzJxqV531Edf6PHzY/ZvOvL/5+aT4in52mTndLOiAxaemj2uzBzB0AAAAAAIAQ4+EOAAAAAABAiM14WJamQ7FskYiZXp9U896GR7udqUAoVhEB887e+O3NM3ccVcgLmOOZscthmBtYQQpZOvxwnXGiGfC3PCnX5Ny7+Q9+eekxL5yxY4Lj1CbN33lG04S1zaSg3n6wwx5zZumaq7Nc1EoF8NQ0rVJe3aFYk+MFXE63tA8Wbxxj8ot+V7JCvTVeDMu2oB4LCrWidw+fa3X+ZU9bLNqufmR/yfvJXjpVR1RF7M4PGoCUMJ73zNwBAAAAAAAIMR7uAAAAAAAAhBgPdwAAAAAAAEKs7Dl3ggzl7YQ8xJtPvVOs8qNlOwpIo2EM8ARKMDxq1h6+55EfiLbWBEHk5UKenfKpi5u1ujPZ4YAtMRlHLzb3kZlReR958MBMHw3+z+plCb/8yK5MwJaaXpg4qK16b6YarVM9WiPbOlIzeywwsjmzHndNQiad/bdTF/rlHz5ceoKwgrp8Z62vQd01Ezu+ShavN+NBZqiMBzIDmLkDAAAAAAAQYjzcAQAAAAAACLFZHZblWqFY1Tu5cjp1WeVlouXl7/6QX/7l198+Q8cDx3GcNmtZ4qERwiVmEouqTq9kvNlUVAf/dfOdM3sw8DW2xv3yYG+2jEdSfRbPSfvlPjUTn/Ho8DU2zPHLZ58k24bz3X55fQeh/5MzuTOzK2XCU+KqzQ5WGRtBxDehFHnrT/cqKstZ1WDK2ys8PGW2GRwxZ3Q8rj6ZCZza8Z9O0QFVkbnWUuj7K3wcYeYOAAAAAABAiPFwBwAAAAAAIMR4uAMAAAAAABBi7vr16ys78AwAAAAAAKCCMXMHAAAAAAAgxHi4AwAAAAAAEGI83AEAAAAAAAgxHu4AAAAAAACEGA93AAAAAAAAQoyHOwAAAAAAACHGwx0AAAAAAIAQ4+EOAAAAAABAiPFwBwAAAAAAIMR4uAMAAAAAABBisaDGtWvXztRxVI3169eXtB19P/Xo+/Kh78uHvi8f+r586Pvyoe/Lh74vH/q+fOj78qHvy6dY3zNzBwAAAAAAIMR4uAMAAAAAABBiPNwBAAAAAAAIMR7uAAAAAAAAhBgPdwAAAAAAAEKMhzsAAAAAAAAhxsMdAAAAAACAEOPhDgAAAAAAQIjxcAcAAAAAACDEYuU+AAAAAAAAKtXXmgt++fJ+Ob/iq015v/yegeiMHRMqDzN3AAAAAAAAQoyHOwAAAAAAACFGWBYAAAAAABNgh1o5jgy3+mJjTrTl8qb+FSsMy3Ecp+CZ/Xy8Li3aWuLy5/p7+gnbQnHM3AEAAAAAAAgxHu4AAAAAAACEGA93AAAAAAAAQoycOxjX1+at88uxmDxNPM+U8xkZFxpLJovuU+/nbXuOnfwBAgAAIHT62j9tKnnV6JrcI/mszGcSjbuiXt9Q65fjjR+csuMDbDqvji1TkG1X2Hl2CvLkzkWsORX2jynHcUZzZj8FR7al9Hs0mfd4/wA/5Uux9sS1fnn94+vLeCTTj5k7AAAAAAAAIcbDHQAAAAAAgBALz1wuveqbnsZZ6msn8roq8sWWh0Q9XTDP/VJpuZSfHV6Vz8upg+mMnDr4jEuO98vrbtwk2q5cZuqEaAEAKl9c1bNTtF87XMUruhUwU7IDX/LLv7jmt6Lt3d+5wS+vf7JHtP3q8//mlzv7h0Xb1355q6jnMzV+OTPwBdGWaPrPCR5xZfqPX8o+/M7Lm03lfYNy4y+bMDdnxadk285PiGrsMvO55a5uOqxjnO3s5c0dx3G+1GCN2xEZKjhihVsND/eLtsedhF+eo8b+duvaoH+c51S9YP2Y/WKjTI/xwcHi6TGqycknnizq6x5fV5bjKAdm7gAAAAAAAIQYD3cAAAAAAABCjIc7AAAAAAAAITa7cu7oMEE7jPBwcuXYr9WPs4qvblfxPt/8iF/2VMxoPm8iPONxmSOgYC3J50Zkh0bUfu775ZN++RmXrBFtD/1a5uABUNlym472y7Fjn5rx9/eeXO2X3eO2zPj7z1b9+z7ml9WKq048bsb4fCYj2qIJeQthr/ratOSTU3eAFWWqcuxo5NnB7PKrP5h7vJs2ydwjS45a7JfnL0iItp/d0eGXz1oms420ti4W9T0Huv3ye799i2gb7v6iX66fU2XLpF/8G7/461/oH1CmT4/dL/t3k527a2e3I8n9nFQw2254xk7Rlr57RalHOmsFLn+eN206JWx2cMgv/1D96By0ftjqn7xx69ow4MjfUg3q57qdc+fxQZlT6blJ87n9OT1n7MFXiWrKsaMxcwcAAAAAACDEeLgDAAAAAAAQYuUPy7IjftJFt5o6ev5cFYdlJRPm2V5Bzeju7Bvxy5HCiGiLRMwU2nhBTunMxWW9EDH1e69/TO4naj787yzeKNqiUfNB6cnmb9tzjIOxWlc/R9R7t9xWpiMBxleOUCwboVj/0Lfvv0X9jrtNv9TE5UXSbTBL3M6tHRBtQ848Ue/e22neY+dHRFvLis9O7mCrSMStF/WCN2rXSt5P3KkV9awzWmRLYOqM9H9J1H/z55v98uueL8eKv95rQknOPqJVtG144n6/PNDRJ9p2HGgT9T3XmXvHS77xdNE2mDJhLrlBeWyxxg+MOf6Kkn+BXzx4Y41oavio6ftNn5JjjvtO6x7+CLlLb/Crov7wJ6zQobXrJnecs5i9/LkO0XKtFBQDA/J3z1VW2NuoGrdfcPHL/HJ3rwzRHR4w+2w9VYYq3nbtPlE/8RXL/XLqxz8Wba3pBQ6qGzN3AAAAAAAAQoyHOwAAAAAAACHGwx0AAAAAAIAQK3/OnelaFXS2vN9sFjUxnQd6+0RTJGae+w1kUqKt1lrvtk+dQg1ZGds/ai/nNyCX61s01yzRFwl8zCiz7nx32Wa//NZKyL/TeIasDz7gFxe/5iuiKZcysdMdv/4P0dZbf7Lcz1kXmPJ9Hz6sQ6wWCWtpZ1edd9mcqRf0etFq2UqWJT48133sBaLeVmNi2HdGFom2OQPbRT3aZHLEvORDf5iGowun4a5P++W//vlO0ZZ0TF619j55bjcOm9xofdG5oq05IXMoeTkzxt/294OiLdX9Ob9cM4fxaDwFbzigVV8ki+fgIcdOaSJFyo5jLxaNUo2Oyhvsrshav/zRd/xStL30nSf65b8dlNfL+Y3mPmf9gLzH++OVj8g3TZvvwaX/sUk0HVhv3QPpS3SlK/QUbRr6/d9MZY3sM++b5h4o+s4u0baqTX5OIoPds1fLN1lf0lHOKl9ryMh/sPLqOAW9nLzpCzcpR48FadOnjzecK9p2mnRSzuMH5B6j1m5e1nyk3Gdsm6g/+TNT/9czThVtix61viP85q1KzNwBAAAAAAAIMR7uAAAAAAAAhFj5w7JQNu85eLxffs7x82Vj2kzT3901JJoaaqxlymNx0Zbw5GTmpFWP1TeIttu3yv1WLSsMy3EcZ8udv/PLHTvuEW1PP32NX3Z/LXeTufo4Ud/anfbLrQ2/FW2LznzRpA610mUyk52MTxjW4br02WYa8hXX3CbakkkTQvq8k+V5/rU7HhL1uBWt8vaXnibavv1ruW0lKwx8XtT7h0yozoI2GdLz4OPdfvlnn9so2vLWtO6GxXK8zw+o0MUh8/158+dOEW093cXDBFCK0pdCR2kKRcpaVNV1gMZUcFXckBfCa0osKv8PL3uaWeL8em9AtP3io2aMj6sOPuGdJpTl7qvlPdBRtXLbSK0Zc+qSMhS0kDJjXsEK19VcV/W9F76+H+P3i4u3PfLCknaR/6YMw91SZDvHcRznG/VBraFw+VCiaNtXm2R8k1cw50hzUv6UfjJrhWKpnzmPBvzsyVuD0K/ukGFYKmBM+M0DnepflgVsDcdxHO+2L4p63XM+6Jd1ULN+UGL/SlDD0awJiGbmDgAAAAAAQIjxcAcAAAAAACDEeLgDAAAAAAAQYuTcgeM4jnPXxg5RT9kx0DrAvN/+Bx2brCLX7ceHhcnl2ImoddLHLkNdWVaf+xpTien1O/v9UrJWfn0Tp7xJbupZMdCTfIwbjcoX5vPh73tv80/8snvM60WbnVEkaAXJfz1tjaj/7qENor7Y+v6Mqq9Ib/i7cErEVf2nf9027naO4zgR69O4Z1PpeXM2V1GOHU1/V489+7N+ub1Xnd0jVjko7dRm9bqA1bnvesejqlHX8Q/2GH84uT5KHb0qW+kLxpfuUDl2gm6kS83iFsYcO47jOPnhL/vlweG0aFu64jOT2uc3P3enqUykW/pkdcXRn/TLw31XFH2ZN2ad9HB+FpJ9Vk42l2BS1dOqbufZ0d+S1CTfs3y+1ixHC69g95s8R1KuyXPTnpdrmmeDBp0Sh/ugHDuYpJrVftG1cuwcyphvz8IT/eLowccP86CmBzN3AAAAAAAAQoyHOwAAAAAAACFGWFYVsydctrXJBd3295S6oJucf5islftJjx7+wnAVGYY17wJT7pRLoUccs2RoIWA2bTqn5nTG1DKOuWFTnmQXVkIY1sIFi0S9fu0bim5rBzPMnS/buqzIRR2Gpe23yuec3SDa7rp7cuGJlaCups0vp1KlL41tn+l6Av0ctRZl2trYVX++SI84VeP+ddtFPVdvzu45apyO7jHj9HCiTrTFI+Y2oW9ILmc8r7ZZ1GMxM2B19svQoLZF5sPoOBC+KfsT0b1fjs1zFttXWz3h3mzbuKBFtAy29/nlY5pkIOPmAR16Zep1LXIJ45G+rqDDrSiTvWIFBaAk1KCTUZde+zLdqOJNBys8Qs5eNryrt/Rrm2utTO7piB7r1qVW9WdB9WfCuk4P9sq2uF6nuBgv/Pc5TnKlrKfte2+5RHzJom2yrsKPxAdVAXMFLu+X/4evWcuf6+/8xwaX+uUW9Uu6xhovUjr0Kuhmxt5HRIWB5SshVHBmvf0NF4v6t398Y9FtF0VMLoUDBTkgvfyko0X9V4+ZUKx58lLrdMySS234v40AAAAAAABVjIc7AAAAAAAAIcbDHQAAAAAAgBCb+Zw7ev3bqYhHrsRVDGfAS591il++8eGnim4XlykYHDdvngnWxKKibSQTsGhojapXdtqFQK853yzJ95e/3Cfa2q2YzQXqdV6L+TD6h+WJHk3Ir/NIzuR2kFlnHEdHTleyg+0yt0tLkwn2v+hs2cM//5v5Htg5dhzHcY6fY871J7vleb66RW77VJ8pV3OOHW0kNXzojcZhn+mtzW7xRsdxBgfMP8zVJ36F59zJD3zeL7//M7eKtgtOPt4v33DtDtFmd2G96qS+gPfrHO4v2tai6kcvPcovdxzYGrDX8PvdVZeL+rXffJ9ffs07P1f0dXaOHceReWBqo/p2rfjNUzXl2JmIoGXS9SLPNk+NMUG3nJWeY0dzXdMbm/bInFwXn2m+8zfeL7/znr2pTnhkSai+1yNO2rpOJ5tk24IWlTOmiEhEnhmhzPOYl9fW1tXz/PJQhzwps/3dxfdj5XqJNsokRvkBdeYX5lkVdcMUQnopdJvOu2WrS8oftvmU6e9UwE8ife8St96joNqCxi6M7/pr/1y07Vhniagn5pgPqrZT5qg62C/v4e2P5mnJ1aLtFmfLBI9yejBzBwAAAAAAIMR4uAMAAAAAABBiPNwBAAAAAAAIsZnPuaPjkZPW86W0iiK0YxwbZG4XZ9gKZJxIHh8dNxkUD1lh9H/9ujse9csL5tSLtvolrX55eCAj2hJR02mFiNxrY60Mni7EzH4Lw/KDGUxVby6Sa39xpV9ubpgr2pqbTHKiXFyeoJ71HUnmZX/GI7XyTeY3+8V8RGUUONg5oeMNN/l/Hxwx5+wf7pS5R+wBUT/53tRdfLDY3ifrUevbllSB1RWe9kVQKbmcXN58Fovkae8cCEgTMr/ZfBrZjLxORKNyDGqtMdvm+ycXmW7nkXAcx/F00o1ZKp8zx/ntq5tF2x//9xi//JdfbRNt3dYQPxyQX0T3wpjcI9a1uE9dh2/6zb/75TlL/9OpZG/4n6+L+oufca5fPnnt6aJtZNTkBEtmZd6M/btNhpE9WTkiNTe3iPrAsLluPP20E0Tb3ff9pYSjrny16n5l1Epsoc/tOmvTvDrRdR6YrFWPxOTnlMpVdnaMrDXmnHviMtF25JWv9st/O/tToq3Xzrmobk/qreuGp7qvQb2/fReZlil/nI17P2IqATlTKkJO5rzp3WLq0VijaHMT5l4xGpEX6WjSjCPJhfKeMjpHvmXvDjN2RV35Hvn8YAkHPbtc3l98voPOx/MxJ+eXPzksf0rbvdZWK3+gRq2xIheQILag7msi6o60LmJem1M5otqHcw4cZ0UiIeqdC87yywM9D4m2WKe51iaTsq937JXfrcblJl/thgMbD/s4pwMzdwAAAAAAAEKMhzsAAAAAAAAhNvNhWcrL3/EGv3znr38p2uoiZqpZXk1fa8iaeeQbdwdPQVu+0iwfPZiT07R69/SVfKxhFxRYEFdTVhs806dNjXLaZjpt9rSvXwaZuO6oqK+aZ6ZqZhNy6mD4Jm1OjzpXnb9Re06ynNKZiZrzfqAg+9oZlPUFMRP3kneYpvl/8jkzH3zUqRFt8agJKyy48htTZ4XmDOXlea97N2GFyGX1N09/bhUsFxD2WlcnJ9gfvczE8UTUHPpojflOLK9VsV6qe7f3mO9IISr/ftG7u7SguLCEYWnRmOm30S1nirYN6/eatrSMg2iKFI9ZcOOmv+e1Bi8t3NFhwj1d9aejQtDJUOEGd9/ll3d3yvCFuS2mnovK8b514SK/vPXA9sD3OHaZWdr1yUcfntRxViL7NPTU+sK1VvhlQX0F7KiI4XzweFBj7SdyiG0rTcwac2Ix+ZNi8VITlp9Q48GiJjWOWzLWULFocV3R7RzHcbo6zZjuZuU9pgxlkW25oS/75VjD+wLfI5Rcq39b5bji9ppzNJ+R56tr3Z8MbAqIlXYcJ2KFvbhxOa45w07oBS2N3maFijv9sq2x3nwPsuqcdBKmLapDoD1z4ncOB+UXcZxYnen7TGVHfk5ax3CvqB9XsMKTszIVSTJpxpl1aX2fKDt4TfvjfnkgOzvva5i5AwAAAAAAEGI83AEAAAAAAAgxHu4AAAAAAACEWNlz7uSt5RBfcdlLRNuDN/zcL486coltN95k1XpE2+qTW0W9btQENl50yfNF27e+8IuJHG7lUo/5Wq3luPd1yew4EXuZYJVsZN5cmcMknTEbRGM8SxxPb0ouNb/IWn6yZ0DGfkYCwvnn1MgY0lHPfLncPEG548k6KVkPCJ9NF28aI1OopgXPJyeSlud9faPJC9A/KAP2rRXUnT9ukfs5ep4cV0aj5lyPjFT6+rdS0LLlxxxp8uXoc3mkEDCwWGP4YLtcEjRoVImrXfb0dAdsXdkSdeYcjafkes0j3SZ3wrDK85WMFs+VNj8qc1z0tJtFoRPZfr151bLP0XxEjhU1MZOXxC0E5U6Qn0t9UuaLiVnLnY/JlDE7UzJMmeJZbRzHvuWLxuXPjcyoObe9uOzPiGdGsg1b5P3nnFaZNzOaNtu6KnlkIW86P6rzirkVfm3wTOfXZOWYM2zlP3Oj6megF3CfHlHLelsne079DqsEwUujF79miuXl5U8ix/PMt6Re/SbKe+azWN6mXqi+XXnrnr5Wfbf6U+TYdBzHyaiveM5KdxlRSaGCVo9fqOoDafP9yehTZJb81OLXNgAAAAAAQIjxcAcAAAAAACDEyh6WdbDDhC/Uqlludcec5Zfv/9XfRdt3v2GWLnTVlFlXTbd880XH+OXv/2HnZA+1oumlh9t7zeeSzuTVtmbK4ZxmOXUwLyMtnH0DZh5cTdnPttkpoaZUHuwwndhYJ+f4FXJmHuy8Jvk6z5OdP9AXvJQiUE41aknzfNbMi43EZBhupGD+DnHkIjX1Xs2D3XPAhNpFxgQnVbag/61nLbO9uFmG9HjWFO+Yiv1MWSEnrrpOeOod+0dM39fXyc930XwZLl1N0kOmD5vUn9Qam8xyw+t6Voq2QmZH0X125GW4ypL8cX55n16bF47jOI7rqdCGiAnxGcrI6+X8OvN9WZCQ57L+nnWkKzz2ylIY/rL8B3sZ+DFbm7bnv2WNaLn5mxv8cn2NvI8cSpn+bKuXoUAFFVPanTLtCXUP9MAfD/jlmqXys89kzLYP/P1y0XbGeV9zws+cz8NqOHAbmv2yl5Hh/NnMQaumPtGCjF3J2t8Ede9facYuix4QlmUtER/15NhQcKzl49Va6MND5neXOzbAU+i3xhxvloQCzTYJVXet03lA9VlLgymvVq/z1Ee91Y7omqV9z8wdAAAAAACAEOPhDgAAAAAAQIjxcAcAAAAAACDEyp4F5d4bzFLkK970CtG2bPF8v/zWN18o2t76LhX3G6Ct/r1mn8foaDo4juOsmlMn6ru7TTx/PCbjzYd6TBx1nSPjdTudLlG3T7A1i2Sehwf3yJwB1WpgRAYrN9abXstlZVvP0CRj+935su51jL8dpkTQktT4By8r87fEakzuhEhOBjI/daD0peWj1p8sCrM0Hnq62Onm8nl55hVyZixpishlQHuzpu9T6nM5mE5ZNXkt0Os825mSljZUTx6SQ7n4fd/1yw9/7y2i7cl9phz1ZI6diZy+qaQ58c9US8Den3LgOE5Bnb+5jEng0pqUf+scGjHfH71Kbkb9y4UXX+KXb3lgm2h79TnH+uVoovjy2z/dc438h7/NzqW6I/XvK9rmjXxFbWz1aU6ehC96u8kRddN3nhJtI6Pmc8mpISevhpVITZNfvuBlq9TbW9+J89Sx2dsVbQkxt9aUPdn33pCVhMfV19ZJXjQT8jeEkyn9mh0Geln0sTl4jGHr91OiSf5GSibM6waHRkVb72jpfW9noiK75viOWyV/c27cYT6XhbLJ2TiBn6OtVk6ln33xzaLthZd/p/QdTaOKHNMAAAAAAACqBQ93AAAAAAAAQqzsYVn2Efzihl+KpuMWm/mYT2yS02A/+D/v9Mu1NXLZ3NUrFol6NGWWQ/z1TfdM+lAr2R1PyjCdFQvMlE43KufFNs2zpwvL6Z4tI3JJy4Fh004YVjGyD6PWAn6xmPyKzmm2ptqqWdtRVe/uHfLLecKwZpT91JzglPFt2CenbZ+0wkxf1mPOUQvNGB+Jyr9JdKupzd2sAj2uiGv68IleOf37iBYzybtnSF5rFzeYz6WQl6/rHJV9H7M+t3Ud8syPuLMzzGQm3Pnrq/zyspP+VbQtnjvglx+88++irSnR4pdzGRUc5DaJatQKp/vMN/5LtD3nHZ+Z0PGGmT7L7ODEjFqWuMZqjKr1bq2Z945asdg5ToWx33Lj9UWP57rrHy7aJv20xO1mL7fuvYfe6J+WtZrxqHdUrm8+v7H4mNM9Iu+XClnz4fzxZ5tFm64XU5HRu3Yolls8ODzZJM/ldP+AVdN//w+4m6mwMKxD0WFaNvuq6A3LEGjXGsa75eXTmVdnjV5qIIsl5G+Bg70mGEsv+V3hq9KX7JZt8jfnSqsL+1TfnzLHlLMqjLm2VtYf7DI9PFvCsDRm7gAAAAAAAIQYD3cAAAAAAABCjIc7AAAAAAAAIVb+nDtWKGghJeNCtx00wYmuCip8x7s/bF6nF6osyP/WyiMWm7cbclCC/gETkNirYhMXtZkARB3JW5OUgaJ9ww4mqG/UWthwWPbw/GaT08KNxEVbIS8jbcn1Ukxpi0gG5W44FPp+4gaHTcz+9k7Z2ycsM7m83IhsW9QkA6K7+9WAVUXsc1anuPG84pkl8nlzDR1USxbX5kxuDDcidzpH5bvrSJncGbs3f0S0dfZVb861gmf+709tkv3btqDVqqkPrWahX/RUUrVYQn6e73jRUX65mnLsaHqcts/QtGqzt+1SiSparP7VOXd2dsv8IvYdp1423f7UJnINqXRt1r3Mnl7Z5rr23531PZBcWrq9v3rHlWBWv3nq7/hRc26n+4OS1HEnMxl1taa/R0fl+Zux6kfNkdfPlDWk67FC34+2WGkJe/mYSpK2OnG/uvVvs/swJr8vI9nwZeVi5g4AAAAAAECI8XAHAAAAAAAgxMoflmVT89DsWVKemjK7vHWxg+mTL5j5a60NclniAz3VG/YwI9yiFaejv7qWm5wexUOxbEyhn1kRayni4xbJ8/6JPSm9OcZhn7MRFUIVryl+ufesceboxXKJ7af2D+jNi8r0fc4v7z8gXxeNRfXmVcMbMssNr1ggp+I/seOgvaVoGxjYVHyn6jL8sZ+WtuxztQmKWCgEBE31TdF6wlxHxlewOua0oxpE20NbCbU6fDqQx5K3x2JieqZazgrjcdUUirx13m/tloGiAZ8Y48gUiIoPQ4ZabehziraFETN3AAAAAAAAQoyHOwAAAAAAACHGwx0AAAAAAIAQK3vOnZpjj/fLqQ6ZCyNeZ9bRzvbtn7FjguPMaTbLC/eNyM+ltcEsJd07VFr+EkxAJGHKeR34z8KqqEyJWrPcuZeXOXaOW2TKTx6YqSOqLKmh4nmL2ppN3xfUYs7HLm70y5v2y1wYuf7PibqdR2PxIpm7J9Hy4ZKPtdLUrDjSL48U4qLt6Wcs8ct3PLVlxo6pWuilyW2xiDlhD2e1W3JlTFxm2NzbJFplHqpTV5vlzh/eMuxgMuwzT+Y7izaYv+vnh8i5M9U8a0BIJGtE21DayrPjydGBsWJ6xQv2OFPZuWOZuQMAAAAAABBiPNwBAAAAAAAIsbKHZaX2PVm0bU7ehAaxAPTMGkqbOcrNAUvoEpY19ZoTZnJmfzbo+SvTaSeneGhbTdSExKXGhMRhOkVjpu/n18pp5J4VMvGkwzT9YiKNH5rU69oP9vvl1avnFd9QhWXFmqs31Goi+vft9Mt6Yfmb7949o8cCwwqAPqxJ+oRTTFz3kAmYiyZlqKJHj06tqLxXdHN1Vo37nKnmWT+LslkZDt2QMPf0fRnO85nUGKnsUCwbM3cAAAAAAABCjIc7AAAAAAAAIcbDHQAAAAAAgBBz169fT9AfAAAAAABASDFzBwAAAAAAIMR4uAMAAAAAABBiPNwBAAAAAAAIMR7uAAAAAAAAhBgPdwAAAAAAAEKMhzsAAAAAAAAhxsMdAAAAAACAEOPhDgAAAAAAQIjxcAcAAAAAACDEeLgDAAAAAAAQYrGgxrVr187UcVSN9evXl7QdfT/16Pvyoe/Lh74vH/q+fOj78qHvy4e+Lx/6vnzo+/Kh78unWN8zcwcAAAAAACDEeLgDAAAAAAAQYjzcAQAAAAAACDEe7gAAAAAAAIQYD3cAAAAAAABCjIc7AAAAAAAAIcbDHQAAAAAAgBDj4Q4AAAAAAECI8XAHAAAAAAAgxGLlPgAAKJeoerydL0z9fqdqnwAqm6vqXlmOAphZheOPF/XIxo1+OX+cbIs+udEBABTHzB0AAAAAAIAQ4+EOAAAAAABAiBGWBaCqRK3Yh+kKmbL3G1WxFnliLQ6pUJAfjOeZTvPyedEWSyRm5JiA6cbQgDALCq8aOfZY0Va3aZNf9gJO/K7R0ZLfP3usfP/4JkK4AFQfZu4AAAAAAACEGA93AAAAAAAAQoyHOwAAAAAAACFGzh2gzFy1AK5H5oXpNdPdy8c5rtGUzKUQi5rLUT4o545qy+Zyom5/m2IxLnGlKAxfYdXkeFSwzt/M8LBoq22oE3W3/v1TfWgAQmK0kC/aZufYcRzHGTz2GL884skxvfeYo80+R9Oibeg4mbsn7prxyi0Uv9jqfED2KKdfZecKAoCwYeYOAAAAAABAiPFwBwAAAAAAIMSYs45xBU1ZxdQiDGtmFZ84XhnvN5vlsiaE6o6dvaLt9AVm1MmOymn6NfVxv1zIyH16MdnD3cPRcd/PcRwnFueS5ziOc/8vny/q53/qJr98YJvs4K+95Wl+ubtXhmV9b912Ub/o/c/1yzdf8efDPs6wyq9cIeoR64o6NNAl2yKmLZ2S14L8oFWvl3+Lq6uV71mwbufqG5tVm9lPbMfOoscNTNTw0av9cv2mzaKt57jjTGWoT7T9sNeMzccND4q2x7JmTE+mU6ItvWChqHsFMyZdPq9FtGWON+9PqBWAasHMHQAAAAAAgBDj4Q4AAAAAAECI8XAHAAAAAAAgxMKbgMB+LFUouhUmiSwwmG2i6lF0vsTvvX6Cbb/MVW2z+byPWgebn80HasnnZT6cW3eYZW1PbJNJQ9y4+Q/mCvJTc12zn0hcfaJxWa3Nm/10DGdF2+CQyfPQ2BDey99krL/9rX75tLd/V7S1rWrzywe39Yi2915l5cZwH5b77GsT9d795rVLnlkj2vb9TebOqGTR6chrM3yIuq2rJ6ARmEpmvM2r5cajVp6bI6JyvI3G6/xyMjUi2kasnyYdjhw35vR1iHqjlZPnqv5O0faSeU3m2I5TS6Fb11Py8QCVr866dcyq3w/yTjGYfcs5kdfNJGbuAAAAAAAAhBgPdwAAAAAAAEIsvPPS7SlV+n+RczCNWCYdZaFOtlLDlIKityZ2/s7sma/D0MLyZSvkTAhVTq0Df3ab+U+0tDVM+7F098oldmuTZkJttS2T/sYvXe+Xn3XSKtHW0GYtab56iWhbtWC/X37iqUWi7T/OS4r61h3mO7J9s5yw/NL3mvCJb36lxIMGUHYFK9xKhzC51oWqKyWvtke5CfO6WJNoc58x13pdq2hbme/yy7sao6Jt2ZB8j4P3PuWXT4/K98ju6/XLUasMoPLVqro9PB1ONhf7tjYo7UM5MXMHAAAAAAAgxHi4AwAAAAAAEGI83AEAAAAAAAix8CQZCApsI8fOjApJ6o8KodZ5nrUL702/6Vn+W0flxouUHUcOOhnVNqLq5mCPOONC0bLrgVtKOrJSl3qfdaw1Zl1XfmgtbfV++XsXLxdtc+aafAl/flAud3vkAnOpetHJR4m2R3dvE/WamHnPOa2Nom33LpNbZsniI8Y//grR3/8lUW85/wN+2SvIXETOk+YCm1wg+8z56ya/WKPSJP3hUfWmo1ZZptFwjlsddLSV7dYrLvHLv73qetHWbdKSOFGVoypm3fcsaZX5jWJxOUDEotZ5v2KNaPt/3183gaMFJDvPTkEtd57y7DFejvev9Mx18jNLB0TbOUNmgIj1PC73mbFu6h9Ny4ORKcGc4eXmezF4hLyen3mnec/88cc5xbiqHtn4ZNFtgYlQV1PHvvIukumknG5r/F+ifp3vUr9zl9VYbSkH/5S0+m10ip4NqI/JyY+71ezCzB0AAAAAAIAQ4+EOAAAAAABAiIUnLEuHKNizL0dVW0LVdQQFxtLzUom9miWmPwwr4soPv+BV+odvppWf97HbRMvf/2oNFvPaRduyFWf45WFXLqs60C3nxeYOmPreFjWJ84EKj0+xTp94XE9oNf79poPqdbtL2v37b91/6I2KWLHyaL989Q++X3S7hfMXiPrBjvYiW85eDVH5t5vL/8X8n3JqWPnL9eZzevKxTaKtpqHOLx+5tE20nfXuk0X9d5+6xy/3bO4RbfVnHvqYK9XzP/RLv1yjhtfRgDne9tC8dK68XdvTORzwjutKPzj8Q6saq3pndvJ9VI2V+ezsnPyvl0IfPtaMqXOT8hw9ySqfogadoZ69fnmkT97Ee1YgxAXHyrF48345Fs9tNGFbu7bLtjZ7CFTfO9f6ctXv2elUqxp18y/vZGSnRdVPxjw5MQ5JBUA7MasLD4zpPnPC7hiTFkCGJ9qhWHVq05Eqyt6gZ6ikp+GUDB6J5fcnan1n8q46Om/mci0wcwcAAAAAACDEeLgDAAAAAAAQYjzcAQAAAAAACLHw5NzRdJ4dGzl2JiyhVoQuWCs7x2Mtom001+eXvXa5rHNiiVz2OWvFP8bjzbIt2z/h48TUc1XOHafic+5s8Uv3fv502ZSxlzSXwbu5RfP9cs+B7Y5Uo+pmEMqPSRhWWQpqzfadO3cV37jxWFMe3FR8u0ALVF0HmM+xyvJCUSgc8Mu79+6Vbdb/IxIN/9898ipfwveutPJRyJXmnaGYWYZerXbuDA2Z78T5b3quaLvi/90kN46ZhV/1ErDf+Xrg4VY0L2fOraBblzGp76yPMDjHDkqi0uoseIMpX1D4V9F27Y+tc/sQl8Qj3mrKL6q5RLR96zvXm0pALozZmWHn0Goj5mdEXt07iJ7YpToxZn0TxuTJML3Rnx4RLb0DalM7/Z3az6MtLX75Ofo+x7Jz2TJRX7Bxc9Ftw8I+1cecWw3mXiY1pC4G1iu9h/8oWlpOf6mo98etHw7pzokfZBXQmXPs30T6F7hr3YN4OZljJ8iI/iVfRTl3yn93Lcc18V2bwRw7WvjvYAEAAAAAAKoYD3cAAAAAAABCbFaHZc2zyhOa8DdmHtzhH0uly8qZr2KiWa7QJ9rsya0vfvvnRFsuYG4xYVhTbWrWr88Xyj+xcWYd6ZdWHrdctDz12K2m4s4XbY1zzbYHDmwTbauf8RxR33L3b62aXD7acXqcSrbqyJVWTfbvqmZzydk+pF5Y4ulbl5Rz70d0TOngFqsiQ0Ht78x/f/S/RctHPvKR0g4gJO5ft0fUhwKG32TOxDqk1N98ItbE5ys+IMOwImoIilkX30EnIdrcWhOq6AXFJlWA5QtaRD0/aqbY7xso/p8P+gosniv3ub+rb+IHVu3U/Un7D035Wvc20fasl5gx/Y5b/yLajjr2ZFHf+t1H/fK3Ir+Sb1Lq5XWWLn2u2Uufa/EnnxT1evt1atuGhBkr8uomfdQa4nsH9GLSUktN0lRUKMuH+vr88gcXLy66j0oIw9ICzyYrFCtxogxJyz9urhsrznq5aOsvqIt22qovV+HSu+Wy9NXk8e++wC+f+NY/Ft9QhRHa4//xR8iL60Yd1mir8OtpoFZ5n+70mnM7lpT3ILl09eRsYeYOAAAAAABAiPFwBwAAAAAAIMR4uAMAAAAAABBiZc+5k1x6kl9Ot28UbZ3ZSSbLIcdOaaxPP6ECdNN2eKeKGX/GM07xy5vve0y0vfmtbxT17135o8M5QgSq9CXLp4fbasqZwb3FN/S6RHXHpvuLbrrt/tuKtsm1WitQ8RVmnXOPWSrqd23e6Zdr5hwv2tLdJu+BpzIGuDGTt6i+vk60eV6TqKeSc622PnlAGZ3ox36T4k1h9NXvPSj/IWBlVbtpnlMj2roiJiFbTOWzy2Xl34cyOZNPqs2RsfBzl5rx6qktlb1srjsqkynk3cO/1Upl9I1N0AnLtWE8L7j4AlH/441WLh1PZoWprTPjzCtfdb5oG3JlnpKtD5mcO04hHLlzJqt+01Oinj/++CJbOs5lLz3NL3/71w+JtqG0+Y4sjMkxZzSX8sttcrh3elR+yL6UGb1W1NeqtuLJSCIbNxZtqzQNqm5fBTOPy/sTe9vG2pRoWxQVVeeA3byPH17/Z+3aY/1y1JE5d0odHfJp2dktUXlN6avsYSaQfddRsHLsOI7jrHzeh/zyjls/L9rs25dEXN67jGStH7rq0uqpy6lbpOw4s2Fp9n9g5g4AAAAAAECI8XAHAAAAAAAgxHi4AwAAAAAAEGJlz7mT3mvlbKlrlY0FK6AzL+MNnYgV36kfUUXVP9ixdLMlIG42sLp04dwW0bSrq88vtzYmRdsTj27wy9GIDPz8+Q+uLvp2rS3Not7b11/acVagN77qZX759hv/LNpamlv8csSR5/3+PvOdaE7LeOi02jafNPtpTsi2JwZ7nGrl9W7xyx0ZeU7aAbSuCrTNZlWwv6WQ07H9JrrXVZ9LJWTDKBTMQBqJFP8bwZ2b7xH1M1af6Jcf2PK4aEtauV4yOjI9P+AXe3uCz90axyRpGHWKf2aa/f84cOCAaFu0aFHJ+5ktfv1j2fff/eqr/PI73/Nz0ZZxFvjlIaddtHnWNbM2KXNjDKoxyImbHEvnvG25aLr5m/J4KtmuAZnbaVGDObcWz5M5otxhk+slrZIaRWNmQPI8+Z1YMKde1Ous+6WUmxBtB3SikipVaFDn6ytM8YWezMeTdwf98t4amf8i6eyX+3mOKZ5XK/Pz3Pnb2/1yRYz9KsdO0P/JzrOzoFb+3GjPmOviQTWONFrdXVAfmfz2OM6AdXnd2V88x45m/z8ST8k8QrlcTm8eanNUfSi6yi8n89tFm32qR9cuEW2DW/bIHWWP8Ivx/DbZNPHDrBju07/ql+ernFEd1lCsUhg5TS3mX1ItcnzPe/L3Uty6TKvhyRms8Hw8QT/jd1t5dhrOebdoG7rr6345mw3YyyEGatF80mtk42PXBr94hjBzBwAAAAAAIMR4uAMAAAAAABBiZQ/LsrmOnMrs1TdYbXLeWX2zmbI2tGeX3FFOTrdyG80yuhFnULTlB6t58qDRNSCnbTcmzbTuTFbOUfNyZs7fSC44zq221oR0ZXIBa/FWmQ+/7Rl++U933C3a+rJmHnKNWmhv0SIzKXndzuDwlGOsNS37vWTxDauOdf6m5PK3EdeMK7GYnJptz9QueMHncjxmxquCI0Mk8rlhvXnV2NFu/u/LF8wTbemUNZfYk+E/tXFzqdrZLZeo1+Y2mG3n18pwql2dB/Tm43LdClsX3XGct6pQLMnM8R4TYGj9CWgwo2Ik5MfkOKm9fvHmb+518A/dQ+Y6Ob9ezpmP1Zt5+3E14dwrmGvvrp7gkJMj5pkBP1aB5+9UaG6eL+qv8l5qKgn5uWzaus8vr/v5w3JHKmT3VW95iV+ORGXf239BrYRoCb2EuL0Uul4WPWptW1D/+8X15hrpqfucmBUiO2+OimtR2x7oNPf0Xl6+x8Hh4vEV1bQU+j5Vd61QrIxqa6ht9MuP3b0jcL8Rx4RikfFifJ46fZsS9nkvz8/CiDl/d20JTlsxp9V8D2LqN9rgkN66sgTNSmmsNf3SZ4VhOY7jtDz/k365oIaG+noTEv25l54q2lYcsULUL/q0uZcauPVjos0encoZhsvMHQAAAAAAgBDj4Q4AAAAAAECI8XAHAAAAAAAgxMqec6fNSgXSoxbPc2tNsGJiROa4GBqw4mx/K+Pqal50uahnIiYKLu+SY2c8wxkdeWsk1DJ7bkBwbbRZbdxv9jtcEQuBTo3V801853++53Wi7Yav/69ffuKgDJ5NWml2Fqq0CgX1qLa/u8Mvv/R1p4m271xTWu6RipeX40rBikDP6KDcCcjmUofeqAr1p8zg0anyfC2tNfl4XNX1OWt4WiBTGOn0PE4sbZZN7x4acCZj/vz5h94oxNpqZd3OYdfZJc9dkQ8jJfNQuXE5CCXqzCDUoC4F3ZW+PmsAu9f2tsucW0krR4udL8pxZMz+4ma5TLoTkX2fyZqxrKOP+5zx7Ny8VdRPftpKv7xlh8xM0lpjXVBVTotnXLRW1Du7zBLRo30yN1Kln/V2Xh2dc8dWU68Gait3Y9aTN5X2KsWPbOsTbUvU4FXwzPegvlEuH+0MV3jykQD26LBmmeyXzfvNWLG8UV0MAv7mvzoqB/VYg9mvG5f3Uhu7yLHpOI5TWyPzXaYGrfO1Vo7pyRrT1n9Q3rvMWSy/P615cyPktsjxqX1I5patJn2jpi8WNctrZNI617Mqj69njSM7Es2i7eOf/72oNzSavFSFhPy+jGTM4EXOHQAAAAAAAEwKD3cAAAAAAABCbEbCsgKfIFlT7Bub5JZDPWaa7Buu+p1ou+q7t/tl94u75T7PfY+oXv6hd/nlbX/4pmj77be/HHR0cBwnM4F5xfl+uXHw4q3V646br/fLmx6T4Slnnr3AL9/3Kzmt2J6oqaf8uepzsqtX/vSRSRxlNZqOiZR6WeLqDU/MZMyY3qAWYd07mijaViumg6v+VMvdNsw1S0KPtsvlREudpL9nT2Uv4x2Lykt/bsSEYsVyciCprTNTx72knMrsuvKa3TlkwoGYlG/YZ6yKZHPSeXP+9qtOG0pNLrxqzEro1TvkCF5Mjiubt5mlnh/YuEu0nbBwqV8+6YLVom1EhRjeffNDU3WIoRYNWF68NiHjaXNRE6wYzcoTNmuFSCxplWEtehn6rkFzl9k/Uvz7Uk1LnzuO/Mp3dMlQ0PnWmP5UnwzhWVAXtbaTn8uAGkja+ycX9lxNCjnZZ9GEOe8PtssQ6Jj1HYkk5bW1r0vupztj9b0e7+E4juMMpGTHjOzu8sverkdFW01rq1/+wsfvE2368pnNdvvlNXPkvdTjB4qnOJlJzNwBAAAAAAAIMR7uAAAAAAAAhBgPdwAAAAAAAEJsRnLueEXKjuM4/Va451knHSXaHkyZZSt/fv098oV3faXk92/69Gf88uNPbCv5dcB02bnenNuXnrRStF2/wSyzt7hOfkV3j8iliIPYT25fd8Ea0fbj2x4veT+VLKlWF05PywrCJLwwzDKROv9NvbU0ZSwil27tzA87pVqcnOuXjzqyUbQN7DWx0rGojMe2a8tiKo9bhVmzUi71uXGH6Ze6ep3TyHwpZIYAxxkMWOj5kmcsE/Xr795TZEut8hLG2L2UV/+dhPXfnWyOHc0Lf5dNiweu+byoX/i2T/nlk45ZLto23LjBL+vu1KORW2+utt5wwcFYcU9mYHQjJr/IM6f+fwAAbt5JREFUsPpS7Ou3rg4yzdeYteXtTD4XnLhYtP3+0f0TPcyKlNNJuHJmnDlhsbzWbtgfdK2Vn1OdVZaZI/F/3n/pM0T9S1ff4Zezain04ZGgfC0yIZsbNWPO4F0fFm0NZ3/GqVbu3OP88vyLPiHaGuPm/H2yb6doS238hV+uKch5L8ujR4r6yNPP9MtHvOCXou3xj100sQOeJszcAQAAAAAACDEe7gAAAAAAAITYjIRl2RMC9fRWe4bl3Xd3iLaG4810tlxCzc1c81q/mGyT0wrzBbltPGbqu7bJZf+Acrh9g/km/OWhh0XbIx1myuz733a+aPv8lXf55UJOTv8eVvXBggnh+tlfCMMyzIiUzhK/MBmRiPm7QKFQKNqmnbWizS/35+TSuPv3min0K5fKabD7O0xIT0FN4W9tkaFXfX1m+fNXPFuGWty/zSxxrgNgdu8ySyFHlhwx3uFXjNvXd4v64lZzK9DVJ0M/57eYz6nJlX2fKKjlWfvNa0sPw9Iq7ztp32jF1a1M1Lo/yaSLh7npbxXBPxPnznuJqD/t2WaJ89omeR95xHmr/HJji1yOOxltEPW//ebBqTrEivWEWiL4mEU1fjkal9/5lfNM2GheXV8GR+X4NDRiwr0Iwxpfx4js3wW1ZjTZe1CGYZ28ylxPPRkJ5GTU0Pzkfn5PHcrlV/xV1Oe0mfF+NCXP5bY2M84UMvK8d5N1ot7bbe5zqjkMS4t3PemXd/zwEtG28iWf9cv5nHz8UXuKeaZQUJfhgzF59W1pNF+EP6swrKDnHTOJmTsAAAAAAAAhxsMdAAAAAACAEOPhDgAAAAAAQIjNSM6dQDVWOdUnmuYlTDznTe88RrSd++FOv+zm5DJ/nsoD8NFntFq10pfUBabLrx8z5/arT5Y5Q+Y3m1jaW353u2jrHTFxuAW1uqVeMfTS1ebr/dMtpS+hXvmmIBJW55UpkAGjFGeebPrp/sdkYLM7f55f3rN/l2hraa71y2p4d/IFmT1nXpP5Pl1x0yNFj2UiuYIqXXrIfBY53b8Z06a/OTG38vLjTIe5Debc6hmS513Byp5TG5ODet7qcVctZ+yp9c5rXfMe/VnGo1I8epcZZ7yszAmz5oz5frlnT5doS8Rlfh5MXG29uT/ZvLVHtC1rNWN4wZHnfX2NvNPpZQ3uCRuxxodBNVRkrBxGXl5do119l4mJ6uszfapvGwcGTJIjnfclkup3cGhBi8nv/M1H/PK3brhHtH3imz+xavr6Ke8N9/z9StPiFt8yX8bbo+q9mwUAAAAAAKgAPNwBAAAAAAAIsRkPyxqznGfA7OFUf7tfPvFZl07P+0/JXoGJGbbCA5/YsUC0NS4x5T9slNPBhUNM+SMUqxh7FJjkCEAYlk+HM+WtuKmomrP6i5sG/PJLLmoVbQ8+ZM7X+hY5J3lr10SmJBffdthaerSaw7C0vBXyM69RDiztg8WX50Zpop4VTqvaPGvudnBPBw/4Ge5mJsyLWbfAKixrwwMdAa8cCGhDKVzrGnrWsXNF232bAu57cNg8mQ9DtG08GHTfyD3l4QoK1ckFdG+Brj9sdlDh21/x9Envxw1omy2B6tzdAgAAAAAAhBgPdwAAAAAAAEKMhzsAAAAAAAAhVv6l0O1VbOOyqSdrxTUn1evs8PKsUzKi0jEbvPFVF/rlH/38FtnIiofTzI6Y1Ut72hGzjBaTUzzqeNWqhX75ZzftFm0rV5jyrn2lv1sqq5ZrDdg2GWcp1/HU1ZpzPaMSv8xrMOXOoRk6oApjpaFy5tXIti4r5UVQzp26hPxb3EiG8elwxRaYZZ9zO8t3HNUomrdGanUqn3W0ycFz31Pk35lqo7n0oTfCtDh2vhnHN7Uzhs+kyaYt0rNg7DtczyveVk7M3AEAAAAAAAgxHu4AAAAAAACE2IyEZQVOPLPnMKnwqrpIwi+n08MOZk6ztUxwP8s+T7nmpjl++d1vea1o+8Ot9/vlLTu3ztgxVY/i53PENUNiweO8n4ygsKhYnTnvT1o7R7T19NjT7/cU3UdBjUcsaX74uq1Q0KbG8h1HpYrHzDmqp20vajD3Obu7Uk4xhGFNvTVHn+aX1+18sIxHUn0O9pq0C0sXNou22RLaUKlWNrf45a39veU7kCq0b8SM43VNsi1i/SIf6pmhAwqhyV4J7cwvE8jmEsoEDdwVAwAAAAAAhBgPdwAAAAAAAEKMhzsAAAAAAAAh5q5fv57wVgAAAAAAgJBi5g4AAAAAAECI8XAHAAAAAAAgxHi4AwAAAAAAEGI83AEAAAAAAAgxHu4AAAAAAACEGA93AAAAAAAAQoyHOwAAAAAAACHGwx0AAAAAAIAQ4+EOAAAAAABAiPFwBwAAAAAAIMRiQY1r166dqeOoGuvXry9pO/p+6tH35UPflw99Xz70ffnQ9+VD35cPfV8+9H350PflQ9+XT7G+Z+YOAAAAAABAiPFwBwAAAAAAIMR4uAMAAAAAABBiPNwBAAAAAAAIMR7uAAAAAAAAhBgPdwAAAAAAAEKMhzsAAAAAAAAhxsMdAAAAAACAEOPhDgAAAAAAQIjxcAcAAAAAACDEYuU+AMwOEVfWC97U73eq9gkAAAAAAAxm7gAAAAAAAIQYD3cAAAAAAABCrCLDshY3JER9/1CmTEcyu81EyJS93+kK/apa9XWyPjxSnuMAEGptrS1+uae3r2zHAQC2laeeJuo7Hn6oTEcCAOHAzB0AAAAAAIAQ4+EOAAAAAABAiPFwBwAAAAAAIMQqIudOk6pHXXLslMK1c+DMQP4bz9X/MP3vWdHGdCgAHNqCeXNFvb2zq0xHAgDFJZMV8TMFAGYMM3cAAAAAAABCjIc7AAAAAAAAITbL5zvaz54KRZv0AtCJSL36l+EpPKbKkS8cepup5M3w+1W8Ec7rw3XUUUeI+vK5Cb98+33b1NbFT+Bnn3GUqD9x0GzbsXv75A8QmAadXYRhofpEY/KW17NuJAu50sP53WhC1JORvF9OZfN6cxyGTDZX7kMApgWZKqbXyDvrRP3Iq8zTggPp0vczLy7rrzqtxi9/897UpI5tujFzBwAAAAAAIMR4uAMAAAAAABBiPNwBAAAAAAAIsVmec8fkrVhQI1sGrcdSOZV0J+lVdi6SiArULJQYqDnZ18029v8jrP+HqUC87uTUJk052b1LtM0/5hS/PDcuc+ykreqgSqvQnJX7iR3M+uU1bXLbDT0TONgq4lontMfJPK3GjpsB+e2AEEtGTTnnyYG7kC91oJFJF7y8zM+TIs3OtEnGZedGVTtdj7DiNmfqee+b75ffcKdsO5g2Dwues6ZFtN22oc8v16tpL1GVc2fbiHkg8e/nNYq27/29s/SDnUbM3AEAAAAAAAgxHu4AAAAAAACE2CwIyzKH4DpyyUN7ylq7Wm3MfirVoPbYPSDrSSsMIz2B5c9mLRWPIybUB8zzC2sIkw4nqy767B7yS4f+OE+1yg9PzeFUgN0fWeGX5550imj7wMdu9csfefYc0faT20w81b9fKHv/qttk3OhX32Cmhh7fKieOr73i4MQOuEoQijWT9KU/YLlhe/zlM8Isp28X7HBax9OtxYN6otZXJJ/LiraEmqafyfIlmah/X27KqSHZdo0Vunzc8GOibavazxusOK0fEqMFVLWlvxv0y/s2j4q2RWvM7yk7DMtxHCdSZwb15BK5z4M75f3RHx4zr21eJZdbny2YuQMAAAAAABBiPNwBAAAAAAAIMR7uAAAAAAAAhNgsyLljYtm8Mc+arDhmVy1haYU1qxQ7TlyFVWczJpbOdWTsdBijowtVtlJtWHMFTQ39n59nlVtlU0zlzcjttSoJtZ+MU61ubftXvxztSoq2mudf6Je39so++sBXFvjl6x6QSRf+4xNyFBrwzH5/uLdLHcHNEzpeYOoVz7HzrLPXiPod926Y7oNBCRjBSzPmdkHk2Sk9gV++YPe47O2MvI0c712hXKHyWJx0qvksNg/K/jvNGp5Gc/KG96zT5X7arJWIR+6QbT+vsntloNrpPDu2AxuGirYVRsyg/tZV8v7+c1uKj+/920eKtpUTM3cAAAAAAABCjIc7AAAAAAAAITYLwrLsabJyDmWNtcRhLC4nJQ+lik9KzqtHVg0RM91qaMx02tLEY3KaVjY3yR3NKvZSz92qzYT/RBNymls+U3xqm+Y6i/yy5+gloJnKPK54vSnHlsq2tPWlWCaX33Y61JTzOmvbgfapObYK8Np3fmtSr/tOQNvvJncowKxDGNbsRBhWafJ5GcK/aa9ZVzsSSYm2dL+pxxuaRVtqxNpPQl5ba+JRWc+b+8G+vLyvWdRgbrMXL1rgVKs3/4us37rB9NOaRtn2zNNNf3epkIjYQrntH54w5f95mWz7+Q0TPszqE1V1lpOfVvbP06mKGqyJyPEpVd25LA7b5/4U/t/3zNwBAAAAAAAIMR7uAAAAAAAAhBgPdwAAAAAAAEKs7Dl3/vTXLX45UStzuZxxlImBfrJfLlnc3meWHl63RwaJnntMnaif2GQiGzcOyP38/U+b/PKHLn9O0eMseJUYw6jz7Ng6/VL+MIL9PefA5F9crbLDVnlz8e12HWI/xVcElOvqkswBs8AJjeZy5GVlNPrGlKm3tcjX9fTJ+vwaE38eScu2gxU5jh++k52z/XKnSsKwz7mr5P2cWWP205WSfzva5tw9yaOrdKVlYUiqenrMFtORzSF8olF5/r7w0u/75Q9efr5oe9ZVVt7Bgsxb0bjS5B1c98Yu+SZnniWq6X39fjlekO+/2Lno0AddBVZdJes942/mOI7jNN1mxunjVsq2+7dO3THBcZy8ytVILsxpNR0jMzl2oDFzBwAAAAAAIMR4uAMAAAAAABBiZQ/Luvjjn/PLz/zSSaLtlv8+01QWzBFtTp9ZUvItLT8STZde+t+i/uDQiF/uVbv50Lc/WtJx5vO5krYLF3t590ku/VZziqynHlMbVO/08Gnntoqq13+vqF/z+S/45aUN8nM4/39+PH3HNcvVWaf9SPhXPAyvuKxuWGHG2N8MyraX7jTl4UN8ZgdXmSnKn9so2/5rAodXTdY4T/PLG9W0/ImEZR2XMtfsPY5c35iwrGJMWHmTCmMecBb75TFhWBF1+1YwWySdDtGUdhYd1hGGybNPksuN73zkQ345WfOwaKvr2+aXR2pkH7UUGvzyHY9tEm2r9nSK+nLHpAkYcNpEW8OiGr88VGVR6udZ5d3qdO0JuKUuxMzfnR/YKu9dWtW2vZM7tKoWaTbfEa+/XbRNKMCnzvqujbQX3w6YJgQVjo+ZOwAAAAAAACHGwx0AAAAAAIAQ4+EOAAAAAABAiM1Izp2gBToz9/3AL3c3vl82nvZSU96/RbbFTaznuhEZK10YGRH1vtNNuVsvH93c75QikUiIeiYTwvWjW8+Q9dE9ppyaQDB4i8kDEFmxVDQVNsrYdCdjf+JjF2+F44x9xlpanqKrvnOFqG/bNSDqr/+syUW17iffFW31tSbnznAIT+XDMWrlbNEDYCVm1pqtdMoQd70pq3Q8TpuVK62nW7a1qCQMEZVnB4f2U+fbU7Kfq52vTcl+Kk7QTVDNQr84kPph6fssqNEqucQvptNT83mG0V8fk7k/zj7W5H4aHBgWbRs/be4j82qt+c17Tf7Agz0yk0PH3feIenffqF8+4ZgVom3N68219r4qy7ljfxL9OjmGRV+H8wXzJYnJleWdVN7BYSr0l5Yfp3nefFHv75S5vMizc2j1qj487lb/YH8PljfXiLZd/SlRt3+RjjrVq16NK6PWUF3NQwUzdwAAAAAAAEKMhzsAAAAAAAAhxsMdAAAAAACAEJuRnDtBGUTyVr6Ph5+SuXIWnnyVXz64vEe03b54mV/+8M0yH87OJ/eK+seHrvHLG+NDou3MtSZO/f6A4/Q8L6A1JHofENXjX/tRv7z1zltFW92q1X452ylzuWSiJji9ef1Toi3rrZD7ec65frlj4+OiLb//vhIOuvK97cMfEfUrP/fpotte9X2TO2dwVH5fbn9cnvfb7/uTX97vyfjd4dJSTVUk+5s8JibXetwd0V/5gCFAN7kxEwhcyFXA2DEdYjJYOjLf9JM3Itv6Rkybm5BtAynZv+5cU07kZcKGdG/1RmFf98cv+OUVK5aLtqUrTZajzECtaOvt3eeX00e2iLZCVG47srnTL7fVyjHn9CNeM7EDriTWTVBLY4No6hu0cyn8i2izz/QxY4yqe2k7m8PLJniAleveTYN++S3/crxoi9ebe5l4QY8r5nOJZUXT2EtBnbmVHs7IXEhdvRM42Aqz2Sq3qh8C9o+PMb8RrHE7WpBjtj7vo0XKjuM4VZZOsKhkXZ2op1VeUptr5RdNdcvfS67Khuc56osBx3Ec58RmU35yQDWWeB+5c7480wtz5LW2sN1k2mlR++k71AFWkCHVn+IMdWUfRq0e9tRAkre2jRTUPaV6Tzcgr89sucNk5g4AAAAAAECI8XAHAAAAAAAgxGYkLKtUL/jM9aLu5YpPcDr/0W8VbXu2jHJx/uVpZq3c5WqC1S2PyHCvYrLZypt+uPFnn/LLTWfKKfPZHjPFOxqRUzHrrSnIXfnHnCCRjmP9csuilaKtm7Asx3Ec57475PLxy459vl928/K8+8rVf/HLm5acrva0Te5n/W1mP3o9UTiOM3YA9AJiSCPW0JE5VKSVFYo1JnyilAOrAq4KV4vY0Smu6iXr9PVGZZvuT2tWuZMLuIZUm5u+bUI63/nR/xRtm+8zJ76nvhQDJqrFedkxlwS+xy33/q9fHhquvGvmVIioqeILzO2J43ktoq1/xEy9T6sYE0/Fjc5vNn+r0/vp7Oub8HFWDOt8zrtyvfPUsDXgqzEnWjD3PXsHg8/lOVaIaSJWq1qreaFioz9gKNbXyIIV3JA7xK+UiBUFlyu+WVVzVVqJaK05RyPqvD/1THPPfuEnLhdtkYj8pD7x/P/nl5NqqsDIYPHQr0r3qZeZBdA/8Fu5+HkhYW5mXE92Ws66NuzYEjxurFxkXlsoyBvXvipeod4eqeMxeW7bP6cKetSxQrEmMo4konI/+fzsuMNn5g4AAAAAAECI8XAHAAAAAAAgxHi4AwAAAAAAEGKzKufO7x/smp79PlLFa1GWaOD+a0X9D5vNWtlv+sgVoi1mxSYecdlnRdv+kbSo1+ZMLOjuX3/KwViLjzxF1LMHzfl6xNL5os214qM3/egDou2cy78g6s01z/bLyYjMNbD78T9M7mArTFAmhTq1VLdjxUdn8jKBQE1U5jSy02qMkvdlXPnR4vVorex7NyBTUVxdxey46nz1hv2PMTRizsO/futroq32JJPn66jjFom2eMy87vo7Py/aanrkuZ3uMdeNv13/p0kfayXrsZMYOXL55gmNFCo/WEcvCz+Pp8b6E+aeHnl/MsfKHxhPyjHc7l79V9CmJnk9da2N93eRY2c8AensxuTcyVobF/QL1YdhXxmC3qOanXTi00X9oa37/PIRR8wVbQd6TY/+z3mXibZlL7tI1BesPtkvL21sFW0P3Pn7yRxqRegfMTchX7by7ziO47z7z2ZZ+jpP3oHGrZP7DRcuFG2PbNkv6gXrJvNrF88TbRde8dQEj7hyRFzTh9lswIjgFl/u/FB5Mu37+8wsybGjMXMHAAAAAAAgxHi4AwAAAAAAEGIzEpYVtAhzydOQ9WOoicy/tGfQpotuBcsLj2kOaDVz0vYcck+zc8rabPL4VjndsrW+wZSj8kTvHBnwyxe+6mOize3oE/XfX/u90g4gEdQkv72ZTPWEGI3k9Llb/P+eyldPv8yEvF5r3v4aqDmzWb1uJevhjqttrgm3Go3ERVty20N++d/ef5doO/5Ea+lWNZ67nvww/rae78Gh1CbkmJq0lheOunK8T+VM25ip4ao+nKXvx5MNiFbrHjGDRU1GDhypgHGka0DeSEas+9Nada86yscyYYG394XAKsYxb2GbqJ9bZ+4xLz5jtWh7vOugXy6cdJRoi0VlyOH3193jl+VdbHVrmLvKLydrZNvnXmR+kF76tcdE202feJapqAH/VWfJFA2v/p87/PL7fkzqkf9T8i9ONXBM5JeqF4KftczcAQAAAAAACDEe7gAAAAAAAIQYD3cAAAAAAABCbMaXQp90+PEEAmtrVX00YL3jUpch1WlJqnvR0RAEHIbI3l33i/ro/Kf55bZGmZ/hbzfKpecDudbyiF5/8e0CTubM5L+xwOTp8X4iQ447bvEfu6nioeuIE9b65d3rnxRtubwZZ57/HBnbf+1tHZN6v7lz5RKwXV3Dk9pPpRlVecsStSb/0WBanqCZMetAF2ef61V8mo9R6hUsKMeOE1G3ygW5sf0xsRD6+Japup2vcarO11ZVJxPJP/zuphtE/dwLX+GX79x8ULTdceNP/bL+gdg+5UdWmernrPTLfV07RFtz0txw/+1rLxZtT7/8pkm9X+dPLhP1+AuuntR+KoHnkYXLcZi5AwAAAAAAEGo83AEAAAAAAAixGQ/LmgkpNTczYc2TzadkW6lTdisxDOvW7aZjnnekCmZjXvfMOfCQqM5f8xy/nEjKr+g5F/23X86r2JVsQZ6lD/3uB1atEs9gVKwx8VRWWf9JIiCEi2HMWHbkAr+8oEmOK/FRMz584ad/E22vf555nePJcJRRT4Ze3XDbbr/c1cXfjkrhWUuh51WXxUWslfxSZAuc3aVoSJp+G9IdnDd9mEzGRVM6ZcXzF4JitlCKPYfe5LARhlWaOU1m3F4yR14LzrvotX45X5C/kLZ0yAXPn3zg79NwdOF3/b1b/fJ7Lz5CNrpmPKpT19OHvvpCvxxRNzpPe8/vir5fNYdhYXzcfQEAAAAAAIQYD3cAAAAAAABCjIc7AAAAAAAAITbjOXeCUilMFU8F3pJtZHwvuvRav3zXQRlbe84CszRuPClfl01P62FVveOOXuiXf/3ty0XbWRd/0C9HYzJHQDwnl00nAr0Y+5k2yybOSvpjcUtscxwS7RQRa2nwy6NpOYjPiQz55W98/jLRduWXr/bLaXUxrUl0i/pPvvtOv/z6t35zkkdaXUasPs3n5MkbT5qLr6dy7CRj8sRPZ7gwj6dQMNfFlrjswz7PXAvSKdV/Uat/XfV3UE/uJxYx7blsqZkcgfL42n89yy+vOOky0XbJay/1y7U1MqfaSS3LRf3JB6b80CpCz4AZS/7rJ5tE2xfecoJfjqmf4KeumeuXh9NZ0Va4802iHjnXyqlZK38LOKPytdWF+3vHYeYOAAAAAABAqPFwBwAAAAAAIMRmPCxLP01iAmv5HHmSmYp/9zr5yfzmKTPd/iVHz5mxY4LjOJ75Vrzmg1eKpmu/+LaZPpoKVL1TNUMrKNSKMKyS1KTN5T4XkdPtG+fX+uVXv/qTk34PQrEmzhPjkbwlS6UJtTpckYjp3+FR2dZYY8qD+mY0bw8swYNMLs+dLMLDLZhxJb//V6ItuvhlM304FWdFs5UioUaGTH3qht1++ad/fHJq3lCFYSXqE345M1xdiUmi1nifr+JbfWbuAAAAAAAAhBgPdwAAAAAAAEKMhzsAAAAAAAAhNuM5d2YCK+OWptB7wC//6IaviraXXvhvM304+KfurDmDlxTk89fXvP8qv3ztFW+ZsWMCEG696U6/3Ny2QLRlelMzfTj4PyJdgr5bsXI3kKFwUmprTR8WCjI3xSCnParQz/+wxS9/8E0toq1w8Bd+ObLwlTN1SBXlocd2+OUzT5bLx5+91OQw/ek0vX+15dmxWcO9k1bTV7K5mT2WcmLmDgAAAAAAQIjxcAcAAAAAACDEZiQsa6YnExOGVZp4fYtfdj05Xfk7X37fDB8N/s/+bdv8csNxx4u2yJigQ0ylhPW4O1PFyyiWg1tnyt5I+Y6jUsU9s+7z8GC/aGs9Yu5MHw7+KW6tlJvPEno11dyI6eDGhoRomxs1/b27ixitmVRjXWtTXGtn1G9vudsvP/OExbKxwD3m4RqyhvG/PLxbtj20Z4aPprrkAx4AxKwxJ1fhYw4zdwAAAAAAAEKMhzsAAAAAAAAhxsMdAAAAAACAEHPXr19PihoAAAAAAICQYuYOAAAAAABAiPFwBwAAAAAAIMR4uAMAAAAAABBiPNwBAAAAAAAIMR7uAAAAAAAAhBgPdwAAAAAAAEKMhzsAAAAAAAAhxsMdAAAAAACAEOPhDgAAAAAAQIjFghrXrl07U8dRNdavX1/SdvT91KPvy4e+Lx/6vnzo+/Kh78uHvi8f+r586Pvyoe/Lh74vn2J9z8wdAAAAAACAEOPhDgAAAAAAQIjxcAcAAAAAACDEeLgDAAAAAAAQYjzcAQAAAAAACDEe7gAAAAAAAIQYD3cAAAAAAABCjIc7AAAAAAAAIcbDHQAAAAAAgBDj4Q4AAAAAAECIxcp9AACA6vOzty4Q9Veef6RfvviKDtG2r2/IL0fduGi7/1OrRP362zf55Vd/t/2wjxMAgEoUibiiXih4ZToSAFOFmTsAAAAAAAAhxsMdAAAAAACAEAtNWFY0lhB1T8wclNMIC/ns9B8QAGBC7FCslz1bhlMN9Q/75Svf0Cja0tk6s10mLdry6ZSoX3L+MX5ZzzB/7VWEaR2WiPp7UKFQnuMASnRW4TK/nB3KiLaHm66dovd4jV/2RuV35P76n07JewBTZcGChX65vf3gYezJDukinAuYLZi5AwAAAAAAEGI83AEAAAAAAAgxHu4AAAAAAACE2Izn3Imo3Dl2zGYhJ3PlxOJmyVvXlcv1LWgzeRbae2vle6i8APZrC56KC7Xq+ZyMxwYATJ1swYzbfe3doq3XSp2TzctcLv1WW9SROXb6h6Ki7g6ZZdMLXm6yh4pxuYfeBCij0wYvFXX7jm+qcuxo90XMfk9PvUa0nW3l/Lk3cvW0vD8QxM6x4ziHm2fHRp6diTrlQ+/yy67+rWqVPf1bVbF/1z782a9NxaGhgjBzBwAAAAAAIMR4uAMAAAAAABBiMx6WpZemdVzzDw2NdaIp2mjCrZYPy+n1sZYj/PL8uXJa/rbuTlHPj+T98tDIsGhzDjH1DUDlqj/jDlGPx8wY5DkyTDSetNqyI6Itk5NjUDxiXltbL5f13vfnkydzqBXhgqebcfuXd20WbZkaMxb3dsvwn7mLTR92d8vw2Xu7O0T94IAJ533neUeINud7MhQME+NG5OfisRI6ZoHTBl7rlwv1cizOjKb98orVbaKtM2pO4PqsvBccGjFjfNaT573bKFMB5D1zK53Jy3vM7LDZ79neZaLtXvdqB5huUxeGhcP16Oe/4ZdVVJZT4HqKKcLMHQAAAAAAgBDj4Q4AAAAAAECI8XAHAAAAAAAgxGY8546Tl/kSTn/6eX75wXv+LtpWH73GL69/+D7R9oJzzOv++PubRNvJZz1d1Nfdd49fXnPKWtG24dH1pRw1gEqx6md+MRJdLpqGR0yuHDcih8f+gVG/3Ni2QrSlsjLPQs41eR8GU3nRtuQ56/zyvttOLumQy+1nb10g6q/9bntJr/t/z5T1ZW98fHIHMNfkzXC6VNt8Ve8w15gv3bBRNJ1+nCk/+GTpb3+d9f9/dYn/93ARi7AW3SoWi4t6NpdXW5DDDtPPXl7ccRwnO2TG7cSoPCd3nX27Xx5Iyr9nZutMLq/h7l7RVj+3xewzJcf3fH2N3M9Iyi9vPvte0Tbv9jP98mJX5gM601q2/f7GnzoAKsu3VCIdz0pUZy9n7jiO846IHB9sX8/JHJAxa9uCSn73zujM/7TH7MLMHQAAAAAAgBDj4Q4AAAAAAECIlX3ulg7Fsm157BFTqW0VbX+89U9+OVrbJF+3YYOou3Gz/OWGdZvUu9jTzLMODo+eVKgn7QMzbenz1om6m2/xy4WcnBY72GOWDE268tl3JNHsl/PDckntXEqd+QUzxb+1qUE2hXC5y4gKt7nurSYW6mXPPlK0FaxNO1SIRNsJpn9r4oOizR00IRKJfL9sSyX8cntCfmb1GTXKtFmfRUZ29guettAvn6w+l0Qi6Zd/cbu+TlQa2YfxGnN9LajzPj9q4uCy6bQj6TCsOqs84gDToVAofq923/4BUT/aDCvO3Li8j8wdNONMNlIn2jKDJtQqXie/L+07OkV96fI5frk2IZqcp7rNeLToSLWkugrLAGazOnWbM8IN/riiVsiU68prpOuZ7/zbA8KwtHerkOhv5s0YGHEYRyAxcwcAAAAAACDEeLgDAAAAAAAQYjzcAQAAAAAACLHy59zpMfGI6QG5TPo5K0wOBCcn22z5bErUh4tshwD6Md8k84IQgjsJMdX5OTsOV8fkppySRawY3YAcBWGx8hIZu5ztfcwvx1tOFG2ZPrPkdn7gEdGWa325X+7sfEC+ScTka0iPDsk2K3fXSM0p6nVyfMoWTOKFjp13ym3b/82ZlNJWq54Wr/5uh6jnfn6WX9bLcNpiEXluj+7c7Ze9ZrntQKfJU/Sbu2Xbq55lbafeo2NU1pdYH1tBpX1Z9PRVfjlp5dhxHNmlrzz/WNEWeeXfnIoSkfH7+YzJPVJQyzU7sVprQ/VZR9WJmLe+B3o/HlcHlG7pJ04Q9SUfOdov5wfk2CzyRKmcUe1dOb+cGtwt2tJpcz4va5C3wwf7zTVzZVzmdcxk5aCzZ7eVg0fn0XDNsuneiLwO29+m0wZeJd//aybv196PrXOAibC/BUG38297/pmifuWf7i+6LTl2SpMvmI56u74OBjjhQ+/yy54nr60bv/BNUX9nVF7DMTvYKdeKP7WYfszcAQAAAAAACDEe7gAAAAAAAIRY2cOyTm9jCbdy8dZ/zy9H1v67aHv+EWYqcfOC5aKt4JnJZjc8uFO0veo0uW3MWop4R7cM7bh7Xzknrc0iOT1p1q4fRjhViaFYsZgcBnK5XJEty2vHDXKsWPEy0092GJbjOE5h4GG/fOD+N6k9mbCoH//7KtHS02WW6h4cljE9bdaSuu/41QfUPvUS0ea5+Zdf/H3R8r6bnNCLveq+Sb1uwfwj/HJ/xy7RFhRw+OU/ms++PianKw/n9GWs+Pn7hb8+ULStmiRVOFV9fb1fHhiUgW9uxMTPZROqb0fU2JU0Y87cOhnK0tUrl7cHgrgRuaa4a92uRptkqIM3bMIgzlhRK9o6rfFhcaNockZbzLgSVeGlS6y3r4n0iLYFR8j3z1lLmic8GS4xtNjsN+KoddItux7YJupxljfGYQgKxVp57oV+uX+wXbTVWGV9Ta5T0wHazniWX35WXN4v/fTO6r3WLnzL6/zywV1bVat17R2Vv4GeePAuU4mo+5rnnirr1vAQj9eJpmOOO8kvb7jiW4c83mphn9u1qq3XKU4HwNl1Fflf1lAsGzN3AAAAAAAAQoyHOwAAAAAAACHGwx0AAAAAAIAQK3vOHafheFMe2iia5kTNs6dsQUaQDtgpAxLz5T4zMrcLxueqPDu2W3ZZ0ba7nip5nz9/aPehN6oSVhi+403D0tXXfOtton7pc58t6t/+4Y/9cm1UrmH5ps/+yS+HJeeOXv7bzkhg59hxnPHy7IzvLd/bLuo6c06x93OcL5W0f8eZwhw7M7z8+XRo7yieWceOgdafQ8H6zw+POT3lP5S6BGw1S2dlPq50X/H8XBHHypVzqIBy64PrSsscO3ac+mFkEgsne4jV5++aD/vFv7xR5l254H3XF93lh950vqh//sZj/PJ1b94h2l795VuKv/8steejj4r64g+ttGoyd03MWhZYD5M7tpmcIrmj2kRbvs/k0omoZZ6jTSZnVHpYZl3wovKLMDo8aI4lL8e4lUnriAIuMMcfcYSo337+z4tvDExAi6rveMDc/+1w5f3fPKusr9YL1KreBx6/wy9fV/qK3xXnaR+5XNQfecqMOUfcd69o22VfFtUv8LjVh1k9VgSkFsyqtg3DLcUOtarZ53O+6FZj6fuVMNy/MHMHAAAAAAAgxHi4AwAAAAAAEGIzH5a1+LmimmgxS7BmNsqwrO68mVTfYG3nOI7j9A37xcblcvntwa0BYVl66uBE5mZVmGu/+K9++TUf/N2k9nHBaUtEfd8m2febhsIwgW16TEcolu3jX7hS1D/ysV+L+p4e81lc+77L1avNtNxUKmgR6lnMipMqNQzLcRwnaZWb5AqSTsZa17CgxorBgLGiTq1wG7dm7evQoEGneh2z2nTq5i2ybbTEfdSoP0mkVAcTijU+O6zQ06ssB4xVhYlcIwNi4qr3SuCIKfTe498XTe4z3uyXn/vleaLt/hs+45fPfMV/ibaLLjxX1D//68/75Vd/Tc3pD0koVpD74+b6dtrga0VbzDUn8P2xa0RbImFuc2sj8qS0oiecpmXy/RZFzFjVOyIXvF04t0bU2/eYcs1cuZ9YpPjy57bbjyQMCzMkbQ34MTky2/cnXz1f3t9/5/Z9op6yXjp/jnyLakqOkc6oi6RrbgCjNWpjOyxLjctZq946Xy7W3dsRcIekp2kk9AUemr4fET2m7v1b1ba91tfHm6U3nMzcAQAAAAAACDEe7gAAAAAAAIQYD3cAAAAAAABCbOZz7qRlbGLGM/HIjceeI9oGN93ll4esHDuO4ziNq0/yy7V5GV+eOfJU+ZbbrGWSqzjHTn2N/LhfZ+XZqVXbBuW/sLfd8biMwXVVrKIdbX6oVXSrltsk695A0U2XrTLLpS6tkd+Jjnq5zKvTY/IEXPQ6+Z1wvjyxQ5yNdtwwuWfTF55ikivc9Oge1Woib1vypSdNGgk4uRtL3kvlWbtKxuz39x1+fqe2RS2ivn9fn9rCHqFKzeRT+ea3mgRT7b0jRbfT36pCiW36HyaQ1qfyWRfCvz70hGyzklwU6uT5+sgDZjnwd7/tNaLt+mtvkvvpDVhnu8I81PQzUT9j8NKi22ZzJpFFZ3tf0e3cXFLUB4fMB5MelskxhiPFx7G4Wqb9/qg51jOH5HHe3/hTvxyJyG9XoTBLkznMsFrVn6PcSU7Y64+X9/7f6DXn85I+ue1lpy/0yy3HrRBtl/b1iPon9pvxqqFfNFVVzp3eATn2zm829/S7hgLWMFfiDeYHVCajfkwF7Ua3JZMOJsa+PzlmsUyUlFKfb0//7L+bYeYOAAAAAABAiPFwBwAAAAAAIMR4uAMAAAAAABBiM59zp/t2UY1ET/PLsTqZEGfuqmP9ciImn0ONDptV6jMqmr82Lt8yu2i1X25Q+xnYs7mEg64MwykZ62l3U61KkJCx0lY0q/QMrfWm7C6vF235tIyHzlufU1273E/xrA/VpaVVxtYff/Ixfrk5JT+Yg3tNjpjegvy+1MnQdGfNec1++biXfuBwD7Ni2Hl2IhHZv7GCGUv6EipuOROQ0yIgGcmgTkTlVU/ir/XbZU6upx9t8r4sbG0WbfMTJs5Zn9u1LSaGPZaR4/2aBS2i3hY349zeIZkb464nuko46srgbTlO1N3VT/rloNw5OtOHfZ3w1HUiovaU88yrJxuV7rryTTxv9se3H5J1WfzxXVtl24kf94vXXiZzWuwbMv/3RXXyk0ksu0DuZ+slfvEHbx4STW9692cncrSznzolHmj46fjbOY5jnZJO3pXZBefNMbfAMZXjJu2ZcbtuUYNoG/Hkeb/YSuZYiMr9DFof/v0Bx9nQKN9jYKB47r3QiJqbEjcv7w09MXbIDzRiZewarVPXz4i853SGZO5B/MPu7/yLX77rPnkdfoZnrsOj6nNpbjPX2mREnoMtp8prys3PbPXLw4Pyc3jl9++b4BGH18J58pwc7Df3ipmkzN/Sn7HubRLyvK+JmautG5HnfUOTzM051G9+W0VVhrs1axb75cd+G3TklW2h7HrnYEDKx+MWm/E3uUdeP9WI4/QtMePawhH5u3pz7+zIlcbMHQAAAAAAgBDj4Q4AAAAAAECIzXxYlvK0Ob1+eUdaTkuNFMwU2lxWPodKxE29feeDge8xb+Upfjmbq4Ap3lMka5VVJJuTsGKm9MKTB6224SeDp8Tan2hSza4dqZ7olECtCRmgtv6Rp/xywpXn67AVF5Harc9lOefQjnqpb9SfMBzHcZoaZL/EXDPFUk+ujNSbMK0uveyw2nhuk9lvviA/p14547Oq3POUOdefeeoC0TaQMSONq8IeMiNmndXb1nUHvsd5x7X45USyes97OwxL0+FVYphRf/LJWed2y5jLpzzx+6zX6qXQS13ZuSLCsAJEC3Ia9yVH3emXb7pTtvV3mu/LLXc9ovYkP6hLX3KOX/7LX1Qf2h9GJXavPtls1v83r07CQSskxVNDeixvth3eHRxEnrKuDU42oIP1cVqbVkQYlmb1b31SBjcUrO+BpwYkuwdTI6NOkETc9L0XkzeZ2dHqDf5f/h+/98u//cCzZGPW3Hw3qVDFhhbT9uyPPyTa9Ol78+Xnmtc1V+/y24985quivvaD7/LLcfXDZ0GduSfx1BieHTW/ynq6+wLfc/ESExJXyMtxTYdpVatFS+X9X/OQ6d+Ius+JeebG/NFVsk3fu6xNmXGtplntqNeZFZi5AwAAAAAAEGI83AEAAAAAAAgxHu4AAAAAAACEWNlz7tjLni6PdYq27TvMsqCZuMzH49qx/bE20ZZMyHjDwXaz9PG8mFwKt29CR1u5OgLCxJsCwjd1U6NetdLab//sWCFu1tlxUMXLWnlCkqpDG61NUyrHzvxGuRZ6LmG+JHv3BawBWMUyGZlRKt5o4s+zGdln0ULxL0K9CjfPuSZu3eUR+rjufrRd1O3cLs87ca5oy1sjzXlr5HifiKpBx/qYblsnryn4B31KJhOmDzNZlQzN6s9edZ2Q2Rocx/4kcm5AgpEq1uTKvDoL5rX45f6UbFvYYvIq3HKXzH/xzoufJeqJFnOPFCuoPCWV3vX2/y/gfiWWk9fa0RGTg6EmKb8V+YA+0ynsMjlzHYnmGPDH05qW+Rn3WuWEI+9dCmpItyUi8mKbtT6oxqzMsZN14DiO86Iv3VG07cHvvELU7fxH+697vWjbc1D2b67enOtnvuX6wzjCCmONQem0vMec32ZyT3X3yu9EJGDwap6jzvu0SRKW1klhxlx7q1ONumevbTGPPNyUvM8pWH2f3C7781I1pLcsN/+QnaV9zVUIAAAAAAAgxHi4AwAAAAAAEGJlD8s6sHurX66pkc+ali5u8stbd8lwKnv6Wo1ayNvLyWlwdnBFD4+zxhVXZ0LGmh3eH7CqqjaoZvRX+mzw6ZDPmMnEXV1yYnFNzfhlx3Gc/qw879ODU35oFae+Vo4dUTucQXanE4+bs3les2zTS7l2EYM4LvuUTQV00a2Py/G+1ZqRfIjVuJ0+5uIfkg45GbFDsSYwaI9ZpFh8Foz+49myVYUK1ppzfVenHLTnxk24yrPPPla0rd8v93PHjX+3amW/tSufMaedGZvzGdlYW2dGpGZ1PR20QrbiNTJOSN8DpcUUf3UTFHhs1UPfjjznjLV++c8PyEH8mptv8Mv62qqjII47w3wvXn3CfNE20EFY7qGc/h83HHojTJ66P2nvNd+E4VE5VkRdcz8ab5BhWMMp+eN12Ar/zHlpB2P1DaubeCuqsCYqB5L9feaDaqmTL/u92m/7ztl/f8+jDgAAAAAAgBDj4Q4AAAAAAECI8XAHAAAAAAAgxMofmB0zMYZNtTL+cGh4wC/nHRkQnRaZdFRcnWI/wTp6icyx8egeEjQ4juPkVJi4tYq2k1HhhZMNG2dh3Ilz1ZKrKVY0n1JrFssltzfu7/DL9TXyS3Gw15T1EtCjAWfzqStkgp6Hd/ZP7CArSOtc0xcHuor3g74w9U4gpNz+bMbkhME/MRqXy+/vXCfqzzvraL+8rEkO+H/820ZT0V+KnKq7Vl4YjwuFYc7tIXWj0+CaG52+nPwOjGSsbfWfQQNSLhxzxCJR37zrgF8es2qu9Za6afZndTi0eavP8MudWx4QbQ8/uN4vf+v6J0Tb6/7l+JLf48bHze+E/lT1Xlunw7OPbBP1v27rKdORhEvByhN1ztHzRNvdmw/YG4q2bGoCdywxk5PnsmetFE3r9bZVam+7rC+2Tud9o7LvO6yulxnWArOozVrM3AEAAAAAAAgxHu4AAAAAAACEWNnDsuzlx1IDciJq1JqhnHPkNGN72pSevqonmNvtjxGGNS41O9DJBMzSD1oKXT8ttKezMfF/fK7qtGjSfC1zo2rufdDjWPVFsL8/+Ymc9vbcca+yP7W/PnFA1Oc1mw5OJuXkzAWtpqy/A6O9xSduVnMYlmaHYs1ZJpd2jkRN33fu3OhMlpzYvFS17p30fivL1HyvE3H5HclkwziBubxy1sU3PyhDzC+64CS/7KqxuGdY1u+8X4a2YDyyz3J509+uWnK7qd66gKobpAF9XbbYYVhj3j3ga1eJV9rOrSYUK6kbI2a8X7hssWj63PdvN5WCvLHJZoZFPZE0n1PHSIN6E8KIDgdhWJNjp7X4wwO7RVtzm/VNUDeSsdqiTY4bUddaK6zo6tu2irZTz6jE0WTiBlU9YfVvjRrCF1od7qruOxDC+H5m7gAAAAAAAIQYD3cAAAAAAABCjIc7AAAAAAAAIVb2nDtOk4mn7R+Qh9OWN0FxR9TICMTdVgqeQ0UXLk6aLfZPYEndShezujQ3yRDNoPxGKI3uw5xel97iRu3AUNWmAvonlGdHHFD1xuv2WXm/sqob5lsrmucKxdscx3E6rDQ70ZiMlc4HfL6V7uXPMomLfnnHJtHWbOXgWb76aaJt9zZrW31+qvWF25au8Ms9uyefu6ea2KlzssXTiYxBjp3D91crJ4PnyBuUC59+gl8uePJvcXUR3fdcfScqY3VZQV2J41abHnKaauWS9QOj5HIcl2dy4KSdIdFU75kOfsXZraJtUfMCvzw4IvNtNtbWiPr+d6j1juE4juMMXfdSv9zw6l+X8Uhg6++1xng1rhTsn8D6NtxV433AcO9GgjKjVq9cwfTL7gHZwfPtpGBqLfQFtbLeHoIcPMzcAQAAAAAACDEe7gAAAAAAAIRY2cOyCtbUqKgj54P35s3cqIwKZYhNYNoZoVjjs0Ox4m7xNj07MChop3oDeg5DQc0BtKbbqxnIzmiqeA/T94fPC1gOsWOSK5rrMCw7TKvaQrR6u4v/f/v3mNCrCXW1+pwIxZoE68RPqA7N6G0xtSIJUy7IC/Et97C8+XSyI2Yzamgi1GoKuMXzJ4xa9z2eIzt/f3/xUKvB7CQvxFUmWttS7kOoWo9+/uvFG4Nu1CcQEh3koU9/dWp2VGEiVnztsxbLtjv2z/DBTDNm7gAAAAAAAIQYD3cAAAAAAABCjIc7AAAAAAAAIVb2nDuJ48/1y5mND8lGr3i0f65AhpHDZX/4etnnGuuxX4oVVqeZCva34m5HpygGF6VpazZL3Hb2Tk/OhWrLs2Mr5Myo87wTm0TbrY8PzPTh4J+yeXMB0DcFdp3haOo99yyz7POt9+xRrfb6rCQPnGqF6h2KZ4Znjxgyn9Sovu8p4hnHNIv63ZvJuVOK4T7T394f3y3a3BcE5ITBtJrbYu4xu/rI6zWT5lg5TKPqZuaCJab8l30zczzTiZk7AAAAAAAAIcbDHQAAAAAAgBAre1hWdHTEL9cce7xoq7fCF7q3rpupQ6oaQZNia61yquhWmA4L55lnrgc7iYmbSbmC6e/apGq0QhdHWB96UtyY6d+sJ/+2cMHTFvrlvzxycMaOCZIOeCYAenplGub75RUr5VzxiGt6f/v2XTN2TNWipt6ESAwNEyIx9eyfGPKOs7amzi+PpkacYgjDmpy8Y/qtvV324R0fea5fftZn/zxjxwTHycfiVo0xZyb1FRJ++ehGea317DudfeG/62HmDgAAAAAAQIjxcAcAAAAAACDEeLgDAAAAAAAQYu769evDH1wGAAAAAABQpZi5AwAAAAAAEGI83AEAAAAAAAgxHu4AAAAAAACEGA93AAAAAAAAQoyHOwAAAAAAACHGwx0AAAAAAIAQ4+EOAAAAAABAiPFwBwAAAAAAIMR4uAMAAAAAABBisaDGtWvXztRxVI3169eXtB19P/Xo+/Kh78uHvi8f+r586Pvyoe/Lh74vH/q+fOj78qHvy6dY3zNzBwAAAAAAIMR4uAMAAAAAABBiPNwBAAAAAAAIMR7uAAAAAAAAhBgPdwAAAAAAAEKMhzsAAAAAAAAhxsMdAAAAAACAEOPhDgAAAAAAQIjxcAcAAAAAACDEeLgDAAAAAAAQYrFyHwAAAAAws1yr7JXtKAAAmCrM3AEAAAAAAAgxHu4AAAAAAACEGGFZQFi56tmsVyjPcVSh/KojRT2xc5ts56MAgFnGVXWvxLZD7afU1wHAxE1kdAKYuQMAAAAAABBiPNwBAAAAAAAIMR7uAAAAAAAAhBg5dwCgBOljj/PLkWxatBH/DACz2/d/8H1Rf/3rL/PLrls8q4WnBvhIRG5rvzYaCcrHAwATxz0mJoKZOwAAAAAAACHGwx0AAAAAAIAQIywLCCuWQp9WQ6tWiHqhkPPL2WxGtc3EEQEAJuJn113nl5/3ry8UbYXcoF/OZuXtcDJp1dW1NpcZEfVswWybVxeDaIS/oQLV6qgXv0rUX7is1i+fe9pRou3lrzbjUy41LNo+/PGrRd1u/9qV1zmAjasOAAAAAABAiPFwBwAAAAAAIMR4uAMAAAAAABBi5NzBuOJWOVu2o0AgcuxMq4btO0U9d7xZCj3HupQAMOs956KX+uXaQl60jWTTfrmtqWHGjglAdej5289F/Sd9pvyzOrnt97/93375aedeItr+9+u/EHXPNeWoes+8g2rHzB0AAAAAAIAQ4+EOAAAAAABAiIU2LCtuzUPLMgdtUuwne7WqbdgpTY2q5w5Rx6G51ifjOQGhV4RlTbllR11oKq5si23s9cvvfvPTRds5m+U36IGDG/xyZssdU3Z8lSQakR2cL0xDrJurPkSPeLqJsnvwUL2XsMqZaTiWSjSR/kUp5He+zhpXUirIfG5Tq1/+4Y+uEm2ZUXMdjtUlRdtoTu6n1jXX4mxB/s20pcHcJXnq2F7z6tdYNT798XhP3izqGXXfkzz+4hk8muq29xeXifrSV15dluMIk56B4m2RtKz/6UHPKv/CCRKxhqRCajJHhmJ0mJueBROGVCXM3AEAAAAAAAgxHu4AAAAAAACEGA93AAAAAAAAQmxW5dxR2RECI5DJs3P47MjlUnPsaIR6Tr3APDuYUitXrxD1/vQ2v9yze0vR1339+3tE/XUXrRL1u+68yy/PX7JAtHXsa5/oYVakacmxo5FjZ1xNqm6nBVir2vZaZZUiwBlRdTvz1ALVtsfBeDhDp5rs0cZGnRlwfP/2xrdMx8Eo+i43qK2yz4yBx3/llx988oBou+CV7/DL7nEXibbME78W9dHHb/DLtSe+YioPsWIM/PZNot70oh/45d+/83jR9rTVZn3uRe96SLQtcTtFffjq8/xy/WV/V+9qzx0IyT3tdKwpHvCVL+SLf+fXrJwnWjbskH3f0mryhfUc6HWmRMw6nlwFjD8TGVKtbfNquzA+bmDmDgAAAAAAQIjxcAcAAAAAACDEyh6W9apzV/rlIxc0iLa/bjQTudv39om2o5a3+eVlC1tE257OIVF/bEuHXz7xyPmi7db1HQ4QSjMwizujlnxNxOJT/yZllM7IThOhWPrRd2GuX3QXymnG19z8hKhHrdcShjU+Vikvn4DVWZ0Nqj6Rj6XfKk821BeYLnpIjzhL/bInAhDltnrp2zGXBmeJVdsXcATVO8i1NsjwuKYTX1Z029qahF8+5fRTRduC014l6r2jmSk4uspmh2Fp//LNjSXvJ/Lq34u6FxivEpJQLIurbkq8qfi+BvZR8f3v2tdZtM1xpjAUy2L/78M6UiWssrq9Dw4UDOt/uAhm7gAAAAAAAIQYD3cAAAAAAABCjIc7AAAAAAAAITYjOXdcK5JPxzD+/M4dk9rntg09pmKXD+FgQI6dMfGWJIE4bCL+sWxHUaFm4PSMRyr7+e/+XbvlP7SYYmusRTSlsyaXV9xdJtpG6+QYlLFO/LlRufB0V3dQxpPqwfA6s+xVXvWCwSmr/IyEbBuxBm49Grz0BFn/oZV66twjZdvF2w59jMB00nkWCirPjs1OlaHT243NJhKUZweO4zi9Qyn5D/aApH6JjKbMoHPPnfcG7te19uPplIDqLXF4gnPshJ83i5b/HizDD6bZ9P+frKBus7N+5QJeF1Vt+rRPWmXdY7Pld25l/3IDAAAAAACocDzcAQAAAAAACLEZCcsKWk5uzSIzB3z9jZ8Ube6ZHyr6up7ffcQvn/3mL4q23373P0X96Bd/prTjrPA4gee2yvpmayU9FZwiBK24rXbp6MX57ClqCXW2ZfS8uIo2dvHUUhxqeuB0GxgcOvRGIdO60Cx/23tQLVPeZ3q41+kTTW7SfBojIzvl6+Jq7Ogz2w4HLjyNiaqvkwPJ8EhVDSSTdo5VPkq1fdoq36jmFf/IKq+cJ9sG1ID/bavcQBhWSZ5plfW19o4J7Oc0qzyo2jaXuI+ICsMtFMK3nLFWZ3XqSNAtng7psdY/19dhXU9b5Yi6zykwPI0vX6SsvOCic0X9r7+7U9RTJe6n2iy1YlD2Ep42rfS43ZA0/zKYntzvyqZkUtQH0ukiW1Y33ff2FUwPByMB+6mxdpRQ14IBdU8Uhk+CmTsAAAAAAAAhxsMdAAAAAACAEOPhDgAAAAAAQIjNSM4d26PXvFbUE0mTc+f9X7mm5P18+vu/8MuNMfnf+PKPfzXJo6ts/f2y3mg/2gsIrdcRo3UB79Gk6na2kerKsaNNLndBUAh5UC6kqRKLzfgQMe1a6kww+ki97MX0sPmcatXrYjUmBrrgydfpp+SDzrBf1p8TDk9OfZVc1cEVnjpt0p6yyv+7SrZ9ersp/1S9rsUq96kTvUbV7dQO/6MuBp8g9dS47IWeL1Vtd1hlnQcgk5X1h6zy89R+Ss25Uwk5duZH5B1KU/Ncv3ywV2YXHHKWm0pWtrVYKS+yKudCYcwYs8y05faUfKzVZO6cFlHv6u4r6XVev+zsVPhP0WnRourtU5Bnx62VeV+80TBkG5l5NeoeJJ05/JuQoYwcdGbifj+M9C+UoJw7QVJWh9ZP5ADKnRi1CGbuAAAAAAAAhBgPdwAAAAAAAEKMhzsAAAAAAAAhNuMJNU553c9E/eTVC/3ywqWNou20s5f65YaYDLT9y4YOv5xuaxFtf9s+JOqrlpmY66NWt4q2W2/fUsJRV4YHVKzyEqu8OCEDB+dkTOBghyPZsZ6eygOgc7Q8I28S7fRFZNsTqepNwmPHz+qQzaBesSOgdcytjsm1o6MjqnFszoDqsWP7Vr9c16AySDWbOOdEVI5HnpVnJ5qXgbWuqz7FOea5edJpFk0j3b0TOt6KYv05Ia66LBtw4rvW6zKq7z31J4q4dbJ7KgFPrnqHHOeAVV6vvv9fs8onHCvbOq3y6JFtsjEhO/+ag11++dYV6gAeP/QxVgOdn8GO9f9hwOsStbKvM9niyUduncRxVYqOwoio1wybXDpHza8RbSmrLac+l9pG62qr7msi6vsTz5o8O/2jsm1LFeeaOutZF/rl/uygaJuX7vHLmUJCtCWsu5sdO2QOo+NXrhT10QZzE5pPyGv27ocfnuARh1efqtuncywpT+6YlRMmpa6fkah1rqdkjh19H5m0vgejqtGropvMUfVfTVp9Ua9udKIxc77m1L1Mwb5fUUnV9P29W2O+M54nrwWj6eq50ckGtDUHJCrSr0tav2X1vWiLelJSY7Vn1GW4x5kdmLkDAAAAAAAQYjzcAQAAAAAACLGyr3O8YdtBv1xQU9SaG8wU2lREPoeqd02ow2OP7w18j7OeZpa73L+zikMilBvfvcAvn/f1dtE2anV3Uk07K1htnXpum5rPZk9IHAwMOKou9ixO/SWMFtnOceS0WD0VVLP3G1PblrpKZq7C41iiatpmY8GEaRXy8v+es8IgRqMqHlEtdd+YN2NXxlPz9KtYoxUVMaxOrYReV9viWt+E9CFOfDdhPtRcrnqmhh+K3bsdO2SbvZz839S62d1WF35qU/Ck469Y5a4NEzq8qpGawCl57AJzNci0yfuj+UvkttufPJyj+oeIus+qhKXRd1srCs9Lys6fW2MGpHxeXokTCfN//9uO4cD3ePois582vY7uwBSsSR1S6x41g8DqVQtEm5ds8su1eujPmZCTp3bLeE4daXHM2Wf55UIVh/prdj8VYrKDPdec28kx45EZZ9KHGKsKVuRiPCrDjzIj1ftZpK2QtJirTm4rhCqmQtny1uuCRxwZcpSfUHKH6pFMynreOp/1HfyQFYE4ZsRWl8E5VhRpVP+AG3FmBWbuAAAAAAAAhBgPdwAAAAAAAEKMhzsAAAAAAAAhVvacO/+/vXuPruuqDzy+71O6kqyH347t2HHiOHEIMWkCSQgUggmBzjALyhqSlmHaVeiwSttVZgqZMqvtDC0MaaeP6dDFMDAsZlqaThdDGQoBQkgghEDeDo5N4sS2bMuybEmxJF/p6j7P/NFy9u/3k+7x1Vvn3u/nr729r46O9zlnn3OP9u+3KyKWbWBwWLWdFksPb1+XU21B0v/gDVt1YF1Sr97npgf8Yt6jedPYwq7a7peN/ML79JLQn/6h76czL+k8C9W0D2Lfv32zavtJ/5Cq58VSuf/rN69XbW/5w8fnuMfNycZ3dohY2sAGmEsmHjpr4ndTYlnFi+Xnqaenp+fiH4qxhMkx0dfnr4nz58dVW0YE1xbG86qt+xK9RHRi0l8/yRrv0H9Kru7Za1ahD5K+f6ftMs/iQujStwJXNgmlkjX/2TXtejujUetmNjnZE6lu3VYRyzUPmp+TvWvj1N9r6qdFeSvpjmZ15Xo9Hpw774/Mhj49hldEkgCbU+fyS/Xy0Ves93kWUiZJwAsjriHNkGNnBtHdTw3q57/OwDfesMUs5VzxbTu69Jm/Y51+5kyIfnt0YJUkXVgFqmWfv+XgszqZV1Lkfblk4zrVJtOUbNu5TbUVK/r6GT/mc24OnI3Ov9lK5JXcbvKZTouHzqweRmYmNRIyJoeJuNW2dI6dKJPFUt22jox5Nkz48b7NLlFv8iaVRU7IKbseN5xzzp2LSHe2xtSjXobY3D1FcRvJ1z+8K4pvHQAAAAAAADHGyx0AAAAAAIAYW/GwLLmAWyLQ75rkUpQHBpnquti6Nm8Jy5sn9Rz6ezb5UKw7Pq4n6l8r5rOdHtFt3V36dxwY8ceQMKzZ2VmwU+JQJE1og/zsjMUPa/rDq3S24KpSnNZxOufOjYXlUtV8WC5vmdWxQZMjernzIOGPTjYTFVvXWiqiT6smRCqf9HFal23QU7xPnvFhcPaw2FU/C+JQlFf8Drc62XBPOXvZRq5dt8GXP2u3Y+pfEpHVBfunoxkHrjXJcBTnnNss+renU5+w5bI/ua/fbg5aoI/UK6/0N+axST0f/YWR+neDbMbHZZTKTXjXkDfKQN81J0W4ylNjegzPR6xFfCLfwvGdc1CeOlO3TV4FA2d4vl9K0yY8RYY2523oSkQ4bZmsFotqyoafRyH0alFdmMNni+a8j8NlwMwdAAAAAACAGOPlDgAAAAAAQIzxcgcAAAAAACDGVjwjgQzDn66YJW3Fu6eEWdpzvqus2uwXrbxa6+MPPRqW9934atX2k1G/NOXrtule++pAVK/pz7aLHr79CrOdl1q5972oXrBvXzsT/pKtmb6+YHIwPPjoE2H5W48dVW3vfsNVYTmbqT8M7LnnZlXP/NVcIlVXv43r9JrQwy/7NaHTSZ2foVj0eQFsj9l0ItkOn/9i0/o+1XYin3etqpruDMulik5q0ds2FpZPD6smV4pY0nIGcVl0mGVeJ1it1Tnn3BfGdf1f9/ryNrNE/b+ya6NHkEujP0eOnVkFKT2uyBw8paI+Qb8h7rWbturtlEw6k/dt9+WvPNt47pymzLMjidtipk2flGUxVkxOzf/pMJP0d+qyyR3pgtYddBJiMA5a+ml7dVEpuWYcFrnuc3R2ETmU9Zl8myPmHtNKkuLZsVbjRhgHwX+/MSz/zX1PqLY3vUF/D9r8b3+4LPu0EMzcAQAAAAAAiDFe7gAAAAAAAMTYiodlpcRM2EJVzw/MBL4+Y9nnJdynVvGxb/nQq7cc1NPQxtr9Won3mzCsn9voywnzejDZrT/71SOiTBjWnGVN/07U/Jlve/PSnjZVv+2WG1099yx0x5rEqUEd/5PL+T4smTDRji4fUhSYzk+asasmlk0/0X9yobvZPEQoVsqETGXEkvFtVR0iken19VRa37YSZhB6edgvaTzJCruzesLU/8WYL4+a6fRfvMSXa+a8739Z158Ws/gfnu/ONbkXhvQ0/Wu2+PM3l9Yd/BbR9wkThnvJdfoC2sSf6i7KLuWcFSGIdryPYu/LpZpMG8CSxT8VJMU5OqNb5D8s1tLy7aY+l3je5iJHC3tm2+cXrfGFnmvil7RyGJZFKFb8JD5gn4qEr67+MCyLxwEAAAAAAIAY4+UOAAAAAABAjPFyBwAAAAAAIMZWPOfOljU+aHNgQgeClkW1zaxSOYfwaIWsL94PB3zChExSL9e871KfG+Ov/qVeg/XPv3Y6LNsw6uSErn/1HX5J6Lf/fXMto71U5Kk+ZTo4Vedzzjk3MK5jpWU+qyonfkOmxVLEgY2bzvicO0mT5yWR1Adqaqp1lzuPJM7DvEmzkC76xkxKn93rc/5YpNL6uFRMAraKyKMxQc6dhnSK8ofMWPFFUc6ZPEmX69uG+92hxdyr1rBtk19D+FsH9A30hh3+Ea1qTvTh83rMue8Zc/OFc865azf4u+bBYbMUurxlmvNejkAp82fQsrkvp9szYbkyvVj5Y+Jv/UbfiyNnTWPgOzFlcuVU55QrR/5s6+bYsezzobRYj4MByU9n1ZX1Y06+RP4dLD9m7gAAAAAAAMQYL3cAAAAAAABibMXDss6LUKw205YRMShjTP9bdAWxoPzxoQ7VNpb28+//4yOn3XwRijU7+VZ1LgunzmmCJ6FYc6fmMqdU09TUpMPCyGg2e3peENEM1Ul9VZz97P7627T1dz8wv51rYWlxqv+2GWR+cXB596XVyOvgjn051fbNA4WInyT8pxFTxYi7ZkSTPC6Vi9ykCcWa3cg5EccZmHNZ3AyqwULCqQjFmk3UKTvf5080plgmFGulyOfBVv4KxMwdAAAAAACAGOPlDgAAAAAAQIzxcgcAAAAAACDGVjznTlefX8ZwakLHKV6oEMe8lGSOo0OlE6otdWx596XVNBoPHRW5mzTJRmqtHGC6SNZ0+B4vRvRnkZXO5yWQJ77p32rERZEUeXT27exSbQf6ORgLdajqB5Mec2DuFuV7lml/WsnAoF/CfOsWnXnw9ut8zpL7ny0t2z41k5w4na/QQ4c7JoYObp+L75pbrg/Lh545ohsnx0Sl/rN+Nq0fdEoVjlQjovLqkGdnaaXEw3nCjCysjL60GB3+ETN3AAAAAAAAYoyXOwAAAAAAADG24mFZlSmxFHpKT7/cuXNDWD54dHjZ9qlV9NUpO+ccq9+unDbxynUqYv4sYViLr1TyYRDFqLgsliGen4g/JyTFVOZauX7fE4a1+LaJycxPmja71DwW13TFr0M/craoG+n8BcuISLek6dBb1/vx/uF+0/dYsMqFSli+8vJdqi3Z7u+hzz/+WN1tEIY1P/JWa4eRbIf/6leYqjgsNt/jKdP7XW1+vM8XeY5cTp3iophs8thEZu4AAAAAAADEGC93AAAAAAAAYoyXOwAAAAAAADGWOHjwIAGtAAAAAAAAMcXMHQAAAAAAgBjj5Q4AAAAAAECM8XIHAAAAAAAgxni5AwAAAAAAEGO83AEAAAAAAIgxXu4AAAAAAADEGC93AAAAAAAAYoyXOwAAAAAAADHGyx0AAAAAAIAY4+UOAAAAAABAjKWjGq+99trl2o+WcfDgwYY+R98vPvp+5dD3K4e+Xzn0/cqh71cOfb9y6PuVQ9+vHPp+5dD3K6de3zNzBwAAAAAAIMZ4uQMAAAAAABBjvNwBAAAAAACIMV7uAAAAAAAAxBgvdwAAAAAAAGIscrUsAMBMlXtvU/X0XQ+u0J4AALD61PbuDcvJw4fntY3yVVereub5nyxonwDAuv/++8Py7bffvoJ7sjiYuQMAAAAAABBjvNwBAAAAAACIMV7uAAAAAAAAxNgqz7mTCEsp8xoqCIJZP+ecc7XAGTP+AQAiJUy9+Nc/G5ZTCdsKAEDrkjl2rKppS4kcPNWrdVuxVPbbrEX/jqhcPouR8wdA89PvFOKPmTsAAAAAAAAxxssdAAAAAACAGFtlYVk21MFPk6qaqZn1Pjf7ZsV2m2zqFYCl8djHXqHqNTE/vFgsLvfutJQrX/W2hj975Jn7lnBPAAALNVWtqHppz5VhuVqrmk/75/Tpakm1tB05qurVvX6p9GqVcOlGZLNtYblU4lkGaLaRg5k7AAAAAAAAMcbLHQAAAAAAgBjj5Q4AAAAAAECMrbKcO0uUD4c8OwAa8Ojv+fj9V12+XrVNFXzOgEwqMgkY/slccufUan6ctstSHrn3G2F59513qLbd+95ad5uJiCXrydUDtJYNb3hc1VPJVFi2Q0VF5G9JJnROmGSy/t9FEwndNvjAq+a6m6ta1HLn+UpZ1dtE/2YD3Yf5wPdvzTyiZyr+szVzXM7vuULViyJfT2ZG5gz/++eyhHqzyWTbVb1Uml6C31I/ZyoaQ3rYlVNpsnxdzNwBAAAAAACIMV7uAAAAAAAAxNgqC8vS5CSpucxQi5pcxUw3AD+1a+8eVf+fT2TC8r2HCqrt/a/z9QsTk7rtba9U9SNn/fKt33vq+QXvZ1xFjcUX8roPg5IPeztjfjJx63W+Ujuj2rZ0d+kNZ/xU/O4u0xYRpgUsC/snNflQYp/IyvIfKi5SSpTtytIt7JL9T4flifI61Zat+YNRSKRUW1t7LixXy/rJMVPVY1dNhGJ1921QbVvffCAsn/72vsZ2eoVFhTDZcKYLuy8Py89U9Yk3WvPhP4Wzw6rt3pS/176hqMOc+9f5vq+M620eTenr4Ny0r//Xbbrvk+KY3prLqbao8LI4hmxlTb0q7qHlkj5/5Zne19mp2kYm/bnd5jQbjF4WvzXtdEieE9dEJSCMvRHBHL71ytsIvTu7zq2XqPrd+/yZ/3tfP6Xaxqr1b5qf+OeXqvqJMf/Zz3z/9EJ2cckwcwcAAAAAACDGeLkDAAAAAAAQY7zcAQAAAAAAiLFVnXNnvvlxyKsDoJ6sCGvuGHlRtZ0MfI6WF09OqLZTL4ocAbt1fHn/C/p3HB/05cs6TNvUHHY25l4wy42PjpwLy+vWb1RtU2M+J0NHr86dcPJEf1i+dMdO1fbisRFV7+rzS9i/NJFXbZ02Pw+wDNJ+6HAVmyBB1k3aiovm2ZHIs+Oc0zlunHPu9LjPHLKuS2cRGR3y41Fb73rVNjZ+Mixv2KyX354ef1nVS4Ef5KcHh1TbujXxeyK1eyzz09i2ybLPL/fadr3kdv/gaFje7XTOmyDvb4RfM19FrhdZYZ6t6BM716lvqHmRu+22szoX0p09Rb9vue2untThn9Rti4vSjL/V+4Elm9P5pFJiJfR8qeTqSa7tVfXgwpiq58TZUCibr5PBjMEMzrlsxl8jgcnzUq413mephL+p1OjrWd2xZlDVi2d9+b0m5dZd438elgt3blVtjxw4qepFMQjertP6uPv1r1wxzNwBAAAAAACIMV7uAAAAAAAAxNjShGVFLTc7Y4bqKp6yKv8fwSrezyVQeOSesJy79W7VVv3BfwnLqdf+tmrLP3SPqne9Uf8ssNI+eEtfWO7Z1KvavvtDvzziTbv0FPMjJ/wU78drOrznSL8O//nZG/3U8eSknnp7/GDRtSobiiW98vW/GJav2Pt61XbbW98Xlndd8ybVtveWd6v65a/wP3vda9+p2vZc/7aw/MLTOmQMWCoqFCsqfMo+OslIFhvOacI9Z7TH3M536Weu8viPw3Km59q6bdWJJ1Xb+q5/FpZHTj+qf0nNh6QUB8y4nO4Oi5W1etwKsvreUD7vQ0prEzrE5/SP7nRxk4pYCrx69VWqnkj5vxGXq/qYXSFDfoo6ZOqjIuTwvvfertpuWO/vr+U/vVe1bdn/RlU//rcPheUXf/3Nqu3N/9f/P+ITehXx/WlGm+xvHe+5pc8/50xOnldtE4FYOL1st7k2LE2/rAeVnNup6lOuPyzv7NNhjf3ndbh0q0qn9SL11bIIoUrq+RXJyFArHVJaS/jjnXY67K4StG6M7pv86evaTTd8/Rlftiuf73jPt8LyJrPNcVPvWefLa1fpFJlVulsAAAAAAABoBC93AAAAAAAAYoyXOwAAAAAAADG2eDl3Gs6zs5pz15j/QxDRtqr/H3MXPPbHqp54zYfDcvnxP1FtqVf/u7Bc+tF/Vm3Zm3SOncqP/HbTN33YASvt4FRnWH7wK8dVW1KErVfO6GWI5WB5rKrjqMdM/O7fP+1j1XOdOj9DK/uVa3w5a3KGfPqJ+5d3Z4BlsmG7z38xMqTzXwRyYLFpFuQ1YnPqROXYyZh6DFfK7f+Sfuba+S4/yJbHn1Vt1YmnwvLQY+9TbX90l1/G/EjhtGobm/DlXEZ3Ul+vz/vyFw/8ptm7MVO/EJZ+/Q1fVy2fOuaaSmLGs7Cv5154QTe9xvf9Kx/TmSs+t9FfE+fu/bZqq1zplyKe/Lk7VNuT3z+g6hd2+CQbu7/8sGr75WOjLn7sdwv5N/iaa9SZ8+cjWusvf+6czz112ZU3qpZjR56o+1Pk2JH8NVGp2OMpHhZrWdNWiNimzglWbfxUaCmbfKo0VzH3yKt3+HK7GcbGxWdPntFtr9mh6zn/FWLmFTls/2FlMHMHAAAAAAAgxni5AwAAAAAAEGOLF5bVFEuFN8P/YX5kGJZzzk1/34diZUQYlnPOVR75ZFhO3/Tvddv3P67qMhSr/AMd3pV5rd4uZsqYK7Rcmf1zaNwjzwyEZTulsqamnOvxQHb9ZCFqyrNzUyW/NGW+ND3HPWxe/zDg57OOjuulcXvE3xomIqafd5o/SeTNR7vklGhzDFvpSKRMvdEVuM888EeqbdOW3rBcM8vmBmkT71PzvyX9yt+4+E62iOPH/yEsl176gWpbe/zBsPzl81tU27U7NoTlsTE9Zf8SOf/cObd1+Omw/Pya61TbVTffM8c9Xt1qIgzLuZmhWNJH7n0pLKcjwuvtrTUhQq9yyY+ptmkz5sgh6VPfjVrKOp5qe68OyzOekmsR8SFP+77/cdYM3OfEPdQ0PXf4qK8cOqob7Z+kxa9/sf6exNjC428+3fXLql6t+jthJdAd+lvTXwzLUWFYzjn3F7m7wnIiqUOMMil/B/rAxOcb39mmIK8Sc49Uobb1w7A6utap+lTehBh2iXEmb8ec1o3Z+pv+qFZ5fz1T91PWkyfsv2wT5QHbuCowcwcAAAAAACDGeLkDAAAAAAAQY7zcAQAAAAAAiLHFy7mzFKJePc0lpHCxttPEcqbe/jqZD0dnb9j6jv8Uln/pnW9UbenX/Ye6vyPzWpZCnyty7Cy+6LwrjeXdKlejP1dTGU7q53loNedMnh1pvMHB2ObYsSZF/7ZuT8+N7KfN+z+yYvvhXHNeLcUzfgnua+64Wzfe6v/H7+zW/9tDe/8yLN/14T9Ubb/2jtfr7Rz4Zli8qvebrpmdicixE6Uy42GwfiYqeSQKFxlz9Faa4YzVAvV/0n245oWITDcq3YjuxKTYTM12maynzHLRVb2MdyrlN1QzuT+DGRtuLglxLIKI++e1pZ2q/kjJL1uecma9aGGTqZ819XRhvdiOzh9zc++uutttdmlxblfMYUmI7g7sFy/RhTNy7BiJgnjOaTfneSslFzTkaFEybWmRZ2chX63SIs9OZZU+sTBzBwAAAAAAIMZ4uQMAAAAAABBjqzssS05ni1hdMm1eUdlpcGo7vM6aVdQyuXqim3Nnh/3cwS98+SHVFjVBLW22U2nluYMRPhr0hOXHTo6rtu/sqP9z2a4+Vf/gST//89sniqrtuVctYAdjTg56UUOFlapTdm7m9E9tdUzTXAnXbNT1HtH5jw7Ob5u71uj6GTOrvKAGs7ksCN5cFut/mhSj+mXX6KW6jx4e0h8OFh7n3AxXy59+QYde/eCp58PyWbus6lHxP27TTZ/Z8EhYHrigQxofPmTCYf63KPe4ptP/JXstz84+g8jIh6moq6J1h4qLSh325+/Ent11P7dxve7E4XHfiSZiymVEXIR+OtESgb672vEhXfVjTtR2mlFUKJa0b7uu33q0PSy/PmLEffub96n6Z799QNV/zfnt3LVdb+dXe8Tz/lhDuxlfyS5VrdTyYTljvnOW5SGrvxK6275Ob/PUaF7VAzk+tfBYtc1EbU6L4WJENy0oFKv+dlbnEwuvOgAAAAAAAGKMlzsAAAAAAAAxxssdAAAAAACAGFv2nDv2bVLDEfoRYW02ljcSS5+HHvzLD4Xl2z74Z6ZVJra4UHcb2aQ+oqWa7WC/ncqiRTzG39a+TFg+PaXXQ/xEQuTZ+evGt1nKn1f1P1srKv/DfFgetia/JmwqBZmTYb7/9cAkdkibMUgtuTsjEVWTd7jQZgb8hIgNX2/6ZSRiHJfZpKZMYoUOE29eFX1farFgdHlDX6zRtiZuvmeOmaXsW+hcnounDh5V9edKL4fly67Wnx38/MfC8pMD+iK4+Xd+PywHZZ1T7Stfe1pv6EGf5+eRIf1od+svfPziO90kOk294TwsVT0gJeRDZ1K32SW25T2m2UecrlSmbltHp84TsrXD99vAqTHVlqhbcS6Z9cmn0im1nrorFXXf16ryOJkdaqHhyT5myCPRdfT3XT0Pm/r/+913heXvPXdctX3uN/ar+vv+2x+H5XtP6e3YelPLmqdMkU60XDNfs7vFnbn+VyuXy5kHooQ5uTvFyW1uy6s0DcySKJqEl9H5LzeI8vACfqtMJnluAdtZOszcAQAAAAAAiDFe7gAAAAAAAMQYL3cAAAAAAABibFly7gTP7w7LiateVG3y7VLCxt2KcmTobEr/YMrEGyZFfLQNRay0UGyiJfPsbOzsVm3nihO+Yjo/WfNHJpXW7wcTJudOUIkIKm1hp8/7OPJLrrlMtQ0eEn3/HpsxZp4R/b86vx9rBrbH5BlrUim4RMR4IM/sqg2HdrZeq9vWQmkA3NNDur5DJAJIt+m2TSK1gs6y4Fwm68sJc0lkzF1sc9X38JQ5+CNNnvar0XOrLdGh6sVgqu5n00l/oDImwD1t/j5Uaamzu74v/smXVP2KG/aE5el1W1Xb/vd/Iiz//Jpe1bZ167awXD42ptpyG9ap+o7f+XRY/pXcWteq8qbe1+4HjMnp+vfPmnk6lM+jqVr0g6K8CmzOh2YYcoK9e8Ny4vDhup/rPzGu6m1dvmcyWT1QJzvaw3KX6d5aWRynDp1FKZ3Td9Rq2fdwpqx7v1xoht5vjD1Dezt8f9+wQed1THX7vt/Qrm+on//yQ2F5ulvnUHppeEzVb7rKjzNd5tp6oF+fC01tWv9ff2n/lWH5Cw8cUW1tE/78NZeES6T9g87ZAZ1Ip8f8yvG8vA5a94uszZyzS6SL7TXDfVfVf/q87TKZJjOnr4laTW+or+Dz7JTM8+jRQtTeLh9m7gAAAAAAAMQYL3cAAAAAAABibFnCsmwoliQncadN/IJcbnhG2IOYUlW+SGyVXEFuxidbdzabsmaznrbZm/BTYWum91NibdEzw4OqzR7DLTu2iB/UjUeO6J9tVdlpPZH8mn1XheWE6ftqxYdP9LTZ9Q/1Z6erfsqsmubsnPvxoZfms6tNQYb8ZGwIZ9TrbtG9RTPd0w4jcmXMwHy2lQNXTohTfatds1j0mb0xyf4dtHEXhtxuzq7ae5GfjbtknbJzOjykFBGGZXVm/Ik/Xpz/nOOGw6yb0FGxpPCGPWtU24NO3Hsn9JgeVP00/cJxe/Lq+vFX9IblNhlW3eLKFT8AZ00Iio6ZMsubi/H+QlmfsfZ5NCfC0zvMTWSiFP/QoKhQrCjFvO+3XKcejGsl/yBZDcwy9An/c9PD0WNOW4e/RlIZfXxbKSzLOjXl/++Xl/U5OX7G9/2YOZkzIgTxh4dORP6OG9b5dA6FZfk2GQ8PH/T316u26RDo0+fEeW/yAGREyOH4tIvU2eY/u3Oj/v526FTj9/dm8/bXbArLf/fkWdVWEed6n3kIKYnz96XR6PQXvX1+Q7VVmtuFmTsAAAAAAAAxxssdAAAAAACAGOPlDgAAAAAAQIytqijJiomBk+Gzdpl0GfScND+XtqtHi882Qfjzkihc0PH73SKOeWRM5wGQkdMTJi50U7s+UBOjL/vKjAMD55w7069zDxWrvp40XSZDdKvmvE/ZnFVpv+xfttWSXESQb7TtktsyGUhbxOkqLg/nnHNVM67IKNwZvwPOOecGbcooYVN7/bYtps1GPMtVKwcvErfequxfdWQ93aYfCwJXP/6819yYq+3+Z6fN0ri1oHUHoUAs0Xzu2VHVltzsT+hcV5tqcwn/c+u26Vw90yaHiZv2I83LL43Nc0+bjzydR805mUz6xk6zLrE8W81w71IZkyMm8KPQRKHo8I/kLXTa9IvoMtfTowf1mvjJZJ8erbIVfWOuiDtAYZIB/6dkr31vUC/V3S6exX9mc6/+QZGk9JIL+sHm8o16aXSZKumx0+fntZ/N6PiwyHmW0GPOTTt9fcx8A0/W/Pn7/rdvVm3f/MGQqtdEXqqRodbNsWP1irxFb3vVFtV2+Li/9+bLJpesGEdu2aXvrYWqPoaVqv/s/r36d3zq/v657fASYeYOAAAAAABAjPFyBwAAAAAAIMZWVViWVY5ajSxRp+ycK9nZ36tzpbJVpSOtp4MXin6Kdy3Q7wDLJTFVvFN3fqmmp8xW/UddZ87GWjCV0Dnnbnv1Fap+Lu9D5PIm7q2nw08XDMyCwglznB5/3odlMVl57uxy53KF2xnhnWaMaeEIlIZFDctDM07YqIW07d8o6PyLaU/p5VmLNb/ccKGoT+6SeExImTCsiUCP97UCQYizkqekCfesnfcn++SwOfHFGMTdcn6iV6r1B+ZCyXywFvEAGnGa22je6EV1m5uI8HEJe48U3z4mzLgRyL43PzfjOhDbyZjObuW+r4lgwoQrqbaCyIExlNchWyfH6vfayIAen0p8uZrV2pwPy1rbqduePuPLN63VbcOi/PUHdBiWdbNY/nz7G/Ux+/1fuDUsJ+98MHpnm0y20/dLxjynX7/LhzY/d8yER8tIrIS+XnJmUP/Oi758cKB/Pru55Ji5AwAAAAAAEGO83AEAAAAAAIgxXu4AAAAAAADE2KrOuaOT6diA3cXY5oI21FT2bO1W9cOn/BLmuUDH2Z4puAg6yHFttz/FPvORd6q2t3/oc3PbySaVMEsPb0z6fBiJaR2L/sxPxPLmZjt2Zek28er20s051fbiYORBbGr6im98PKiRymXZzDwqUZ3PgZmryarOXCHDzdOm99eLMb09pZfC7a/kHRogh/iotET2z22tnDRkkaTb/P00W9LnfUkN6nbUaZz8yazJz1Bo4WNYy/qeqU2bO6+4DoK0GcNtTrsGkfFL8nlDApcxbb6njo7pzp7LNyK51Vbu+9rf3qbql//BS2H5xUMnVdsGke7uZFEP+MeHG3+WuW6T/9nR6cX6fhx/5dFTYfmS7m2qbTTjv+du7NO5pv7umcYHna09vrxnx3bV9uCPT7nVgJk7AAAAAAAAMcbLHQAAAAAAgBhb8bAsOYN15uzVpZhb1sLz1SJ8/Yl+Vd+23s8dHJvQn922zi+bHlR1f1bMrMLpwLcThjW7+777vKrfuneDr5T0ZNefuXK9qOnOznXopeYfOjAYlls5DCsa48Fyigi0VQLzdwdZs8ETCXMdzHNGf9OZ75mdSei+n0j78X6sosejbEIvqV4KWLB7VjL0NjBnaLVO2bJxuKVZPwVjquA7yi7HLa3v06HLo+M+HP1iAVs1Ed5VbOEwLKsmlpdPm8ighBi2y/bAyC8G5ltK0hwM+ZMp0/cVbu//pP5JmTUDS1XcQWvmLpJK6pjDco277Wzu3u9P7iM371Ztjx0cC8tDB4ZV2+7N/t5bDXTfT+V1vcfflt0n37NP78D8I0xj76GjvmP2brmg2soZf/5mu3UqkvfeIu4TZjxKdvaq+pe+czosr5YwLIuZOwAAAAAAADHGyx0AAAAAAIAY4+UOAAAAAABAjK14zh0ZG5g08bEscLtyBkd97gR7HMpFn3ehFuj3g4mEju0dzxP0PFdb1/nY//9zWMfk3rhrTViuBvrIVPONL0bZaO6TZpQTp+y0Obll1axoO6dVieVVwTjmySjn8bqfcs72WtSCxa12/i4FOXKUA32mZyu+XkvpxBlBtX6OHXv9yOPWapkaNm/w//uhEZM8Z1Ikz7EJRWROOzu8cyE0pCoSr2Sz+vwtipx2I+f1udy5pjMsJ0weqsDce8sXJsMyqZC83BqfB7AwOa3aUuJc7zTfRKYK/piZ4cgF5rxPiZ8lx463Oe3vtkMVnTgzIQaPohlYMiLfSGpG7hY7ckdnTW1VG7t93pfpmj7vq3v8cclv1uPRoz8Wz/smgWnfJn0wsrs3h+WOrM5918pOnhf5z4pjqu3qXWvD8sZ2fR8eT/v1zQtFfZ53VPUA9Vu3bwrLf/CNs/Pe16XEzB0AAAAAAIAY4+UOAAAAAABAjK14WFZNTKO0MyrllMAq0y1XjbN5OV2QoJPFFogp4O+/4zLV9tlvHl+c37EoW4knuSrxlJlDLye+LmSSMVfF7BoPHKyvlc/duVis1VBLQdFXKsX6H3TRS9a38nEbHhWhQRk95bskV+CejOilVu7ABWjP+QH/wpQ+fzMpH1ZSruoRf1KEWmF+UhFrz8ulnicLjW/TrBDtKotxU2lCiW7xcPOyDpJNiyeUshlYyrJ60TGHUCznnEve+WDdtvvu2azqUwV/wn7yrr2qbWi/ft6PsmODD/3iXusl0v68L5a6VNuRsz709pEjzT2+M3MHAAAAAAAgxni5AwAAAAAAEGO83AEAAAAAAIixFc+5E5UXgDw7K+eytX65vqOjExGfxGK7MO77u69zjWr7N2+9NCx/5hsnl22fmolcebhPr0TpJkT8PtHki2+t6O+ayZWgFwzFcrq82yd+OTrReAIMu9y5vGXbvFOtnIdq02U+l8K5wWHVlsqOheVqc6cBWBE5MZInOvQj7/iUXdp5dnaF+hrPpg0plXyOoy6z3nl+orG+x/xs7tsYlrv69Ak8NCZy7oyeqruN7pwe4ScKPBU14u67XhOW33b3Y3U/99HPDan61L1vDMtJ09XZdP1vy3Y4isoB1Oyq4hx9OTOu2k6fWO69WTnM3AEAAAAAAIgxXu4AAAAAAADE2IqHZUl20llKvHqqtPKc7hXQ0etPjba8bquJ1URZhXLxDfjV+lzXmJ6bGdg4CCzIpDmB5fR7wkIXX1KcvxvMmB60+/IA4SnzMt9Ah+GaD8VKt+dUW0LcmcvTU6qNSfqNqUz5oMN1vXp51sluf6/NPzWybPvUKhLiQbLNjOl9Ypn084X6Vw9hWPOU9H1fquoBv7MzG5Yn8yWHxTU+MlS37bo1fhntRyK2QRjW/IyV/JemD/z8NartR88MhOUDx3TYUMddDy3tjrWALvH4Yt8plNtEpeiaGjN3AAAAAAAAYoyXOwAAAAAAADHGyx0AAAAAAIAYSxw8eJBoYgAAAAAAgJhi5g4AAAAAAECM8XIHAAAAAAAgxni5AwAAAAAAEGO83AEAAAAAAIgxXu4AAAAAAADEGC93AAAAAAAAYuz/A7ssF2/Rwu80AAAAAElFTkSuQmCC\n"},"metadata":{"image/png":{"width":1143,"height":1213}},"output_type":"display_data"}],"execution_count":null},{"cell_type":"markdown","source":"In the above plot, the columns of $W$, extracted by the NMF, are plotted separately in grid images. This is done for $d=\\{4, 16, 64, 144\\}$, respectively. The columns of $W$ are the basis vectors of the new subspace that the images are projected onto. Each vector contains some feature of the original images, so that specific linear combinations of these basis vectors should yield a representative reconstruction of the original images. The specific linear combinations are given by the weights that make up the elements of $H$. \n\nThe contents of the different columns in $W$ differ, however each of them capture some underlying feature, e.g. hair, glasses, hats, cigarettes etc. Some of the grid images show clear resemblance of specific features, however others show weaker distinction between distinct physical features, that, from a human standpoint, are harder to interpret as single features. One explanation for this is that, since the pictures are represented as numbers in numerical matrices, and not by actual physical objects, the computer does not distinguish between real life objects and features that produce a precise matrix reconstruction. \n\nThe consequence of altering the rank of the factorized matrices is that it changes the precision of the reconstructions, so that a higher rank reconstruction is more true to the original matrix, than a lower ranked one. In a higher ranked NMF, the number of basis vectors, meaning the number of storage units that hold information about characteristics of the original matrix, is greater than in a lower ranked one. In a sense, this means that the \"information density\", meaning the distinctiveness of the characteristic that the basis vector represents, of each basis vector is decreased, hence allowing each basis vector to store smaller, less distinct features, with higher precision. For the reconstruction of the Cryptopunk dataset, increasing the rank of the NMF, hence, means also increasing the number of basis vectors that are able to represent such special features. This is exactly what is evident in the above plots for varying rank ($d=\\{4, 16, 64, 144\\}$). The lower ranked NMF ($d = \\{4,16\\}$) predominantly shows grid images with whole faces that consist of more than one feature, however, the higher ranked NMF ($d = \\{64, 144\\}$) shows grid images with single features. The reconstructions will be further examined in the following sections.","metadata":{"tags":[],"cell_id":"791dd0da101145fdbd51dd12730bae8e","deepnote_app_coordinates":{"h":5,"w":12,"x":0,"y":169},"deepnote_cell_type":"markdown"}},{"cell_type":"code","source":"def ex2d():\n    for W, H, d in zip(WList, HList, dList):\n        \n        \"\"\" Reconstructing RGB channels \"\"\"\n        reconstruction = W @ H\n        facesWithOpacity = np.zeros(faces.shape)\n        facesWithOpacity[:,:,:3,:] = reconstruction.reshape(faces[:,:,:3,:].shape)\n        \n        \"\"\" Adding opacity channel \"\"\"\n        facesWithOpacity[:,:,3,:] = opacityMatrix\n\n        plotimgs(facesWithOpacity, d, 8, filename=f\"Reconstruction_images{d}.png\")\n\n        \"\"\" Saving the d=64 reconstruction for later tasks \"\"\"\n        if d == 64:\n            saveFaces = facesWithOpacity\n\n    return saveFaces\n\nfacesWithOpacity = ex2d()","metadata":{"tags":[],"cell_id":"8c0d99d993c941d0a9422b151d63fd49","source_hash":"26f7cbeb","execution_start":1649447486465,"execution_millis":13589,"deepnote_app_coordinates":{"h":5,"w":12,"x":0,"y":175},"deepnote_to_be_reexecuted":false,"deepnote_cell_type":"code"},"outputs":[{"data":{"text/plain":"<Figure size 1152x1152 with 64 Axes>","image/png":"iVBORw0KGgoAAAANSUhEUgAABHYAAAS9CAYAAAAiHt73AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd5jU5fX//9f2XliW3gQRRaWDgNixxt419pbExMSGJRpb1Fg+auwmsSs27B1FEUGadFZEKdJByrK9zszO7w9+zBc8Z2BXFtjB5+O6vC45HGbeO3PP/b7f977nnLiCgoKwAAAAAAAAEHPid/YBAAAAAAAA4NdhYwcAAAAAACBGsbEDAAAAAAAQo9jYAQAAAAAAiFFs7AAAAAAAAMQoNnYAAAAAAABiFBs7AACgyVmxYoV69OihHj166KKLLtrZh7NTvPfee5HX4Mknn9zZhwOgnpi/AOxoiTv7AIBd2VFHHaWVK1eaeFxcnNLS0pSZmanMzEzttttu2muvvdSzZ08NHDhQiYk756P58ssvq6ysTJL05z//eaccQ1Pyww8/aPTo0ZKkAQMGaMCAATvlOKKNI0lKSEhQRkaGWrZsqe7du2vo0KE6+OCDd9oYQnQrVqzQ+++/L0nac889NXTo0J18RDvWl19+qR9//FGSdOKJJ6pdu3Y7+YiApuXHH3/UWWedpWAwGImNHDmSzwpizkMPPaTnn38+8uf+/ftv9mcAjY+VP7AThMNhVVZWqrKyUmvWrNFPP/0U2UDIz8/XSSedpEsuuUSZmZk79LiGDx8e2UBgY2fDxs5TTz0V+fPO2tjZklAopNLSUpWWlmrBggX68MMP1a1bN913333q2rXrzj48bGLlypWR8XTCCSf85jZ2Ro8erQ8++EDShs8SF6vA/xMMBnXLLbdstqkDxKKCggK99NJLO/swgN8cNnaAHeSMM85Qhw4dIn+ura1VWVmZ1q1bpzlz5mjx4sUKh8Nat26dnnnmGX388ce66667tN9+++3Eo0ZT88txFAwGVVhYqClTpkTuhpg3b54uvfRSvf7662rduvXOOlQAQD0988wzmjt3rpKSkhQIBHb24QC/Sm1trW655RaFQiHGMrCDsbED7CBHH330Fu/4WLVqlV5//XUNHz5ctbW1WrVqlf785z/r6aefVp8+fXbgkaIp29I4+vjjj/WPf/wjstnz+OOP66677trBRwg0jnbt2qmgoGBnH8ZOddJJJ+mkk07a2YeB7WzevHn63//+J0m67LLLqKeEmPXkk09q4cKFSklJ0XnnnadnnnlmZx8S8JtB8WSgiWjTpo2uvvpqDR8+XC1btpQk1dTU6G9/+5uKi4t37sEhJhx77LE655xzIn/+4osv+G0ZADRhG7+CFQgE1LVrV1166aU7+5CAX2XOnDl64YUXJEl/+tOf1KlTp517QMBvDHfsAE1M9+7d9fDDD+uCCy5QIBBQcXGxXnjhBV111VVufmVlpcaOHavJkydr7ty5Wr58uSoqKpSamqr8/Hz17NlTxx57rPbff/+oz9mjR496xdq2bavPPvus0Z9/U0uWLNHbb7+tqVOnasmSJaqsrFRCQoKys7PVvn179enTR4MHD1a/fv2UlJS0xceaMGGCPv/8c02fPl3r1q1TTU2NcnNztffee2vo0KE67rjj3CLDTz755Ga1dSTpqaeeMjFJuvPOO5vUb9SHDh2qF198UZJUUVGhZcuWqUuXLlv8N7/2dfIEg0GNHDlSY8eO1Xfffaf169erpqZG2dnZ2m233dS3b18dfvjh2meffbb4OGPHjtWnn36qWbNmad26dZKkvLw89erVS0cffbQOPfTQLf779957T7fccosk6fLLL9ef//xnlZeX6+2339bIkSO1bNkyVVVVqUWLFho0aJAuuOACde7ceas/39y5c/XOO+9o5syZWrFihSorK5WUlKScnBx17NhRAwYM0ODBg9WjRw8lJCSYY9nogw8+iNSb2dTGY91o08LZG+9emTBhgj744APNnj1b69atU1VV1Wbj8KKLLtLUqVMl1a/w6sbPuvf5/qVwOKwxY8Zo9OjRmjlzpgoLC1VVVaWMjAx17NhRvXr10mGHHbbZXWWbHs9GF198sfv4mx7vihUrdPTRR0uqX+HNwsJCvfnmmxo/fryWLl2q0tLSyLwxZMgQnXHGGcrPz9/iY3iv9/Tp0zVixAjNnDlTa9euVVpamrp27arf/e53OuWUU7ZroXJvHP/SzTffHBlLzz33nAYMGKCFCxfq9ddf16RJk7R69WqlpaWpc+fOOuuss3TkkUcqPv7//V6vurpaH3/8sT744IPI69ayZUsdfPDBuvTSS7f6mtXW1mrChAmaNGmS5syZE3mMpKQk5eXlad9999URRxyhI444YrPn3ZKqqiq98cYbGjVqlBYvXqxAIKCWLVtq4MCBOvPMM9WtWzdNmTIlMo5OOOEE3X333Vt8zMrKSr333nsaN26cFixYoKKiIiUlJalFixbq37+/Tj311K3OS5K0Zs0avf3225o0aZIWLVqksrIyxcfHKzMzU23btlWvXr20//77q3///kpPT9/q4z333HP6/vvvFR8fr3/+859bPa/9Wt68MG3aNI0YMSIyz6anp0fG9sknnxyZwzybnic3zj/r1q3Tm2++qS+//FIrV65UMBhUq1atdMABB+iiiy6K/NJqaxYuXKhXX31VEydO1Jo1a5Senq727dvrqKOO0mmnnaaMjAx33O8ooVBI77//vj766CMtWLBAlZWVys/PV+/evXXGGWeob9++O+xYmopAIKB//OMfCoVC2muvvXThhRfqo48+2tmHBfymsLEDNEE9evTQ8ccfr3feeUeS9Nprr+nPf/6zkpOTN8ubP3++fv/736u6uto8Rnl5ucrLy7V48WJ98MEHGjJkiO6//35lZ2c32nE29vO//PLLeuihh0zxyGAwqLVr12rt2rWaMWOGnnvuOT3++OM6+OCD3cdZvXq1brzxRnMxKW1YlK9Zs0ZjxozR888/r0ceeUS77bZbw37wLdj0YlTa8R1N8vLyNvtzaWlp1NzGfp2mTZumf/zjH1q+fLn5u/Xr12v9+vWaPn26nnnmGb3wwgvq16+fySssLNR1112nKVOmmL9bsWKFVqxYoU8++UR9+/bVgw8+uNWLzo1+/PFHXX311Vq2bJl5zLffflsffPCB7rvvPh1xxBHuvw+Hw3rooYf04osvKhwOb/Z3oVBI1dXVWr16taZMmaInn3xS77zzjvbYY496HVt9BQIB3Xbbbfrwww8b9XHra8GCBbrxxhsjtZw2VVJSooKCAhUUFGj48OH617/+peOPP36HHdu7776r++67TxUVFZvFN4672bNn64UXXtB1112n008/vV6PGe09r62t1bRp0zRt2jR9+umneuKJJ+p1Ab+jvP322/rXv/6l2traSKyqqkrr16/XtGnT9NVXX+mee+5RfHy8Fi1apL/+9a9asmTJZo+xfPlyvfLKK/r000/17LPPRi3EXlJSomOOOSbSTXFTwWAw8pn97LPPtM8+++jhhx/eat2vn376SX/+85+1YsWKzeJLlizRkiVL9O677+qGG27Y6ob1pr744gvdeeedWr9+/WbxmpoalZeXa9GiRXrrrbd02mmn6e9//3vUzZWRI0fqtttuU2Vlpfm7jWPtu+++0yuvvKK///3v+v3vf7/F41qwYIH+85//SJLOOecc9xcq28u///1vPffcc5vFampqNGXKFE2ZMkVvvfWWHn/88XrPsZMnT9b1119vXuPFixdr8eLFeu+99/TEE09sddPjlVde0QMPPLDZOqCmpkZFRUUqKCjQm2++qUcffbSeP2XjKyws1F//+lfzNdFNz08XX3xxveeZXcVTTz2lBQsWKDExUXfccQedOYGdgE8d0ESdddZZkY2dyspKzZ49W/37998sp7KyUtXV1YqLi1P37t211157qWXLlkpNTVVZWZl++OEHTZ48WcFgUOPHj9c111yj//3vf+a3ptdee60k6emnn45sBGyMbeqXXboa6/kl6auvvtL9998f+fNee+2lvn37RhaVRUVFWrhwoWbOnOkuqjdatmyZLrzwQq1Zs0aSlJ2drSFDhmi33XZTUlKSVq5cqbFjx0a6kZ1//vl644031KZNm8hj7L///kpPT9ecOXM0cuRISdLgwYPdu4723XffqMeyMxQWFm7257S0NDevMV6nTY0aNUrXX399ZDGempqqQYMGaY899lB6erpKSko0b948TZ8+XdXV1aqrqzOPUVJSovPPP19Lly6VtKGV+/7776+9995b8fHx+v777zV+/HgFg0FNnz5d5513nl5//XXl5ORs8TVZvXq1/vSnP2ndunXq2rWrBg8erLy8PK1evVpffvml1q5dq0AgoJtuukl77bXXZsWpN3r11Vcjt5hLUp8+fdSjRw81a9ZMwWBQRUVFmj9/vmbNmrXZBbW0YYxce+21WrZsmUaMGCFJ2meffTbbANyod+/eUX+Oe++9Vx9++KFSUlJ04IEHqmvXroqLi9P8+fPNpm9jmzFjhi6//PLIxkliYqL69++vvffeW1lZWSovL9eCBQs0bdo0lZeXKxQKRf7tmWeeqYMPPlgjR47UnDlzJNki4Btt7b30vPrqq7rnnnsif27durUOOeQQtWzZUuvWrdPXX3+tFStWqKqqSv/85z9VXV2t8847b6uP+/jjj+uFF15QWlpa5PWWpFmzZmn8+PGSpKlTp+r+++/X7bff3uDj3h7Gjh2rF198UfHx8TrwwAO1zz77KCEhQbNnz9a4ceMkSZ988ol23313nXLKKbrsssu0evVqde7cWQcccIDy8vK0atUqjRw5UqWlpVq/fr2GDRumN998093sCAQCkU2drl27qnv37mrTpo3S09NVWVmp+fPna+LEiaqurtacOXP0pz/9Sa+99lrUeennn3/WJZdcErlLLyUlRQcddJD22GMPBYNBzZo1S99++63uvvtuXXjhhfV6TUaMGKG77rorsjnXtWtX9e/fXy1btlQgENDcuXP1zTffKBgM6s0331RJSYkefPBB8zjff/+9brzxxsjY3m233bTffvupVatWio+PV2lpqRYtWqTp06dvcUN9o1AoFPkKVrt27fTXv/61Xj9PY3j11Vf10ksvRebYjXcqzZkzRxMmTFAoFNKcOXN02WWX6ZVXXtnqxuWPP/6of/3rX6qqqlLPnj3Vr18/ZWVlacWKFfr8889VVlam8vJyXXPNNXr//fejfs7ffvtt3XvvvZE/t2nTRocccohatGgR+SwvWbJEf/3rX9WtW7fGe0HqqaqqSpdddpnmz58vSYqPj9fgwYO17777Kj4+Xt99950mTJigZ5999jfV3ez777+P3FF5/vnna++9997JRwT8NrGxAzRRe+21l7KysiKL5mnTppmNnaysLF155ZU6+eST1bx5c/dxli1bpmuvvVZz587V5MmT9fHHH5vfpG9cIL/22muRBWl9Fs2N9fySNrtovvvuu3XCCSe4jxcIBDRmzBh3gyEQCOjaa6+NbFZccMEFuuKKK5SammryHnroIQ0fPlxFRUW66aabNvuaR+/evdW7d2+99957kY2d3r171/tCYmcaNWpU5P9TUlLcu2wa63Xa6KefftLNN98cWcgeeuihuvXWW93f9FZWVurjjz9Wbm6u+bu77747sqmTn5+vxx9/3Hw14ocfftBf/vIXrVmzRsuXL9cdd9yhhx56aIuvyTvvvKPExETddtttOu200zb7u6uuukp/+tOfNHPmTFVXV+u5557TbbfdZh5j4/hMTEzUk08+qcGDB7vPVVlZqc8//3yzO9O6du2qrl27asqUKZGNnd13373B42nEiBHq3r27HnnkkagbbNtDYWGhrrnmmsimTu/evfWvf/3L3ZgJBAL64osvNnvvN25gzZ8/P7Kxs7Vi8vU1b948PfDAA5E/n3322bruuus224QYNmxYZBxL0kMPPaT+/fure/fuW3zs//3vf+rVq5ceeugh8xWSzz//XMOGDVM4HNa7776ryy+/XK1atdrmn2dbvfDCC2rZsqUef/xx8/N98sknuuGGGyRJL774ombOnKk1a9Zo2LBhOv/88xUXFxfJ/cMf/qDzzjtPq1at0sKFC/XFF1/omGOOMc+XlJSkSy+9VKeffrratm3rHlNhYaFuuukmTZgwQQsXLtSLL76oP/3pT27u3XffHdnU6dSpk5588kl17Nhxs5yJEyfqqquu2uycEc2sWbN0zz33KBwOKy8vT3feeacOOuggk7ds2TJdeeWVmj9/vj7//HO9++67OvnkkzfLGT58eGRT5y9/+Yv++Mc/bvaabRQKhTR58mSlpKRs8dief/55fffdd5Kk22+/Pepm1/bw8ssvq1mzZnr88cfVs2fPzf6uoKBAf/nLX1RUVKQFCxbo0Ucf1Y033rjFxxs+fLjS09P12GOP6ZBDDtns76644gpddNFFWrx4ceTrkl4doVWrVm32y53TTz9dN95442ab1sOGDdMDDzygV1991dx9uSM88cQTkU2d7OxsPfHEE2YzftasWfrLX/7S6O2+N/2aaGNorLuJA4GAbrnlFgWDQXXq1Mn9uiiAHYPiyUATFRcXt9lXOVatWmVyunTpoksvvTTqpookdejQQY8//njkov2tt95qtGNszOf/4YcfJG24CI62qSNtuJA44ogj3N/Wffjhh5o7d64k6dxzz9WwYcPMZsXGx7jhhht02GGHSdrwW/fp06dHfc5Y8eGHH+q1116L/Pmoo45yLy4a+3V67LHHVFVVJUk64IAD9PDDD0e9fT89PV2nn366+ZrSTz/9FNlEi4+P12OPPebWu9hrr7302GOPRWo/jBo1SvPmzXOfa1NXXnml2dSRpIyMDN1xxx2RP3/55Zcmp7i4WD///LMkaciQIVE3dTb+fCeddNJ2ucjPycnRU089tUM3daQN9Ss2XmzvueeeeuaZZ9xNHWnDmDnmmGN2WL2LZ555JlIg/JBDDtFNN91k7izZOI6HDh0qacNXhDZ2INqSVq1a6cknn3Trghx55JE66qijJEl1dXUaPXr0tv4ojSIhIUGPPfaYu2n1u9/9ToMGDZK04Sua48aN0wUXXKALLrjAbFC0atVqsztIvvjiC/f5cnJydOWVV0bd1JGk5s2b69///nfkdYx2Dpg3b57GjBkjacN79vjjj5tNHWnD3ZO33367+UqkZ+NXezduyHqbOtKG89RTTz0VuTPF6+Szcc7MysrSZZdd5m7qSP/vTkPvq6Yb/fTTT5H6NCeffHLkfdlRwuGwHnzwQbOpI234Kvimm6UjRowwX6/y3HnnnWZTR9qwSb9xQ1GKPpaGDx8euRt3v/320y233GLuRExKStLf//53DRkypF7vf2MqKSnR66+/Hvnzfffd595h2atXL/3f//3fDj++neW///2v5s2bp7i4ON12221b3dAEsP1wxw7QhG16u3JJScmvfpyWLVuqX79+Gj9+vAoKClRbW7vdv7rR0Off+NWcmpqaX/08Gzc1UlNT6/Vbo4suuihyQTZmzJhGKXi4vVs0b/p1FkmR1ubffvvtZhscnTt31tVXX+0+RmO+TmvXro1shiQkJOgf//hHvQukburDDz+MLISPPPLILX7Fbe+999bRRx+tjz/+WNKGQsTDhg2Lmp+Xl7dZt7Bf6tKli7p27RopqPrzzz9vVgdk068VefWkdpQzzjhji5uo20MgENDbb78d+fNNN93UZBbulZWVm92hFm28b/r3G8fqV199FSmuHM0FF1ywxb8/4ogjIpuRGzemd7ZDDz10i1+DOPjggzVp0iRJGy6SL7nkki3mbrStP196eroOPvhgvfnmm1q9erWWL1+u9u3bb5azaaHV4447bos1vY455hj95z//0U8//RQ158cff4xsRB955JFbLYzcqlUrHXPMMXr77be1dOlSLVy4ULvvvnvk7zeeowKBgOrq6rZYWHhLNn4Fq7a2Vvn5+Vucu7aXwYMHb3Hzdb/99tOgQYM0adIkBQIBffrpp1ucQ/fcc08deeSRUf9+//33V0ZGhioqKjR//nyFQiHz+m2czyXpz3/+c9SNM2nDHVMbvw65o3z++eeR9Unfvn11wAEHRM0dPHiwBg4cqMmTJzfa81922WUqLy9vtMf7NV97/aUffvhBzz77rCTptNNO26EFrAFYbOwATdim32vf2gk9FApp4cKF+umnn1RaWqqqqqrNfmNUVFQkacOidPny5Q0qPFkf2/r83bp10+zZs7Vs2TI99NBDuvzyyxt0a3pxcXGkqGvPnj2VlZW11X+z5557Rv5/4y3xTd3Gr/JEk5CQoMMPP1w33nije9dMY79O3377beR97t+//6++tXvGjBmR/49WwHhTRx11VORCYNN/6xk4cOBWO8106tRJCxYskLShCOqmGzt5eXnKz8/XunXr9O2332r48OE688wzt1v3mmii3W2wPc2ZMyfyFawOHTo0qW4v3333XeTrf127dt3qnNapUyd1795dc+fOVSgU0uzZs7d4cbalv9v4eBvV546GHWFr3Qc33UzZe++93a9EbpSdna2cnByVlJRE7tjaknA4rMWLF2vBggUqLi5WZWXlZueATYuqL1682GzszJo1K/L/W+t6tzFnSxs7GzewpA132tXHXnvtFfn/7777brONnT333FM//fSTqqurdeutt+rGG2/8VRfHL774ombPni1pQ0ezxmxoUF8b717bksMPPzzyGs6aNWuLGztb+6zEx8erY8eOmjt3rmpra1VeXr7Za7ds2bJIfbicnJytzjM9evRQixYttHbt2q3+HI1l5syZkf+v7+vXmBs73h2nO9PGLljBYFAtW7bUNddcs7MPCfjNY2MHaMI27fDyy8LFG5WVlenpp5/W+++/X++LC6+Dya/VWM9/8cUXR1q6P//88xoxYkTkdvYePXqoe/fuW7yQnjdvXuQi4ttvv21wd5GNG0+xrn///ho2bFjUr0I19uu0cOHCyP9vS0eXjbV1JG219skvc37Z0eeX6vPVpYyMjMj//7I4d1xcnC6++GLdf//9CofDuu+++/Tf//5XQ4YMUd++fdWzZ09169btV92p1BD1acfe2DZ9f5taofBN3/dNL8i3ZOPGzsZ/v6UL0i19vUja8pjZWbY21jf9ZUF9PhcbC59v/Kqlp6amRi+99JLefPNN9yvDHu8csOkcUJ+OclvL2fQOxptvvlk333xzvY5to1/Odeeff75GjRqlYDCojz76SKNGjdJ+++2n/v37q2fPntp3333dr7RuatGiRXryySclbbjwP/zwwxt0TI1l0836aDb9uvPixYu3mLu1z4q0+dirrKzcbGNn0/d+Y1H4renatesO3djZ9DWoz3xTn9c4lj3zzDORXxLdcsstUdeoAHYcNnaAJmzTzhrebwZXrFihSy65xLSF3Zpfdu35tRrz+YcOHao77rhDDzzwgMrKylRRUaFRo0ZFvmqRlpamIUOG6JRTTtGBBx5o/n1xcfGv+hk22tKFS1Py3HPPRW53DofDKiws1IIFC/TSSy9p3Lhxmjx5ss477zw999xzbh2Uxn6dNv2K4C9brTfEpmN9S3cRbNSsWbPI/5eVlSkcDke9GGjoV4e82gjnnXeeKisr9fTTT6umpkbFxcX6+OOPI3cNZWVl6ZBDDtEZZ5yxxc5W26I+d1c1tk3Hy47+GtjWNHTM/DJva52LtjZuNh1vXpe3naEhx1yfr+NuzI9WL6SkpER/+MMf9P333zfgKP2v3Db0/dxaTmPPdfvuu68efvhh3X777Vq3bp1qamo0bty4SLex5ORkDRgwQCeddJKOPPJIs9FbV1enW265RTU1NcrKymrwRlNjaujru7XPSkPGkmQ/L9v6Wd4RtrYe+6UdfXw70o8//hipU3bMMce4tZUA7Hhs7ABNVF1d3Wa/cfR+I3bTTTdFNlXatm2rs846S3379lW7du2UmZmplJSUyGLq5ptv1gcffNCox9jYz3/KKafo8MMP18iRI/XNN99o5syZkd+aVlVV6YsvvtAXX3yhIUOG6KGHHtrsN4Cb1kHZY489tliA2ROLv22Ki4tTfn6+8vPzNWjQIN1zzz169dVX9fPPP2vYsGEaPny4ucvpt/g6NZY//vGPOvXUU/Xxxx9r0qRJmjlzZuQrkmVlZfrwww/14Ycf6sQTT9Ttt9+uxMTGPcVu7zuCgIa65557Ips6eXl5OvPMM7Xffvupffv2ys3N3ewc8MQTT+g///nPDju2Tee6k046abOvVdWHt0F78MEH69NPP9WoUaM0duxYTZ8+PdJdsLa2VuPHj9f48eP14osv6tFHH1WLFi0i//a9996LfN3suuuui3pXJeB56623GrXGzmmnnfarz+f/+te/FAwGlZubu9WOaQB2HDZ2gCbqhx9+2Owk/stW599//32kMGS7du00YsSILX5XvzG/frU9nz87O1tnnHGGzjjjDIXDYS1atEhTpkzRqFGjIt9XHz9+vO644w7dd999kX+36W/QmjdvHhOtyRvbsGHDNGXKFM2fP1/ff/+9XnzxRdNWtrFfp00fb1vqjGRnZ0duqy8uLt7q3Smbfk0iKyurXrfuN4b8/PxIJ6G6ujr9+OOP+vbbb/XZZ59Fima///77atmypf72t7/tkGP6pU1fi611ZtnanWqb/tZ5Yw2MpmLT+aa+xeU3vYtjZ9Q22ZUUFRXp008/lbThM/jaa69t8Ss5W7sozcrKioyx4uLirV50bu2OnE3npoEDB+q4447bYn59paam6vjjj9fxxx8vaUPtoClTpmj06NEaN26cQqGQvvvuO1177bWbtbze2FlPkm699Vbdeuut9Xq+o48+OvL/l19+eaO0k67P3Uw78rOy6Xxf3zuttvWOrIZq6HzT2Mf39NNPN2q78yOOOOJXb+xsHMvFxcWbFVnfkqlTp272de3GarcO4P/h139AE/XGG29E/j8zM9PUL9lYfFHa8NvIrS28NhaGbSw74vnj4uLUpUsXnXnmmXrmmWf0wAMPRC5aR44cudniatPCqfVpf70rSkpK2qzDyrPPPms2Wxr7deratWvk/7elG9imbY3r04Fn05xNi9juSPHx8erevbsuuOACvfrqq7r22msjfzdixIid9vWcX9ay2JKt1UTZ9C6HplZgfNP3fWPdnK3ZNG9LXZewdQUFBZExfvjhh2+1zsr8+fO3+Pebvp9by61Pzo46J7Rv314nn3yyHnvsMT3//PORryXNmDGjyXRL+6X6vB6b5mzvz8qm7/2CBQvq1Sq8sdc0W7Ppa7CxtsyW1CcHABoTd+wATVBBQYE+/PDDyJ/PPvts85Wahnzf+4cfftCyZcu2+rybfnXEa0e6vZ9/a4466ig98cQTWrRokerq6rRkyRL17NlTktS6dWt17txZixYt0vr16zVp0iQNGjRom57vl69HLNh///3Vt29fTZ8+XeXl5Xr22Wd13XXXRf6+sV+n/fbbT/Hx8aqrq9PUqVO1cuXKehXS/KU+ffpo2rRpkqRRo0ZttTPW559/vtm/bQrOP/98Pfnkk6qqqlJJSYnWr1+/2dctNh1P23PTZ9NaOEuWLNmsCOovTZgwYYuPte+++yozM1Pl5eVatmyZpk+f/qs7Y206hzXG52nfffdVYmKigsGgFixYoEWLFm2xwPSyZcsiF9oJCQnbVOwbDTsHrFu3bqvd63r16hW5C/Srr77aamesMWPGbPHvBw8erMcff1zShvnib3/7W6N/PfKX+vTpowEDBkRacS9evDhSaHfPPfes91dfN/3a8hFHHBHpENlYBXm//PJLnXHGGVvN2ahXr16N8rzRdOjQQc2bN1dhYaFKSko0ffp09evXL2p+QUHBDi2cLG14DTa+L19++aXOO++8LeZ/8cUXjfr8n332WaM+3rY44ogj6tVwYtmyZZHPffPmzTfrTrfpLyAANA42doAm5ocfftBVV12lQCAgaUOR2AsuuMDkbfoViS0Vrqyrq9MDDzxQr+fe9LbckpKSLRbD3R7P31C/LBT6+9//Xnfffbck6b777tMrr7xS78WDV3x309vD6/tVj6bgT3/6k/7whz9I2nDnyIUXXrhZrYfGfJ3y8/M1dOhQjRo1SqFQSHfeeaeeeOKJBteDOf744/Xss88qHA7r888/14UXXqi9997bzf3xxx8jXwGRpBNPPLFBz7W9hEKhzX7uX3bI+eXna3vZtGPYF198EXWTrKysTC+++OIWHysxMVGnnnpqJO+ee+7R8OHDG1yQWmr8nz89PV1HHHFEZCw88sgjevjhh6Pm//vf/47cCXDYYYfxVaxtVN9zgLThtd9a0f5jjz1Wzz//vCTp448/1sUXXxz1TpGRI0du1rHNs7FT1XfffacVK1bo6aef1uWXX77Ff7PRloqxN8Smn5OhQ4fWq022tPnGzrXXXtvoX1mZMGGCpk6dar7ivdHUqVM1ceJESRs2ZDf9Otj28rvf/U4vv/yyJOmpp57S008/HfU9eOKJJ7b78fzSUUcdpfvvv181NTWaNm2aJkyYoP3339/NnTx5cqO2Om9qNr0zeEvee++9yMZO586dI+sOANsHX8UCmohVq1bp4Ycf1jnnnBMpxpiSkqJHH33U/W3opr81//DDD/X111+bnNLSUl1//fWaPHlyvRapmy6iv/322y3mNubzr1y5Uueff75GjhwZ9asj4XBYr7zyihYtWiRpw4bXprfaS9Kpp54a+e3oggULdOGFF27xlvPq6mqNGjVKF154oXthsunrMW3atHrdZbFixQr16NEj8l9DO4Y1hsGDB0cKf1ZXV+uZZ57Z7O8b+3W64oorIr9R/uabb3T11Vdr3bp17mNVVlZqxIgR5msUXbp0iVw8hEIh/fWvf3W/XvPjjz/qL3/5i4LBoKQNvzmsT2vkbTF16lRdfvnlGjt2bGTD9ZeCwaAeffRRVVRUSNrwm/Vf1i/o2LFj5C64goKC7daJ7dBDD408z8iRIzf7zftGa9eu1RVXXLFZ3Y9oLrroosidRz/88IMuu+yyqHfg1dbW6tNPP9WUKVPM3236efL+/te49NJLI3cCffnll7rvvvvMexQIBPR///d/kQ57iYmJkY1P/Ho9e/aM3AHz7bffbvb14Y1qamp077336oMPPtjqOWjPPffUQQcdJGnDOPrrX/+6WRvsjSZNmqTbbrutXue066+/PnKMTz75pP7v//5vi7V+Vq1apWeeeUZ//OMfzd+dcsopevvtt7e4KTlq1ChNmjRJ0oZxtr3vdJE2XDxvPN8cddRR9fo3cXFxuvbaa92vV86ZM2ezr5WefvrpO6Qj3rnnnhs5j0yePFl33XWX+1m+9957NX78+Hq9/415Ps7JydnsLqcbbrghUgx7UwUFBbruuut2WN03ANiIO3aAHWTkyJGaM2dO5M+BQEBlZWUqLCzUd999p0WLFm32vfK2bdvqrrvuito6uWvXrjrkkEM0ZswYhUIhXXHFFRo4cKD23ntvZWRkaOnSpRozZoxKS0vVtWtXde7cOXJhE81BBx2kTz75RJJ0++23a+rUqerYsWNkYZyZmRm5lbwxnz8cDmvGjBmaMWOGUlNT1aNHD+2xxx7Ky8tTXV2d1q1bp/Hjx2+2KLviiivM19OSkpL06KOP6sILL9TKlSs1d+5cnXrqqerZs6d69uyp5s2bKxAIqLi4WPPnz9d33323xYvrTp06qVOnTlqyZIkWLFigCy64QAcccMBmd/IMGjTIbDA1BZdffnnk4uStt97SRRddpNatW0tq/NepS5cu+uc//6m///3vCgaDGj16tCZMmKBBgwZpjz32UHp6ukpKSjRv3jxNmzZNNTU1eu6558zj3HzzzZozZ46WLl2qNWvW6Oyzz9aQIUO09957Ky4uTnPnztU333wT2dRp3769brvttu3w6m0uHA7rm2++0TfffKOsrCz16NFDu+++u5o1a6ba2lqtWbNGY8eOjWxmxcXFuYWTU1JStN9++2nixIkqLi7WOeeco6FDhyo3NzdyEbDxAmRbtGrVSqeccorefPNN1dXV6aqrrtIBBxwQ+driwoULNXbsWFVVVekPf/hDpG1tNM2bN9cDDzygyy+/XFVVVZoxY4ZOOOEEDRgwQHvvvXfkq1oLFy7U1KlTVV5erjvvvFMDBgzY7HEOOOCAyNf2RowYoaKiIu2zzz6b3dl04oknKiMjo94/a7du3TRs2DDdc889kqThw4dr9OjROvjgg9WiRQsVFhZqzJgxm80d11xzTWRjE7/exkL3r776qiTprrvu0vvvv6/evXsrNzdXK1eu1Ndff61169YpPz9fhxxyiN56660tPuYtt9yiM888U+vXr9fixYt1yimn6OCDD9Yee+yhYDComTNnRn7pcOGFF0bu8Il2Ed2nTx/deuutuuOOOxQKhfTSSy/pnXfe0cCBA9WlSxdlZGSooqJCq1ev1vfffx+p27Jp7bCN5s+fr9tvv1133XWX9t13X+25555q3ry54uPjVVhYqClTpmxW9+X888/f4l2vO9N5552nl156Seeee66GDBmiffbZR9KGO6+++eabyFclO3furCuvvHKHHFPbtm01bNgw3XnnnZI23G06btw4HXroocrPz9/ss9yxY0d169at0b/utDVXXHGFJk6cqAULFqi4uFjnn3++9t9//8icPWfOHI0fP16hUEgXXHDBVu+IBIDGxMYOsIOMGDGiXnktWrTQSSedpEsuuWSrFzh33XWX/vjHP0Y2jLzbf7t3766HHnpITz311Faf+6ijjtKbb76padOmqaKiwvwGtm3btpvVCGis509ISIhc8FVXV2vKlClRf6OfkpKiv/3tb1HrA7Rp00ZvvPGGbr/99sidCrNnz96s2PMvtWzZMurXMq6//npdeeWVkYuKmTNnbvb3d955Z5Pc2Nl///3Vs2dPzZ49W7W1tXr66ad1yy23RP6+sV+no48+Wrm5ubrlllv0888/q7q6WmPGjIlaB8OrdZGTk6OXXnpJw4YN09SpUxUKhTR27FiNHTvW5Pbt21cPPvjgVmt7NIZNj7WsrEwTJkyIWpsmKytLt9xyS+TOg1+6+uqrNWvWLFVWVmr+/PnmzqXLL7+8UWq/DBs2TEuXLo18HjduTG3qvPPO0xVXXLHVjR1J6tevn1566SXdeOONWrhwoYLBoCZOnBj5usYvee9v69atdckll+jpp5+OfOVu01pJ0oZ20g3Z2JE2fLUwNTVV9913nyorK7Vy5Uq99tprJi8tLU3XXXedTj/99AY9PqK79tprtWzZMo0bN07ShrsVfllEvX379nrooYf01VdfbfXxWrdurWeeeUZ//etftWLFCtXU1JhxkpiYqOuvv16dO3eObOz88muPmzr55JPVtm1b3XbbbVqxYoXKy8v15ZdfuneybeRt7Gys5xTtXLBRQkKCzj///B22IfJr/P73v1d8fLxeeOGFqHNs9+7d9cQTT+zQWihnnHGGqqur9e9//1vBYFCrVq2KbBxu1LFjRz366KOb3Yka7f3/ZRHmLdUNrI/09HQ9/fTTuuKKKzRnzhzV1dW5c+tFF12kM888k40dADsUGzvATpKWlqbMzExlZWWpU6dO6t69u3r16qWBAwfWe/GRk5Ojl19+WW+99ZY+/fRTLViwQNXV1ZGvKR111FE68cQTzZ0t0SQmJurpp5/WiBEj9OWXX2rhwoUqLS2N3CGxvZ6/devWGj16tMaPH6/p06frxx9/1MqVK1VaWqq4uDhlZWWpc+fOGjhwoE4++eTInSfR5Obm6uGHH9aPP/6ojz76SNOmTdOKFStUWlqqxMRE5eTkqFOnTtp33301ZMgQ9e/fP2pNmIMOOkivvfaaXn31Vc2cOTOyaVGfrh072+WXXx6pKfHOO+/o4osv3qxWQ2O+TtKGu5c++eQTffTRRxozZozmzp2roqIiBYNB5eTkaLfddlO/fv101FFHRS3o27x5cz3//PP6+uuv9emnn2rmzJmRzl55eXnq2bOnjj76aB122GGN+EptWZ8+ffT555/rm2++0cyZMzVv3jytWrVKFRUVio+PV25urnbffXcNGTJEJ5544ma1R36pe/fueuuttzR8+HBNmTJFK1euVGVlZaOPp/T0dP33v//Ve++9p48++kjz5s1TVVWV8vPz1atXL51xxhnmjpqt2WuvvfTOO+/o888/1+jRo1VQUKDCwkIFAgFlZWWpQ4cO6tOnjw4//PCodxr+7W9/07777qv3339f33//vYqKilRTU7PNP+/GOztGjBih8ePHa9myZSotLY0c15AhQ3TGGWdsVswa2y45OVlPPPGEPvroI33wwQeaO3euKioqlJubq44dO2ro0KE65ZRTlJmZWa+NHUnaY4899O677+q1117TqFGjtGTJEgUCAbVs2VIDBgzQ2WefrT333HOzuzW21rZ54MCB+uijjzRq1CiNHTtWBQUFWr9+vSorK5WWlqaWLVtq9913V79+/XTQQQepQ4cO5jHGjh0bqU0zd+5crVixQiUlJQqHw8rMzFTHjh3Vv39/nXjiiU1ys/+Xrr32Wh144IF66623NHv2bK1du1bp6enafffddeyxx+rkk0/e7sWmPRvvgnnllVc0adIkrVmzRmlpaerQoYOOOOIInX766crKytrsK3XR3v9N6zD17Nlzq2uH+sjPz9crr7wSmVsXLFigyspKtWjRQj179tTpp5+uAQMG7JSvYQP4bYsrKCho+lcnAAAAwP/vf//7nx577DFJG77CtbUuT791F110kaZOnSppw1fDG7sg84527LHHaunSpUpISNDEiRMj9Xk29eCDD+qFF16QtKHgcrQ7KQFgV0DxZAAAAMSUTb8+tLFGDH4bFi1aFCms3blzZ3dTR1JkI6t79+5s6gDY5bGxAwAAgJgxduzYSEeiNm3aqHv37jv5iLAjbbxTS9rQBdBTUVER6axIFzwAvwVs7AAAAKBJuP/++7dYxP3LL7/UDTfcEPnz2WefvcXaX4gd8+bN0xNPPKHCwkL37ysrK3XXXXdFOmympqZGLYY+Y8YMhUIhde3aVUOHDt1uxwwATQXFkwEAANAkjBs3Ti+//LI6deqkPn36qG3btkpMTNTatWtNS/GePXvqvPPO24lHi8ZUVVWl//znP3rmmWfUu3dvde/eXXl5eaqpqdGSJUs0fvx4lZaWRvKvueYatWnTxn2sAw44wHRoA4BdGRs7AAAAjWTkyJH6+eeff/W/z8zM1GmnndaIRxSblixZoiVLlkT9+4MOOkj33XffTunchO0rGAxq6tSpkRo5v5SSkqJrr71WZ5999g4+MgBoujgbAgAANJI33ngj6gVpfbRt2/Y3vbHzyCOPaPTo0ZoxY4ZWrlyp9evXq7S0VGlpaWrRooX69OmjY489VgMGDNjZh4pGts8+++jJJ5/U+PHj9f3332vdunUqKipSdXW1cnJy1KlTJw0cOFCnn366WrRosbMPFwCaFDZ2AAAA0CR06dJFXbp02dmHsct5/vnnd/YhbFViYqIOPPBAHXjggTv7UAAg5sQVFBSEd/ZBAAAAAAAAoOFoIwAAAAAAABCj2NgBAAAAAACIUWzsAAAAAAAAxCg2dgAAAAAAAGIUGzsAAAAAAAAxio0dAAAAAACAGMXGDgAAAAAAQIxiYwcAAAAAACBGsbEDAAAAAAAQo9jYAQAAAAAAiFFs7AAAAAAAAMQoNnYAAAAAAABiFBs7AAAAAAAAMYqNHQAAAAAAgBjFxg4AAAAAAECMYmMHAAAAAAAgRrGxAwAAAAAAEKPY2AEAAAAAAIhRbOwAAAAAAADEKDZ2AAAAAAAAYhQbOwAAAAAAADGKjR0AAAAAAIAYxcYOAAAAAABAjGJjBwAAAAAAIEaxsQMAAAAAABCj2NgBAAAAAACIUWzsAAAAAAAAxCg2dgAAAAAAAGIUGzsAAAAAAAAxio0dAAAAAACAGMXGDgAAAAAAQIxiYwcAAAAAACBGsbEDAAAAAAAQo9jYAQAAAAAAiFFs7AAAAAAAAMQoNnYAAAAAAABiFBs7AAAAAAAAMYqNHQAAAAAAgBjFxg4AAAAAAECMYmMHAAAAAAAgRiXu7AMAAAAAAACIpkePHvXOLSgo2I5H0jRxxw4AAAAAAECMYmMHAAAAAAAgRrGxAwAAAAAAEKPY2AEAAAAAAIhRbOwAAAAAAADEKLpiAQAAAACAna53795uvFVGkomtrghs56OJHdyxAwAAAAAAEKPY2AEAAAAAAIhRbOwAAAAAAADEKDZ2AAAAAAAAYhTFkwEAaKKOHtDPxEIZmW5uSrjcxD76elqjHxMAAJva3yl22yanmZtbFSwzsU/GT23sQ0KMGOKMnd1yct3cmoAdO9mJ3KeyEa8EAAAAAABAjGJjBwAAAAAAIEaxsQMAAAAAABCj2NgBAAAAAACIUWzsAAAAAAAAxKi4goKC8M4+CGBn69Wzp4mF5X804pLsfmg4vs7NzU1MM7GicJWbWzCpwMR69+zh5s6cbXMBNC39+vV2450zbaeQdbVBNzcnIc7EihRwc/fKzjWx76ttBwlJineeLy/en/PeGzvZjWPHO+uAY02s1j/9qGWaPf/EJSa4uYl2mOn7wmI3NzXJnsM+njDWPwgAMet3+x1uYnFhZ7KQlJuZamLJyX7z5VDITlqL15e6uckJNSb2xZQJbi6atqP3G+rGczNSTCwhyT9Xqc6uU5autx1BJWnc9DH1PrZdBXfsAAAAAAAAxCg2dgAAAAAAAGIUGzsAAAAAAAAxio0dAAAAAACAGLVLFU++4JhLTaxv55Zubm5utoklxfkVCGtDtoBTaW3Izf151ToTK6oucXOfevdZN47tp6dTJHkD+zFIiPf3PeOdYqapSnZzU9NsgdKiCr/wXF2dzfUzpRmzZkX5G+xIvzvwFBMLy58bQiEbz7U1dCVJxcV2PFbV+FN1UlKSiZVWrXdzp84c5z8httmpBx9oYkUh/xMcCtqxcNBeHd3cVm3tOSxcFaV4Za6NF0aZb+bP+8nE4pL8eWzWKps77pupbi4ax8n7H+/GM7NbmVjXVjlubka6LZ6cHGWdUx2057uyoJ9bUmwLchdW+nPOKyNfceMAmo5j9jvSjWdmtTaxnAy/IHKis2bOSvefr6zSiUWpAh8M2PNlUWWhm/v5+I/8J8QOd/KhZ5pYixx7TpL8ItuZmf6at6zcrmkqa6Kc16pqTey1z4e7ubsK7tgBAAAAAACIUWzsAAAAAAAAxCg2dgAAAAAAAGIUGzsAAAAAAAAxio0dAAAAAACAGBWTXbHu+cNNbvzCww8ysbQMvyR7ZY3tQLSuyO/qkJJku2K1ap7n5mbnZJjYPx5/w82dv+Y7E3tz9KduLhquZ88eJpYQb99LScpIsxXZ4+P9bjIJcXY/NOx0tJKkJGWaWG2c0w5AXl8uqbzcr/SeGLbHVhWucXMLCgrcOOrvsP6/c+O3XHaMiRUWl7q5Cc4++vJVP7u56Sm201Vunt9CKyvDdhn494jxbm5h5RoT+3YqnbIa4tSD7XlGktaH7Cd4/713d3MTna5YXbt2cHPjnKklMcHvvBYOpphYXbI/N4XCdjx+/c33bm55ZZGJrQyUu7njxk9x44juNKcD1u67dXVzf3+IHX918s9rZbW2I0hhkd+lM9XpStK6mT/nNGtm1zkPv+53o3n47X+7cexYT193jYl16+Z34lPAW40E/NyQ7aQX7ze+UTjOjtO3Pprs5j767q7duWZnOm7AUSaW08x225OkYWfbNU5ZZbWbGwjacbNy9Vo3Nz3VrnFaRFnj5Oba+eaB4Z+7ucuLbQfH0ZNGu7loHOf/7jw3fsO5R5hYbdBfj8TV2WuaVWtWu7kpzrkqL8o1eaazB3DH//zr7JdHvujGYw137AAAAAAAAMQoNnYAAAAAAABiFBs7AAAAAAAAMYqNHQAAAAAAgBjV5Isnn3fIuSb21D03u7lJQVsosGUbvyBYbUWxia0urnJzE8K2UFh6erabm55ii8NVVPsFcK+650kTe/S9x91cRNerZ083Hg7bod2smV9MO1xn36PkZFuIVJJCIVtEMDnBFvOSpIBTvDIu0RaNk6S6OlsQNSy/gHOcbAGyr8ZOdXPRMAcPtIWS773yTDd3bXGxiTVv3cnNLfp5sYkFQv64KS5cZR+3VTs3Nz5sx1hqWpabe+ujtpD7hBl+EUJIhxwwxMSaJ/iFamucef7w4/xCy82dgvzt2vrF/8J1dr7JSPark9bUVNh/n+DPY0Hncdeu88+Bswp+NLGiMr8I/NpCWyzzna/9Yt7Y4MyDzjGx2//2Zzc3MWTn/vRsfz0SqrbjYdFqWwhbkjJS7LkmLco4y86wY6o26K9z7nrmZRMrr1vs5laV2QYAH00c6+bC987//DVkfpJ9fzt1bOnmhkJ2zZuWEG3OKbPBJH+dVVdnz1Wr1/qFeD/7aqKJ3f7sc24ufAf1G+zGs1PtWuL+ay9zcysq7BySk+9fV1UU2WK360r9ph4hZ9zk5DZ3c1OdsZuQaIt2S9I/HnvJxMpCy9zcrybYMYYtO3bISSb25B2Xu7nlZfY9bttxNze3ZK19j2oD/lqrtMg2Hclt0dbNTfCKvsenurlX323nl/fGvunmNmXcsQMAAAAAABCj2NgBAAAAAACIUWzsAAAAAAAAxCg2dgAAAAAAAGIUGzsAAAAAAAAxym/J8iv07negieUl+/tGWWn5Jtaumd/VYZ+utvr6+kK/G0dmToaJzVm90M2tSrTHlpTudyBKc5o9lKXZzhSSVLzYdrNp16mrm7tXR7/LABpm1uzZbrxP794mForSuSMxyX4U9uvndzcqK7bjpGUz29FKktaUZppYq5xyNzesXBP7YsJ0N7e83P85fkv69j/AxIIBpwK+pJxk2yWqNujnpjv73T8uX+8fRIr9DNcuW+SmVgTsGMnO9Ds75LXuaGIZmX53o1XrbKeR+Dq/u1FKgj93wud11stv0cLNbdXCdrWKcppQ87bNTKxTzzZubk2NnZtSE/05pKLSPkZycombm1GbY2KV4SVubuuWtnvOD0W2U5Yk1aT6nU0Q3W5t7PxUVOJ3k4l31i7Lavx1TkWCzU1t7i/74mrtfFiT43cPWfCTHScdd9vTzd2tpe1sMm213xmyKtl+3gb12t/NnTRrghv/LXngmqtMrHvnzm5us7b2M5y3e66bWx20YyQ53nZHkqTEGvt5T0h0OmVJSq20uaXhdW7ubu39+RC+I/Y/zsQy0u21liTlOB+/JatL/Qd2urgWr/LnG29ZmhVlDkkN5ppYQo6/xlm63I6RrBz/Z8tLt/NYWbn/uIP3s13DJn5Lp6wtyXfWrItW+p0W05xujT8tjXJN7vTnTkv118epTle2YKp/Xvt5tZ2L0rP880+L3CbdJLzeuGMHAAAAAAAgRrGxAwAAAAAAEKPY2AEAAAAAAIhRbOwAAAAAAADEqEYrnjxz2jgTO2DwSW5uUsBW2Cor84utlba2hWp37+wXW6us/N7EWreyBSIlqbLcFhGtrLJFSCUpmJRrYgm1flXMmjz7GKGALagsSdU5foFTNEyv3r3ceEKcHTtpyX7RrEMP7m9iZbV+7u8Obm9iawr94mH7dLXH4BUmlKSsrHQTCyfkurlfjhlpYgN693Vzp8z0CzDHuulTvzGxgQOHurmhsC1cnJjoF0svCdr3cp/2/tzQItu+lwkJ/rhJSbeFtAvX+wULCyvtnnub5v4+fLMUW5w0PuQ/blnYL4D5W9d7gC2iKEntkmzxvnVRPuvtOthiju3b24L+ktR9H5sbSPCL6e/ewo7TYJ0t1CxJTl8CFZfYQs2SlNneFjbcJ80vMllSuMLE9ijyi1cWOc0NTj34UDf37a+/cuO/NcVJhSaW32Kpm1tRucbE8vJt8WVJqgvZea+41C+gnphti4KHA2vd3PTm1SZWWW3HiCRVZNhC3x989ombu6vq29cW+o+Lcv7pkGw/g+lp/pqh/362YHXnLnYdIUmdu9rHDUcpONopwRagrZM/NyQ7BUdLS/3ctE52juuaZYs6S9KSxf7rgyicNY5T+1+SVJRgP5Od29g5SJLSku21TnKG//6mptjz5drCn93cGtn1UFaqnVckKbmdXX8l1M1zc8uS7M+WmOQ3N0mq2zWK5e5IpQnFJtari9+IJCPZXqsnp/vr41Cdsy9Q7jeJWF9p17z5Gf76KaO1Pba0eP9cVZm0a1yTc8cOAAAAAABAjGJjBwAAAAAAIEaxsQMAAAAAABCj2NgBAAAAAACIUWzsAAAAAAAAxKhG64rlSZDfmaUqzlZDf+vzd93cB275i4nNWT7Hzf1xWbGJLV3hd6SKc4pfV8mv7L337h1NbNYPi9zc5Hi7V9aihd/BJBhX48bRMLNmzqp37uknHe3GM9Pt+/aH4wa5uV06tjOx4mK/e8jiJbbb217d7b+XpOqA/Th2bFPg5n7qNJNpSPerV155xY2fc8459X6Mpigc8j/DdUFbcX/STNtVS5L69e1jYp26dXFzm2XbuSyUajtDSFJawHaXaOEPBQWD9udISvK7CZQ73d/yEm3XAEkKy59nf+sS4/zuGJUJNt6xud8NKj/f6UaT7HcgipOd+wc290/HzZrZbkXVFX5nyKJi262kYwf/cSudRm+prfzulF8656rasN9BYtW6ZSaW3n43NxcbZGfb921slPnp2x9tl5nCtf54SHI6MJbU+euO/nt3NrFJsxe6udkJdn5JceZCSWrjdIv7rZk+3engOGh/N7ci0c45XfL91/Caux8xsdkjH3Bza0N2ftot7J+rslJsJ72aqvVubnWlfd9bOespSaqusHNGizR/HqmM8zskwRdw1gyhKNcYOSmpJlYS8DsQLS61j1u7utjNTQ/ZtUhlnb8ma5Vn10M/LfevGePi7XyTnuKf1+pkPz9h+V2xqmoYYw2V5nToy2vnd95MTrTntfU1/phMqLLjJDXb73TVqbmdt2pq/cdNS7Pr5rbZrd1ce5UQm7hjBwAAAAAAIEaxsQMAAAAAABCj2NgBAAAAAACIUWzsAAAAAAAAxKjtWjw5M8UvGvzxmLfq/RhxTlHLaQv8QoHfz1tuYuk5fkG/OucnX7TILw6XnGLjK9b5Rbe6du9gYoV+7TAtWlHk/wW2mzinuLUkHbD33iZWl5Pj5tZWV5hYRZVfdqtb11z7uLVO1VJJhUGnoOruXd3c1FRblKwh4sN+sdhYF+99sCVNmjm63o9hy/9JCQn+4+bn2aJxn33tVLaWFHaK+nXr2svNzUmzxQKzo4zdH6eNM7HlUd7fjCgFTn/rslJtMUlJatG8uYlVBv0CjwlxbU1s7ooSN3f3NjY2da0/L7QtXGliJeX++Wf3DnbOWrjCL4q5ImBPTG3jvdEvLVlZbGJJTkFLScpzCr02i1LoEhvEOXPDrIWFbu5sZ50zcL/ebm44bN/POeOmurktfrbj+ucSf0z2Pe4wE6tzZ05p6Y/fu/Hfuuy0DDfeuoX9/Dz02vB6P+6Mxf64SU3INbEV5f5nuFWcnTPKKv2F7J672fPS0mV+QeSfnTVOS6f4vyQtWOL/HL91hww81o3HJ9rXNhj2iwZ7883aEv+cEnI+17VRCiLXOMuOYqf4siRlpNniyaFafx2dnm3HWDAc5RhC9iDiosxNqSl2HX3c8ce5uR99+JEbh1RS6Y+zLKf28fhJ/vkn7LxvnTru6ea2cmo1pzgNUiRp0dxpJrawzl8f1+4i97rsGj8FAAAAAADAbxAbOwAAAAAAADGKjR0AAAAAAIAYxcYOAAAAAABAjGJjBwAAAAAAIEZt11YVDel+9cfzTnLjbz16pYktX2y7hEjSgrm2W0R1yO8eNGRf2+1k1XK/Cv8lxw0wsWc+n+XmVpTYbgCHHdDNzZ05b5EbR+M48rADTewP5wx1czu1bWFiUybMdXO/S7Ifm8OHdHdzc7Nt54uk6ko39+svZpjY4gR/7zXodDtpiLq4XXNPd9L0+ne/6tPb70g1/fW7TKxDOztfSFKtM4W++KHfBWbYBbaTTPNcv0tV9462o2Cg0O+i9/CHP5nYvecNcnOjDKffvK/GjnHjpx5ykIlldbFzhSRVhG0HoZMP8sdYfnq2iU39abWbu8Tp6DF4z45ubmqibUPRPMXvAPHjPDtufqzzO0uUBmzXi5QondeKCu159OV3P3Fzf2vOOvkoN/6/2y8xsblzF7q5BQVLTCw3O9fN7d7ezk/f2CZ6kqRbLznSxG55fbybm11nO9rs27+zm/v899/5T/gbV1jkrwNGffVavR/j/ZdvN7GT9t/HzQ3X2A5Yk5b4nWAL05JMbJ+2Ld3c3HR7Dgun+/PIvAK75q1L9S9DSgJ2jEEqrfS7Auem2PcsyW+8pvcfudrEwiH/9f5s/I8mNu1H/1x12qH2WmfuT/4YO+93+5nYyIn+mvu9r+wccuEJvd1cf+T5apwOtYlROqD+1hw91F4/SdKUN+40sdwM/zp7yRrbQfiDcfb8JUl/OWOIieU510+S1LtraxNbv8r/XNw0doWJ/ePM/m5uWHPceKxhmQ8AAAAAABCj2NgBAAAAAACIUWzsAAAAAAAAxCg2dgAAAAAAAGJUk6kSlZDgF+7KSUs2sWB+rps7oN9eJvbBRL+Q6cdjbAHmi463RZIlKTXZFp0b1KOrmzv5u/n2GD6f7ubWOQUp0XjCssU9k5JtgTlJ2rtTKxP78z3Pu7kPXn2ZiaUk+h+l5rm2+FfFuho395G3R5nYMzfa55Kk+G0sfhwXt23Fl3dlORl2zqmuCbi5LVvaIse33XCum5ufbB93r475bm6wzs4Nqc3tc0nSf+79o4kl1PjzaV3oTTcOX3x2MxPLjHKuCjrzeVqy/zlr1dy+7y8+/K6be/flp5tYQoL/uC1yU01sRWW1m/vIa7bQ+OPXnuPmxgWnuHFPfK4/TiElJPjn/GaZ9n3bvWN7N/e4o+w65fVRY93cD8N23vr7hX4DgYxUOz8dP3hfN/fziTNN7JNHp7q5+TlRKrj+xk2f6RembohQ0JaKzUjx54b0LFv0/YNnP3dzrzv3aBPLjlIgNT/bxsvL7FiSpBGfTzOxWy863s2Vf8pFvF+0PuwsQRPi/FxvvnGGkiRpQO/dTWxeYbGbW/CTLWB7zuG93dzERHtd1bO7X4D95yq7Zp46b42bWxeqf/nk+CR/nEKKj/dfx2ynsHow5J/X8nJtk4i/XnqCm5vrrGl6dLHXZZJUF7bHltnCb3Dyr+vtejxUZZscSVIouGtck3PHDgAAAAAAQIxiYwcAAAAAACBGsbEDAAAAAAAQo9jYAQAAAAAAiFFs7AAAAAAAAMSouIKCAr9s+nZ09rG2Cv6lp3Vwc9+dvNbExjx5tZu7dImtyF5U7ncgCjuNA7KjdDCJi7fxcJRXrazaVutOSPA7Jp17x9MmNvyNT/wHRoOddHQfEyutSnNzV339kolNW247p0lSx0Q7HnLzbfV3SUpwuleFooydeevL7XNl2O4FktTlmD+b2NixE/0HdgwfPtyNn3uu39FpV/SH8/q58alzbGX84nFPurlB2c4OGak2Jkmqs3NDVa1fhT/sdFiK1scsOd12doiL9/fs0/pfYmIzZ86K8si44ISTTax/n3ZubjCp2MR+Wlbq5o565HYT++qnn93cds5807FVlpub5HSWiNZ8ccbaShPbLc3vfHPBXY+bWGKl3zWjuNR24Xru3Y/8g9iFnTD0CBP7/TEt3dyPpheb2BePXOXm/rzG5haVVLi5Yaf7YXaaPz/FJ9g5o85bKEkqr6h1/r3fcfL8O581sfc+/NLNhe/1R65344U1ds0bCvrv7/+u/ZOJjVti19eS1MqZRzq28LubJTq5wSiLnNmFdm5o73Rjk6SL7vmPiT346Ktu7q6qR48eJpaT4s/R8Yn28/e7g/zzxFcz7Ny//NOH3NxQnfP+BuznP5oE5/pJkpymtVGFnAuu+CjXVW2PvMrEEqOsnmqck2Ney9Zu7k8//WRiBQUFbu6u4P6bjnXjX8+w55oln9zv5haut+PM64Ym+Z2u6qJ0qQo78Wjr47gUZ30cpavwXiffaGJffrXt3Qt3NO7YAQAAAAAAiFFs7AAAAAAAAMQoNnYAAAAAAABiFBs7AAAAAAAAMcqvPrWdvfbxhyZ2x1WXurm5qbZQWKDKFpmVpHinGld+Tnq9j8srkixJfU6/2eY6RQkladobd5lYOBhwc6tr61+ADA333sgZJtZ3UC83t7am2MR6ts6t93MlRClWm+AUfUtyilRKUrdmtjhhOOSPkYoav1gm6u9/L09z43379DaxOXN/cHP32rObiVVW+UVlPeEoVdhbH/63ej/G6jFPOA8cZW6JVvUdrhc/eNfEHrjBFi6XpFCVLV65orDIza2pKjGxA9r7Bdg9iYlR5hunKGBKlNz+LW0h+XDIP1etLy02sVYpOW7ub7FQsueDL0eZ2BUXnOHmZiXZAo95mf77tm6dXXu0bJFX7+OKVst04O9vtcEo65yJw+8wsXDQn3MCAX9Mof7OutIvTvr4HZeb2PIivwh7bXWZiQ1q6xfX9SQ6Rdwladmq9SYWrThpnxZ2zmjInAOpNuQXmw4GgiY2fqaNSVJinC1gW1ZiC3FLUmZWcxNLSfWbeniiFbVtc+gV9X6MlV/Z4v3hkP+zBZ14YqL/mnnF5aNJTNwpl8s7zfX/+tiNTzpuqIl9P3eem9uqhS1EHQrUf30cTadjh9U7d+nnD5tYuM6fc7yxE4u4YwcAAAAAACBGsbEDAAAAAAAQo9jYAQAAAAAAiFFs7AAAAAAAAMQoNnYAAAAAAABiVJMp833bw8+48X9cda6JJSb5lcxDAdspKDnB7zRSF7aVucMh/9imv3OfDdZW+8l1tqp2XW2pm5qSbCvTYzuL8h4nOK1CKqv99zgj3XaTkdORTZKaH2i7va0Z+7R/DAn2GKL1MNrW3kbnnms/V4iustqvoj+zYI6Jte/Qyc1tnptZ7+cr/Np2gQiE/G4CYWfiKvjuO/+B698EAlEMu+9JN37f9ReZWFa63z0kFLKf4Moaf77JzrTzTV2dPwO0OuoqE/v50wfc3Hhnzqup9cdYcoo9V9VU7xodJHakx18c4cYvv+BkE/PeH0nKy7TvRTDKUq6s0o6paD1Jpr99j4nVVFX5yc46p7lt6ihJSkri94fbyxW3PWVid958tptb43RhDUVZ9GZl2nkr2pxz8g3/MbGpz93o5tY5Q6Gyyu+mlprK+thTG65042Hnk10V9NaqUoozXQQC/lgoKVprYpk5tlOWJCUm2Pcs2lp12aiHTcxbh0uS6uyxlUXp/uY9RijK2inodCxesmSJmxsKRbl4gIJRXpvv5v5oYm3btXdzm2VHOYE4Vo121se1NW5u2Bk7c+fOdXMTo3QsjjW7xk8BAAAAAADwG8TGDgAAAAAAQIxiYwcAAAAAACBGsbEDAAAAAAAQo5pM8eRoFq+2hbtqqv0iSSkptkBWMOQX/1v+8xoTy87wC401xILlxSaWkeLvn9XU+AVZsR1Fqc0WrrN/kZ7mFz6Nj3PezyiPu27Cc/U9Mi1YaovB1QX9sR4ftk/Yq2cv/4HjbPm6cNgvaTd7dsEWjvC3wSusHq2mX9gpKLli5Uo3d9K0dSYWrbhuQ1RU2WKKmVEeN8rbjkZww/3Pm9gZZx7i5qak2QEVH0h2c723LNr7uGLkgyYWreTjvCX23BqOMt/UOoWSn3v13SiPjIZaVVRsYrVRimknJdl3NCFKidI1letNLCcr3c0NO8+XHOVXf3N+KjSx9CQ/t7aWoqM7UlWVv65Mdeac2oD/BlfXeAWN/ZPg2P8OM7HKgF9Yff5yO+fEhfzc6ig/B3w5WVkm5hUHlvxCyWGnILokxSfaMVJZ4TeEWbJitYnlZm37ddWSn4tMLDPVv3z1GhOUV/vXgWmpKSaW5Kz/JCkurslfLu8QJRV2vRmO8polxNv4z6v9otdTZ9pzSma6fX8aqsw53owo6+NgMFprgdjCHTsAAAAAAAAxio0dAAAAAACAGMXGDgAAAAAAQIxiYwcAAAAAACBGsbEDAAAAAAAQo5p8me+A01EhLsnv6pCcbCufx4f8KtftWjQzsSEXPurmhoO2Wnxdgt8CYuKIf5hYTlaGm9t5NzoQ7XBR2hvNX1FsYt06tnRzw04HkuePqX/3q7V1FW78b59eb2ILl65yczt26mRidTX+zxZwuk7EFdsuA5LUo0cPEyso+I2NU6fBTEKK/xmurrTvZVLI7wLTqnmOiZ3zj2fqfRBhpxOaJL16zxUmlp7mz0/5zfOjPB92pLWltgNRy2a2q4kkBZ0GNe+dO8LN9bplra3zO4Jc8s5fTay43O92stdee7lxNI5g0M4Z8VHWOfEJdj6Pj/PnnPatm5vYnifd6+aGa20Hnbokv1Pbj5/ebWIpKX6nkd06TXbj2D7Ccf55oqTKjpvcLP/9DVTbieTF8173n8+Zcwrr/I5uV71zlYlVB/z5qXv37m4cvqISO3dnpvvrlsREp/Nnsp8bDNkTULL866r2rex1Va/T7nFzw846qS4+wc2d/YGdb5KT/bHbvl17E6twujpKfnfYxLIyN3fhetth8Lco5HSCjU/yx05cvO2yGRdl7LRqnm1iF9z+opvrdeEKh/37VIbfc7mJ5Wb759bWrVq58VjDHTsAAAAAAAAxio0dAAAAAACAGMXGDgAAAAAAQIxiYwcAAAAAACBGNfniyeuLKk2sotypJimpqtb+OHF1flHBqhpb3O2b56/0D8KpRRcM+gWg5s/7ycQSklLc3Fmz5/rPh+1m+qSZbrx3/54mVj3lFTc3ztkPveiTi+t9DKEoBb0XLVtsYvudfq2bm+DUmIvysKqt8j8Dnt9coWRHYoL9wHfdrY2bu3z5ChOriTI3VJSUm9grd13q5sY5k06ozn/c8rI1Jhao9YvZFRcXunFsHyPeGOPGd+vfy8RKvnzCzY1zfv1y0vAz6n0MgSjjcdGCBSa234X/dHOnTplR7+dDw5U6xbSLiu3aR5KSE+w6JxhyKthKqqq2hWl/ePdGNzfOKbrrFXWWpO+/X2iPK9H/PeGc7+e5cWwf9zz4phsfdPyhJlbw8u1urjdjnP/yWfU+hkDQH48/OXPOydc/7ua+/8mYej/frspbj3kNLiQpwVkUBkK2eO0G9rOemZ7mZlaU2aLqivMvHatr7Hwz662bohyDFYyyiF26ZImJ1UVpJrFk6VITq6h0fgZJ8Ql2zgpFaX7B2niDYK0tRN3aaUYkSQHn/FNV41+/19basfri7RfW+7iirY+L1682sepqW6hZklasWFnv52vKuGMHAAAAAAAgRrGxAwAAAAAAEKPY2AEAAAAAAIhRbOwAAAAAAADEKDZ2AAAAAAAAYlST74oVCttK12G3Zr8Un5RqYnWVJW5udrN8E6susd1lNj6jeS6vVZakbp3bmdigS/7Pzf189MQoz4cdLTkuycQCTuc0Scre/3ITq5z6ov/AYWfsxDstrSTtc/zVJjZr9mz/cbHdhJ33rHmunVskqbampYktcTplSVJ+Xo6JlRQX+8fgzDlepyxJatm8uYkdfvmjbu606bPcOHaslHg73wRr/fkm/6gbTKz0a//99cZucpL/+5s+Z99mYsw3O0ed875VVPkdbcJptntNYp0/dvLyWphYebHtEhKNP+NIffZsb2K7n3K7m/v1N9/W+/mw/aQm2O6sAacTjST1u8iuWWe/4nc3coaukqNcWZw8zHbAen/kGD8Z24033yQm+p/21PQsEwvU2A6fkpSeYbtxBqvK3Fyvb1q0Ow06tLZrnK4n2/OX5I9Hr/uV5HfAovvVlnlr02Y5/vq4stKef5Yts13LJCm/hX2PSwrXRjkGK9rYadO6lYkdd9WTbu43E6dGeZTYwh07AAAAAAAAMYqNHQAAAAAAgBjFxg4AAAAAAECMYmMHAAAAAAAgRjX54sl1dbZMUllV0M1N8yq2OQWVJanXqTebWH6UAlANUejUovviq0nb/LjYCaJUjiyf+F8TS+l91jY/3ezZFG1rCgIhO+dU+bVJpThbyL1169Zuao9TbzGxzi2SG3RsngU/V5rYtBkUwW3SnAqPcXH+hFP+9UMmlj7kT9t8CLOYb5oMryBlRa0t7ClJWZk2Vh3wf0fX9UhbkL9Nni2+3FAry+yxjftmyjY/LrYnO8YSEvxGDiMftvNL3mFXbfMRTKF4/zaLVty3R48eJpaUZIv0S1LIua6qrPab0iQl2HiaU1BZkjocfZ2JtcyKVoK9/hautQswr0iyJCU7hZK9IskShZJ/jUDQOVdV+mMnzlkft2xpG45IUp+zbjexTi3SG3ZwjhUlARMbP3HaNj9uU8YdOwAAAAAAADGKjR0AAAAAAIAYxcYOAAAAAABAjGJjBwAAAAAAIEaxsQMAAAAAABCjmnxXLE96mt/VoazCVr9OilI5vc4pqb6uxG99U1tnq7qnZvgdtL74aqL/hGjSkpPsRyExyrZnXZ2t9F499Xk3N7XfRSY2m0r8MSc11f+8ZzjNFqpKStxcbypatLbWzU2Kt2Ms4MxDEh2wYlFKsu2Glpjgv78hZ76pHP+Ym5u2/19NjPkmNmVEWeesKbatN1P95jdyho7e+JQunb9FyU6HpChNsdyuSd+NsF0dJWnPU+8wsZmzmHNiTXq6P99UVNk1SkK8f2EVdq6r1pT5z1dTa+exYNhfdMfHOfEozbZKKuzx0v1q+0pN89fHNfaSXBXV691cr8vZiJGcq34N7tgBAAAAAACIUWzsAAAAAAAAxCg2dgAAAAAAAGIUGzsAAAAAAAAxqskXTy5cX2litbVORUBJKUm2Elx8MEqFLceXE2fWOxe7vrD8yoLx8fUfU1Fqd6MJ84q41VT7hdWTnSHSMjfbzfVGzbdTpzfgyLDrsIMsMdGfb8JxzDe7utJSW0jUm4ckKTXZLttqa/z5KVqBUfz2eNNIitM0QpISEur/O9+QvxxHExAI+G9OKGS7PoSCQTc3NcmOhcR4f3zENeBcVVZtJ7hQyG8m0RAUSt6+qqptReSqSnv+kqTkRDseWuZmNfoxYXPcsQMAAAAAABCj2NgBAAAAAACIUWzsAAAAAAAAxCg2dgAAAAAAAGIUGzsAAAAAAAAxKq6goIBGGgAAAAAAADGIO3YAAAAAAABiFBs7AAAAAAAAMYqNHQAAAAAAgBjFxg4AAAAAAECMYmMHAAAAAAAgRrGxAwAAAAAAEKPY2AEAAAAAAIhRbOwAAAAAAADEKDZ2AAAAAAAAYhQbOwAAAAAAADGKjR0AAAAAAIAYxcYOAAAAAABAjGJjBwAAAAAAIEaxsQMAAAAAABCj2NgBAAAAAACIUYk7+wBiQY8ePeqdW1BQsB2PBAAA4NeJtp5h7QIAaCo4V/063LEDAAAAAAAQo9jYAQAAAAAAiFFs7AAAAAAAAMQoNnYAAAAAAABiFBs7AAAAAAAAMSquoKAgvLMPoqno3bu3G89LiTOxtZVBN5dq3QAAYGfzuorEx/u/z2uVlmBin0+a3ujHBADAprxzVUKCPSdJUjvnXPXxxGmNfkyxijt2AAAAAAAAYhQbOwAAAAAAADGKjR0AAAAAAIAYxcYOAAAAAABAjErc2Qewswzq1cvE2mdlu7k1oQoTy0pkTwwAADRNzRJtkckWOXlubm2wdHsfDgAARp5zrmrbrIWbW1VbvJ2PJraxOwEAAAAAABCj2NgBAAAAAACIUWzsAAAAAAAAxCg2dgAAAAAAAGIUGzsAAAAAAAAxapfvinVE/0PceNvc1iaWnOy/HKnBDBOrrLadsgAAAJqCjrkdTCw+yf99Xk6y3xUUAIDtqWuzLiaWmORfk2cn5mzvw4lp3LEDAAAAAAAQo9jYAQAAAAAAiFFs7AAAAAAAAMQoNnYAAAAAAABiVFxBQUF4Zx9EYznh4NNNLDPNL76UkBBnYtlRageWlNpYZU2dm1sXsvH3vhrhPzCajCOHHGFifTq3cnObNc81sbhEfzyEgwkmVlPrf+RWLF9tYv/78E03F03X0Qcd4MZT01NMLDlK/fq0VDueiirtnCVJ5WVlJjZ64sQtHSJ2siP2P87EAqGgmxsKBkwsM8nOK5JU65x/SqPMN8nJSSY2fspINxdNx2lDf29ibZvZBg+SlJqabGLONCRJqq61sdIo65yK8ioTe/GTF/wHRswpHvWGiRWt9eenli3sgCoN+HNOm9/ZNfpLN97s5p5/791bOkTsRKcdeZgbz8iy81BiyD9XZWTYMbK+wl/jFK1fb4Px/uN+POYrN44d75yjLjGxNrnpbm6KUyg5yuW7Ku2SSKUB/1xVXVljYs989B//gXcR3LEDAAAAAAAQo9jYAQAAAAAAiFFs7AAAAAAAAMQoNnYAAAAAAABiFBs7AAAAAAAAMSomu2KdeqitrC9JN198lIlVVFW7uQlhu6e14uef3dzUFFuau1nz5m5uZnqaid39/Bdu7ptfvOrGsf1ce96FbvywPp1MrGWrZm5uSp2txl9eWezmhmU/XmlZfvu1uHjbpeaRl/wK/y988pYbx4511nFDTSwr084BkpTo7KPX1Tnl/SUlhG3ngGCire4vSXVh20liwaIiN3fM5G/cOLaP/Xvb8SFJh/XraWLri8rd3Kq6kImVlla6uenJduxlpvutJbIybTebafOXuLlfTvzQjWP7+cOJtqOIJF123EEmFgr7y7hA0MbXFha6ualOl7S8ZjlublaWnZ8eHP65m/vcx8+4cWwfX//vQTd+8B+uNbGKrz92cwNVds5JT/M7FlXX2NzkVDuWJKk2bNdO2Qcf7eaiabjgxGNMrFmzLDc3wVmLKOx3U4t31jihBqxxfliwxs0N1trH+OLbCW4uGsefT7rcjV98tF3/VNfa+UKSymrtWnhtYbGbm+Zck7du5l+v5eXZTm2Pvel3//zPB4+78VjDHTsAAAAAAAAxio0dAAAAAACAGMXGDgAAAAAAQIxiYwcAAAAAACBGNfniyUcOPt7EHrvFLypYXFJiYq07dPZzV9sikcGQX/CteN0KE2vWqoObGx+2hbsSkmyRMEkadu+LJvbZxA/cXDTccYNt4a5bbjzXzU0I2Pet6x5d3NzyEltkOzc1181ds3a5iaU3a+3mBgK2eGppub/3+sCTdpw8//EINxfb7qJzTnLj8eE6E8vN9YtjB2qrTCwzxS+0XFlhx0J8lNxgqNbEavwahFqzZp2JvfvZ134yGmRI/yNM7KAevdzc6oB9z0LyixyHnGKQq4pK3dy0JDtfpCT557X0FFs8OTnFFjeVpMlzvzOx8VNHu7louBMOOMXE7rn2Mjc3UG3nkbyW/jmlsnStiZVU+AXbQ9VlJpaZk+fmJjtDtc5pKiBJ/3zKNol4ncYR283Uj95343vn2vPHXnu0cnMTk2yx2vSEVDe3zlnz1oT8sVAXZwvpzv3BjlFJSt3frt+evvYqN/eyBx9246i/yy86242nxNlLxGZR1jjBkB0L6Un+uKmurjCxuCi5oZCdsyqdAt+StGrVahN79aNRbi4a7pQD7Ti57XL/XFXnrHNSM6Osj6vs+WfRar8JSIazpElL9a+zs9PtOicsvxD8v54bbmKvj37JzW3KuGMHAAAAAAAgRrGxAwAAAAAAEKPY2AEAAAAAAIhRbOwAAAAAAADEKDZ2AAAAAAAAYpTfhqMJyXKqXy9Yvt7NTc7MMrGaJT+5uVV1tptNeppfyT+zVXsTi0/zO42sWWsrvSen2crgkpSTbjsEoPHstUdHEysttO+PJLXbzXYVWVFY6D9wYrIJrSuzFd0lKSM738TW1FS7ueFK56nS/L3Xzp1y/WPDNjv60ENMrGV+ppubnmPj++zT1s2tLLOV+HOz/A41xRW729x0f4zFK8fEvple4ObWhe28NXjQQDd34qTJbhy+cI39AK+v9NuTVVTZ971VS/98UOX0rdxzz+Z+brkdY81b2K4QkrRunT3eEmcOkqS6Gn/eRONo3cx2LFq1zv+8J6fb3NoS231Rkirq7HjIaOYv+1ICtgNWfLY/dlavLHaOy+920jLH70CC+nv6hmFufO897Xmic0u77pGk3Tq3MbHi5v76IjHddidaVOSvhzJlzymrg8VubqsyO55a72XX15I056M3TCxa96uLL/iLiT334hNuLqII+F2m0prZ66ruvaKscZwurjkZ/vVPcYXtWJwTZY2TGLJrnPGzvndzExLt/HjQgUPc3FDQXvNVVdiug5I0ffYUN/5b0zrXXv+sKfJfs7o4O/fXVi50c8ud3Ix8+1ySFKi1a6X4XP/6vWCRPTe2a2/nTUlqk9ukm4TXG3fsAAAAAAAAxCg2dgAAAAAAAGIUGzsAAAAAAAAxio0dAAAAAACAGNXkiyeXxhebWK/OfpFJr/BWcrJfUCkcb3/00tJSN3dthd3/ap2T4eZmJ9riS8lx69zcioQolSrRKMIptkBpv+5+gcf4eDt2UrOiFI5cbd/P1DRbbFCS1pTYQsnZyX7h7dpUO85y0/291wR/+KERxDlTRotc/wUfPGgfE6sM++PmoD1scdKSMr8obbdEW9y9NmQLcUtSRpY9tvhkW/BQkj4a+YmJ1dT4x4uGKZM9fyQlrnFz99nDzkN1Cf65alDHlia2bJX/uBntcp2oX7w2NyvdxNau8xsTzPiRc9X2VJZQbGJd2vmFRDPT7ThLzrQFQyUpNcmeP4pKStzcWtnxkJboF/pPa2fXYHGhZW5udRpjZ1tddt8Dbnz6O/8zsd339Qv9L6v80cQy61r5uVPnm1irln5uRbydt8pXFLm5gTx7Xsqq88+BLbvY89K7T9zp5nbL43fU26pFnj+H7LffHiZWFe/nDt4318TKKvzPfzenLm5lTTM3NzPbrnHCKf6abFTpZyaWX2XnNkmqrbIFo9NT/YK9/XoOMLFpv8GCykUJ9vonv7k/9wdq7XoirZk/PyUm2M/wuiL/mjw+w66FE+Sf15q1tIWdQ8Fv3NyytHI3HmuYDQEAAAAAAGIUGzsAAAAAAAAxio0dAAAAAACAGMXGDgAAAAAAQIxiYwcAAAAAACBGNfmuWF5Xqw5dO7i5Wem28nlp2HaXkaSkKtsxKau5fwxt3ajtfiVJGU4HkrYZfgX5sN71nxCNIjfXvu577tvRzW2VnWtiCwv9DjGpabajTWaiv0fauqUdvykJduxJ0vo6W6G/e9vWbu5T70xw49h2n34xxsTuv/VyN7ddKzsWjhrQ081t28p2N6ooLXRzFy+zlfy77WH/vSSV19qxt+/ui9zcdz6189bIr8e6udh2P63wu0XMWWlje7dr4+bWVdrOROuq/I5JeRm2q0NJjZ1XJClNtjvfsqLVbm7IP92hkaRn2PeivM5/j9cW21hdkZ+bVmfPP1WhGjc3L8eOkxUl/uOGnd8JpqX6y8mQ/PGH+nv+hpvd+Gnn9TOxn1ZPc3PLnIYvP33xlZtbWmXHTaLsOUmSWuTvbmLLli9wc0MhOxY6dvHX8737dTGx2jq/a82N/37MjaP+snL8zq5ZGXYsnNKnm5vbxlvjlPlrnJWr7Dq4Uye/K1ZlwM437fKXuLkfjrJj7J3PRrm5aDjvXDV5rj/nzFq01sTKonSfTgvZ80dxXa2b26tbexOb/sNSNzfT6YCdmB6lE2yULtqxhjt2AAAAAAAAYhQbOwAAAAAAADGKjR0AAAAAAIAYxcYOAAAAAABAjGryxZM9NUE/nptki3+NG/W5m1sXttUgu+/Zx83Ny7QvU06cvyc2c+oYE5tf51eejEuJUsAJjSIuzr7uK0v9YlwVZcUm9sjLr7u54Vr7uEMPOdzNzUq34yQv3i/Q9f77b5jYewG/+PfaMsbOjlQV5X3Ys60txv1TiV9ksqbSFneri7OF6CSpXVtb+Lu63H/cuattgbp2ibaIuySFosxb2D4qnSL9ktSmnS0y2X+wLYQqSRlJ9r1cPWG6n+sUBSyKUmh5ryEDTKxflHHz3UPPunE0Du9VX1Hof96TEu2cURmlIHKis/Qoq4jSUCLZrp8qK/zxG+/UWQ1V+MdQVh1lwQbXzVdfZ2J3//v/3NzKOW+Z2BsTFrq5S2YvN7GyVL+xR7qzTCotq3Bze3azo3fOT+vcXGXb50tf7BdaXllqx39qol/g986rLzWxW/79jH8McBVV+mvjDs1sA4+l1f41TWjFGhMrj3IObN3KjoWSkko3d1GFjbdLtM1yJKmq1p/f0Di8c9W85cVu7uKVtnB23957u7lh55F/nDTLzf250I6HonL/PNP3iP3q9VySNGXSVDcea1jlAwAAAAAAxCg2dgAAAAAAAGIUGzsAAAAAAAAxio0dAAAAAACAGMXGDgAAAAAAQIxqMl2xDj5gkBuf+ebdJtYqP9vNLam2sVc+m+fmXnv+YSbWPCfTze3eIdfEaguL3dynPltiYv86Z6CbG6eZbhwNc9FZx7nxfw0708SSqvxOI3WZtlPVJ9+ucHNPdqqs52RnuLmrV640sWbZfjX/92atN7ELBnZycwNr/Q4V2HZ/vvhUE7vo9EPc3Patm5nYayOnubl5OVkmdsrhfiekeKejWzP5Vf9nTZxrYivTk91cGkZsux49erjxS0482MTymvldZ6bOsB3SKor8jiC5zWwHh7Rk//299NRDTOz1r2e7uZXLV5tY/u6t3FyGTeM44ehD3fjbD19pYmlONzRJGjdtsYl9++PPbu6xg7uY2MrV/rnjhIN62uea7ncsem+MHVOnD/W7nQSjdAWFz+uA9coj17u5LTrZtfBe2f76eLlCJta+vf95X1tUYmKJVX7XpLhq2w0tNcm/tOjexna1WllU7uauqbKP2yHVn/e8Dlj33/dPN/f6G251478lf/vjGSZ27glD3Nz2rewaZ/Q0v/PaPOf9OXxgdzc3LdV2cMyWvz4f/Y29jluT5HeXrWa+aRTRzlUv/etPJrZoke24J0l3PfGhiSUm+muivrvb66Ipk/1z4C2XHGWf660Jbq6cbrKD9u/mpk6YMMV/jBjDHTsAAAAAAAAxio0dAAAAAACAGMXGDgAAAAAAQIxiYwcAAAAAACBGNZniyXFxfnnG7PQkE6uu8Yu4ZWfkmtg/b7jAzW2WaIsydeuQ5+YG62zRueQ8W1BMkv537+U26BSBk6RQ6CM3joZJSLDvjyTFyRZRK1q/zs2tLbGP8X83/9nNbZFix+rqdWVubiBgx+qyKjumJenf119mYi0z/Y/o2w++7sax7eqc4nveWJKkNs1yTWzCd37B9rv/dI6JBYN+QeQWzW0h9+riUjd35JTvTeyJa/x5L/61kW4c9eeXbJSy020xyDZt2ri5J+Y3N7FrH3rFzR2wry0++edT/YL8OVm2AOEB+3R2c2948k0T67KotZsbL7+IIRomId4/V2U7xc5Tk/3zRK/uu5nY1MW2ELYkLVllz0snHOAXOU5xipF269Leze22qtDE5q/0z4F1IUpvN8Tf//I3E7vniUfd3Pdfu83EWqX556qasJ0bRn/gFwsduE9LE0uOMh5znV4QSQn+LPnme1NN7IA+u7m5ddXOZ8XWXpYk/eWKS0zsicef9ZPhfiaTE/3f83dslW9i745+zc295y/nmlhCvH/uyM+xRXSLa/1rpRc+nWRiTw07382Nr+Nc1Rjio5yrmmfZD2Fdh7Zu7nFH9Tex4SPteylJ30y2Y/LvF9gmR5KU7hTpPm7Qvm7ux+NnmNgjT3/g5oZDu0bhbe7YAQAAAAAAiFFs7AAAAAAAAMQoNnYAAAAAAABiFBs7AAAAAAAAMYqNHQAAAAAAgBgVV1BQsMPLQA/Zz3b0OGSwU1pf0viZ1Sa2ZvQjbm5Jma2onpridxUKO51vagJ+hxo58bgoXUIS02y17rh4f/+s7eFXmtj4Cd/6xwBJ0ulH/87EDjnA7+Qy66ciE/vbOYe4uauXFptYXZLfgiFcZ6u3x4cCbq43dqI0WFIw1T5ftA48z3zwtYm98fZnUbLREBeddZCJ1db589PUVx8ysRmr1ri57ZxOfM2a2e5Xkv++RyvYP7/EzpHtnS47ktT3rOtN7ONPvvIfGK5Tju7lxlett/PC7Zed6eb+/iTb7eHnKB37MhLs+SM9w3YUkaR4J7cuyrmqqLTSxDJT/HGz10nXmdi0abbbBP6fIw862MSOO8TvpvnNnHITG/PfG93c5tk5JlZWZecAyZ9HUpL89YgXDUeZcyqC9i9SEv211p6n3GBin3xmz1+/NReefrob37uV7UR2wZm2u4wkzSpcaGLjv53t5nZJzDWxiSsq3Nx0p5NRt+Z+V6xE57wW9BvqaE6hXSflRemgld/ZjvM2cf55eN4yu9a76dH/+QcB/eXiw02stNL//E5/9d8mNnnZz25u+yQ7Flo0z3JzvW5Z0RrozV1vz1UdnS6UkjT4wptN7O13P/cfGJL8c9WpQ/0u0SOn2+6HU563r7kkFZXY+aWszL6XkhR2linpUa7f4xNscjjKOqeq0nYmjkvw57Kjr7RjfeSosW5uU8YdOwAAAAAAADGKjR0AAAAAAIAYxcYOAAAAAABAjGJjBwAAAAAAIEb5lYm2s/HfTjaxow6zBUslKckprDa74Hs3t1PHTiZWXR2lGpcjWhXptkdeVe/HWDX6MeeB/WOoc4rwYsveHPmJif398gvc3OwUW1ztm4nfubldWrYysbiALbolyS3RFW3s/Os5e7zR/P1iWxhacX5BsJpa/9iw7Z5/3RZLO+gwv3hlbXWJie2T7xdE9iREeX8rK20x1LgouV1znCKCUYp5l1fZIq1omHdGznLjvXr0MLFmuf4pNi7Ovj9tW7ao9zHEx/m/k7n10de9J3Nzb7/CFm8NB/15JRCK0lgAUX0+1hYIPu/U49zcJGcpVrTeL8Ken5lhYjnpfqF/T7R5ZODvb3Ny/ceYOPx2EwtHGSO1wSiNBX7jXnjzzXrnLhz5ghtvk5JtYusK/YLIHfJs4eH92vgFaD2JTsFSScrKssVxo42x5AR7vvSaUUjSsmJbELltK78Qb1Wa/fzcccdNbu5tt/3Ljf+WPPHcFyZ2xNGD3FxvjdO3tR130SQ4Bf0lKVBj54VojWb2zrPNAsJR1jillba4L7asIeeqNKdIfm6afwVUWm7ngbzmufU+rmjzyL4n24L8UU5Vmv3OfSYWdZ0T3DXWOdyxAwAAAAAAEKPY2AEAAAAAAIhRbOwAAAAAAADEKDZ2AAAAAAAAYhQbOwAAAAAAADFqp3TF8nw22naikaQjDjvAxGqCITd3+mzb8ahDB9spS5Lym/nV9T3rx/3HxKprbNcaSQo7HbBmzS5wc+Pjo9XxRkPc89SLbnzY5WeZWHKK7bImSZOm205rHdu3cXPbtsit97FdcZ6tLJ+d6I/fsFNYftIMvwNccrL/c2D7SIjShaiiqsrEQvIr7jfLtt2ywlH6qfU87UYTm//Rg/7BOfNIabk9LkmKY87ZoWpr/c96S6eTWUWt/95U1dpODd55RpJ679nWxE4+cv8oR2cfo0WOvySI1vUPDfPy2x+58XNOPdrE6rwTgqTi4nUmlpGV5+YmJdnzRJSH1av3/8XEurT1HzcctuO6pMjv4hWtmxLqb+bKYjfezVmitG2T4+bG1drPdiDgz0/JSfY9C4X8gXPri1+Z2LAT+vnH4AyFsPy1THa2Pd7iUv+8dud9T7px1J/XgViSgk6noJoav3tQdqbtvBaOMuF0Pu4aE1s+8hE3N+ysW6IdQzzzTaOIdq76vXeuirJCyHGaNYbi/TVGRVWNiUVbd8z7+AETq662/16SwnV2nGSn+GMnMXHXGDvcsQMAAAAAABCj2NgBAAAAAACIUWzsAAAAAAAAxCg2dgAAAAAAAGJUkymeHE2lUxApLkpJpXgnvmLlSjd30jRbgDAr3an01EAV1ba4W2aUx62r8wtgonEsW1toYnt0yHZzk20tUy1b9bOb+8PCJSaWEL/txYwTnU9jSrI/dmqjFI7D9hGlVq3inKLKidEKLVf6xd08M9+61/776oCbu2TVWhMLh/xcp+YpGok7RKK84HUhm52Z5kxCkqprKuqde/4J0QolW98tXG1iq+L9cbNrlBRsugrLyk0s5BQtlaSEeDt2qqrK3NyFi+05MCvDP6ckO7HlK1e4uUtWFZlYepTGBMGgPd6BA/q6uZOnTHfjvyUP/PMfJjbs1rvq/e9f/OwEN75nB1vYtrzUvwRITrLnsGDQX3dfd+rAeh/bmiLbdCQc8ufIKmdCvebe59zcW2/4g4n9877/1fu4IIWcc5LkFyNOSfDHjfdZj2bRJw+bWKDOH2MLl9pzVV3QX0/VRRmnaBzrnXNVsNZvGJIQbz/b8fH+ea2kxBbfb5Zl5yxJqq2wxxDtLpXvnXNgRpKf25Dx25Rxxw4AAAAAAECMYmMHAAAAAAAgRrGxAwAAAAAAEKPY2AEAAAAAAIhRbOwAAAAAAADEqCbfFSscthXO45My/Nw4p4NWlK4krZrb7kgX3/mS/7heF66w3yfkhX/+ycRysvwuFC3zW7pxNI5AwHnv4/1y6OlOl5mKKr/Se0qSfYzv5tlOWZIUjrfjpC5KQ6v+vfY0sdatMt3cZsX+sWH78N5HSVq21naj6dg6z38MZy57+7zX/dw4+3zrQrY7kiRd/NoVJvbzOtsJQJJ2262TG8f2EZ/kd69aV2bPVS3zvL5EUn6unQMOPvBu/wkDdnKpSvS7hIwbf789rqJKN7d92/b+86FBDhpygBtPSbXdOOKT/Y4gwbD9fVxynP8et26eY2JDz3rQzfW6EwWceUiSxrx3hz2GJH852bFDRxNbX2y7I2GDhnTA8tRF6SyUmZFmg/H+OqKq1D5G4dhV/vM56+OKKMewxwn7mFhennNckn4O1L9DDR2wGkGUz/qydbYDUcdW9V/jvHbacD/Xia2r888/f3rvahOLtsbZffcubhyNI+h0T4t2rgo7a9aEBP9z3bF1cxPb7Vh/LgwHbPfOsHNdJkmLRt1nYomJ/rqsY4ev3His4Y4dAAAAAACAGMXGDgAAAAAAQIxiYwcAAAAAACBGsbEDAAAAAAAQo5p+8WSnUFOn9i3c3CUhW5AyWgHc2gqb+9w/LnBzvZpiwSjF4cpK1phYKGQLGErSmjWr3TgaR3mZLdCYk+kX3p67stjEkuv8fc+6Oltkct9uflHaONnBE23sKGgLjS1Z4x/DyhWMnR3p6y8nu/F++/U2sRWfPeE/iDORnPryWfU+hmjjZuXKpSZ20MX/dHMnTZpW7+dDwyQ4Z9MoNW31xfgpJnbuiYe7uTW1tlDg1+P+Ue/jCtX5xQq/n/+TiX305UQ3d8XK5fV+PkRXG6zy/6LGzvMpSX4x7aWrikxs9w6t/YcN2HPgF69f6+bGOfNTMOg3n1i6eLGJLV9b6uYuWGjHWYlTPByN46FHP3TjPXr2MLFrTxzo5sY7c1nzg9rU+xhy/WGj5Ut/NrF/PT/LzS0oKKj382HbffbpBDfea1AfE1v/Vf2LVZ/91rn1zvUK80rS0qWLTGzg+be6uZMmssbZnior7DV1VZVdo0hSojORhEJ+ke6qGls4e9HHt7i53iNEGztz59rzT3Kifwzz5i9047GGO3YAAAAAAABiFBs7AAAAAAAAMYqNHQAAAAAAgBjFxg4AAAAAAECMYmMHAAAAAAAgRjX9rliybUVaNEt3c6urWpnYgkWL3dxWrZqb2Pq16+p9DPFuXW6pTSt7DMde5XfJmfjtdDeOxlEXtq0Z2rbKdnPXF9kuHYWrVviPm5xqYgnRup04EqNsp1YozcRmfe9Xaf9stN+9BjtWRpIdC8Fav+NLx99db2IrRz3q5obDds5JjPcHzn6/t50DZs6c7eZi+wkFbSxqt4jEFBOrC/odHN8dZTtonXZkPzfXGTZuV0dJmv3dDyZ261Mfu7mzZtOhZnsKOR09kpP8z3tqepaJ1YX8cba62HbFat/M7x7iRaP95s9r0HfJnS+7uf6Y5HeKO5zzPtSF/PZVD75v16Y3nDag3o+bkuSnvvSl7YBF96umLTXenqsCNXZekaRWR9iOe+vH+tc/7honwZ8X+p55s4lNmz7TzcX25V0PV1b7a5f0NDt24ur89XHzZvaavKxkrX8MDVjn9O7WzsTa/O4mN3f8xKn+g8QYzq4AAAAAAAAxio0dAAAAAACAGMXGDgAAAAAAQIxiYwcAAAAAACBGNfniyYGgrZJUXuUX//PK/7Vt3drN7HXGbSbWpZVflLkhlq63haEmfTtjmx8XDVfrjJ3KSr9YYNgbO21aurnDPx5v/318QgOPzkp0Kg7WeVUq0WR4heSSk/xpdfnIB0ys9aF/3OZjmDmL4pNNVSDK59erEVkT8M9ro6fZAurXPfDSNh2XJC0vtOcqCpluX5MmT3PjgwbaYtiV1f65Kj7OjpO09Ew39w93Pm5ipSXrt3SI9fJzma0UXhdlWZbsdAsIRSnaix0rFOVNu/28wTb2kl33NBTzSyyy57CEKEWO13zxkIllDbp4m4+ANU7T4S1pKmv9+Twrw8ZqAv61UodDrzKx9s1t8eWGWrzeNhaYOMk/D+8quGMHAAAAAAAgRrGxAwAAAAAAEKPY2AEAAAAAAIhRbOwAAAAAAADEKDZ2AAAAAAAAYlST74rlSU1NdeMZTmOIsup1bm44bEt7jxg5aZuOC01fQoJfkT2/WTMTq4zSPcSrCh9f51eFL662yS3y/Q4mcU7si68muLloGjLS7FyUmOC9k1IgaDuQrPziETe39WFXmthsOorEnJSUZDdeUmG7CjnDQ5IU53Ql+XTM1G06LjR9aalpbrys0nYzC4X9Ocdb52Tn5Lm5Py5eZWLxSbZToyTFxdnfCUY5taqwpNrE6I7UNMRH+dWu14329vOHuLletyze311HqnMOS4zyWa9xuqwVjXvCzc0Z8hcTY40TmzLS/XPVulLbkSo5sf7nqtc+4Zr81+COHQAAAAAAgBjFxg4AAAAAAECMYmMHAAAAAAAgRrGxAwAAAAAAEKOafPHk2oAtSltdaYvxSVKyU9CrdV5OYx8SYkRRcZWJFTuFHCUp3qnn1b5l/cfOV5Nm1TsXuxCn4Ftysl9wtDYQpTqu97C/+oDQlEQrpC3Zk1VVjS2oLElxcdEeA7uKispaE6uttYUnJSkl0f4+Li3KnBPnleSPMrlU2ENQqMo/XzYEhXSbrqQoRXDjnQVRqP6nL+xS7ISRkOBfOsb7PUTq+aiIBZXOuSram5mabMdJbY0t/r8B65zGwh07AAAAAAAAMYqNHQAAAAAAgBjFxg4AAAAAAECMYmMHAAAAAAAgRrGxAwAAAAAAEKPiCgoKKE4OAAAAAAAQg7hjBwAAAAAAIEaxsQMAAAAAABCj2NgBAAAAAACIUWzsAAAAAAAAxCg2dgAAAAAAAGIUGzsAAAAAAAAxio0dAAAAAACAGMXGDgAAAAAAQIxiYwcAAAAAACBGsbEDAAAAAAAQo9jYAQAAAAAAiFFs7AAAAAAAAMQoNnYAAAAAAABiFBs7AAAAAAAAMYqNHQAAAAAAgBiVuLMPAACwuR49etQ7t6CgYDseCQAAAICmjjt2AAAAAAAAYhQbOwAAAAAAADGKjR0AAAAAAIAYxcYOAAAAAABAjGJjBwAAAAAAIEbRFQsAdpLevXu78Q6ZySa2rLx2Ox8NAAAAEPu8DrO7eidZ7tgBAAAAAACIUWzsAAAAAAAAxCg2dgAAAAAAAGIUGzsAAAAAAAAxapcvntyrZx83nhpXZ2JJqSn+g9TZoqUVNSE3dcbsXbsoE4Bf58A+vU1sz9x8N7cqUGJizZISGvuQAAAAgK3q6RQjnt2AYsQ9evR04wUFs3/1MUn+cW143Pof27b+bE0Fd+wAAAAAAADEKDZ2AAAAAAAAYhQbOwAAAAAAADGKjR0AAAAAAIAYxcYOAAAAAABAjNqlumId3H+QiaUnJrm5qUl2TysYpelMSkK6idUEg27uwP79TGzy1Gn+AwPY5Zww8Gg33rVZZxNLSvSn4KykbBMrrS7dtgMDAACopyG9DjCx1Hj/YikjK9XGkv1rsIoa2214TUmFmztp9ngT6xWlC9KsGOxi1BT1aECXqV69orwXs2xucpQ178ABzrXzFP/a+ZgDh5hYQrb/uH2dbrTJcW7qNmvIa7Y9cccOAAAAAABAjGJjBwAAAAAAIEaxsQMAAAAAABCj2NgBAAAAAACIUXEFBQXhnX0QjWXIAFtQqWWOLXwsSalpKSaWlO6/FIFqp9ByrZ9bXl5pYp+OG+3mommLVghLTuGttHi/QFxKqi2yXVwRrXJXnYns6KJbaJjfH3mxieVn2blFkhITbMHBjGT/cctrbKwsYMeHJAVqAib24qdP+w+MJuGQgUNNLC3FL0gZn2DPPxlZ/uNWOrUna2r8c1UoZMfT6Imj/AcGAOyyDu1ziBvPym5lYjVBu+aQpGDAFkRuluOvd4tK7PmnIsp1VVqqLcpcVLHWzZ1ZMM6No2HFfXv36OXmpibZdUqgAbsIeRn2vZSk5FS7GE4O+ddV6RkhE1tf6Y+zygq7KIqL83NLauz1+4wZs9zcQT17mtik2bPd3B2NO3YAAAAAAABiFBs7AAAAAAAAMYqNHQAAAAAAgBjFxg4AAAAAAECMYmMHAAAAAAAgRsVkV6wTDz/KjR85aDcTS0vzq2pnOF2MSsuK/Sd0CmgnZWb4ueFEE3rtE79S9mff0C2roaJ2qnI0pKPUkMF9652bGGf3Q+tCtvuVJCUp08Rq423ldUkKO5/E8gr/4zmrYMYWjnBz2+s1+y259NjL3Phlxx5hYuVVtjOEJJUH7BhZs67IzU1PtfNTq2a5bm7zPDsXPfG2393omY+edOPYPg7f344PSTr/2D4mFojSaSQl3p5T1q0vdHOTEm3HirQsv4VWcqIdYy9+PNPNHTX+MzcOAIgth/c+xMQCcf41zU0XHWdiq9asd3NDznJ1+ao1bm5Gmu2C1DzKGqdZtu1u/L+PJrm568pXmlgwUOzmTme9K8m/RshI8q+dvQ5YzTL97tMpifZaKS3d74oVF7YX2nFh2/1KkhLCdqwGE6rc3LBzAb92rdM+VFLYWYOVhavdXNXZF2LGLLpiAQAAAAAAYBuwsQMAAAAAABCj2NgBAAAAAACIUWzsAAAAAAAAxKgmXzz5wP6DTexPFw11c6srbVHaTp07u7klhStMrEVWczd3xYrFJpbVop1/DNWlJhYIpbi5z7861sQ+H/+Vm/tb05CCvw3RLNcv3BUM2SJdycn++xYM2uK4KU4hUkmqrbGFt+KT/McNOQWY4+JsMVRJigvb3KJSv/jqtvqtFVQ+6YCzTOyWP1zs5gZqa0wsNTPbza2tsHPDojXFbm56op2W09P8AnXZXjG6eKfiu6R7X3jVxN4e84qbi4Y5YMDBJnb1xX6h/5KychNr076Tm1u8dpmJZSTbouyStHr1chPLadHWzQ0G7PkyPsEfY0++bItxj/2Wc1VT0RjnS2/GaMji8Ld2ntgVHHHIgfXOjXNHiBTvjJK6KLlhJ3fUmHH1PgY0TO8e/dx4brq9frn5olPc3MLSMhNLy27h5pYXrrL/vtyukSQpUGXXQ7nN/MdNtf0DlJ7hF3u+74W3TWzSTIr/S1LvHr3ceIJT5Dgpzv8M19XZWNt2Ld3cxDj7eU9L869/wnX2GizRaRwhSXVOkeNwgn+tFA7bA66tdX4ISTU1tqjy+pIo4zdgrwMrnAYp0o4/N3LHDgAAAAAAQIxiYwcAAAAAACBGsbEDAAAAAAAQo9jYAQAAAAAAiFFs7AAAAAAAAMQov+T0djZwwEATy07xuxXl5WaZ2Nq1tkq7JOW3sRXV168rinIUtvvHqtIqNzOteUcTq6n1OxCF6uzjBsL+4+bk2urgB+xvu4BJUtAWDNekyRPd3FjjdfRIjpJr65A3TG3AeSElJSbZj8LAvru5uWVFttJ7qzy/f8jqMtu9pnW27YgjSeG4XBP7fPwU/xjKvOrrfhV7T4L8CvIh2ceN1nFlV+2Ckp9pX5ufi/zPcDBs3/dgxUI3t8zpMpCV73cIqKu170Owmd95bc4i2+GvTVu/G2DLTH/8o/6GDDjAjacl2Dlk2eoSNzc9J8fEitetdXMDdXaMVNX5802z1vZ9d6Y2SVKtMxQqa20XP0lKS7FdJAb2t+dxSZo8dbL/hGgU3nw8aD//815WbOecVs38OeDnEttlpnWu7ZwmSWHZ8ftbO0/EmsMPth2wBkQZN+Wldtzk5/gdX9aW2DVvfrbtLiNJ8WE7boYecpCb++UY2zUWDTOzYJobP6jHISY2/+diN7cmZH//n1G5yM0tC9jzRLNmfvcqZaaZUG6en7tsVaGJJUe5fE2q868PIc0smOXG+/bpY2LJyf5VWHKyXYfGhfwuU0npdu3Su6+9npb8Oad5tj/nFJbZcdI8K8qcU2e71I6dNsfNDVbYMVUb9tdE4Xj7+hQUzHBzdzTu2AEAAAAAAIhRbOwAAAAAAADEKDZ2AAAAAAAAYhQbOwAAAAAAADFquxZP7j1gPzee7hR5ran1y+KmZthD7L17czc32ynUlOjXiFVphS0KmBjvvxwrC4tNrEW2X+QrELZ7ZWlJtricJMUl2AKYGal+gdTqaluseWC/vm7u5GnT3XiTFWffpNp4vxhXXJx9fcNRCncVzJ5tYkMPGuTmDj1kgImV1vjj4fihHUxsTZQi3fs4tXEDYf89zsx0xklCMzd35Jcfm9jEKX6Ryv162HGSEO9/MKrr7Osb3OaS1bFlfbwtYpuft9TNDQVtcdzUHP/znpJsx9OawuVubnxWvoklxkUpGt/aFnaOq/MLq5elUFhwW4Xlzzc18bbIXo+OflOAls3sxBDvFNeWJGfKc88HkrSm1BYQbOk0IJCk6gxb/C+uzv/ZXo2zz5eQ4OeicUQrRnzQAbbQZWmtf0458iBbqHL12vVu7t572Pmpotb/3Z93rqp1CipL0uAB9ueIdq7Ctht6sF/cffCgfU2s3CnMLkkHDWhjYuuK/ELwe3WxY6/M7zWgrGw7bqrj/Pnp+CP2N7EPR03wHxiuIQMOdeOlssWIOzb354XmWXaMJCT680KzZrkmtvLndW5uVdiOhebZ/ro0M8k+X6jmZze3OGzXOBR236BnH/+aMc259q0N+oWLU5xr1PR0/1pp/8HdTawi7K+JDunf0sQKS0rd3L0623FSUW3/vSRlOtfqgQR/zpk44UsTqw34RaRHjfvGjTcF3LEDAAAAAAAQo9jYAQAAAAAAiFFs7AAAAAAAAMQoNnYAAAAAAABiFBs7AAAAAAAAMWq7dsWaOeXbbX6M0088ysQOPXSwm7tPR1vJf22Uyt6BctsVKyvBfzmWry03sbb5fueb1U5XkT2a+d0iHnpjvIl9Nnqsm7tLC4ecmN+tIRyqMbGGVLZv0cJ2G5Kk5s1spfYrDz/Qze3Ssa2JFRf7lf8XLrKdJPbd13YqkaTKWlvpfc8utrOXJH0wyu+g4/m2wHZJO/bYY93cpUv97k+/Jalpdh6YOm+Wm/vdEvu+Vzod9yQpvc4+bnGd33Fs393tXDZr/ko3NzPBjpuEFL9LTijO+ayhQSZM8TuzHHqg7eLSbz+/C8Ue7W0Hh0Cq330hscZ2pPIzpbXFduy1yPM7OK6vs10ZW0XpynjTfz8zsQmT6VDTWKJ1bfGUVxSb2IVD/U5Iu3e2HRwLi9a4uT+vsq2Mdtu9tZtbF7BzWWK87cgmSVO2sUnnK6+84sbPOeecbXvgXVQw5J9TSsts16MzhthuoJK0W6f2Jra+2B83a9fY+al3V79zbcgZN3WBYjd32gy67m2r8VO+cuPufBPl/LPGuYRKSfbX58FSOxYCKf75J9dZZ5XW2PW9JMVl2PNSSprfMda7X6GgwF+/eV5++WU3ft5559X7MZoC7z2OT/Q7UgXr7LowI8V/j5OT7XozMdm/HgmG7DnlrEG2U5YkdWznXFeV2A61krR6tR1nHXr4c07Aua7KSPbH2Zjxds4JhP09hP379jaxCdNnurk7GnfsAAAAAAAAxCg2dgAAAAAAAGIUGzsAAAAAAAAxio0dAAAAAACAGLVdiyc3DlvgMRylyHE4zhb/+vcjT/q5QVsk6fenn+3m1tXZ4knJAXtckvTO4w/bYMgvWBpO8otTQVKUorLbKinRFtKSpEN62kJjgXS/QHZleamNVfuF/rrvYQu8xQX8n21tpS3o1b9TJzc3IzPNjddXfJQxmeAU4g1Fyd1VeWXgflpp33NJWrnWxnv32qvez7Vg8ndufF2xHQtllX4Rt36H9TexcJTa2l+PmVTvY0MDxdlzQmKSX4w4N9sW1P/fa29EeVg7txx60BFublKCfeMzotQg/ejt10wsPuyf15Iz/bkQjcP7DVu00rH7d7fzS+s9u7m5ean2kX9e7b/He+6ea2IVtVGKmba0hSpPaX+om/vMG6PdeH3FOUW+EV11rX++7tFhNxPL7ry7m5uRYueRJcv9x+3UMdPESquq3dy4FrZA6hGtbdF5SXr+ra9N7MCBfrHncZOnuHHUXyjKhJPXPNfEyiqK3NxiZ90RDPpFmbPT7XVcepx/EKGwLcwel+DPC2kZ27Y2Du4i801DmsoMHjjIxEJhW6BYkhJkr1srqv21afe2tlFMsJnfwCbgNDoqLPGPoX17ux6pcBoiSVJZqp2f+u6+p5vrfQYS4/zFdMhZ25150glu7hvvfeDGtxfu2AEAAAAAAIhRbOwAAAAAAADEKDZ2AAAAAAAAYhQbOwAAAAAAADGKjR0AAAAAAIAY1WS6Yh1x6BA3fvdVp5tY5fpiNzfcuY2JPf2h33XmglOGmlizZtlu7rjJs0ysU5cWbu4jo1eY2FUHd3VzJb+y/G+NV729R6/efu6smfV+3KMOO9DELr/gKDd3t3YtTezLsf7YyUxNNbHjhvZyczPSbAX5zGCVm/vBZ1NNbFGK/xENRWt7VE8fjhzpxnv2tD9HQ6rrx5KjD7fjQ5JevfcvJrZ02Uo3977/fmqDYb8LxH7dbHX+aVP89/GWS+04veftiW5ubbHtGDHkQL/q/5ejo/XaQX0NHmi7kEnSi3f/0cSaO50/JCkp1Xafe/o9e56RpD+ecZh93CjnqvXr15tYSsDvbPTQJ4tM7KZj93Vz47dtusFWeJ/Kc045wM3t3Maeq5bOXeLmfl9hO4V0393+e0nq0L61iZUU+muUed/PN7HxUTqjBLexyUxdlK4kkIbsb7tE/f4kv8tUp9a2G82qBcvd3B/L7TmlWye/m02HNnbcrI8ybhbPX2hik6v8zjc17qlq1+hYtKP06GG7vUrSmGduNrGsTL9L75yF60zsozH+uDn/d/b51pb6a47TjuxnYlNm2fEhSf9+dZyJ/fVU++8lKX5b5wunC+Wuomcv/zVLdzqMJab769jEVLumOeu4gW5ux1a2e+KC7/xz1Tyn+26/7h3c3Jb5eSZWVex3rv1plj1XrYrS+cyfc3yhgJ23dnT3q2i4YwcAAAAAACBGsbEDAAAAAAAQo9jYAQAAAAAAiFFs7AAAAAAAAMSoJlM8OT7OL2bklcFavtIWKJaktKxcE/v89Qfd3FYpdk/r+0V+gdTKGlt8cnahLS4nSZ89808Ta5+b5uY+fcndbhwNK5IcjTeiEhJt0VJJ2qu9LYZ9+ehn3dwHr/6Dfdwo1UWb52SYWE1RrZv77MhvbOzGy9zc+Ljtsyc7e7ZfwHVXFB/nV0prnm2LY6tdWzf3+KNsId2XPvWLHE+ZYUfk3y+whXElKT3FFq47dqBf2Paj8dNN7PHnPnZzw1GKxqH+4qIU8ExJsp/JwiK/iGjLslYm9p8HrnFzO2XbOaS21p9DaoO2gO3qUJKb++IDV5tYh5x0Nzf0+hQ3jobpH6WYqScryxZbl6T99u5kYgdeYtcdknTvlfb8kZ9rx5MktcyzBbnjqv1C/5c/8LyJPXHtxW5uQpx/zq2veCp3RxV2pqLsLP/97btXRxM79I//cnPv+Zt9L721jCS1zMsysVClP27+eL8dN49fc5Gbm+iscfxZDw3VPMuuceJT/euU/j3sfPPD6rVu7vL1tqDs6YdGKcgfby8/u3W1Y1SSTjrerrMWFPpNAcLeh6IBEhK2bb5qyuJlCxRL0qTpM03s6AP9gsjey5uR7qyZJe3bpZ2JXfnAfW7uvX+z80B2hl/Qu0UzOxeti3Kuuv3Z90zsiWsvdHPjnR0H/xWTgon+uqop4I4dAAAAAACAGMXGDgAAAAAAQIxiYwcAAAAAACBGsbEDAAAAAAAQo9jYAQAAAAAAiFFxBQUFO7xNysGD9zexPbv5HSCWrKo2sesvOdrNLS+2uWmZ/uOG62xHnJqqKFXWa2yl92h9GhKdzgHxUaq03/vshyY2ZqzfUQcNd9zhvUysOuSPh1VjXzaxmStWubkdk+y7n+10FJGkhDinynqUT9yCokr7XFGqwrcdarudjP9msv/A0GFDDjCxEw/JcXNHzbAd72YNv93NLamwc05FuX0fJbmTRlqK35gwzukEE22irqly5qcEv2L/gX+418S+/Gp8lEeG54Kz7flLkhYute/Dq/df7uamJ9vuUylpthOaJMU756rqWtv9SpLCNTbuTEGSpIQM28nCm68k6YjL7jGxSZOn+g+MqHpE6YrVqZX9HduS1X7XvjXf2HPVlMXL3NwOyfZxm7fIdXO9jpEh/xD0w9pSE+vojCdJ6nfWdSbWkHPVyy8Pd+PnnXduvR9jV3X2SbZzzYLl/jp2ySjb5XPSouVurjduWrb0z5deF6Foa5zv1zjjJkpHnUMuvdXEqkv9zjfjvmUu8lz6e7sGlqQp39kPdtHXT7m5aU6XtUT55x/v7BGIMofI69AZ7Vzl3IIQl+CvnRJ6X2Bis2cXRDkI66WX7fwqSeefd169HyPWHLCfnUdyc/3PZfNmtk/UmiL/jVvw8X9NbNJiv6t1B+e6qkULf85JdAZEMMo4m7uu3MQ6pvvXVfudd6OJ1ZTaNb4khZ1JLrOl7XYqSR988IF/cNsJd+wAAAAAAADEKDZ2AAAAAAAAYhQbOwAAAAAAADGKjR0AAAAAAIAY5Vef2s6+njjBxE465nA3N8UpzDZqzDQ3d799uv1/7N13fFzVtff/NU0zo14sy71QA0S26b2XQChJSCEECMlN4abdQEhPbnq7KTe9QBoEEpKQEELovdsYdxG6uy1btmx1zWjq7w+eX3me9T35ja4so2N/3n8uL5851tnae5/tea3lYgM7d1R8XwE1ju3b191d8TU+9S5f2DkS1ednxZIvQoVd5/b7V7rYoUfPk7n5kT4Xe21AsUAlFvXj1MyslPdF5qIBBUr3a0y7WLnoC7KamQ1lAwr0Qnrwicdd7K3nv07mqjmnIa0nh6Gsf5ZNzY0V31ckYCy85vyrK77Gc7d918VKhZzMLRaZc8bq+pv8+mVmdtLxvgDhwsWrZO6pxxzmYpkB/cyUoLXqss/7YoWRgIqUN3zj/RV/HmvVrhH0P2mdqlCyrqVt+ZwvQHvozMkV34MqPGlm1lLn15+gtUqNqXJRF+0d+1q12/t7hMZNt/oi1Icfqwvm5nMDLnbErNaKPyto3Eyq84Xgo6L4v9noxs1A1jcxWLR42b+6RfwffvUHvwc200Xce3q6ZG5N3WwXK0d1cwb1mxo0FqacrBsLKF2P/MzFSqWABgJjnC5Ke+EeaXDE/w4+fq8ucH/uab4RyZDpAsPqverwGc0V31fQnJMQ61IyrsfZwa2+YU45YH88kPGFlpMRfUzywKKJ26yGb+wAAAAAAACEFAc7AAAAAAAAIcXBDgAAAAAAQEhxsAMAAAAAABBSHOwAAAAAAACE1KvSFUu59a77ZfyCc051sbIufm33Pua7Ze03d5bMnTOtpeJ7++ilr3exVEx0sTBdFf6BJ3Ql/1gs4B+CcVPWhfStLLq+DI/o5Loa3wWiXNbjYeqpvvPM1kd+KXNV94BCQVfop0/I2N38j3tk/M3nn+5ihZJ+vnVVPl4WXbXMzIayvvNA0HNcc/d/u1h2RHdIK4vuEPVVOpc5Z/fKF/S4eeJp361k9uyZMnd6a1PFn/ejT13mYk2i25GZWVm0D1m0VHfxCurehtHRo8FMzhgBzVmaG3yXj50DGZkbj/vuNeWAWSc2/2IX63pUr1Ux0a2kvrZG5o51rbrsMj+mESxa1v9f21zvn8+oxk1Au6HYoZe4WNfDv9C5okNsXY0eN0w5u9dwRncK2r6t08UamnUXvqqE7palbHng+y4WielX0nLZT4Y7tm2q+LNG413vete4XHciW7FyxZj+fizgOyKpKj8eBgLGWSqVdLGgOafl5CtcbOuDP9f3Jt6rEkk9ztQ+p1wK39sW39gBAAAAAAAIKQ52AAAAAAAAQoqDHQAAAAAAgJDiYAcAAAAAACCkJkzx5CADw6q4m66qpmqWrl63UeZ2PLfGxaKRsZ9z1df6m6it1sUri4WeMX8eRieoCGip5OPppC4Ep+roBhX62/Lor1wssGDuhq3+swq+4K6ZWTTgdwBj1zs07GLFvC74FouKCqdRXbi4p6fLxZrqdOHI7OC/uMH/w7Prul2stkrnFopB5VsxVtm8f+5BS4r67d2w0RepNDNb0fGSiyVFUcLRipq/31QqJXODihhi15AzRsAUr+r0NzfUy9x43O9HglaOQsefAv7Ee27tFhfbkvPzppleq+a1z5O5QYWdlY6Ojopz9yaj+V1tbqyT8bgqYhswcHIr/1Dx5z23xo+bzpwu4BxYaRzjIhrR46Ys9gwDfb0yd93mbS7WGFC8fzQ6t/t3pdpU5Wtge3v7mO9hb5tvTjz+aBl/7ImnXOzkU4+Sueq9qK7WN58x04XVg16sehb+xqfKTLPn1/k5p5TPyly1tvYFFHueyPjGDgAAAAAAQEhxsAMAAAAAABBSHOwAAAAAAACEFAc7AAAAAAAAIcXBDgAAAAAAQEhN+K5YRdGCKBLV1dATcf/PyeVF15qA3C3dvqK7mZnF/PlXOa9L9ierprlYQ51o12Vm6YBuWRhHMV07/aXNvS52wKw2mas6d1z3el+lPci2km559B93ftLFXt7gK7qbmc2aNbPiz8PolIr++caSuntVPjvkYvGInhtmTW1xsZlnf0XfhOiwVEroeW/9A9/x9xDTbbFmzWDcjBvRjSYa112mSqL9QrSku5LUVftr/OG2x/U9RP38VgrohHbZhae7WHW1HmMN9Q3687BLqFWpHPDfbi+KterA2QFrlRiT174uYK0S42+7+fnNzOyqe/1a9fxa3dVt1qxZPpjX/7hCye/XIr26e6jqdLO3da6RAsbN6i19LrbfzMkyV+1xfnv2dTpXjLGgcfPRuz/hYi+LbqBmZnPmzJFxjI+gPU4m759vdUy/V02f3Ohih7/9m/oDxbpUUp2RzGzJX/w+KRrR71VTJvu5MJoIeNUVS25MdmLe++Yb1f0qUMCcs2brgIvtO2NSxZf99Tl6rZJzTjlgrbrnUy62rlO/6+8zd66LXX/dn2XuBRdc4GK33XabzN3d+MYOAAAAAABASHGwAwAAAAAAEFIc7AAAAAAAAIQUBzsAAAAAAAAhFeno6NAVGyeIE449wsUue+MJMrfj2XU+WBiRuZnhgotFROHJICVRvMnMrKnGX6Oc1IUnF/9zrYs9vnBJxfeAXefQI+e72PBTNwZkVz5OlIIoCG5mtqFzu4steIsvNmhm9vTiZWO6BwQ75ujDXazrHl+g2MwsEfVFBAsBVU+Hhn0huXQyqW9CDLFiQBHc59Z1u1hVQJHwk//9hy628Kml+h4wKscceaiL/ehzl8ncl1ZvdLH6aj0Whob8GhaL6sKRctwEzDfxSM7FBvP6uj//y6Mu9tTTy/U9INA8UYDTzKyq1j+4kUzA1kxML9klN8nUmChGqgpPBgkaOy+t98Un573pSplblRT3ELCG5jO6KKuyJxcuHQ/th/qxl1ms9zhy3KhKswGC1qoXN/hxs+DNV8vcjpU83/Fy6IJ5Ltb76E9k7uCAL14erdKNXwYG/B4nWaUbOURGsVZt2e7voSyaXJiZHf/e74vr6txozK93paKeg5hvRu/IY/yeaOjJ62Wuev8exVIVOOes3uTnnEPf5gsqm+0571V8YwcAAAAAACCkONgBAAAAAAAIKQ52AAAAAAAAQoqDHQAAAAAAgJDiYAcAAAAAACCk4q/2Dfz/KZd9pevZ0xplbm/vFBdbt269zI2nfQeS0ki24vsKaDpjA0V/3Zee892vzOiANZGkor5yfz6nx0PDcR9wsaEl18lc1YFEdZwwMzv4/KtcbOXKVTIX40c9s8yI7yBkZhZJp3yspMdNS1OLiw30+U5oZib7jwT1Yjt0/2kuNumsT8tcOmCNH9UpcdrkOpk7NNjmYn29O2VuTnQKSUd0uwjVRSKgf5YNjPgR9etbffcrMzpgjbfc4Gjaf/hQIZeRqelj/t3Fsstv0NcVgyca0H1t3huudLFUXK9rkYQfZ4ufWKHvAePHN4INHDfVx3/IxTJLf6uvq8ZNTI+FBW/yHbDoNrT7qT1OVUI/s5pa39V3ODMkc2vFfmhkZDjgHnxMdcoyM5ve4u9hnzd+UeauYM88YcRKfv0Ieq9qOukjLjb41K9krnyvCppzLvykiy1ZtmfvZ/jGDgAAAAAAQEhxsAMAAAAAABBSHOwAAAAAAACEFAc7AAAAAAAAITXhiyfnCr5IUjarCw2Wyr6q4JxZvrComdlf73vaxVJVQWUmK1cUJU5VkTBMLGVRrjYa1ZXc+p/4hYulF1w85ntYuYoighOB+n3N5HwBWzOzuhqfnCvoaXXayf/hYjNafLHB0VrTPeJiTy1eNubrYnTycq3SuWXz42nm9Kky9zM//IuLRcv+mY/WziFfTXXxkhVjvi6CBW0FggqjVyqXy8t45qlfulhy3kVj/DR9v7mCniMjA2P+OIyTkaBxs8jvcVILLhnz51EoeWIoil/VbE7PTrGoj9fVN8rcma/7uItN1f0DRuW5zYMutmIlYymMSqIZhJnZzkd+5GKJ+e8Y8+ftje9VfGMHAAAAAAAgpDjYAQAAAAAACCkOdgAAAAAAAEKKgx0AAAAAAICQ4mAHAAAAAAAgpCZ8VywlGtXdq6a3TXaxbdu3yVzV+Sab8121zMxyRVEVvlZ3s1EnZY894TtwYWJJJatcLB7QFSsvqroPLf6NzK0+8t9cbBWdIUKnujot4zsGfFeRqrg+Ly+JOeemOxeO6b4wscXjCRlvbW52sXxet9BSHfvufmTJ2G4Me5SApcpMdF8bWfpbmZk6/N0uFtTFS8WDcjv2wq4kYREL/K9d/zRHlvxaZqaOeI+LsccJn3Ra73EyI74D42g6/bLH2XvFxAQTDZhzSmKDPCy6OpqZpY9+n4utYp35f/CNHQAAAAAAgJDiYAcAAAAAACCkONgBAAAAAAAIKQ52AAAAAAAAQmrCF0/OjhRcrK9/WOaq+oFzp7ZU/FmLl62qOBd7GFENLhJQpDsWXKnSX/Z/fEN4tWSyviBy0BNPVfniuCMjOZlb+ahBGBWKvlDt8FBG5sbEYJjc2iRzI4ycPUbHLigq297e7mLZvB97ZmY1ab2GKWqt2hX3i4lrZJzGDcKnXPL7HjOzVML//38koCkA8P+ldi6lkt7PqELLQUZTvHtvxDd2AAAAAAAAQoqDHQAAAAAAgJDiYAcAAAAAACCkONgBAAAAAAAIKQ52AAAAAAAAQirS0dFBfWkAAAAAAIAQ4hs7AAAAAAAAIcXBDgAAAAAAQEhxsAMAAAAAABBSHOwAAAAAAACEFAc7AAAAAAAAIcXBDgAAAAAAQEhxsAMAAAAAABBSHOwAAAAAAACEFAc7AAAAAAAAIcXBDgAAAAAAQEhxsAMAAAAAABBSHOwAAAAAAACEFAc7AAAAAAAAIcXBDgAAAAAAQEjFX+0bAIA9SXt7u4x3dHTstlwAAAAAew++sQMAAAAAABBSHOwAAAAAAACEFAc7AAAAAAAAIcXBDgAAAAAAQEhxsAMAAAAAABBSkY6OjvKrfRMAEEZBnaoqFYvFZLw5GXGx7cOFiq9LpywAwK4StNbF/FJlK1ax/gDAq4Fv7AAAAAAAAIQUBzsAAAAAAAAhxcEOAAAAAABASHGwAwAAAAAAEFLxV/sGACCsqkXlyJIlZW7Mci7WUlsnc3PFIRerjetz+OES9e8BALvGUYfOd7GqqoTMjSZ8Uf95AYWWV1HUHwDGFd/YAQAAAAAACCkOdgAAAAAAAEKKgx0AAAAAAICQ4mAHAAAAAAAgpDjYAQAAAAAACKlIR0cHLVWw15vf7rtA+H5H/yte5f8kKrojmZmViz5WyJVk7qqOlS7WHtBdooPuErvVMYf78WFmVhdt8sGAGbWuxnfLilfFZG6p4MfIll7fKcvMLB7Lu1i+lJW5Ty5boW8OALBXOWzBoTIeT/j9TD6q9y2tVdUutq2YkbmRjL/G8uV+3wMA+J/hGzsAAAAAAAAhxcEOAAAAAABASHGwAwAAAAAAEFIc7AAAAAAAAIRU/NW+AWB3mj9fF8GNRv2vQjmgCm656OOifqCZmWWH5afpe5t3mA9GOHudCGpjzTKeSvt4Q3VC5sYTvlByXb0eY/39vnjl9CpRqNnM8jlfoXsg1ydzMTFcfNa7XGyfyfUyt7o65WLpKj1uhkf8uBkIKNbe3zvoYj//+y9kLiaOC0+7zMWKRV9A3cyskPfxhhp93d5BP6aGRBF3M7NU0o/Jex7/o74wJqyGal/Q38ysKlXlYsmA14V0SnSIGPZ/38wsU5AbIgDALsJbIwAAAAAAQEhxsAMAAAAAABBSHOwAAAAAAACEFAc7AAAAAAAAIcXBDgAAAAAAQEhFOjo6dHsNIOQWzPMdsMplfZZ5xrGzXawQ0GmkLu47PvQN9MrcqOhqFU37jiKv3JzvmvTw0s0ytSg6dpUD7rejo0N/HqSzjjzVxRrqW2XuZ951hotlczmZGzf/fDu3bpG5ySrfgaSpRXfmqk6nXeyrv75f5m4b9J/3yKKHZS7G7mMXfVjGP/iG012sHPEdrczMcqIz0bbubpmbrPJjbHJzi8ytF+2RvnLtrTL3J7f+VMYxfs468kIZv+ric11sS1ePzM2UfMeizq167NSm/bo2ualR5rY0+bFz3T0LZe6tD90g49i9Ljz7FBdLi2duZhYX/+dbLun9Razsx0I+npW55bKf49ZvGpC5jz/9pIwDCK+ffPZKGY8U/dxQLI7I3GjZv0NFkrqDo0X9nuhDX/te8A3uAfjGDgAAAAAAQEhxsAMAAAAAABBSHOwAAAAAAACEFAc7AAAAAAAAIbXHF09ub28f8zVUScvR/NAoXju+gp5xNOoL0F5w5kEyt3dgyMXaps6QuX07Ol2stV4Xtt28eYOL1bVOlbnZTL+LxeK+MKGZ2d0PPutiK1ctl7kYnbOOPc/FfvLF98jcvn7/zKbP3lfm9mxdK6JJmbtj2yYXa54yU+ZayReqjMb0uLn6G9e52F1P3qavi1F5y0kXudiPv3iVzC2OZFysdYqeF4b7trvYzgFdoLuU84VIa+t18eRUwscKRf1/PVd/55cu9rt7rpO5GL0zjvWFkq9++5tlbt+QX6tiqXqZm+3f6WIbuvtkbsJ8cdy6Wn3d2pQvupuu1nPZD276m4s9vvx2mYuxu/gtr5fxSNkXF62vq5W5+bxfU6qrdNOH7LAfj5Gkzi0W/BjLF2Sq7dzZ62K33/+4TsZu9Y4Lz5fxcsk/zJgoXmtmViqIBx/TuWUxdm+69a5/cYeYCH76n59wsdbJ+l2pkBt2saqYXlNGsoMuFk1Wy9ySKPo+OOSbCpiZXfGFb8h42PCNHQAAAAAAgJDiYAcAAAAAACCkONgBAAAAAAAIKQ52AAAAAAAAQoqDHQAAAAAAgJDybYNCTHVHOuaouTJ3oNf3umpr0pWyt/b5DjNTGn0FbzOzsjVUdF9mdMvaVYJ+jvPb57vYlm7fNcbMrKbRP7d8v+/2YGaWitS5WCbjq/abmU1q8x2SYmXdBiJePcnFega6Za5F9Odh7BpS/rx79SbfXcbMLN3gx8369Wtkbrbke+mlU3rOqW3zHbDKSdHGyMy6u/1clEiNyNzGOsbNeJk12c8LW7br+SZV4zs47Ox8WeZmIn6tSqb10p1Kpl1sUDeLsHUb/dzSOmW6zJ3VukdtFSacSNaPk3UBa9Vg1s8ZsbIeO/1FP+c0teiOeZGcf8bpFj141m7scrGWyBSZmzL978D4KOT0/qK2zj/L9nb9+z404Oec5jp93Z1Dft5rqdHPPCL2x48sWSlz8wXdIQm719vecK6LHXHkbJk72O/HTUu9Hjc7+v081FKv99yRku/O99Y36u5vN996p4xj/Hz7Ex+T8ZZW//s+bZ9GmTuc9d2yalO6++dwZpqLVaf12Ilm/Z7ombW+66yZ2ccuu9TF/vuGG2XuRMY3dgAAAAAAAEKKgx0AAAAAAICQ4mAHAAAAAAAgpDjYAQAAAAAACKlQVkQMKkZ80gmHulh/ThccPeukWS7WtV0XSD14f/9jGsrpM7HaWl+gLicKxpmZHXuk/3csfJqCyqM1f94CGS+ZLxR70FRfoMvMbOqkVhcrF3TRN/P14awkilSamW3Z2e9iU5r1eCiI4rqzaqtk7oOl1S5Gke5dYzDqn9lhvga2mZk1VPvCxVVJPTeoITI4NChzu0TtySn1uuhpQ9xfOBXpkbmZWEbGMXb9Cb9+7D+rV+aWSxtdLN2oC9Xm83kXGxjMytxsudZfN6rHQrnVF9hOR7fJ3GExzrHrdJe3u1hLnS7wOK3Rj4dESu9z6uv9eNi8tVPmlhJNLlaX1mMnOs0XtYwUn5G5PZE+GcfYnX7SCS62/2zfhMHM7IRj57nYUCkpc097jb9Gb79eqw5M+H1WvjBZ5taINSyS8IVxzczuuOcOFzv9+ONl7gNPPCHjqNzb33i2jJ9w7GtdbLCUkrmnHOmf+45ev58yM3vNXF8ceyirx02tGDeFmJ/bzMzecu7JLvaXOx6Rudg1pk/R88ghh/jnWUjqfexB0/2YGsrqJiCJmH8JGxnR95Cc4Ysnx2v0e9WGDS/JeNjwjR0AAAAAAICQ4mAHAAAAAAAgpDjYAQAAAAAACCkOdgAAAAAAAEKKgx0AAAAAAICQmvBdsYI6/SiDQ70u9q7TfdcAM7N95850sR09uiPI1i2+k8ycfafI3FLe/0jj0SGZ+/QyGa7Y73//exm/5JJLxnbhkFm5aoWMq7FzztlnydyjX+O7pJXrdPX2SM5Xaq+J+Ar/ZmYvbvDdTg6coyv/d5V8d4m2hL7u929e6GIdHctlLkanKul/5vsevI/Mba7znRl6y/45mpnFh/24mRoRLdbMbE7RXyMuOgGYmfWJblszA8Zuyf4m4xi72jrflWFbRq8pW3b6NWXbs2tkbjzrH3DWijJ31lTfzWbtJn0P0agfTy2NukNNMRLQIRC7RET8F9uGHV0yd8MO3zIvolo1mlmduHBfUT/LOVN996p1W3RHm1TM73PKogvlK3F9bxi7RMI/37a2gM6fk+tc7NxjDpO5M6b6PcpQ/w6Zu3a975h34IFtMnco59fWg/d5WebecreP5Y15aFc4+4yTXKylUe8ZcgX/fC865iCZO3vGVBfr6fN7YDOzbV2+u9/M17bI3Hzej5vqhO4M+fATeh7C+EnW6jm+SjSqOmqunp9aGn08M6S7Mvb0+Xlv0mzdqS2T9/fWXK3HyM17yPzCN3YAAAAAAABCioMdAAAAAACAkOJgBwAAAAAAIKQ42AEAAAAAAAipCV88WZ08BZXGOu6g17jYlAMPkLnNKX/lrV2iCqmZHbhvo4sNiQK6ZmaRyb7414UzTpW5v/rTgzJeqUhJ3y+CNQcUiJsx1RfD/uoPfyJzo6I47sVvvVjmVtckXKwlps9Tr//J910sElCIt6GlQcYxPkZ0rVqLxn3Btrv//neZWxLFsQ9bcKzMbazxxQJbSrqQdscjd7nYqoC5IaKq2WGXiJj/ma/e4gvdmpltEwVwh3K+oLKZmRg21t+vi/wlEoM+d8AXqTQzq2v0y//Wnl6Z292n7w27hio9OTCkn1tMFC6eOU0XHS2L4uzbXt4sc0dyPlfPOGb7H+ibT5QCaiQ/vOKlgKtgrET9c8sHbJDbZ891sc0ZPcYiGztdLFfS+5ZZM6t97rAubPvS9p0uNiOhi55GxDiPmd53Y3TUkxzO6TXl4Om+sYi16AYgRdH0oadPX3fGDL8XHxrS68xQtS/qf+QBB8vckv1DxrFrfOLf3+FiM+foYumHR/0zfm6nnhva+vyckxnR+9iZU3zTku07dJOijcM+3hawsPUM+PnlsgvPkbk33OL33RMF39gBAAAAAAAIKQ52AAAAAAAAQoqDHQAAAAAAgJDiYAcAAAAAACCkONgBAAAAAAAIqQnfFUsV+L/kwhNk7typvlL7hufWy9xnh4Zd7KB9daX3mTN8x6S+HT0y98VnfQeIJ7K6KnxhjE2tSqLjxd6ovb1dxj/57nNdbKi/X+ZG0/6M88d/WiJz3/mm012sqVl3qVr08Msu9pqAiuzfuGOdi1154r4yN67aYWBUTj1Jd6RafvPXXWzG5EaZOyL62fz2judk7iffdaaLtTTWydwZzb5TSNWgrvr/w7vWudh/XXK0zI1EnpFxVO5tbzhLxu++9pMuNtCr55s/373MxZ7Zqju+nH+872az/J9b9b2dvsDF7lj0vMx9fPlqF7voda+Vubc9+ayMY3QWLJgv47d9/2Mu1jegx86f7vRjp7NLdxo556hpLrZxXZfMvfoyv65dd6//LDOzl1bvcLELz5knc1mpxs/UtiYXO+8U/RxmTvGd026+b7nMbar3XWfedMZhMjce80+4qay7ba1c6OeRzekqmZun6eu4SYqf+cXnHSNzZ7dNcrGX/7lO5r5Y9O1DFxw4XeZOneyvO9TTJ3OfWvWii20NGB8jdAseV/vMbXWxc07Q+4a2et/N7J5la2VuV5Ofc454zWyZ21zv9801Zd2B9NGnOlws0+g7+ZmZDYuubqrb6UTHN3YAAAAAAABCioMdAAAAAACAkOJgBwAAAAAAIKQ42AEAAAAAAAipCVM8+YiAArhKXZ0vsmRmdtTBvtDSie/5isz91kff52KTGmtk7uRmXwAqks3I3A9897cu9tOr/03mxiIBVXQrFKWA7r+kfjzrN3XK3Bdf8vG7//xdmTu7zhfeeubFjTJ3eCTnYsu366KYd/zqSy52YFujzP3eGz8h46hcNKKLotWl/bQ4OOyLrZuZ1TT4AoA//NoHZW5zwg/Ima26eHIu54uhxut07h9+6AuvxvO6eGUhf6+Mo3LRqC8QaWbWUO0LUsaKek1pP9gXRN4w5OcKM7MVL2xxsTefqtfLRNz/X81rD5gjc1Wp5qef9Z9lZlbKqzYGGD0950xqSLtYIpWUua87xReqvOn+p2XuLY/6YqRXvlU3n0gk/Pg9+bDXyNyRsi+C++d7lsrccjl8xSfDolQWxT4DtoUzJvlCy4+s0EXRv/nBy/xnicKiZmbNoujpSK9ef25b6AuZ/vzqy2Vu9IbbZRyVO+v4o2S8pkkUn632DRvMzNr388WPr/zgt2XuNz/in2VTnZ/bzMxaxbixrC4C/6Vf3+piP75Kj5tYme8r7ArvevMZMn7UkYe4WDKhf+YzROHtx5bdIXM/fsl5LlYn9lRmZs11fqxuz+r90/1LX3Cxz19+vsyN6K2ddPrpp7jYAw88XPkFxhG/AQAAAAAAACHFwQ4AAAAAAEBIcbADAAAAAAAQUhzsAAAAAAAAhBQHOwAAAAAAACEV6ejomBAtC9oDumLNbvNnT+u7dHX+bY/f4GJPr9PdimZW+eu2tDbK3Fjcd68KaBBgz4uOR7NqdLX5w9/uOxs98fhT+sLCDTfcKOOXXXZpxdfYE5xwkh47A70+duW7z5G5dWnfvaa+3ne/MjOLlPzDHxjWXSDKoitWUC+zlOjKFg3oovKJ7/zexTpW+Y4TCPafV+mq/0+u9B3vNt7zPZnb2++7OKSTCZlbKvlnmcsFjJtcwcWCup0kVDeLqD6z3+cc30Hr0VHMOXub807zY+Sic1pl7l1LfAeiVX/4gszd2uVzs+KZm5mppSYZ0FAxMooORCPiwtGobpR56gd8F5Tb7niw4s/CKz5y+eEy/thK/+y33fcjmTtUEHNDQfU40z24yhE9N0SCJhiVW/LtQ8pRPe/Nef3VLrZy5aqKPwtm55x5ooy31PvnkC/rrrGr/urH0/LObTJ3etyPhSbVxcjMYmLcBO2PX+rza+vMgM43h7z5KhfL9etx/tBC1jDl9WcEjJtGP2529OtF5cXbf+Fii9fr7rIzROfPSa0NMjce8/NQ0Lh5rnvAxWYFdPE64pJPudjd9zyiL4xAn/vw22U8Wx50sUmNek9041f8fnN5Z7fMnSyG3+Rm3VV0NHPOi71+jz4treecU/79yy4WHdatsoYzfu9+y30TY0/EN3YAAAAAAABCioMdAAAAAACAkOJgBwAAAAAAIKQ42AEAAAAAAAgpXSnxVRB0wtSpCiXrukeWz/nCxYfOnFzxPahiXmZmLXVpF4sGFBqMiNK45aIu+DaUHa743rQJUff6Vff4o7posCrI/eDjy2Xueacc5WI7u33RrSBBNUt//ueHKr7GBy861cUiAYUuefRj99Xv3y/j55x5kostWaaLfe43d66LZQKKrSlBj3HOub7gaJD193xfXFhXkiuKwt8IdvuDfox84NK3yNyahF9O+3p0ocCIWHprAgr6aXr9OeD8j1d8hRf+8V0fLOoCzvm8LvKN0fnx9Utl/NBD57tYMqrXnxFRpDiS1oVtNT12pp36wYqv0PnQz1ysXPSNArBr3HXfYzJ+9snHudhgZIfMzWV9wfZDJlU+bmJRPW6Gh/3+Nmh/vF9D0geLem4ZzAy5WFVkwryyhEKxoHcY28WylI3p9xT1XnXY9OaK7yEW8F4VE7ufqrjOPXhSnYsFzTcDGV/cF6PX16/3sWWxd+ks6DknP+KLXre3Vj7nxGN6HnlutS/eHVT8/8DZU1ysHDDnDAz5sdMY0010MhP4azET+NYAAAAAAADwr3CwAwAAAAAAEFIc7AAAAAAAAIQUBzsAAAAAAAAhxcEOAAAAAABASE2YEvNBvVpiKhjQdKa5wVfb3jmQkbnxuO8sUQ7oURObf7GLdT36S50rKsDX19bI3LE2NrrsssvGeIW9Tz6vB8/9TyxzsX3nzJC5s6e2Vvx5F599jIs1ii5rZmblsq/q/tAi3cULu1euoMfNU0tXutjsOb5TlplZW3N9xZ/X+cCP/T3kdNeKsuiAtWT5CpkbDehsgsr9/Ma/yPj7Lr3AxcSvtJmZ9ff6tiS19S0yNxbQGUJZc88PXCyfDejuV/IdsPp7umRqIsH/Ae1umazu3BGJ+G4wiSo9t+TylXfBG1ni9zTd/Xr/VBZjJ1rw3XOw+0UD/r82k/XrR6Gsx1hjnd+zlgNafx7ypk+42Jo7fxBwc34uGxJdtcwCutyUaAc6GpmC/v2vFm9+sYBxk076d6WBjO5IlUqKrmcBbzpTTvuAi22+33fbM9NrYCKuX18j7HF2iZ0ZPTc0ideXqrh8U7dsxu89ihHdebO+1l+4FDDnXPGN61zskWs/LXPLYlgPDQWcC4h9Tn5E7/1HxtzVevywWwMAAAAAAAgpDnYAAAAAAABCioMdAAAAAACAkOJgBwAAAAAAIKQmTPHkILJ8U0BtLFFD1JobdFHBuCj2FFRyq9Dxp4A/8Z5bu8XFtuR0kaWo+MR57fNkblBhZ6Wjo6Pi3L1NLKDIl6pyunrdZpn6zPMbXGxXFKVtrPXnrHXVutAyxs+QKPgWCfj9i0Z8fMPGjTJ34dM7Xaw2nRrl3XnZnC8EV1tTLXNLxcqLqWJ0unp98dhCXheZjMf9cxge1sVnN27Z5mL1NWOfFzZu63Ox2pTeEuRyAR0LsEuUVFHYsi4yqaaiYl4Xg9yw0e9Hmur13DDgh0OgNZvFXJYKWFsxbvpzfn6JVenciNhvJmL6mQUV7lb+eet3/d/P6bG7rtPPZeViwGeJpap/ROcec/QRLpbP63soib3e8uV7ZpOKYlH/DPrFPiCZDvr99T+vuoD9RSwqviugimCb2Y4nfl3BJ73i+XV+Hivlg5oCBFwEoxJUHHhT1s85s9MNMjfm626b2DKbmdngkP+8SER/9+SOH13l/74oDm9mtmbzdn9dUfzfzKwg9jnbdgzJ3HrRrGmi4Bs7AAAAAAAAIcXBDgAAAAAAQEhxsAMAAAAAABBSHOwAAAAAAACEFAc7AAAAAAAAITXhu2KpKunlgOOoFzf3utiBs9tkbrnsS3Nf+7rf6AuLjhXbTVfKvureT7rY82s7Ze6sWbN8MK//cYWSr9Yd6e2Rue3t7S5Gp6xXRKKiTLuZlUQl/YBi/haP+We0fVtXULL/rLzuMJOIThX3oLtAJBL634GxUx1qookanRz1lfgjqj2fmbU2+Q59H/3vPwbchb+HckkPyJ985t0u1tSguya1TmoN+DyMVaHgf6+Dxk0sXvm4mdba6GKnXPFjfRNFfw+liF7mH/ndZ1ysvlZ3O5k1Y6b+PIybWFJ33Rge9nuPpHjuZmazpra42Nw3fVV/oOgiVI7rsfPyP74porqrzpTJU/TnYexUNzXVmcjM1m0bcLG5YnyY6f3xn97+e30PYqO0vaj3x++/+T9cbPO2bpk7e85sFxvu091s8mp/3LND5q7rH5TxPVEuaK+pfq0D3qvWbvXdGvedManie7j2bN/96hXivaqkOzFdfe+nXEx1WDMzmzt3bsX3hmB//ce9Mn7+OSf5YMCcs73P73PamnXbPtXA7ZqLb5C5qkv0zpLukvbJWz7mYn2Dfi40M9t3v/1cLJ3UuX/+619kfCLgGzsAAAAAAAAhxcEOAAAAAABASHGwAwAAAAAAEFIc7AAAAAAAAITUhCmeHFCn1qpq/Z+MZETBODNb8NaPulh2yU368yL+TOt99/xb8A3+H4qq2q6ZvbRunYsdfeGVMrcq6e+hHPCTyGd0ETSFQsmvqIr7n+XBB8yQuc+9uN7Faqp0geJCwVf5ap2si3Srp6lHjll9tf+ToYIuSGllXUQQY1cq+ucwZ6Z+vmvyvjjccMbHzMzyeV9Q8ocfe7vMjYiClIWAOWd40BefLJcbZe72bbrgIMZuaNA/91hU//5GokkXK4vitWZm2VzGxR6+xhchfeXCPlQo6HGzYf0GF0smddHtF19eoz8Pu4RaJ2rSKZlbJ8I9AfuDoSE/dtb+7QsV31dRFKU1M1u7zo+dxmpdFLNr29aKPw/a4YfNl/F0nd/CpxL6ORzzzs+6WNf918jciBiRF/3xkn91i/+boLVqc6cfNyde/kWZGxNvJ9mcHo+5UeyP9yalgN/fSJV/9ygFbCkPvejjLtb/xG91snivev9dlb9XBY2b1ev8+nPk2z8tc6MT5q12z5Qt5lysmNfv5Ode+d8u9tRv9e+7Koh8xU2XVXxfebFvNzPbsG6ti739Mz+VuT1Dfo/e0+fX0ImOb+wAAAAAAACEFAc7AAAAAAAAIcXBDgAAAAAAQEhxsAMAAAAAABBSHOwAAAAAAACE1ISvH54b1NW2JVEAviA6ipiZpY/5dxfLLr9BX7fs7yEa0O1k3huudLFUXJ+fRRK+88DiJ1boe8Coicdms6Y2ytyhAd/RZlv3DpmbLeRdLJ3QHbSUoNPUzl7flmDd5k6Zu2z5qoo/D6OjqvO3tVTL3OGhKS728hrdQah1crOL9Xb7jlZmunNaQH80a5jU6mIXf/bXMveJp5YGXAVjVRLjJi4685mZpdK1LjYwosdCS8skn9tTeXezoPlm/znTXOyod31b5j782OKKPw+jp3Y5edF90cwslRRtsUq9MnfO1Mku1tmlu1Sp9VI05zMzs6MOmulitSddLXNXrGStGquly1bK+JGHL3Cx1jrdFWsk7jfIhVxW5k5/nX+WXQ/qTjJlMXDiUT3rHHHR51ysLqVfQ8oinOvTXZ7oBDs6I4N+h5Gq18+sUPI7j/yIHjeTTvWdifuevFbmqnETCxg3h7/1Uy6WiAZMThP+rTbc7rt3kYt98kNvk7nDcs7RXWNPeN93XWzRdb6Tn5keO4mYHg8XfcrPWwODgzLXxGvckqdX6NwJjG/sAAAAAAAAhBQHOwAAAAAAACHFwQ4AAAAAAEBIcbADAAAAAAAQUhOmzFRQieSA8lgVy+V8oVszs8xTv3Sx5LyLxvhp+n5zBVUK1SwyMOaPw7+QL/pRlc/p3GLZF/maM2uqzL37MV8MslQIuPAoZHK6MCB2L/X7OpQJmKEi/plNn+aL0pqZHXvZ11xszuT06G5O2NTr57iFTy0b83UxOsWSHyNDGf07HY363FS6TuYe8ubPu9j0lrGPm84Bf2+PPv70mK+L0VPFILMFPefUiDru0YQeD/EjP+Ri7bN84e7RembTkIutpEjybvf00hUudv45p8pc1RQgkdCvAJvv+W8Xm3Tie0d3c8KKlZUXOT7uqENdjCLJu4aaWUpi/QrKLpX0O83W+77vYon57xjFnWmJhC/gHHS/0cGxvjVitL790z/L+LsuOs/FEgGNZn7/tfe42OTTPjy2GzOzxUt14fk9Gd/YAQAAAAAACCkOdgAAAAAAAEKKgx0AAAAAAICQ4mAHAAAAAAAgpDjYAQAAAAAACKkJ0xVrvEQDC6T7qu4jS38rM1OHv9vFKq8fH5zbsYoK/7tbJOKr65uZzZgy2cWGhn3njyDReJWM9w8Ou5iq8G9mFo35c9YlousFdr9UMiXj9XVNLjac3S5zVVeSm+95amw3hgktndbdigaGRlwsH7BQqO4ff7xr0ZjuCxNfdcDY6c/4Lnijaaj4+zsW/k9vCSHwj7sekvHXnX6yi8X1VsTyYjLqeugnMrf1ZN+5ZtUu6F715OLlY74GRkO/LEVjfpBEA74SoLplDSy8VubWHvt+F6sK2Bsr5YD7fWrJioqvgfGVrEq6mHjNMTOzctmPnUW/8x1BzcwOe8dXXGw0Hff2dHxjBwAAAAAAIKQ42AEAAAAAAAgpDnYAAAAAAABCioMdAAAAAACAkJowxZM7dkGxtfb2dhfL5n1BJjOzmvRoinR5u+J+sfsNDflixma6bNysKS06N+KzH32CYqZ7ipyoRDo8lJG5VWIamTapcRffEcJgYMAXRM7lCjI3KYpExssJfeHABgDYU5TFJiMW1XuXmJh0hrIMEvz/8YMsEdD0IRcNavlRyVUxUSxdtmLM1zjp+KNdrFgKKLQcrfyVUs15NAvZs0Qi/iFXJfQ+Jxqt/J28qJdG/C98YwcAAAAAACCkONgBAAAAAAAIKQ52AAAAAAAAQoqDHQAAAAAAgJDiYAcAAAAAACCkIh0dHRS1BwAAAAAACCG+sQMAAAAAABBSHOwAAAAAAACEFAc7AAAAAAAAIcXBDgAAAAAAQEhxsAMAAAAAABBSHOwAAAAAAACEFAc7AAAAAAAAIcXBDgAAAAAAQEhxsAMAAAAAABBSHOwAAAAAAACEFAc7AAAAAAAAIcXBDgAAAAAAQEhxsAMAAAAAABBSHOwAAAAAAACEFAc7AAAAAAAAIRV/tW8AAPC/a29vrzi3o6NjHO8EwN6AOQcAMNGxVv1rfGMHAAAAAAAgpDjYAQAAAAAACCkOdgAAAAAAAEKKgx0AAAAAAICQ4mAHAAAAAAAgpOiKBQCvkgULFsj4tNqEi3UO5sf5bgDs6ebPny/jM2qrXGzTYG68bwcAACdorWqt9kcX24cL4307ocE3dgAAAAAAAEKKgx0AAAAAAICQ4mAHAAAAAAAgpDjYAQAAAAAACCmKJwNmdsz8eS5WiiRlbqE04mJt6TqZO2zD/u/nyjK3v1B0sY6ODpmL8Dn1sENdbP+WSTK3MNLnYg3x0i6/JwB7rvOPPNzF5k2fLnMjwztdbCBDQUoAwPg6boEvlDyzvkHm5gpDLlYb53sq/zd+EgAAAAAAACHFwQ4AAAAAAEBIcbADAAAAAAAQUhzsAAAAAAAAhBQHOwAAAAAAACFFVyzsVY5p992vzMxi0XoXq4noc8+a+mYfSyRkblW+1sW6RgZlbmM072Lz29tl7kq6ZU1Y5x/7Ohmf3TjTxUoBlfxTCT9uegPGDYC921tOPk/GZzfMdrHBou7K2FY/x8W68r47HwAA/xNnHnmKjE9tmOJi0Sq9P64uVrvY0IjvQLy34hs7AAAAAAAAIcXBDgAAAAAAQEhxsAMAAAAAABBSHOwAAAAAAACEVKSjo0NX0guht5z2Th+MFGVuqeDj9TX6un2D/kc0WCjJ3Kq4L6J7x6N/0BfGuDqs/SgXa4imZW5toy/clSv4YsZmZoVczsXqkhGZOzTix8lAXv/KpVNJF+sd6pa5Met3sSUdK2Uuxs9bT3+Hix0wtVHm1tb5gm+plB4Lmaw/cx8UY8nMrGeHL3D687//SuZiYnjTqW93scYaXYA9Hou5WE1KXzcz4mP9AeOmkCu42M0PsFZNdBef5eec182fK3OnTp3sYuWy3hOVRS+NwZweOy89v87FPnv9D2QuJobTj329ixVKfg4wMysWfbyhQe9xBsT+eDir17WqKj/HPfn0vTIXQLidf/KFLjapXm9e1NxQW6fnkYFBPxdlAvY52Yx/X7v5/j/J3D0F39gBAAAAAAAIKQ52AAAAAAAAQoqDHQAAAAAAgJDiYAcAAAAAACCkONgBAAAAAAAIqVB2xTr32LfK+JUXnetiXd2+Y4yZWUZU/d/StUPm1qSrXGxyY6PMbWn2rbV+c+cTMvcvD1wn4xidBe2Hy/ikaJ2L5aO69dnFZ57sYlu29crcoaLvltW9w3epMjOrSfkK8C2iO5KZWXOT79h139J/ytztA5tdrFDUY31ZR4eMo3Ifu/gDMv4fF57iYomk7m6kmtFs694mc6vivhNSc0uLzK2p8ePm0z/6m8z9+d+vlXGMj4vP9B2MzMzee76fbzJZ3YUvX/TdHrbt2Clz01V+rWpurJe59fV+3Pzilkdl7h/uvV7GMX5+8ckvyvgbjnyti02f2SZzizm/vesf6JW5kajPbW5qlrnJtB87H//272Xul3//AxnH+Dh2wWky/sG3neBiPX0DMjce8etP17btMjcl5pzahlqZWy06f9547yqZ+9DCO2UcwMTyjrN9l08zs09ccqqLFUq6K2O87OecLdu2ytxklc9taNZrVXXKr1Vf+ZXuxPfHe2+S8bDhGzsAAAAAAAAhxcEOAAAAAABASHGwAwAAAAAAEFIc7AAAAAAAAITUhC+efNaxb3axT176Npk7MDzsYvF0g8zN9vvik+sDCi1XmS9qWVerC1LWpnwhuZQovmxm9r3f/9XFHl7yd5mLYEHFkxurp7vYW0/0RUvNzAZHRlysYLoIbiHjx9mabbrwdm3SF/lKV/kCgmZm9dW+yFc6HZe5f3v8MRcbyPuCymZmHRRPHpU3n+jnnF9/52qZm88MudjMufvI3IEd/vnk8358mJkN9HW5WEPLVJkbjfj5KZfX4+ZDX/qFi11/9+9kLkbnnOPe6GKfe78unpwRc0h9c6vO7et2sZ2DOZlbyvnxWFvfJHNTYnqLRPWc973r/Vp126M+hv+Zd53iG0L86qdfkLm1Jd/4Yb8D5sjczIBfl0pFPTdkhnxuqm6SzI2JOae7Rxf//oiYc772+x/KXIzOcUee7mJXXnKWzO3u8w0emlqnydy+7X6tKpX1uOnb6deqxla9VlnJz1uptG5o8YubfIHTp5Y/oq+L3erUE06U8XLZv06WRMzMTO18ypGIzFXRh554POj2MI7OPs43KfrJl98ncwf6/Zwzc+5+Mrena52Lxcy/E5mZdW/f6GJNbTNlbrmY8cGovu7VX/dNIv7x2K0ydyLjGzsAAAAAAAAhxcEOAAAAAABASHGwAwAAAAAAEFIc7AAAAAAAAIQUBzsAAAAAAAAhpcvcvwpOOOJMGa+P+Ftc3z0oc4dzRReL9LwkcwdKvlJ7Q4uuzh/N+frtVS26qvbq9VtdbNIk3XmgJur/HccdcbzMfXLJEzIOs3i0VsZLw74i+5Z+USHdzPoGfFesmmrfOc3MrC/vx86sObpLWn645GLNk3Xu5s2+K0kyojvaxPL+35aMVstcjM6caf5nvnmr7pjXMMnnvrRpjcwdEcfo8ZjuilXd1OJi/QndXaJ3q59H6pv1uJk9RXdkw9g1pnzvjs0Ba1Uk4btP5fo7Ze6gn0KsvlV3WrRcyoWqG33MzGz7ll4Xi1fprlgNKd+JCbvOcUcd5GKDO/Ra1TinzcWeFV1CzMyKVX5+yRd85zQzs/pqPzcMF/X4zXf5+KRpep9z6EG62xvGrpz1Y2T11l6ZG0n4eSDZu13m5kp+391Qr+eRdLXvclNfq9e17X2+G+DOIT3OIyUdx+510nEnuNgRR8ySuQN9fg1sbfTvZWZm2/v8frWtUT/zUrHOxU4O6Mz1iOgYi12npdavE2s39cjcWrEPXb9hncwdEd3TklW602J16wwXKyT0nLOz32+gqtL6ui0Nuitb2PCNHQAAAAAAgJDiYAcAAAAAACCkONgBAAAAAAAIKQ52AAAAAAAAQmrCFE9OxHXRoh1FX9xtUsMmfY2IL4BbldZFJmvrfOGuzi593VKjLwBVm9TFlyLT/D1ES6tkbk/UF8DNF3WhMQRLigKRZmY9WT92kon1Mne/mf6MM1Klx87RU31h2/Wbu2Ruum2Si8Vjunilqv01PKgL8fZHBlysJIqsYvSGEr5Q8oIDdPHYeNTPGemAIpPDw1kXy47o6/ZkRfHKuC5sWzXJz0V1yV6ZO1Lt7wG7Rl+018Vmtemigo11/pc9ltbjpqHGFyvcvlNftxDxheSrq/QYq5npixUWR3QB50zSFz3FrpOr9mvCoa/VxdKHss+4WFtbg8zdItaleEKvawNZP79UBexHCqLPRLTsi/+bmUVa2NOMl0Hz+4AD2vTPe9YUNb/ofXdzo59HunfqBgJ9WT+/tDbp5iJTGv3nZYf0/PS7MsWTd6eTjz9Wxo879rUuNljQc8gZx013sa5uvVYdtK+/xpB/fTIzs5paP57yMd3s5vQTj3CxBx5boi+MURsU762H76/nkfq0L7JfldLHDrmCnwcyGV28v0sURG6r1eOhPuZz07FemZuN7xn7Y76xAwAAAAAAEFIc7AAAAAAAAIQUBzsAAAAAAAAhxcEOAAAAAABASHGwAwAAAAAAEFITpivWQ4vulfHjjjnSxdZ0bZa567b7at2lsm4VVFf2XUn6Sro6/z7TGl1sdaeu9J6Oih9pwPGZ6nnx9NJlOhmB+rPdFeeufPlFGd/Q46uvt9X5zhBmZpPSvqPa9pzu4DB3aqOLrevynSzMzOqivivJjmE/ps302BmNG2+8UcYvvfTSMV45/OrqfRei6km6C0S55MfC+j7dPcQGRbeSgLmhodbfQ/+AHjdq5E2u9Z38zMyKETrUjJdkUqwp+YCuDt2+i0QyoTtP1Yp5Yaig24c01/mZYWu3vm4k4u83GtXrZVHMOKeffJzMfeCRJ2UcwaZM8WvNcGynzB0o+mex8PGVMjfbl3OxqOgSYmY2edIUF9vUqfdaObGvOnDOLJmbj+4ZnUbCYp8D95PxmaKbZ/2kZplbL5rcFAp67Rgc8s+3oUF3qBko+wUvVdRzWfnHt8o4xke+4OcKM7MdvX5//bbj/XuZmdmcWTP832/Re6ed3b6b52v39WPUzKxc8O9V+RH9DvbUkrHujvGvpNL+Wex3yD4yt6Wu3sV2FHRH6ahoiRYP2B/PFq/q8Zh+7n0iPLuxTuaWIrfqDwwZvrEDAAAAAAAQUhzsAAAAAAAAhBQHOwAAAAAAACHFwQ4AAAAAAEBITZjiyaPRO6CLrZVUkaQZviCgmVk56qvDbX1ho8zNZP2FI7r+oO13yBz/WaIQnZnZE8+s0X+AUQo6n/TF/voHdIG42lTKxU486SiZmxAVve57+CmZGzFfoLQcUND76DNPcLF4XA+ea3/1J3HdyovGFdUvC8zMLCIKxW7coQuARkQRtwefXipzywV/3elTddG5GZPF3x/WRedeWvuMiz0vCqyamfUM6Wtg7NRvane/Xqtqqn3RbT0zmQ2U/TPrFkVxzcxq0mkXy4/ooqfVDX75j4uCymZmOTGeopGAhQ2jpuacxS/vkLmb1273uS+8IHPLOX/d+vpWmXvATP88d27Xhbe39W5yseWrXpa5ndRO3q2SVbpY7expU13s8SWLZW4i6sfNPnMOlrm11f7z6gPmhudW+MLqiYBWEHWNvvAqxk+uoPelC+bMdbHWAw6QuU1JvzfetLVL5s6Z7Z9vf0avl1VT/YbovJkny9zf/e1RGceuoX6zA7am1iiOGP5+220yt1z04+/Iw/w7kZlZY63fp7TE9N5l2YP/cLElAfvjUtw3qggjvrEDAAAAAAAQUhzsAAAAAAAAhBQHOwAAAAAAACHFwQ4AAAAAAEBIcbADAAAAAAAQUhOmK9aRhx8q47f+4GMu1tPbK3Nv+Luv8L9th+4ectYRvlvWutWdMvfj7zzDxX519xKZu27dThd7w+vaZe7vZBSjp7u+fONDb3OxzIju8vHH2572V83qLgEHTPe/NsmoPiP9z/ef52Lfv22RzM12+bHTfrjvSGBmAX0kRmEUHbT2VBe/6XUy/tiNX3CxlOiiZ2bWscZ3qHlwme4C8e43HOFi1QnfHcnMbP6+fn7q3Og/y8zs+0v85131hgUyN//YWhlH5U4/+TgZv+nbH3axmpTu1LBw+XoXe/qlbTL3dUfPdrGRjL63t55xuIs9+LTumHTn48+52IWnHSRzi2K+uO/hJ/RNINBnP3KJjP/6W+93sUzPoMztXL3FxdZ2i/Z8Znbakb7rXrZXr2sHTmt0sRdzut3Johf8ADzvaL1WvbTcd9DC6LS36z3kX7/3UReb95ppMre2OuliN/6jQ+a+901+jmtuqpO5MybVulhicEDm/vwfL7nYJ94wX+bG+G/ncXPyCce42GUX6g5Es1t9F70tL2+Wuaszfn89a0qjzN1/ziwX27pV73HWvbjaxZaKLqNmZrkS3Rp3hbNO0+Nh8R+/4mIzWv0cYGaWE/vm6+98XuZeLd6zWwLmnMl1fl9VndGboh/dvcHFvnmx34ubmVn5RR0PGaZOAAAAAACAkOJgBwAAAAAAIKQ42AEAAAAAAAgpDnYAAAAAAABCasIUT7aAeletDWkXSySqZO7Zp85zsZvu8wWVzcxufnCHi115kS4WlahKuNiph+sik/fYP/093KHvoUwB210iqFRaS33KxaKpFpn79gv8Gee3fnubzG1t9tf4wrtPl7m1Nb447uuPOljm/ujm+1zs8Wd8gVMz/W9e1aELISqxmC7qujeJxXTR7dqUnxYLI7oIe2NDvYtd9paAsRD3RUtfO8cXSTYzWdy6vlWP3U+8/00uVgooJFfM638zKheL6OKzDTV+Xaqu9uuXmdlR8/dzsSXrdPH+Fzf2utjbTtXFVJNVfuwevL8vvmxmtmqTL9b8zFpfwN3MrFxkrdoVEnFdjLgq7tefUkyPs1SNn3MOO2h/mVsW89ZBcybL3LgY1w3NTTL3zGN8s4uRQlbmFkaYc8YqaI9Tm/a/75kRPcb2bahxsfdefo7Mfc0UP0ZmtvpxZ2ZWEmtVrE4XPf3Eh/xaNasx4Lqlv8g4xi4iBlSD2MuYmR3T7ouin/r+r8vcL3/wchebPrlB5k5u9mOkMKybm1zw/e+72Lc/dKnMjUf4vsKuEI3q9acm6d8dBoaGZG66zu9/fvR132TCzGxSwg/Ktia9f8pl/f42V60LOP/hh74BU7Komw0UrnlYxsOG3wAAAAAAAICQ4mAHAAAAAAAgpDjYAQAAAAAACCkOdgAAAAAAAEKKgx0AAAAAAICQinR0dEyIdhdXv/cYGX90pe/qsOUuXyHdzGww7ytdl3O6U0NJVIWPRoPOuURyUJuCgu8AUY75rlpmZvtf8CkXW7psecCFEeTyC+fL+DNrfVX3u374SZm7/wEzXWywv0/mxqP+4VeldKe2qOg+FdQMLTPsx2pQB7j9L/iEi61cuUpfWLjxxt/L+KWXXlLxNcLkDWec6WJvPkd3h7lvqX/uy//weZm7pdPnFgO6MqgueLFSQMeYYuWdZApxP7/EAu7h5Cu+5WK3/uOBij8LZl+60o8lM7Onn/e/v4/+8rMyd4boOjMY0MksLtaaqrjuaqeWpaAFPlPw82OVGEtmZjPPudLFHnr4yYArI8iSv+p55I7lW1zs+1e+Ueaufs7n9ozoz1NzToPozmdmFhG5QWtVX8mPv0TAnPOdP93jYj/9JR2PRuNtb/QdX83MVq/3D+ix678ocw/YZ5aLxWL6AcfFrJELWJLKotOi6rpkZhYRXfsSMT1uao96j4uNZo+DYG96/eEu1jOg5/4X7/yFiz29bpPMnVHln+WkVt0VS3VmDWq++MK2fhebWeO73pqZHXmJf696+OGF+sIwM7NTjzvexU47XndJe3KV71z2/N91l7SeHr+nSSb1O02p5NelfE53+LOc6GoVMOfEq/04iQSsVe1v9vu1Bx8J3z6Hb+wAAAAAAACEFAc7AAAAAAAAIcXBDgAAAAAAQEhxsAMAAAAAABBSvpLZq+R7v1ok40cf5Yt8JWO+oLKZWaboz6miNXUV30NQkckZp32o4mtsevCn/rpFXQCqHPiJGI3rb1kp4/Pa211syiRduCse9c+iqWVSxfcQCagWeM4V36z4Gnde8xkXK+d1VcxSUFXLChVHUZx3T/D3++9zsY+86yKZW5vwRQSfe/5lmdtY2+xiaiwFEoW4zcwOvlAXWVWevdUXRC6X9ByZzwcUo0PFvvQDP5bMzM4762QXGxzYKXMjbX7c1NdUV3wPQbX7j730SxXnPnGjzw1aq/IFxs2ucMSbvybji5//sIutXr1R5paL/ok2iaKlQaIBhSMv/ey1PhgweH73tff7YEkUtDSz4awuCo7K/flWXTRY7XGee/Elmbv/7CkuVijpsaCfpB4Mp73frz9Bc84Dv/Z7nGLAmjTWPQ6C/e3OpS526um6gU0hN+Bih83UjSeUWEBxbFWgOxqwHzpocqOLlYt6bzyY9cV98a899OQTLnbhubpJRFIUvV68RM9P+82e42LZop5dlKAp4KAL/TwS5Pnb/PwUdOFCUDOTkOEbOwAAAAAAACHFwQ4AAAAAAEBIcbADAAAAAAAQUhzsAAAAAAAAhBQHOwAAAAAAACE1YbpijUZ2RFfRj5V9Ret4Vb3MzeUrr349vNh3i9gxENDpQXSGiBd9VXmz4M4BGD/ZrB47kxt8J6RsUf96DAz7avxB1dt/9aXLXWzalICOAmLstDWMz9nr5Ze/c1yuGyY/vu5PMv6By9/kgwG/rM+LDiRTpk6XuY116Yrv7Z+3fdcHC7oLRFlU8n8hoDNKIsFZ/u5UKJZkfGigx8VSNY0yNx73XSiC+sXc8I0rXGzfGQHzjVgvhwd2yNRYQLcSjJ90tV+TzMxeeGmDizU36w6OtdW+C6QekWY//coHXKw+EtDRs+SvsnHTZpmbToVymxlamYA9zrMvvOhibVOmydyWBtVNVs86v/qC3+PsM8t34HrlEv4az7/wgs7F7hUwMTQ31LjYzoGszI3HxO96WV949tkfcbGX7/qRzFXrT31t5V0kMXq33KG7f77x9ae5WD5gn7Nwqe9YPFd0yjIza2vR7+rKi3f4/XExrzvBqrVq8TLdSTkW2zP2OezyAQAAAAAAQoqDHQAAAAAAgJDiYAcAAAAAACCkONgBAAAAAAAIqQlf1a5QFEWOy77IrJmZiSJJpYIu8rVx8xYXa6rTxbgG+4Pv7/+0evNOF6tN6vOzclDFXewS8qcbMHbKovhXdVIX0trZ4wdEUGHc/Wc2iagubvjM6m0utjUeVOrSa29vrzg3SEdHx5ivEXZbe3pdrFDQ4yae8KNs2/YumbviGT831KSTo7s5oXdw2MVqA66by1VeNB6jM5Dxa02pqMdNNOJ/r3Mj/jmama3d0O1i9TUpmVvra+Va1za/1pmZre0U4zFgrSoW/Tg/4rBDZe6SZctlHMGe3bDJxTLDr5G56Rr/LPoGemXumg0+nqyqfM7pDIjvFM0j0lW62HNmWBe1xNipPU4s4L9ry+J3eNs2v+cwM+t49mUXq06LySVA904/t5iZDQ4Nulg6Wfl1MZ70+4h6TWmWxbXNolE/+CIB43Hnot/43IA7++dqv4Zt3qob2ERoSzOu+ofFPiWgQHYs4gfP+k0bZe6ipb0uNpo5J0gu75uO1Fbr97ViofL3rYmMb+wAAAAAAACEFAc7AAAAAAAAIcXBDgAAAAAAQEhxsAMAAAAAABBSHOwAAAAAAACE1ITviqUqsseStTJ3WFTcT5Z0F5hZU5pdbM4bv6pvIi86m8T1j+7l27/lYpGIzp06ZZr+PIybWJXufNaf9eOkMaErpE9v852u5hz/eZlbzvmxU0jo89Q1C3/gYoPDuqvO9KnTXSwWj+l7ELH44JDMVZ219rZOWfmCHwvRhB43iYTvECA7+ZnZ5GbfSeJ9X/u9zFUd88plPW5+8/X3u9ikZj1HTp/GnDNWxxx1tIwnxHwRDZhvsgXfuSMd0/PN1EkNLnbCm/5L5pbF2MtHdJeQJ+/4uotFAnJnzZjpYkFzE0YvO+I7JUZiuntVbY0fU0NR3/nDzKyxzs8D3/rlPTJXzTnFsl5TvvSxN7vY1DY/Ts3MHlk/iraiGLOgOWdoxM8vNVHdCam5ocbFPvLZ6wI+0V+jUNLX/em3P+BiQV28WlsmBXwexkVUz/2rt/jf3/1ntspctXz86PRfytyy6KTUbboz5Oce+KyLvbRhq8ydPXu2jGPXKIrf7aD9cTQmOoUGzA0tjX6t+sxPb9E3IbptlUp6/H7nqkv8ZzXp+22dpMd12PCNHQAAAAAAgJDiYAcAAAAAACCkONgBAAAAAAAIKQ52AAAAAAAAQmriF08WhZZSVQmZWy0KOPVldUHKbCbjYutu/YK+CVERrBhQIHXN2vUu1lBdJXM7t3Tqz8MuERnFsWXvzm4Xa26YI3OHs74g2LrHfSHSV27Ch4LGzj9fXONimzfrMdK5ZbP+PHULEV8AsxRQVHxvK5SsDA/lXKyh1heTNDPr6xlwsXLZ/30zs5G8L3B67ecvlbmqDFyhqIvO7djuiwj2D/hCzWZma9b4+QmjUyjp5xsp+gmnOqkL4G7c6uebA+fMkLkjOT9uHvvbp/U9iFihqNfADevXudj6zh0yd+16P26GM77gL/5ntnX5xg9ZUdDfzKyzx8fSposc5wp+rH76fa/TNyEGT6Gg55yuLVtcbNO2Ppm7ctUL+vMwZlUJ/9D2ndUmczs7/TNraPBNGMzMRgb9/vjH33i3zFUFc4slPecM9W93sQ1durh2b6+eizA+HnpgkYwfd/JRLrb9kd8EXMUPhv+4/30V30PQuHlhjd8bn3jJZ2TuE08+XfHnYfSKeb8uzZ4+Wea+JN6VRrK60H++4OPf/JAv0m+m55ygfU52yM8j3WW9tm7r6pLxsOEbOwAAAAAAACHFwQ4AAAAAAEBIcbADAAAAAAAQUhzsAAAAAAAAhBQHOwAAAAAAACE14btimfmuDPlCQWamkikfLOlODbOm+ireW7p81wAzs7JoDKGqcpuZHXXQLBerPflqmbt8xUp9EewSZVEkfXBIV2RPVvmOauWA7jc7dvgOJlMm+b9vpkav7lxjZlaX8Dd8/lXXytxVdK8aNyUxcBobxNxiZoNDLS7W1blJ5jY0+dxMn++O9Mo9+JETC5h0Jk/2c9nFn/+1zH3gkadkHGNXEl0ZYjH9zJIp32WtVNRdpjp3+M5rs1p1lza1WEUCxk2h4DtDXPbF6/V1xUwWGU3bQfxLRdGlo65Wd1Srrat3sUKf7zZkZmbpBh8b6a34vuIBi1V1Q7OLfff398rcv9/5aMWfh9FRzS2bG9IyNzfSKv6+3ktv6e51sRmtftyZjW6P09077GIf//5fZO6y5asCroLdqZz3T7OQ892OzMymn3GVi2177Bf6umKtikb1mnLiJZ91MbpfvTrK4jd+yiS9HxkcnOJiq0WHMzOzlha/pvT36M54olm2BWy1rK55kou972s3ytzHFi7RFwkZdmYAAAAAAAAhxcEOAAAAAABASHGwAwAAAAAAEFIc7AAAAAAAAITUhC+erIokZfOqXJtZjahfG4nroqeJIz/oYofMrB3VvSnPbh5yseUrKAI3UeSKeuzExBHniK5laud/zBeDyw4EFK8chRc6fWHBDook73Z5MUYGh0SVSjOziC+YO2mSL1JpZnbiu7/hYpOb9Pw0Gjsy/n4fenTxmK8LbcmS5TJ+xBGHulhmRFRwN7N41D+zZFoXIHz/V3/kYr09Y59vNvb44vCqUYCZWUJMkMViwO8ERk3NOQNDegGKmB9TdfWiSLKZfea/bvB/P7YLtn0pX9i5KIqHY3wVxAY5q/tDyLVqcmubTP3gt252sYGebaO6N2VDty+6u3wl++OJTNWkzeX03PTC37/lYlXz3j7me1ixkn3wRJEr+HlkcDhg4xDxe4QZ06fJ1NPf922fO0kXgh+NrQO+QPwTC5eO+boTGd/YAQAAAAAACCkOdgAAAAAAAEKKgx0AAAAAAICQ4mAHAAAAAAAgpDjYAQAAAAAACKkJ3xVLqa4W7a/MrG/Yd/nIBTTuUDW8f3/HwjHcFcIgndZdiLr7/diZPEVXeo+I0ZOumyRz123sdLG+YV+l3YwOWBNZKqXHTVJ0IBkc6ZW5qsPfX+55agx3hYkuHTBuhrN+vikENJZQ4cYm3XntuTWbXKwUicncaET8v45qgWJm/UP+fpmvxleyqkrGYwkfK+d8N04zs4LothUr6/VnR0Z0TZqsu21FxDi5/a7HZS52r6BxU1tT72Jl9SBf+RMX+fsDdFrcG5VEq8TAYSM69m175Ocys/WkD7jYylWsKWGUTPouiWZmDfVNLtY1ojt6qp6Kf72X/fH/BN/YAQAAAAAACCkOdgAAAAAAAEKKgx0AAAAAAICQ4mAHAAAAAAAgpCZ88eSSqDgajagyS2apKv/PGR7J7/J7QnhVxYOqvvmxk8nqIpOqctwNN98uUxcsWOBiqyg6OqH192ddbGhIVEk2PZ5aG2t2+T1h4hsZ8fNFoaDnkKq4/z+VZFwvx4F1KgVR49iKRREcJQolj68tW/tdrH9A710SMT8iGmt1kW5V5PTOx5aP7uYQKrmcXqsSoob6pIY6mRsZ1ayDPZmaQ0by+h0sFq38lVI1k8DElxXvRUNDGZmr5pzprb6gstno9jn41/jGDgAAAAAAQEhxsAMAAAAAABBSHOwAAAAAAACEFAc7AAAAAAAAIcXBDgAAAAAAQEhFOjo6qE0OAAAAAAAQQnxjBwAAAAAAIKQ42AEAAAAAAAgpDnYAAAAAAABCioMdAAAAAACAkOJgBwAAAAAAIKQ42AEAAAAAAAgpDnYAAAAAAABCioMdAAAAAACAkOJgBwAAAAAAIKQ42AEAAAAAAAgpDnYAAAAAAABCioMdAAAAAACAkOJgBwAAAAAAIKQ42AEAAAAAAAgpDnYAAAAAAABCioMdAAAAAACAkOJgBwAAAAAAIKQ42AEAAAAAAAgpDnYAAAAAAABCioMdAAAAAACAkOJgBwAAAAAAIKQ42AEAAAAAAAgpDnYAAAAAAABCioMdAAAAAACAkOJgBwAAAAAAIKTir/YNAGFzyXFHudjvn1wsc9931rEu9st7F+7yewIAAAAA7J34xg4AAAAAAEBIcbADAAAAAAAQUhzsAAAAAAAAhBQHOwAAAAAAACHFwQ4AAAAAAEBI0RULe6x3HXmyi1339CMy9xMXXOhi37ntFpnbmJpc8T3s2zS34lzlQ+efIuM//cfDY7ouAADYO8xrn+dikaDkKv9/vtFIWabWxZMu1lvO6usO+2us6ugIugsAwCjxjR0AAAAAAICQ4mAHAAAAAAAgpDjYAQAAAAAACCkOdgAAAAAAAEIq0tHRoSuihdC5J/kCuGlRBM7MLBr1ZePqG/R1+/t9bHikJHPLJf/jvONRXYQX4+tjF5zrYv992x0V//2Hvv2fMn7Qaw90scFu/Ws0ZYqvT949rD/vwQee9MFUjcz9t+98y8XeccQRMnegpMeq8o9lyyrOhdk7znqPi7U1pGRuVcKPheqEHjdDI35+Gijo55jN5Fzst3dcI3Mxcf33B6+Q8anT21ys7B+5mZnV1Pj1bmfAfPPCc6td7Ft/uiH4BjFhzZ/nC+OamUVifh5JRxIyd+GyJbv0nvDqUEWSzcwiUbEXDtj9l8UfpE2Pm2Sq6GK9mYCyzBGxhpX1uraqY5W+BnarN516qYuNFPQClB8ZcbHGWj0Wegb8GBsK2ONUp9Mu9sCTf5a5mDjOPenNLhaLBh05+Gff0Kgze/t8LBPwTh6NxFzs3if+FnAPewa+sQMAAAAAABBSHOwAAAAAAACEFAc7AAAAAAAAIcXBDgAAAAAAQEhxsAMAAAAAABBSoeyKdf5Jb5LxT7/zDBcbzGRkbtx8pezNW7fK3HTSdwNoaG6SuTWievt3bnxY5t76EFXdd4WrLzhPxr932+0udt9P/0vm9m72rc9OO/VImZvP+C4QNf6xm5lZLufHWTSpc/Nln3vDTffI3M3da11sNB2/MDpXXKA7Fr3v9We62PBIXuYO5gsutq27R+ZWp3wHrbYmPec0N/nOaT+5WY+ba/7xUxnH7vWnL33Oxfbbb4bMjfhhY8ViVl+45NeqeLWfV8zMLOrH2PU3PyZTf3DL7/Q1MG7mz9fdjWrE3BARXT7NzGLi/+7KJTGgzCxutS720FN6PGBimC86YJVNj4VUVZWLlQI6ZqqXAtXx1cysKuLHTSEyJHPVOC3kA8au6Ja1pGOpzMXYnXrYG2T8Yxf77rKbtuyQudmS3xtv3qpz69J+I9zapFsTt4g9zu/vf0rm3vbI72Uc4+d1x14g419479ku1tM/KHPVWrVpi34nrxbv5I0B7+S14uXsu394VOb+4+GbZTxs+MYOAAAAAABASHGwAwAAAAAAEFIc7AAAAAAAAIQUBzsAAAAAAAAhNeGLJ59+jC/c9d1PXipze/p8Ady2GXNkbm/XehcricKTZmY9OzpdrGlyQKHL8oiLxRO+8JeZ2ee//wcXu38RBXBHK6h48kCfL+R27SN3ydydD/qf+4H7tsrcWMIX+0vHUjK3XM652EhJn6eWzRe1fP5FXXjurvt88a+eYV2U7KXVL7jY92/TxXVh9qYTL3axL33gvTK3kPO/7+k6XQAwN+Tnp3Xbe2VuOuYLR9akfZFKM7O6al8U0yK6IOXXfu0LC9780A0yF2P3wE2/kfFmMQXMnTtV5uZzvhBpOl4tczPDvS4WTepxUxRz07btfjybmd1824Mu9uXf/lrmYvTmtbe7WH29XlNUwdsqURjXzKxY8IXcE3G9zynk/HiIxH2h5lfuwa+tjz2xROZi7NrF+DAzi4j/m1VFks3MyqPY6ZdF+eRiQKHlmCjWXNbLj0XEuhQJKPacTvt76OnX81NHR4f+QEinHeMb0Fz5Fl08uXdo2MUiyTqZm+3b6WLru3tlbkLsd+vr6mVubcqP6ZoaPT/+6M9/d7FFK++UuRi9U9U7+ccvkbk7evtcrHXabJnbs9W/kxeKev3p6fbv5C1Tgt7J/bqWTOk90Wf/27+TP7pEvzNOZHxjBwAAAAAAIKQ42AEAAAAAAAgpDnYAAAAAAABCioMdAAAAAACAkOJgBwAAAAAAIKR0yelXwSnHnCHjdTHfweHlzT0yt6rGV7oubfaVts3MMkXRdaZaV+dvmOKreCerdWeJ7d2+an+kmJW5tUnfseL4o46XuU8sfkLG91SXnnqcjN/40JMutt8B+8vc1xywj4ut+dutMnfe/JkuVn1Ik8wtRpMuNpzV3ass5zskDZd6ZWrroO8IMPkA/1lmZkfvPMTF9rlQV6bH6Eyu99Pi1p6MzFV9QnJDL8vcQdERpKY5oJuNL+RvI036HH7d2s0uNn26H/tmZlPrdWcTjI/osO/8YWbWMLfNxdLT0voaRd+BJBbxnUrMzNL5WT4Y9121zMySYr7pD5ib5s6aIuMYnfnz5sl4JOp/t4tij2JmFhOdqo46fI7MHej1sbYmfd2ufr9/mtKgOy2WrdHFTjjuCJn7+JN0yxq7gDZTontVKaD9VUmEjzpczBdm1t/rY23N+rrb+nyHvilNer0siLns8aXPyty+fr8/5v+id43SkO9WtHaH/l0fGPbPIVbeJnP7xZzV3Kq7AtuIz62dpHPXb+xysSbza6iZWbLk/20YveOPOFXGa6N+/Xlxk++GZmYWS/nnmduwVuYOF8R4qNHv2U1T/LyVqtF76a3d/v07VtTzU3XC5x5zxLEyd9GShTI+ETBLAgAAAAAAhBQHOwAAAAAAACHFwQ4AAAAAAEBIcbADAAAAAAAQUhOmeHJEliE1G4j4QljzZhdl7qR6X7g4ntD/xHgi5mK9/brI5I4hX7iurUkX+WpK+rOyWEkXJRuO+gJOkZgutrm3UUWSzczefcq5LtbYqAsMLzjSF1Xe52D93CJNvS42UA4oZrp9g4vV1vqigGZmtXW+yOmGjbpw10ib/7yaWj1+p+/vC4X95YdflrmrV3e72Jo1a2TuNbffIeN7k56Y/3lNbtkoc/M5X8g93ajHWCzm54bunn6ZG6mZ5GIJMReambVM9uOpXNTF1vtTAzKO8XHg/noOmTHbj4VorV+TzMymlH1Bv3LA0h2J+EKXw0P6ulUz/RwSb2iUuR3PBBVvxWiURQF1M/0/bKmELhx52sm+SHF/To+Hc0/2TQG6duhCl4fs5+8iW9DXravzBXNL0UaZe+Ix813ssUUrZS40VVzbzKxcUnthvZc+8bh2FxvI64KjrxPjZus23SDi4P38NYZy+n5ralIuVoj6ot1mZkuXPupiIyP8X/SusMO2u1hzjd7jTGvw7yTxZEBR2yZfkH/Tlq0yt9Tkm5PUVffK3Oh0UUg7/0+Zu9P0ngqjE9PbBusr+z1v+yxV6Nyspc7vXeIxvaYkxJja2av3q91Dfh6Y2qLnkUb5Tq730oPmzwBKps8bJjJmSQAAAAAAgJDiYAcAAAAAACCkONgBAAAAAAAIKQ52AAAAAAAAQoqDHQAAAAAAgJCaMF2xHlr0oIyfeeoJLjbnwDkyt7nedybKie5XZmbJnK/0Prlclrn5gu8ykEjoM7FB810vWlO680A5couLPb7wKZmLV/z2Yd+16dqPf1rm7rdfs4ut3bZc5tYMNfrYC8/K3FiVr+afG9EdI9JJ311icLhL5haW+fEXb9TdB4qiEVi2pCvIP/Oy70Byw52+4wRekU77n/nSl3QXl1XrfAetgT79HFIlPxf1lXIyt32/6S628oVNMrdGtC9IpHWnuFJkbBX+/3DTH2T8HRe/Y0zX3VNFq31XCDOzRJVYJ6J6LFQnfaeR/Iju6pAd8R3ZGut0x4qhvI/XNuqOOpmI/ndgdCIBewyL+vHQ0KA7LVanfe77zj1W5u4ze5qL9fb6jjhmZuvW++6drznIz0NmZtmcn3NmTOmQufc8Qke1sdLdr7RCUXdW3dHr9ygXn6zHzb6z/XPvnqw7/HVv991oDz2oVeaW8v6Vo1jQc9miJT5WCOj4hbFb3633pRt3+nkhLjp8mpnVR/zz7S3q9WfOFN+9alGX7miVivk9WbEU1EGY+WZXePSph2T8+GOPcrHZB8yVuU11vlPVSECn6lTOj5NJfvkyM7N9in4+jMf1u756J58U0NWtbP6dfPGSxfomJjC+sQMAAAAAABBSHOwAAAAAAACEFAc7AAAAAAAAIcXBDgAAAAAAQEhNmOLJo1Eo6eJYNTW+UNODDzygL1L2RdgOPvBQmdpY639M9QG17JYvftjFXhKfZWYWT6f0RcbommuucbErrrhiXD5rItgx0inj8ch8F/vrorUyd1LRF7huOGBfmdtW7HWxtRt14bkj2/3YWfWSLl4ZmeILDrb16MJzm7rXuFgqrguC7bfffi72zav1ePjM9/zY2dtEIr7A6cubdYHHjVt6XOy1h/ift5lZSRRxe3mJLtDdtTPjYn3DeizMO9nPWwElWm3hwqUBf1IZyhIGu+lHn3Gx5um+0LqZWaLsCyIvK/qxZGbWIh5mJKrXjv1n+djm7brw8cs9fh5qCXjCL2/S94Zg8+bNE1H9mxkXP/doVP+/2wkHH+xikaZGmVvI+Wc/lNH7kQP389co5XxhXDOznpK/t+MOPFDmplK6kDvGTo2QoPrcRx94gItNP/g1MndSyo/Hzm3bZO5+cxtcbDCrx01y+hQXu3Du6TL3+lsecbGiaHqCXWM4o3+2ySq/N547c7LMLYsi8N0vbpS5+YIfvfGIXn9ec/Dsij7LzOyRlS/LOMaTLlxcX+/3OXc8qN/Jy+I9+aAD9Dt5Q7X/vNqAvcs/n/bzyLqASTJV65tPhBHf2AEAAAAAAAgpDnYAAAAAAABCioMdAAAAAACAkOJgBwAAAAAAIKQ42AEAAAAAAAipCdMV6/hjj5Txp37/ZRebPa1F5uZEZe4b7nxO5l55ySku1txUJ3P3m+Ire5d7dZecn97luxV99e363zbWDjM33HCDjKuC36pTlln4umVd/YbzXKz9JN2N44mXX3SxNx5+kMx99tlNLlad0p1nXt62w8Vqq6tlbkPcdxRoqU3L3LbEsIut7R6QuV2ZnItNjepf5zVrVrvY9bf7SvF7m3PPOlnGb/r2h1xs3brNMvdb19zpYmXTXWCOOdDPLyuW6Vngc+8+08X+65aFMjff58fNCSfq34lHn3haxisVi02YJWPCmbOP72p33CFzZW4p79eqhxfpMTa9zXedWTBbdyWpS/q5JZbSLRwfedl3E4y16K4QA3SjGT2xEEcCur40NviOnm8772iZO2eaH2fLFz0vcztifpydfpzuhNQk7iGeHZK5jz+w0sXWxfS/rUAvvVFpb2+vOLc67deaNweNmzY/bja/uEHmrs74bmozpzXK3AP39a34tm7tlrlrnnvJ5wZ0mC2UKx83h4mf2bKOjor//p4qaCzd+r0rXaxvaFDm3nzXMhfr7PJdO83MXnfkVBdbt2aLzP3E5We42G/v8Z9lZvbSy37P/aZzVNdBvq2wqxx5xGEyvuLPX3exGVObZW625PeL19+uO8F+4nLfHa+l0a9JZmYHzvTdRgs7e2XuD+/w7+TfuuwYmRvQaC10+B0AAAAAAAAIKQ52AAAAAAAAQoqDHQAAAAAAgJDiYAcAAAAAACCkJkwlzGhEVPw1s7p0wsUyI75wrJlZU0uji/3n1ZfI3Kk1vujcvlP93zczK5Z84ciqRp37o6+8z8Vq9D/NisV/6D9AoO/9/XYXu+UnvtitmVk26wuJTq7XQ35ryxQX+48vXydzr77UF/lqaGqUuVObffHkjdt9zMzs3//zNy72hff5YtFmZjYiBpWuyUyh5ADRaEnGm+t80ezSdF8U0Mzs9Wcc7mI33b9Y5i5b5atEfvKyU2VuOunHyDlHv1bm3vOUL2T6s+vukrnlYsBkVKGyqswOMzMrlfx4Ssb0GEumJrnYc6t9MWMzs5Pb93OxWrEumpk11Yr1cljPNytf2upipy7Q47GcXy7j+BdEoeRUQHHGsvnfq6oq/dwOmevXqg9967cy97tX+f1IMqHXwJZGXzh7qHtE5n7/L/e42C8/5T/LzCzG/x+OmS7HbxYR1T4b6n2zDzOzY+f5Qu6nvt8XQjUz+9IHLnexmW2NMre1yX9ecdgX9DczO/+HvuHHf31Q79FjET9u8jIzOA5tUqNv9pGs1hvI15/mixTfeM8imfvXR3pd7GMXnSBzEwk/v51yuC7sPlx8xsX+eJduBMEeZdeIiDXJzKyhpvJ38pYW3/jhq595p86t8tc9YJZulFQo+r10stkXVDYzu/bbH3SxWFbPGMXi32Q8bFhxAQAAAAAAQoqDHQAAAAAAgJDiYAcAAAAAACCkONgBAAAAAAAIKQ52AAAAAAAAQirS0dExIUqIX/3vJ8r40//01bbX3fXdgKv4bg/JREynln23klzeV9o2MyuLeEBzC4ulfaX3aFSfn7We7Ls5LVykK73jFd/4wH+42KVvOUzmrh9Z52L3PLJK5n73nb4zw9+f811jzMzaEv7pt8+ok7mJhOjsoIeZPb5pyMXmpHRnlDtWrXCx5rzudrJ2U6+LfeYnv9I3sRf52RcukPG7lw262MobvyBzt/f43OGhjMwtiUkjXaXnJzVnBE3UWVHhPxLVXZPO/LCfO+994PGAK3t//OMfZfztb397xdfYU/3gm+92sWktuqvDFy97m4st6eyVuS1iiExr8p3bzMziYowVdGMue77Pj5upST1u3vm1n7nY93+ixwJeMX+e7yYTUw/IzGa0+njfsH7GWx/1nYWWbdQd1WaKtappku9UYmYWE128gprovbjTz3uzavT97nOO70ry2GO6qw7M2tvbXSwesI2d2uLXicGMfg4v3XOtiy3bsEnmzhD7luagcSNurhgw57zU3e8/q1rf77y3Xu1iw/16bY2Lsbtkld7r7U2ueMcCGX+yw29Ct933I5mr+uJFClmZq6aLcsD7TyTwLUrklvz9lmN6rZp51lUu1tHRUfFn4RUfec8xMr64w+8bdj72U5k74htKW3VST2blkh892Zy4gI3unbyq2r9DRQLGZP0x73exJUvD1xGUb+wAAAAAAACEFAc7AAAAAAAAIcXBDgAAAAAAQEhxsAMAAAAAABBSutrqq+B7v3hMxk898VgXW9XxrMydd/BBLjYiim4FCSpOut8Fn6j4Gqvv/J64sK4kVxrFvY3GNddc42JXXHHFuHzW7vbZn/sCb8/945cyt7Zc62LdfcMydyTri0G+fv+miu+rShSpNDNrbfbXiEZ1bpWIl4u+eLiZWdfO7S42qXmGzKVQsvbBr9wm44+88SwXq0vq3+Ee8cwamnSRSSUiij6amR10/scrvsazt/mCyOWCHjeF4tjmnKD7hdmVn/mti33z874ou5lZXsw3C1p1EVElFtP/J/PUqtUuFono3MMPnu1i5ZIuVtg70FfxveEVpbLfUcSK+vdny1Y/vxRSeq3Kj/hnMW9q5WtVLKBwZFzsgKoCxtkBzX5tDZpzhkb0vwOVC9oqbt3mx029KMRtZlbMD7jY/BmTK76HeMBYUIVtEzF9Dwe0NrpYuaDK85oNj+hCycqI+F2D2TV/WCHjqkB3KqafQ9GSLhZJ6GYhozHtNF9UPUjnQ754f7ngi/hi1/nxr3WB+2OPPsLFOp55TuYesP9+LpbJjP2dvO0M30QnSNfDPxEX1vv58h4yj/CNHQAAAAAAgJDiYAcAAAAAACCkONgBxcts3gAAWBRJREFUAAAAAAAIKQ52AAAAAAAAQoqDHQAAAAAAgJCaMF2xRmMkr6tqL1v1TxebOXOWzJ3UVHlV9+du/ZaLJeL6TKwsqm2v7OiQuZGA7khjtad0wKrUQee/T8aXi25BU9vqZW465TvSDGZ0l49UMuZixaKupt5wpu+o9tKNn5a5MTEe4vG0zK2tTbhYX3/lXSQwOsWAavk1VWIuiuvuRsNZ33UiqAb/+vt/6GJDQwHPt+S7Q9Qm9NiNBXQrqdRFF100pr+/t6mt8R1FzMx6+nyHmlhC5zbVV7tYuaS7Onzzhvtc7NZv6fmxLIbCjl5/X2ZmyVQotwoTTjHgN96vKGYW0DwkLn6Hh0ayMrcmrdYPfQ9NJ7zHxbY/qjtOys5acT237Bl9RnafDrFfVF2MzPS4KRf0T7y5ocbFegZ0J6RozF9Z7W3NzPZ/ve9Q8+Kdvnupmd7jNDT6+e2VzxP3JTOxKwxndZepaEJ0PUvoffRIofKOR5mnfPfenYN6PKpujfFif8WfhfGVGdFjZ/mqZ1xs5izfjdPMrKWx8nfynY/+1MVyAWNPzVurgt7J95Cmr8yTAAAAAAAAIcXBDgAAAAAAQEhxsAMAAAAAABBSHOwAAAAAAACE1ISviJjN+yKgkYByfCq+ubNT5i5evtPFatO6eOVoDGWGXaymWhdTLZfGp6zgNdf4omR7W0FlM7NDL/i4i/3ugfNlbl2zr5oVG9BF/ZKyeLK+h01//+q/uMP/3T/XdbtYKaeLyQ30+WKZn/jWdRV/FoL1DA65WEHMQ2ZmsagoKBnRheR27uxyscY6PcYGenQRW+W59TtcrLZKV4ErFPz9HnXkYTK3psYXXs1kdZHWRYuW/qtb3GtlAgpSpqr988nn9CSyvafPxSIR/X8yv/zMxf7v9w3K3HVb/BoYK+t7GBnW/w4Ei6hKjAFLvprlYwGVHMslH69J6z1GLCrK6wYUiNy58Dr9B8LLG7a6WCmv54aoqtKNXUL+Vgb8uNW4aWqolblqflH1ss3Mup/8TaW3YM+u2eJinVt1U4CoGP9BpXk7OlYF/AkqFQn66YrGIMWCfmYbN/nn21Tvi3abmQ2Oovbxmk1ij5PkewmvhrwoUhzUB6gkKqBv3qzfyRct8e8/tQHvzqMxLN7Ja8Xe1kwXbA8jfjMAAAAAAABCioMdAAAAAACAkOJgBwAAAAAAIKQ42AEAAAAAAAgpDnYAAAAAAABCasJ3xSqJzlHRKl1lvZjzldrjZdG1xsxam+pc7P1fvl7mqkLZAZe1X339312srqZK38OkVn2RMdobO2BVSlVpNzPLF31Z99pG0VHEzLKD/hoPffS+ij+vu6Q7LF103eUuVo7qTgXzRKcc7BrFov/ljlXp7lUmOhlFI/qZzZzS4mJzL/i6vm7e9zspJxIydfXd33KxRFzPObNmzHSx3gHdea0sxm6j6W5d7e3tLtbR0SFz9yoB3auGRvwYq63Wz9eyfm667oqbZaqa3XqK+vledeOHXKyk++zYAQceqO8NgdTvT1C7IDlKAlqNvLi518UOnDVZ34MYEb8959f6JsTtbiv7DoFmZh+965Mu9vIG3xHHzGzW7Fn681Cx0cylJ596jIy/1NnrYgcEjBvVAev7p/tuq2ZmJvbo3eY70ZiZff7Bz7nYi+sCxs0sP27+fsvt+h4wZrGkfq8ayvr3qrTYI5mZzRZ7nFkXfEV/YEHsceL6lXTNHf/lc0t6bZ0yuU1/HnYJta4FjZ2RvN8vRgJaCLe1NLjYZV/0Hff+1134iOj6Z2Z2wzc+6GJ11boD9qSWSQGfFy58YwcAAAAAACCkONgBAAAAAAAIKQ52AAAAAAAAQoqDHQAAAAAAgJCKdHR06GqyE8QxRx3qYs/coguObtiwycViMV0At7/fFwVMBBQnjYiaTIWA4mHZzKCLFaO6UNM7v/g7F1u0eJnMnT9/vouVSgEVnMdobyx62r7AF39d/+cvy9xoXJ2HVv5rlMvr3NWbd7rYWVf9UOZ2rNz7ntHucuwxR7jY1ru/LXPjolByNq9/LweHfSG5VFLPDaoMXDGg6NwLG3a4WLpKFyE89YM/9vc1pIvrRsXcGXQPe+OcUYkvfvwdMr5piy9+fvt3Pixzi2Kej6pFKUCuoMfjlu09LvaB79wkc/syfr38222PVHwPezJVODxI0P+kJev8n0Qjej+SHfHF97NP/0HmRsQ4CegfIKmxZ2a2dtM2F5v/5qtl7tIlKyr/QIybU0VR5a0P6+KkAXW7KxY0bl5Y1+ViJ1z6GZn72OOLx3YTCDRvnp+zMk/8TObGzO8P+nJ6EhkcrHyPozY5pYD3qjWbu12sPqXnx/mX+ELLq1axP9lVjjp8gYutv+d7MnfDRv9Ons3rPWR/n393rqoKaCghBk/QnJMR7+TJdK3MfdPHr3Wxp5euCLiHiYtv7AAAAAAAAIQUBzsAAAAAAAAhxcEOAAAAAABASHGwAwAAAAAAEFIc7AAAAAAAAISUbp0ygZRFC4fWpmqZm820udi27b4Kv5lZujrtYoXssMwtiY5HMdm3xqy6tt7F3vqpX8pc9W8LojpgxXXDr1Ep6ALlex/xc8jnfPcRM7P93+ar7m/62xdlrnrGqSp9nnrWR30HLLoN7X7lsv9dU51ozMxSKdHxoeg7CJmZTWmd7GI7d2wNuAcfC2qEdPhrZrpY29m608iTi5bqi2Bc1FXrjiA1Sb+GFQLmmzd8xneuuf077w/4RD9wqmJ64Hzgv3wHrOtuvlPmvvGCkwI+D7tCbtDPOQ0Nenum9iP5kYzMrTvuAy6WWXq9vgkx6USjeq065PwrXWwlnWcmtHLex4o5PW6mnfUxF9vy8M/1ddW4iehxc/Kln3Mxul+9CsT+Il8oyNR4KuWDWd/9ysxsVluri20JeAeTjWQD9jhHHjjDxdIn+DFqRges8VYWD25Sk3+fNjMbGfHv5Gs3bJS5rZMaXax3p+/cGXQP0YDBM3nSJBc760M/krlh7ICl8I0dAAAAAACAkOJgBwAAAAAAIKQ42AEAAAAAAAgpDnYAAAAAAABCasIXT84VfJGkoWxA0eGIr4A7dcoUmXrsO7/uYq01o7s3ZcPOERcLqpGcTPjqx+3t7RV/VtB1VZHVUdRpxv+Sz4tqg2bWfYcvlNxy9n+O+fMolDwxqN+V4ZyuMl4j6rhnA6bVhhM+7GJz23Qh+NFYt8MX3V341LIxXxdj9/Gv/FbGP/Jvb3GxZFIXWv7Oh85zsX3f5IuQjtbCp1dUnHvrbY+O+fNggcVB1Zwjari/EpdVR7Whhde4WHL+2yv++0EoULpnGMnpPU7HX/z+uGreRWP+vBUrGTcTgZpBsuJdy8ysVjRpicZFQWUzix/9IRd77Yyxv1h1bBh0sVXsl18V6p18OPCd3C9iU6fqd/L2N/t3qH1a9TgbjdXbfYH4JUtXjvm6Exnf2AEAAAAAAAgpDnYAAAAAAABCioMdAAAAAACAkOJgBwAAAAAAIKQ42AEAAAAAAAipCd8VS0kFdA+prW10seHMkL6IaENx8z2Lx3Jbo6Y6YMVFBfrRUh02igEdNujEFCwW8Czy4oe54+6vyNyWs7/gYvzMw6e6Wnev2jHgu4oENL6Rv5c33bloDHeFsEonfbeHWEyPnGLJD5zbf+C7j5iZnfHBH7vY8pWrRnl3GI3dPZ8ff+zRLha0VpXF2Mku0Z3aUoe/28XoPLPnEENBdlB9Je6Ttzz0M5k75ZQPuthKuqaFTnVa73H6hn3XzZFi5Z35fn/Hwv/xPSEcUindvaqm4GPDuZ6Kr7tme1bGRUNpK5b191T29A5YCt/YAQAAAAAACCkOdgAAAAAAAEKKgx0AAAAAAICQ4mAHAAAAAAAgpCZ88eRCwReqzWZ0QaUqUVCprrkh4MpBJU53H1V0URVUHq/Pwr8WMV0gLhb156GqMCHCaTgjCiKrysdmlq7yU+jQcEZf+NWfcjBBqOKkNakqmavmm4CpyQpMRHsB/4zLZV09ORatfNJh5OzZ1EgYyemuGtFo5V08mHL2DLGoHgsxscfJ5IrjfTuYoEqqIP8o3snbmoLeyb2nl66oOBf/L76xAwAAAAAAEFIc7AAAAAAAAIQUBzsAAAAAAAAhxcEOAAAAAABASHGwAwAAAAAAEFKRjo4OatoDAAAAAACEEN/YAQAAAAAACCkOdgAAAAAAAEKKgx0AAAAAAICQ4mAHAAAAAAAgpDjYAQAAAAAACCkOdgAAAAAAAEKKgx0AAAAAAICQ4mAHAAAAAAAgpDjYAQAAAAAACCkOdgAAAAAAAEKKgx0AAAAAAICQ4mAHAAAAAAAgpDjYAQAAAAAACCkOdgAAAAAAAEKKgx0AAAAAAICQir/aNxAG7e3tFed2dHSM450AAAAAAAD8v/jGDgAAAAAAQEhxsAMAAAAAABBSHOwAAAAAAACEFAc7AAAAAAAAIcXBDgAAAAAAQEjRFev/Y8GCBTI+q67KxTYM5Mb5bgBMFIfPmyfjS1etGpfPO/bw+S62cOnKcfksAACAiUh1JqYDMaDxjR0AAAAAAICQ4mAHAAAAAAAgpDjYAQAAAAAACCkOdgAAAAAAAEJqry2efPphh7rYIa1tMjeX7XGxpkRsl98TgFdfUKHkSnODCiqfIuacRG2NzG1I+Kl5VxRwHs39Agi3Yxb4IuxtdY0yN1McdLF7n1y6q28JwKtsrMWI1d8f7TXG67oUWg6n08T+eHLzJJmbH+lzsb8+tniX31NY8Y0dAAAAAACAkOJgBwAAAAAAIKQ42AEAAAAAAAgpDnYAAAAAAABCioMdAAAAAACAkNrju2JdeNzrZXy/5n18MKY7XVXVNrjYTlGVG0D4NUVTLtabyMncaVV+bjjl6BNkbl2qzsWGSiWZ25j217170YMy98Rjj3axmoi+LiaGY+cf52JVEf3/LOm6KherrkrI3MxI3sV2DGRkbtx87pMrl8hcTBxnHXGqi0UtInNnNU53sWSV3valC7UudsKhJ8vcqpifDx9cslDmAnh1jKbL1C7pSHWY77rZsUx33TzhmCN8UDcJlfemZ7yxG6+OX3ujt51wjouNFMsyd27TbBcrx/WeKJWod7HTjjpT5lbFsy5295OPydw9Bd/YAQAAAAAACCkOdgAAAAAAAEKKgx0AAAAAAICQ4mAHAAAAAAAgpCIdHR26klEIXfq6f3OxA6Y2ytza2moXS8Z1wdFMzp9/DeR1bs+Ofhf70S0/kbmY2IKKqKmqbemoLmaaTBZcrHc4qOybH1MUbNs1jponCvUFmFyfdLGhcsAZeNHH589pk6nNLY0uVo4V9XVLvsBpPqen6s2buvxtxfQYe3nHZherGvZFdM3MHl6xQt8bKnbiobqQdk3NJBfLF/VzKBT8HNLUqJ9vb7+fQ4ZH9LhJVvmizAOZHpm7ouNJGcf4OevIM2S8tnayi1WndOOHqBgm9b6Gu5mZ9Q/42GBO73PKJT+meod3ytyHFt2tPxC71etPvNDFckFzTt7Hm5r0nNPT58fC8IgeN6mkX1sffeofMhfariiIPG7EEEmZ3hun0mPbG49G0D76iHm+2POSVbrYM4JdcLxuUlRd3eJiB0xtkrm1df6dPF2l9y6ZET9OBgLWKvVO3hvQ/OjGO2+S8bDhGzsAAAAAAAAhxcEOAAAAAABASHGwAwAAAAAAEFIc7AAAAAAAAIQUBzsAAAAAAAAhFcquWJ++5CoZv+K8U10sEvPdZczMsnnfjWZ79w6Zm6zyHScmt/hq32ZmjQ01Lvala2+RuT/46w9lHMFGU+V/NB2ljjn60IpzY6L0f7mkuxslrNbFctFhmVsWv4mZjL6HlR3Lg2/w/zBeP7NX2+Gio8HSUXQ0OPf442VcdcBqnztT5h5z0BQXmzJFV/1Pl/1cNJzxFfvNzErmB0NVjR9LZmZl89f91Z91F6Me0fWoNxcwHguVd6JYuKTy8binOmXBiS5WiKRl7qfedZaLde/QnRqiET8eN2/xndDMzKpTvtNVQ1ODzK2rTrnYNbc9LXN7Mt0utmTZ4zIXo3fOEb4DVk2d75xmZvbpd57jYv2DeqEoil/hzq1BY8d3r2lpbpa5DfW+g8l3bnxA5m7p3+Bijzz1kMzF2J146Nky/vn3+HGzbYfughcV/+e7KXDO8eOmsalR5tbX+vnwZ397Sube87jeN0Mbrw5YsYAOm0pE7I0jZb2PkHvjyJDMVS+p5aLuBJgQ9zBiuvubEqY98KvhjaID1v6z95W5H3rjKS4WT+h38kLBP+Vt3X7fYabfyVua9Tt5nei29fmf/k3mrt/5kovd9si9Mnci4xs7AAAAAAAAIcXBDgAAAAAAQEhxsAMAAAAAABBSHOwAAAAAAACE1IQvnnzRyRe72I+/eLVOzo+4UEtbm0zNDux0sW29ugBhtOiLi9bUBhRITfqzslxA3a6Pf+daF/v1Xb/SyXuZ8SoEV1fri4uamRVLvsBbIhGQW/QPtCqgSHc+l3OxSNwXGzQzK6kCzKJwqplZIubvt6ev8gJxozFRi8mp4skx088sVeN/5nVR/bMtiaJ8V/7HhTI3Luac/fbfR+YO9m1zsdZaXZx0a9dGF0s36blsJDfgYv0D+t/28+vuc7GiZWVuX1+vi93xxEKZC7MTj/JFSz//3jfI3O19vmh246TpMrdvmx8LIwVd0LK/x4+xptapMjdmBRdLV+sC3d/+9a0uNlz0n2U2ceeLieD4Q4+W8br0NBf7ztXvlrn9g4Mu1jzZ/30zs/7uTh8b1oX+s0N+T9TYrOecKrH+xKt8MW4zs8/98AYXGyxulrmPP7VYxqGddLQvZPqlK/Ratb3XF2dvbNVzTq9Yf7IB2ws15wSNx5goYltdUydzv37NX13sqRX365vYi4zX3jge13uGsujqEQ3YO5VFoWRV/N/MrCz23OVIQKFm1VkkILeuxu/fdsXeeG9b18479iQZTyd8w5BrvqnfyYtZ/049baZuRDLY44uzD2V04e2RYV/0va6xVeaqd6VcQY/Jj379Gn9fAWvVn++ZuEWV+cYOAAAAAABASHGwAwAAAAAAEFIc7AAAAAAAAIQUBzsAAAAAAAAhxcEOAAAAAABASOlWPhPIPtMaXWxb95DMTdamXWx758syNxPzFdWravSPI130HXUKNbpa9+r1vkPAlOmzZe6cKbo70t5GVfnXvY3MfI+p0SkU9XOLxXwl/WOOmCNz+31BdpvSrK/b1e+7zExp8F1NzMxK1uhi9z2xROb2DqrOJgEdBYSY+X+vmVlRdMoJ6sLwancJWLpqVcW5Jx1/gos1NemOVC2N9S421OM745mZzZjjOw5tFd1HzMyiMd815kXRHcnMrKbeV/jfltHdq6Ijft6KpnWzw9kzfTe/r13zG5mL0Sll/Lr04hYxWZhZOZZ0saLoRGNmNpTzv+uN9dUyN5n2a019nf8sM7MtO/zYGxzU4zxW9v+2qqjugjRfzBcr97KOImZmpx97joul07qbZm3crx9rt+p5xBL+eQ5uXiNTB8V6V1fj90lmZjVpP+ck6vXY6ezc4WLVtXo/05Dyq/bwsB47Rx9xlIs9tYROWUFKw74j4gudvruZmVkp6p/lyOb1Mnco7+echoA5Z1JqlovV1+nn29nd62IDA7obbbys90l7u6B911i7ZanuV2ZmEdF96pgj58rcgV4fa2vSe+OtfTUuNrVRrz8la3CxBxYul7m9fX4PO5q9cUdH5fvKPcXrT77AxVqadWe7qXV+f7yly89DZma1TT539da1MjcTFe/kaf2ekkr68TCkpyfr2ez3OfXNk2Tu7Db/5rmkU9/D6Sef6WIPPOK7zr4a+MYOAAAAAABASHGwAwAAAAAAEFIc7AAAAAAAAIQUBzsAAAAAAAAhNeGLJ/clfJG+fWb5mJlZPt/rYtUtvkCXmVl+JO9i/UO6OGk+4gtAVZX1PRRbR1wsXu6SuZkaXShsrxPxxalyUV1wLRLxZ5HlgILIHaK47knH++KMZmann3Kki/Vn9a/H+afNdLGu7bpg4SH7+YJgI6IYt5lZXZ2v/lWONcrcBx6+28UWPq2L6h3VfpiLxaK6IFi25H++hTGXrH71JUWt6b6AwsUtk33B60MPbJG58ZifM5I1uvT31q3dLtZUrSu+dfX0ulhdlb5uIemfWUO1fr6JmsqLCGJ0+q3XxQ5s8+uBmdnUFv8sIxH9fBsa/Bq2TRQhNTPrzfrn3tasrztJjNNCVhfsHSz54sm61OZoylTu2cplvy5FI/qn1hvx+4n9p+v5qS7lf8KJlF5Tkkkf796p9y6DBV/wtrnW75PMzKqn+wk1VtogcwdivghuJK6vG9NLOQL0qTlnit7HtjX6uSEaDdqL+OKkQXNOj5hzprTo6zal/Z6qnNPjvF/MOTBrnz9PxiOiAUi5FPALJQolR0WRZDOzU0463MX6R/TzPftkX0g7aG988P7+fofzet9SV+cLvhcifoyamS1++iEXy2b1dxiWd6yU8b1NTLxDZYb1++mAaBRzyL76dzUe82tNSuxnzMwKOf+eMZjR+6ehgh8PNTH9jBNtfq1Ji/syMxup8YXcG+v0e2C0rNewiYBv7AAAAAAAAIQUBzsAAAAAAAAhxcEOAAAAAABASHGwAwAAAAAAEFIc7AAAAAAAAITUhO+KVV/vOzWs3bFO5q7rGnCxrQt19WvRzMYyVpC5+82c4mIvrO2UufGoryzf3KSrtxcjE7eq9m5VFi2LysmAVF8lvaNDd4NSmhr1s6ir8dX4P/iGE2TuPrOnu1hv73aZu3at7/hw0CG+q5aZWTbn72HOdN/Zy8zsrgdlWFrcsczFzj3vXJm7Yb3ubBIWRx6lu56l4348tdXXydzGRj/nzD98f5k7q7nZxdb09MjcyZP9PFIX110geoZ814r6lO5wsb3of38OmeY/y8zsujuWyDjGx7S5vkuImVlzo++8lgwYj3Wig0nz1Gkyt5D3a1giqbtiZcT/61SbmIvNrGx/c7GOjhUyV7n++utl/PLLL6/4GmGTz/v1PR/XHYtqa3yXmWiN3p71ic6FIyO621Z6yK+XI2V93XrR/WPnsO52Uoj7e6hPNsrcsuiTpjqGmZmN5HUXFFRu6uwZMt5Q77vRxGp0V8Za0U2ptrVN5pbE+hNL6DHWIuac2oBOcSbmnL1Ne3u7DwZ0TyyXxta9tCqg62ax4DsFfeAs3ynLzGyfuX7s7ezZJnM3b/Jdl/Y9YKrMLeT9eKqr1h2tHn9K/H3T883h4uf7sU9/WuZecsklMr4nGCn7fUNNKmCdaPB76Uxcd9Aayvrf7e6XN8vcuMjNB7yTT2pqdLGN3XrfXRDd3tqafKfrV3L9XFYSPxszs55+/XkTAd/YAQAAAAAACCkOdgAAAAAAAEKKgx0AAAAAAICQ4mAHAAAAAAAgpCZ88eSIKKz2/MZembt+sy+UHA0oAFX29ZSsc4suFJhK+qLMO/p0obLps3wx1V5R0NLMbMuOQRmHmY2xEFyQRECx2pPbX+tikcZGmVsY8YXCMlldnO01BzT5YECByB5Rt/S4A3XR3uqatIxXKlrQ9xuL+Z9PURRHnKiqE/rn0lDvi9Vmi/r3PWKTXGz7oC50Xs754tjfvvZ3Abn+Z37e2efJ3FSVn/eiI7q44c1/+K2L/TmvC1LuGNQFejE+EnG9/kxrm+xiT61YKnOj5p/ljOn7ydyGal+Et0EU9Dcz2/T8chfbKT7LzKyucWzjpigKQO8pTjrybBmPiA4NhYCiweoJDWT0vJtO+3lgS+dGfXPi555I6AYCiYQo4Bwwj2SHt/pYwDMuxfzvQEQUtDQzq0r4f9vrztE/33vuulvG93bxuH+OZmZTWv26tmhZQDF9se+eMU3POY2iyHdDVP+fcecLK1ysJ2DOqR3jnLMnGE1jEFloOYB6OkG/kycccpCLNcyZLXNrkv4aWwLqoR+4f6OL5fJ635+r84W/X3/MMTL3e7+63cWKOX1dNcP+8YYbZe6eUDz5rBMvkPHqWj8iskVfNNvMLGL+nWbNVr2XzmX9u+/arbrxkBXFnjfq9+1mZkXzc1x/v37GQ7leF+vu8uuXmVl3v1+zYwFzWUO9X0cvessbZe6f/nKrjI8XvrEDAAAAAAAQUhzsAAAAAAAAhBQHOwAAAAAAACHFwQ4AAAAAAEBIcbADAAAAAAAQUhOmK9Y73qw7H9z+s4+72Pat3TL3lzc/7mJb+nXF/TOPmOZivTt0Ze/LX3+Ei9308DMyd/X67S52/um+qryZ2YNPPy/jextV+b99/gKdu3JFxdc97aTjXOyKy86UuXOniS41Tzwrc1cl/K/NmSceLHMb6301/2TWd9UyM3vo3mUutjauz16Lqq3bKPzj7rtkfN68+S42ms4Mr7ZHnnhExs874QQXq56mu8O85dyjXGxkZ6/MLU7zXVz+sWiDzD3/tKNdrKFBV/3veOYFF2uaKjqsmdktK3tc7JLDpsvcfH94OpxNVEHdRx759edcbO5sP6+YmRXKftzcdKeebz58kR+7zQ26Y8z8/dtcbLhLr5cfvuNlF/vCRUfK3FhAx5SKlfbcrliDWd+N08ystsp37oin9M/h3ms+5WLVSb09W/Fil4s9skR3GnnX+QtcbDCj15TXH+87Q6765zqZ+60bVrjYR99yuMy1gK5HSj7vuw/Go7qT5d4kaM5ZdMOXXGzGNN+Z1cxsOO9/jjfd9ZzM/eg7TnSx5oC16ojX+L103xa/DzYz+8idq13sy+/w66KZWXysc84eKmhvPBoJsYd9xxv9ftnMbM5Uv4a9tNI/RzOzf4ruU4e/dqbMnTrFd2nL9vXJ3MUr/X5ofUBn18Io9sZqZrno0ksr/vths6NP/16mS76bbE2b7sL6m6+/18WiBd35+cHFfpwsf6lX5r7lNP+evGOH7kZ75pEHuNjijnUy9/o7X3Kxd71ez6f5h/7pgwHdHvsHfEfcpil+Lnw18I0dAAAAAACAkOJgBwAAAAAAIKQ42AEAAAAAAAgpDnYAAAAAAABCasIUT45FdVHPhhpRwKlZFz094lBfUOm2haIYkpk9vNgXjrz0nMNkbjLhS2wdcci+MrcQ8YWW7n/CF/4yMysFFP/C6IokB1ElrxKioKWZ2cFzfNHRD3zz1zL3v696v4upMWJm1tLoiydnukdk7o9uud/FfvXp98ncWGR8zmRXrVo5Ltd9tUVqfOHHeEwXfCuX/O/l9m1bZe5OUW/9Z1/3Bd/NzCan/HVfWLtN5ubyfoy80KuLbv/0cx90semNSZl793f+IOMYO7VW5QPm+BlT/Rr2/nedI3Mni0LJ7fvoosxlUTiytrVF5n7h6re6WI0sJ2lWEr8ToxGL7bkFcMtBU3HMr0ARsT8wM2uq9b+vpYj+mb1mP1+g8ZQTDpG5aso45+j9ZG406v8hs+fMkLmXXXSyi23pz8jcUrHysRMRRV0jFNEN1KjmnKIeYzPbfPH9D73vPJnbXF3tYgv2nyJzVSOHhjZfGNfM7GuffoeLxXN6fIx1ztljlfS7kmpycURA0W01Qqpr/DM3MzvsQD8HnPTer8rcb1/p98YNtb4wr5lZa5Nf13pGsjL3kz//o4v94hO+iK/Z6PbGvtSzWTS65843sXjAvy3t55FYTI+z+pR/hyrl9c98nzl+rWrv8kWHzcx29Po97+lH7C9z4zH/75g9WxcuPvvUQ12ss1c9ebNi3v+bg3YuiRo/frNZ/W63u/GNHQAAAAAAgJDiYAcAAAAAACCkONgBAAAAAAAIKQ52AAAAAAAAQoqDHQAAAAAAgJCKdHR06BL6u9nNP7xMxm9/utfFll7/WZnbucXnDmV19WtVb786oGK4aspQDvipZfP+D6Ix3XzsnCu/72K33OY7I+F/5rwz5rvYwIiu0L/t8RtdbNmmTpk7K+HPQxub62Wu6jRSChg7L+4c9J9Vk9L3cNYVLvbE40/pC+9FTj/xRBl/4LHHXOw7n79c5j6/qc/F3h7QMW/7xl4XKyd1dwnVbSua1/NTOa87dinFtB/TMdn3wuzWR5a52M1/u7fiz4LZZW/z84qZWccL/vluvOcHMrexudHFkgE9KqNisckW9PMtF3xXh6AeH3HxgdGA7lXx+f53ZdWqVQFX9q6//noZv/xy/Ts4UbWLLjO1Cd1pMRL3P98zjvVdEs3MHlvhu8F03f9DmSsad1hE7mhMblRKQZsX2YUoYPTE/LoWjeqx03rqh10sHnDdnOgi19yqO8Bt2LDBxVRnoD3Bu96u55zlz/qf145HfyZzq8Q6kU4E7HnFGMnk9RgbzZxTJTrqRMRYMjOLzfNzw576fHcFNTcFmd3mf+ZbduqnpvbGSzZskrkzxd64ubVR5sbE3jigoZu90D3gYrNqdOfP1154lYsN9emOognxctcybbrMvfvuu/TNTVBqPExp0B2la1J+z/q2c32nYDOze5f1utiS331O5g71+/3tsFrAzCwi9qzJgK+eqPkpaFnLiK59iYB38qPf/RUXq47o9b1/yHfAqmpolLkvvPCSi43nXMY3dgAAAAAAAEKKgx0AAAAAAICQ4mAHAAAAAAAgpDjYAQAAAAAACKmAco2731s/eoOMP/zuC10sO+SLm5qZRSO+elJ9jS6Wq6giyWZmB73hkypb5j779/9ysXJBF0LN5fOV3hr+B26/f6WLLThqnszNj/gx1d7WVPFnRYMKAIqKXomoHjv7N/nCmuWiLq47lNXF4PZ2qkhykE98TRd0ver9b3OxRx7XhWIPnDbVB/O9Fd9DMaDI8a9vfdIHA+an97zheBcrBRUnDSjWjMrd8Gc/r5jpYoUvrV4tc49s9MVQc/nK/58lqFDgfheotUpbfef3/HXzviDgK583th4LRVmYd8+QL1XJeHHEF4lctErvBVQh0S2dukBp62Q/50QCCheraSBolE05/UMV/X0zs66Hfupi5ZIuillS8ZguSCnqXAaOvURA0eo90XV/HMWc8/LLMve1hxzkYtlcwLgRygGDYfpZV1Z8jc4Hf+KDrEnjJqhA62Fi3BR0LWLL5/pdbMH0SRXfQyygIH+9KKQdDXgJU9FyYex746dFA4AbbtDvonuCoaz++fYN+8YtT61qlrk1cf/cNm/Sa1VjXYuL1VZVPucErT+HvPEzFec+c8s3fTBgrcrl/Dt5TXXA+h73K2kyqZvdVFXpa4wXvrEDAAAAAAAQUhzsAAAAAAAAhBQHOwAAAAAAACHFwQ4AAAAAAEBIcbADAAAAAAAQUhOmK9aoBBxHjYhuWanaxoovG9T448U7v+9ihZGsThbVtnNDO2VqIsG52u5WLuiHHBWdqoYDnnFNteq0pq/bcsJ7XGzbY7+SubGYagkiU4PCGCeJpK7k//iSf7rY7BmiU5aZzZBd1nQp/zefc4KLNSZ0ZyE1bz257FmZW5UYRUcCjNlwRnfueP6FF12sbep0mdtU77vlBVn5py+7WE1Ntcwtl/14evHFFyr+rNH4t3e/e1yuOxEUTK8TZfM/35GC7o6REDuxkbzuoLVp0wYXa26dInOrU5V34+h6+McuFtSRqlz2+5zOTetkrlpbSwFd0opF/2/u7OwMyNWdTfZ2QXPOcy/43+0p02bI3Ma6yueczff+tw8GdGlT4+aFF56r+LMQLKgDVqXEozEzs7oa3+mnd1B3T0yq7j9inTEzSx1+qYttezRgbyzmkHSNbuOlZqzR7Houu+yyUWSHy3BhQMZFU0bbOaznkXq1nQh4ld3SudnFmlomy9y06JIW9KKz8KavuFhdMuAmxMDe0rlRpiaq/DVyOb0OZ7NDLvbPf+p99+5eqzhZAAAAAAAACCkOdgAAAAAAAEKKgx0AAAAAAICQ4mAHAAAAAAAgpCZ88eQtO3tdLJ/TRZ3iorhobsQXODIz27ily8XqA4pMjsbaLb0uVhtQeDUfUJQJ4yciirCZmZWLPl6T8kXjzMyiEX8eGtGXtR0Lf1vxvb28YauLlfK6SF00oOguxm5Tty92XlvdLHMTon7fhk7/HM3MXly7ycUiu+A5Vqf8eEylVIFvs5GewTF/HioXC6jaWC76tWrbNr8mmZktW+XHY121Lhw5Gn2DfizUpCu/bnt7+5jvYawFPyeymmq/n1DFgc3MCmI8BFUzVTNGb88Ombuyc5uLNdTouWE0unb2u1htWhS/NLNi0VfAzOT0ulYliq+WynmZG43qz9vbBc85/jl0dek55+nl3S5WL4rojla/mnN2wVwGLWiOVvPuvMN0rugHY431tTI3JgZf0N44s+IP+g+EF9ZucbFiPiNz1d446E1rNGvYnrxWzZruGzdks8Mydyjr5+5CXs/RCfFO3t/fI3OffcnPOXXpyuccP0Je0blDrFVJvXaod/JtvbrgdGNjvYvV1ek1e3iY4skAAAAAAACoAAc7AAAAAAAAIcXBDgAAAAAAQEhxsAMAAAAAABBSHOwAAAAAAACE1ITvilUo+GrS0USNzI0nfLXuUkl0mzCz6ZN9l5tj3/WDoJvw143pqtqL/vh5F6ur1d22Zs1arD8P4yegK9aLm32l9gNnt8ncctl3l/jNOb/Rnydyt5V1p7aP3vVJF3t5g671PmvWLP15GDM151hET5U1Kd/RY6gc0LUv7ztG7OzRHQIs5s/cS3k/lszMUtP8OG1p1p1vuouc5e9O0Sq9VmXEs0xH9VrV1uy7L7ztqp8HfKK/bkkPG/vzjz7mYom4Hh+tkya52P/V3p3H2V2Wdx+/zn7mnNlnsoewqCxKVhANCoIiooBstliEKpW2LrVq3bDW2mpbpVaxbn2o+AKNVlAQIiKCWoHKEgLZBkQgCUlIJsnMZPaZc+aszx+8ntfzx/W97YzJhPkNn/efV678zm/md5/7vs8953Vd8URo++BfMFEoykzVlWS2dB8ZGfXzfENGvy8TSf/sExndeaYsupUk64F9zpw2F3vdVdfKXNX+phbTLZbu+86nXKwh6ztamZktnL/AxYolfb91NXbE79HMbOdgYO58kYun9biZqPjONZnAnLOgs8XFLgrOOf4atbreZ90m5pxMSs8jnR1+zsHUTGkuDWwNnt4z6GLHB/bGar/7rTdNfm/cG9gbf+huvzd+ake3zJV747L+4SpizosF5pXZvFZt27HLxeZ3dsjchpx/bqHP5Fb3a1UssFbN7/Bzzvnv/aa+rvhcXxXdis3MfnbDJ1yspUmvw0uO8GMnmdKdZGvi5+iM6/5rW0uHd61ilw8AAAAAABBRHOwAAAAAAABEFAc7AAAAAAAAEcXBDgAAAAAAQETN+OLJwyO+6GK1oqtB1uu+eF+tqosZFSYKLvbgDR+SubGYLwQnC6ya2fZtO1wsncnK3Cd/t1XGMX02PbJZxlecvMzFiuv/S+bGRJGuK3/2Z5O+h2qgoPeO3Ttc7FV/9FGZ+9j6jZN+PUzNqJhzWpt1QconugddLFvX5+X1up+L2tt8cVMzMxO1J6uBKripmC8av6dfFzLt2denXw8HLZX0D+2YJbrI5P59+1wsmdYF+QsjvnjfD699r74JsVZVRYFIM7PhQX8PhQk9xgYHDrhYOTAe42J+DDUxiFrxSXW/qqimmVki4QsPV2q6sHqs5n9nnW2+aLaZWf8BXwS3HigcWRz3c9m9139Y34OYdFRxUTOz/fv2uFg80FCiu9sXOR0v+p/h+Wv431m1qu8hamNnOqg55yWBOWefmHMsUAB9fNiPmx9f+z6Zq8okh/Y4w4P7xQX0uBkc9HMOps+WR/X7adlJfn4rrv+BvoiYh97988nvjUPrxNZdO1zsVZfoeSyZ8iOyLkepWbmg5xYlavPNwa5VhZIuZF2t+dx0Su83ewdGXKwxUGR/ouTnnDu++X6Zqx5nparHzp7nfGHobYEmIk89tc3FDgz4AtBmJhvxVAP3cLjHDt/YAQAAAAAAiCgOdgAAAAAAACKKgx0AAAAAAICI4mAHAAAAAAAgojjYAQAAAAAAiKgZ3xWrXvedN2Ix3Y0jmWlwsUppQOa2t89xsTFVsd/MVJ3r0InYcccscrFVV3xB5v76/nWBq+BwS4vODGVRpd3MrHn1e1ys8Nh3Za4av4m4rypvZvby83yV/81btshcTJ9a3b/jFy9okbn9/b4jVd8+3wXGzKyc9N0AMjX//83MTExxycCkM1D21z3Q2yNz7/n1Q/oiOGhi2Fhbk+6IWCl1utjYuO8gYWYWi4suU1XdXcnkeqk7gmTS/t4u+Juvy9wNm5iHppNaJ/INentWafad9EIdhFqam1ysMDokc2viHuKBsbNoXoeLrbjs8zK3LiYz1f3KTHfAilo3msNJPDJrbc7I3ErZzzk9B3SXxKbGnIsVx3WXnJp4vqrDmplZe4tfR0+76ssydyNzzowQr/j1pxLYGzet/ksXK25YI3PVnBcP7I1PPP9DLsa88MJQ++NcYK1qbPLv93pR73Ms5eecelXPOfJzVWCtam1tdbG3fFDvc2SjT7H/MpvZaxXf2AEAAAAAAIgoDnYAAAAAAAAiioMdAAAAAACAiOJgBwAAAAAAIKJmfPHkqqhmNFr0RYvMzDKiumgq4wsymZkdf+EnXWxhuy++PFV7R31hqfv+55GDvi4Ov0AtLht96D9dLL380oN+vS1bZkbhrRe7UtXPOYVxPefUzMcXL5grc3/1yOMuVq4d/Nl6Q94XT66KnwHTqyLWqsKEfg6xmF8n5s7V4+aVf/I5F2tOBYpuT8HWfQUX27iZgqVTFSqYuHTpUhdLJgMFkcX7dawYGDtxP3ZaWn1BZTOzY879hIstajv4bd+2XjH+VCVfM0snfUHU8aIu/j1Tik9GhRo3hcDUMJU55xUXf9rFFrUENkRT8HT3uIsx50RPpVKR8fGHv+Vi6WUHvzdmXjg0prJWxeOBIuxVP4+MBvbHqtFRY7NuRPKGy/0+J5s6+H1s77i/35qskmyWSfm1ShVJNpvZY5Jv7AAAAAAAAEQUBzsAAAAAAAARxcEOAAAAAABARHGwAwAAAAAAEFEc7AAAAAAAAETUjO+KpeQadPeqkTHRacEXxH4+LOI33fXwQdwVoiydSrlYInDsWRNV4YuP3iBzsydd6WJbZnA1dWjxuK+Wb2Y2r6PDxcaHDshcNeekRKcSM7OBguhgMqdR5qpeJb/89UMyF4dXNpuVcTGFWM1CHSB8/Ed3rzuIu0IUNAT2OaPj/h1fqepWSGpE7RnQHW1qNd/9o1rXi2AiJuKBpklDYl82kzuKRN1U5pzxiaLMVY/yZvbHL0rxuB8N8eBXAvwgm3iMvfFs1xCYc0plP3aqopOsmZlqVFUQ/9/MrH/Ed/TM5PQ9xMVgDY3fvX1jLhbFtYpv7AAAAAAAAEQUBzsAAAAAAAARxcEOAAAAAABARHGwAwAAAAAAEFEzvnjy0LAv7lYu6eJL2ZQvcFqt66KnsUChP7xY+cpdddNjJ6HDk7wqZrrBQV+YbUDEzHSRySPmtk36te5dt3nSuYieckkXtU0n/chpbMwHrsJiNVtUKnpFqFb9nqZcEs0gzCyT9H+PyyZ1oeWpjJzRCX9v1aq+h6mIYvHJKKsE5pyMmHMaMk3TfTuYhcq6/rpl05PfHLM3ntmGR/Q8otaqQqEsc9NirWpu8I1qQuqBQaL6JA0XfOHjqZotaxXf2AEAAAAAAIgoDnYAAAAAAAAiioMdAAAAAACAiOJgBwAAAAAAIKI42AEAAAAAAIioWFdXF8XJAQAAAAAAIohv7AAAAAAAAEQUBzsAAAAAAAARxcEOAAAAAABARHGwAwAAAAAAEFEc7AAAAAAAAEQUBzsAAAAAAAARxcEOAAAAAABARHGwAwAAAAAAEFEc7AAAAAAAAEQUBzsAAAAAAAARxcEOAAAAAABARHGwAwAAAAAAEFEc7AAAAAAAAEQUBzsAAAAAAAARxcEOAAAAAABARHGwAwAAAAAAEFEc7AAAAAAAAEQUBzsAAAAAAAARxcEOAAAAAABARHGwAwAAAAAAEFEc7AAAAAAAAEQUBzsAAAAAAAARxcEOAAAAAABARHGwAwAAAAAAEFEc7AAAAAAAAEQUBzsAAAAAAAARlXyhbwAAAGgnL1vmYgsbW2TuWHXMxX61bsMhvycAs9dZJ610sfnt82RuaaLfxX54/yOH/J4AAP87vrEDAAAAAAAQURzsAAAAAAAARBQHOwAAAAAAABHFwQ4AAAAAAEBEcbADAAAAAAAQUbGurq76C30TAAC8WJyx8nUuloklZG5TU9bFGlNpmTtSKrnY3qFRmZuO+9x7Nz4sczFzrF5+qotlYvpvdA1NGRfLpXUz1PGJiosdGBmXuSkru9gDmx+VuZg+b175Whcbjev3+xG5xS5WrOrt/9xcgw8m9RhLx2Mu9tu+QZmbSRVcrFb3MTOzoTE/Pz24ebPMBQA8j2/sAAAAAAAARBQHOwAAAAAAABHFwQ4AAAAAAEBEcbADAAAAAAAQUbOqePJZq891sXLNFwQ0M6uKeEubvu7QoP8VTUzoX1s67YtaPrD+bn1hAJF28ZlXuFi55guLmplVRGHblpy+7uCon1/GKjWZm8364rq/eOBmfWEcVm9c+QYZb25b6GJqTTIzq5T9eGrJ69cbEuNmNDBuMmlfWLd/dL/MXb/p1/oFMW1OX3majOfznS5WqgbmnIqPt7X6YrdmZkPDYs4J7HOyYp8zXOiXuZu6HpRxTN6ZK14j4815P/fHTS8q+aa5LnbCQr3pbWz018gk9Vgolvzfh0fKVZnb3zfkY8UBmbvrwFMuFivqcf7fmzbJOKbHtz/6fhk/8pglLlYa1+OmtcU3CxjQtdrt3A9+bPI3hxnjgjPe7mKhfU614uOtTYG1atTvaUZLepxlUikX+8WDt8rc2YJv7AAAAAAAAEQUBzsAAAAAAAARxcEOAAAAAABARHGwAwAAAAAAEFEc7AAAAAAAAERU8oW+gT/EqSteL+Mfe6ePDwwNy9xUzP/o3fv3ydxs2uc2tbbK3JzoUHPm6rfI3F8/9DMZx8yw6eavyXiq6s9DKxVdzr9W9VXdk3nfjcbMrFr342zFpe/9fbeIw+Ssky+S8Q/+sX9vd+/X3WHGq75TSCj3hCN915m5rS0yt7Pdt0i68AzfrcvM7PZ718g4Dt45ogNWPKWf2Z+fd4aL7e0ZlLmFqu8W0b3/gMxtbFDjplXmdohxc+PPH5K5q1ed7mIPbbhf5mLqzljhO2DVYrq70Xsu9h2SevsHZW5M/O2ue1+PzM1l/dhpCcw5TaIb07d/+qjMfeWq17rY+g2/kbnQmnK+s4uZWUp0wDrumJfJ3L94i98fx5P6I0BBdLXqPaDnnEzadzea194hc1ta/ZzzD9fpDjVDmV4XG7A+mYvpc/NnPu5ip71mpcyNl/1+Nx733UDNzKplMW7m6u8a/O62G13s+IveJXNx+J31yrfK+Efe8WYX6+kblLmVmu9qtWe/fr83irWqvU2vVW3Nfo48/3V/InPvuO8HMh41fGMHAAAAAAAgojjYAQAAAAAAiCgOdgAAAAAAACKKgx0AAAAAAICIinV1dfmKRTPIqa88y8U+/ZfnydyegSEXm7PgSJnbv2+Hi8VjuqhtX89uF2uff4TMrVeKLtaQa5K5X7juJy726Jb7ZC6m16Zbr3OxY4/TY6c4PuhiHblWmds/sN/FUvl2mTtRHnOxnr6yzD3hXF0cFwfvDa++2MU++LYLZe7QmC+aHcs0ytyJ4QEXe7Z3UOZm4r54ZVNezyNNomBuLqfnsq/fstbFHth4p8yFdvKyk2W8Nb/ExT76J5fIXDVuktlmmVsY9gW2d/X5tc7MLGV+vmhqDBTAzfqCrA2BcXPtD25zsdHqLpm7cfNmGUfYaaf4IpOfvPJ8mdsnGkI0dyyQuUO9e1ysoGuZ2tiQL1TZ2jlP5iZjfn5qyOl578s3+jlnrKoLOHd1dembg/T2113mYl//h4/q5PKEC3XO08+3OOrnnJ7BgsyNV30839gqc3MZXzB3oqw/gnzki//pYt+608dwaNx/640yPj/tCyIfd6z+/FMRe9i2Br3+jIgxFto7lSp+jO3eoxuWHPWmS2Uch8brX+0LJV/9Tr3PGRgZdbGGZl1Yfazfrwm9I/7ztJlZbcJft6VVf67KJv33V7K5Bpn75TV+n/M/j0WvyRHf2AEAAAAAAIgoDnYAAAAAAAAiioMdAAAAAACAiOJgBwAAAAAAIKI42AEAAAAAAIio5At9A//PqmWrZTxT9xXZn97jq6mbmcWzeRerPac7dxRFJf583r+WmVnHvKNdLCc6ipiZ9QxVXGxs1FeKNzNLxnyl91XLdceVDZsflXFMzb03fkPGX3LsIhcrZfU1Yg2+qntPWVfoT81d6GKjVV/R3cyswXzXo2y77kRx/d9f7WJXffYLMhdTVPRdZ3Yc0M9sZNx3IYrX98nc4aqfc9rm+DnLzCw24bvO5DpzMnf7Lv96nTHdJSdTH5FxaGee8hYXSyV1l4+46NSwo0+Pm7Gif74J2yZzh6s1F2vrDIybkl+Xch163Dwrxk17bL7MzZofN+WEvodVy1a42IYtm2Qunlcr+HHyzN5BmVuN+y54lR7f/crMbLTkx1lbix4POdHVraVZd0nbK7qyjY4GuibV/f4nHdeL6/Kly1xsc9cWmQuzly5uc7GeA3ovkm30nWB6926VuYWE/5tvOu87WpmZNVT9x4hS3s9ZZmZbd/guoQsW+/21mdkx8/1cdsGbz5W5a++is+PByoo1ycxs/jG+A1Z2sZ77K/VWFxuv6D1HonWxi5Xquttja2GOiw3VBmXunV+5xsXO/dAnZC6mLjbh5/Pt+/Vzm6j5eaRxQn8mHy77OaM9sOetl/xc1tKux+Se7gMulgocfaTrer8WNXxjBwAAAAAAIKI42AEAAAAAAIgoDnYAAAAAAAAiioMdAAAAAACAiJoxxZOTKX3GNFryhUxPXKSLHM9t8deImy7Sl8z4AoRDw7pw0v7hCRdb3KkLaLY3+IJviZounjxW08UGMX2Wv9wXGzQza2nzheNSzXqcFQd9Ma5szhfzMjMbKwy6WEbXFbREmx87i+t6/DZ1ciY7XQ7Ue12sLa8Lvs1rKrlYMlBYvbXFF8fevU8XPbW2dhfKZ/24MzOzhf4eYhVdcLTffJG75ct9wVIzs82bKVpaNT8vpANrVV/Jj5vOpt0yd1GrL7qdCoybZjFu9uzbK3PrqVYXa2wINBtY5O8hVnlc5g7E/LipimLgZmb1mI4jbNgGXeylc/X+YEGH37bF4nrstLX6eWR/rx4PI2V/jTmtfp9kZtaR90WVy2KtMzMbFcWT64EholdchAyl/Jpw9JI+mVsu+eee62iUuaUJv6aMjBX1ddN+L5yu+bnQzKzS6a8brz0scwuNvgh0W9OM+cgSad/94qdd7JKzVsrceYv8mzWR1Wtgw6jYGzfovXGt5p/vqP+49/w15vnXW9LcKnOfWaSLfOPQGDD/jBe1671pR7NfP+Ip/R7uaGt2se79+rol84WSWxr1etmY8qtKpaj3T8Ox2dFchE+HAAAAAAAAEcXBDgAAAAAAQERxsAMAAAAAABBRHOwAAAAAAABEFAc7AAAAAAAAETVjSsw/8tgDMr506VIXW3bScpm7eI7veFTO+u4NZmbpkq/Onwiccw2P+ertzU05mTskuj3MTetf83uvvcPFuro2ylwcGguP8pXXzcyOnj/fxQpijJiZ1Zr8NdJ13znNzGx43I+/xqzvRmNmNlDx7bIWtvuOOGZm/xXTr4dDQLRm2bpXdzfa3uO7BcUDrV2aY34eGKjqsfCSRb4bwLY9gzI3l/TXrdYCrdfUDxdqUSOsWbNGxq+44opJXyNKqiX/Phuv+2duZpYQ0/yO3n0yd1e/774Qj+mB0xzzXT4GA+PmqAWD/h726vvNJnwXpLroAvY8dW96jNXqobGHqehcNE/Gc82+I0hDi17XVLRBdMoyM6vV/LNPpALdtsReKVNbKHPr9bUu1tW1SeZialpafNfMrT1bZe72bt9yaG+v7qCVEA2wCqbnnJcd6Z/7k9v0epmK+3HT3q47zFZi/vVu/KEfS5i6RYv9zJBp0XvK9pYOF8vVdQeiRLP/DBYr6U5DYyW/t21v0Z3Xhid8vLNFz03jcf95DYdOTOxTJuJ6zX922D+3hrzukja+34+TkYreE7XmKy62T7yWmVlM7J8src8F6rOkLyPf2AEAAAAAAIgoDnYAAAAAAAAiioMdAAAAAACAiOJgBwAAAAAAIKJmTPHkqchlfcE4M7P5c+e42Jpbb5G5dVEwdPUpr5O5aVGctCOhz8TW3XWbi/02UJy0OVA0DofG975ytYuddqYuvF0t+GJaax96WObmfN0ue8UJvsi3mdm8Tj9WBwb0eLj7gXv9awVqmT671xdC/Nv3Xy5z/+Ub39MXwaQNj+lC2omEL8x23EsWy9y6qKrc+/h2mVsq+VxRAs7MzE5ccZyL1QI14DZu9UUtq1ModlupTb7QcpS8ZtU5Ml6p+/dZPfj3EP97DI8bv6YcudivX2ZmdfEs9z+9R+bKcRN4ZC87fol/rcCPdu+mZ3ywqieneMxf5Myz3yRzf33P3foFYYm43p4tEPucJ575nczdF/MPv6Ndz09tjb4YaT5Q0Ltv51MuNi5ey8yssaVRxjF5F7/pjTL+ihN84eLf7hyQudt39bpYujFQRFQsNrt26yLsmayfI3sH9bx35Et8QfDhwB6nu9cXU33XpefL3Btv9o1IEJYw/15dt1UX0i4M+3nhyX7f3MHMrENsJRqbffFlM7OXLvEb6eFuXcB54y6/T1KvZWbW9UyPi71ep+L3WLF8lYyLLa9NlPTDaGnzn3HrgSLshbgfD2MTenJobfQ3kanr62Ya/L3F43o3nRLNllau0J8ZN27aLOMzAd/YAQAAAAAAiCgOdgAAAAAAACKKgx0AAAAAAICI4mAHAAAAAAAgojjYAQAAAAAAiKgZ0xVr6VLdVei+b3/KxY6Yk5e5qYyvdP0ft+jK1R+/0nfp6GhrkrnZhK+q3VzTFbj/+fZtLvbFy06RuUnRJQeHzokn+u4fRzbqjmqZBn/G+WDXPpm74oRjXKylVY+d3h7fPeCIrO8yYGb22FO+a8WrlrTK3LGyryCfEp0OELZ82TIZ/9EX/9rFDgwOytw1t6/zuQN6bnjDSt/N5unf6er8n7jybBe77q71MnfXzn4XO++Nej797kFOObFAh7+oGy/rjiDpeNrFYrGCzP3xl/7GxYZHfGcXM7Ob7nzMxfbu19d90yt955udz+q56SN/epaL3XC3fy0zs63b/Nx00Tn6PTEVNTFGErXJd16bzUL7nF9e5zs4Hrm4U+aOTfi16se/8F2qzMz+4uJXuVhboEvV6hOPcLG+Pftl7t9/y+9zPv62k2Rugm3OQcs36z3Dv3/yChfb3+27ApmZfXPnfS42MKYfzutXznexvh7f/crM7N3n+f3td3+1Rebu2es7dr3lzBNk7v0bfKc33cMLU5Vs9nPI6mMW6NyYXwOf3qA7r3W2NbvYGUf4mJlZYcR3TsuLzpJmZj3PiTGd0++JwZLef2GKYroj1Z1f+7iL5QPPYsNvu13sl48+J3P/+A3HutjOqt4TXfZmv67d/5heA7/70w0u9mfnr5C5s2Wp4hs7AAAAAAAAEcXBDgAAAAAAQERxsAMAAAAAABBRHOwAAAAAAABE1IwpnhzS2OCLMg0Oj8rcOXPmutgNX/uozG1P+h+9vVGXZhsYHnOx8XyDzP3J9X/rYumqLkJV/erPZRxT86m/ukTGLz7vdBcrjg3J3FLFP89TlutCl29cebSLHRjQY7JRFN7eW9TF3ZYde5yLnX2qLix4++9ulXHloovPd7HbfnzHpP//rBWolDanxY+FVEbPDeedtdzF/useX1DZzOx7d/tCch+7zI9RM7N02hcsPOvkl8vcu9Y/7mLfuf03MtdEYdvNm3WhSyWR0MWeoy5U2rduvsBjiBo3mawu1n7OmX5u+f7detzcep+fsz586Wtlbjrl18szVuk5ZLza5WI3//xRmTuVmtmxmH9jpcR94f9ryfv3ey0wQR29uMPF3nbha2RuvrnFxU46zhfjNjOzmP87X/s8v6cyM3v/VW/2/z2mt5O12uwsuH44JeK+WYKZWasYN/WOVpn7ylV+f7H2wSdk7i8e9IVI//Tck2VuJuXXhFNOfKnMfTj2jIvddZ9fv8zMahU/K994y89kLqamPOHHU7JelLk188WPn9uj99Hnij1KcUKvoYs7/XzRc0CP8ye3+kL/513mGwWYmf3kiT0yjqkJfeujvcnvhZMNOZm7etVLXOyJvbq4+1N7/Geod5zt99dmZkmxn3jFsUfJ3Fev9g0sunbp8VsXG52Nm3QDppmMb+wAAAAAAABEFAc7AAAAAAAAEcXBDgAAAAAAQERxsAMAAAAAABBRHOwAAAAAAABEVKyrq2tGtCx4+yW6+vUTT/vK+Fvv/KLMLVb8j6K6BpiZ1UWnhpFAt6L6hI+Lxh9mZpZrEt2yAslHnf1hF+vq8p1K8Pv94Ku689mzfb0udtxR82Tuqccc62I7RnWF/rx4nK1Z/YzjVT9+Q01C9lb8OWtrUp+9fu3We1yssaa7kvQOjrvYt29Zq2/iReR9l6+S8Qe6/HPvvutamTumOt6VdHeJupoH4vr5qs5CIbGqv99aXHchetlbP+FiW7ZMvivWmjXfk/Errrh80td4oS1d6jtSZQK/74qIn75S/25/s9k/h333/LvMnVBtpsqBcaOCgXEjW70FhlJMjN16Qv9sS875m8leVnbQWrBwkczdvfs5F5vNa+AVf6z3OY+Lfc72O78sc+fO7XSxZFz3dUuI0TOhm3SaVfw/hKahuOiEFOqYl1j+ThebypzzYnPx2ee42OXnz5e5d6zvd7H1N3xS5u7pHnCx0YLuWKRGUz6lB4MaI6EueoWyv3I8rvct53/0qy52y+2/0BeG9Mvv/JOM7xnb52LjBf355+MXvdXF1nUPy9wOMQUc0aY7iibFuBGN0MzM7Ikhv7YuSOtxc81NP3Gxz/3rjfrCMDOzFcv9urR6mf79rv+tXyd2B/bHbR1tLlavTMjcuBgPNdGp8fl/8BNMaK2qickokdT7nMzJf+ZiGzdu0heewfjGDgAAAAAAQERxsAMAAAAAABBRHOwAAAAAAABEFAc7AAAAAAAAEaWrI70Abrp1s4yrQpePbtSF9058+fEuNjisC+AqoaK2y/7oU5O+xuM//hcRnRH1qWet/gP6Gecs62KPbHpG5p686AgXW5SefAHbQO1Ku2/jVhcLXfW1K1/qg4EqhCPjoy7W1OgLlZmZTaQ4v1W++b0NMr5i+TIXy6f1GJso+d9tLN88+ZsIDIYlZ31g0pfY9cuvuVi9ogshHuxcVFXFomeBmomi92ZWr/mf94Et+negivdl4rogcrXuC0rGck2/5w4nZ+Hr3yeiepB1//c3XKxe1cVU5Tw0hQLf5bIej/FgEejZac0PJ7/P2blzh8yd29niYlXThYurUyimffxFouhuIPepO3wDi2op0HyC/c+U/Pien7vYR656h8xtSvvmIKWCLmwbj4nmIo163lNCBf1PuPDjPjcwcJ64/RoXq1f1uCkF5gxM3lnv/DsZv+mrH3Ox9c9sl7mlot9rrurUxWeVZEK//7t7/TgNrQdLW/MuVq/ptap/eHDS94bnbdrs16VVK1dM+v+PjhyQ8Y4OvxeOpf3nspDQnHP02R+c9DWevecrPigajpiZ1euBD3IR8+LaVQEAAAAAAMwiHOwAAAAAAABEFAc7AAAAAAAAEcXBDgAAAAAAQERxsAMAAAAAABBRM6Yr1lSMF3W1/Acf3eRiRx91lMyd1+E7S4Rs++m/uthYUVdkr4mq2us3+PvCofPcUEHG54vmRI15343GzOx3255zsbbWVpm7oNNfONC8yrbs6HOxD1z4KpmrLvHktt0yN5P1XVAKBf2+GB0Z0DeHSStM6N9tJu6fWjylO0YUS6ISf2DcjK/7Py7WGxjnVvPXzcbGdG6wJ9vkvOtd7zyo/z9T1eITOi66gNXqugNRXPxqQ+MmlvDPLJXWa1KpPPlOZGMPXediA+P6Z6uLcZOojOgLT6EDVl1Mhn19vTK3VpsdXSimQ2ifs+1Z371mztwFMre5MTfp13t4je/+2dqiO7Wp7iHPPus7QD6fPOlbQMCXrv++jP/1VW9zsZiaiMysXPDv7UxezznqPRza4zx157UuVpnQa5Wac8qFQZmbopvntHn7X/uudk9c7ceSmVnPgSEXS6X1PrpTdK+qBdoN//k1N7vYT7/wbplbF0N67wHd/a0hF8mPtTPOho2bZFx1yyoE1qqhAb/u51s6ZG4yIfZVgTnn8Vs/56+bD6x1orPp8MA+nTtLMHMCAAAAAABEFAc7AAAAAAAAEcXBDgAAAAAAQERxsAMAAAAAABBRkawylUzo4nCVsq+0tHOXL4prZvbQ+i4XyzfogmBTUav5QpX53OQLGGLqRkcGZfzJ4XEX62zVzzib82NqaEQXEu0f9MXkQkVpz1y62MUe37ZH5o4V/dhJxHWh1uK4L1a2bc8Bmbtw4VwZh6Zq/cXqovCxmdWr/rnXq7pYbffevS7W3qznht2h2sfC1t39LtaYCRW79T/c0qVLZWZMFMxVRTXNzLq6/Hw6GyQS4m8fgd9BVY4bXfi4XvPXrZZ1wdFdu/24aQuMmxFdT1LaLsdN4G894meuBn4P8Zi/Rk0UMDQzi8f521JIXBRmNzOzqi9cfOCAL9JvZrb5cb8mNOWzk78JvX2y/iE/0PIN6clfF4dE9wHfGKE0odefVNqPm0rJ75HMzJ7bu9/Fmhsbpnh33vY9gy6Wz+g9Tkk1G8C0GRvTDWFyjX4fUCzq+bx30O+ZQ/Xxr7/6UhfbNzgqc7v7/HwTC1y4EPg5cGiohgexWOAhi9zCmN6k7OzucbGWKcw5/YEeMc/t9//QGJhzZgt2VQAAAAAAABHFwQ4AAAAAAEBEcbADAAAAAAAQURzsAAAAAAAARBQHOwAAAAAAABEVya5Y8VRexqsF0a2ooqt1d7Q2uthnrl+rX1A1mAkUAf/sX/6RizXldbeIlqZmfRFMyde/fbOMX3n5m12sHtNV1mMxXyU9HWgeUhz356GPr90ic+uis9B4RXd7OPWy01ysuUm/RRd3+25bA4P7ZO6aHwTGNQJ8N5pExs8XZmbj4759VTbQAejIBR0utuSCz+pbKPuuZ5ZMydRtd37BxVTXJTOz+XPnu1g8OfkOAcnxooyrzlqzoVNWVXQgisf1c4iZf18nMnqtGi/6DlhTGjfn/6PMtbKYW5J6Dtn2s2tEVI+FBfMX+OAUOlolxnTHr50DupMfzBLpwNgp+fkpF9cbknkdfo9x4fu+rl+w7q+hR6TZ2us+4WKJQLfSuXPmBK6Cg1Uu+ycUD4ybZNJ3y6qJZ25mtmhum4u9+p1fkbl1sZ+pBebIdT/6tIs153WHvyOXrJdxTI96oLNrSUwCDaKLrJlZUTRZe+hf7pW5NbE3Hqjojm5v/bz/XJVM6bF77LHHyjimT3CtEp2q84nJzzkrLvwn/YJVPyirgf3Ixjs+L6J6/Mp9TgTxjR0AAAAAAICI4mAHAAAAAAAgojjYAQAAAAAAiCgOdgAAAAAAACJqxhdPTomCfCe8zBeONTN7docvyjQ8rotxFYZ90dN/vOpCmStqfFm1pgtAVcu+gHO50ipzx8dHZByHRv+gf8bzO1tk7lduedjF3n/+an1hUXBw6QXLJn1f5aovKGZmNjrY62LfWvuEzJ2olFyse68oHo4pU2XVsmldAL1JFNgeLOq5YUwUkN259jOTvodqoLjutu07Xaw1p+93f48vsF3Tw9ESCV9ItyqK1plFq1CyuldV/NlM/w5qNVHY2sxiYqHIZTMyt1GER/Vl9bj5iR43arGqBZ7Zth1+3DRl9JZg7769LlYNDJzZOm6mUyrpn9uRi3XR4b6eHhdLpnUB2sKI3//c/s0P6JuYwj5noN+Ph+ExvyaZmfX39+nXw0EbHvbF7Muq2q2Z1eq+oHG1onMLE37OeejGD+ubEOOmIorOm5lt37rDxVJpPUf+9sln9OthWlz7Nd1k4/TTT3Gxu655r8xVK8Kpf3vGpO+hVNFrSvdzu1zsPf/2Q5n7q3sfnPTrYepUjeLONt0IqDDmP5PEU3qtGh/1c9mm23yxdTMLrFV6Ltu924+dscC5wP79ugFN1PCNHQAAAAAAgIjiYAcAAAAAACCiONgBAAAAAACIKA52AAAAAAAAIoqDHQAAAAAAgIia8V2xlPmdeRmfKM53scFntutrzG1zsb7efpmr6vuHTsTa2jtc7N2f/Z7M3bBpS+AqOBTW/vR+F/vKZ6+SuX29vkp6pVKRuf9xxyMu9v63vmrS95X2TWPMzOy6n250sVRCdwmo1X38sY2bJn0PCFO/8YmyblmUzImOHrVhmXv0grkutidQhV88Xtmdz8zs1S9f4mK503QHk81b6EJ0OJUDc0g2I9qpTeguiYvndLrY/j7fGel5avTqgXPSsYtcrPH0jwSu66nuV2a6Axbdr36/uugw1pzXne2qbX6PUa3qLh+qO1EqrnPVnBMPzDnJhN86Xnr1f8jcjexzpk1N7k4D3erSDS5WLQ3K3LZ235FtbHD/pO8rtD8+7hg/56y8/PMy97/vWzfp18P0acr6z1vlwH7o/E/e4GI//9Jf6AuLCSeT0hPOlf/8fRf7zUPr9XUxrdQ6kQx8psnmmvz/rwbaf9ZFR8+K75T1/D34m1BdSc3MOpr8vLf6XV+UuRs2btb3FjF8YwcAAAAAACCiONgBAAAAAACIKA52AAAAAAAAIoqDHQAAAAAAgIia8cWTy1VfJKmg6ymZmS/aeMRiX6zNzOxN7/mSi710vi+yNFU7e/3NUSR55vjQ318v41e94wIXa29rkbmXnP5yF/u7b991cDdmZusenR2Fu6JOFYcrlnVBymZxNF6Pi4LKZhY7+X0utnRJ45TuTXn8uVEX20KR5CkJFfddunSpi8UDFWVVQfPQuMnnfCyWFAWVzSyz+q9c7ISF4gJT9MTuMRfTd2uWjPmBXhJFks0olPyHqIgauAVd49gs5pM7OnxBZTOzcz7wORdrsPGp3Jr0zD5/jU2bee6HW1UU3R4t6vdlNuUrnKqCymZmx19wtYstaD/4/fG+MT92773fN6PAzFEXBbpzDXqPs/aad7nYae+59qDvgc9QM4eacwolnZtO+txc3hdUNjNbeuknXawpGfywP2lPdfu1arYX9OcbOwAAAAAAABHFwQ4AAAAAAEBEcbADAAAAAAAQURzsAAAAAAAARBQHOwAAAAAAABE147tiKem0rsje2tLuYsPF3klf97ZfUJ3/xaqtpdnFkgnd/UZVhf+rS14rc//tB/e72GY6FkVOPqc7ggyOl11sQjclkbp2+Y5WZmbtjX5qHhrXF6YD1syVy+nuVUOijURpCuPmSdHpwcysKev/VjNSEC2XzCwW8/ObnvF0Byy6X02vbFZ3SRPLj1UDT05Ff3T3uoO4K8x0uQa9Vo2M+TlHNFgzMz3Gbrrr4YO5LURUo1jDgnvjqh9Qv/y67wZqZnbG+77hYuxloqkhMOcUJ3xrx3JgzlEtOW/6GXPOH4Jv7AAAAAAAAEQUBzsAAAAAAAARxcEOAAAAAABARHGwAwAAAAAAEFGRLJ48USzIeCrhYws726b5bjAbxOq+otectkadK4qOqmKDvy+OaEnE9YNMxP0UOlr0BZVDKEAbPbGY/ntIreYLDCcC1UkbUn7cTASrCk7eUMGPU1XQcqoYp4dfpewLT5qZpZN+/WlrzE/37WAGGhoqulg5UIU9KzbINf62i/+F2hs35XVh94ExPx7rgT1wKI6ZTT63mt7zZlN+fsmm0jJXfKzCH4hZHQAAAAAAIKI42AEAAAAAAIgoDnYAAAAAAAAiioMdAAAAAACAiOJgBwAAAAAAIKJiXV1d1CYHAAAAAACIIL6xAwAAAAAAEFEc7AAAAAAAAEQUBzsAAAAAAAARxcEOAAAAAABARHGwAwAAAAAAEFEc7AAAAAAAAETU/wWohjAYlqALaAAAAABJRU5ErkJggg==\n"},"metadata":{"image/png":{"width":1142,"height":1213}},"output_type":"display_data"},{"data":{"text/plain":"<Figure size 1152x1152 with 64 Axes>","image/png":"iVBORw0KGgoAAAANSUhEUgAABHYAAAS9CAYAAAAiHt73AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd3hUdfb48TMzmfRG6L0ICEjoTVEQEMvaUOx+7RXF7rqurquu7rrWtbuKa2V1RVEEFRQLgvQWiPTeW3pPpv3+4GF+wXMGEkkgF96v5/F58HCYuZn5zOd+7id3znFlZmaGBAAAAAAAAI7jPtIHAAAAAAAAgN+HjR0AAAAAAACHYmMHAAAAAADAodjYAQAAAAAAcCg2dgAAAAAAAByKjR0AAAAAAACHYmMHAAAckm3btkl6erqkp6fLddddd6QP54iYMGFC+DV4/fXXj/ThADiCXn/99fB8MGHChCN9OACOAVFH+gCAuuKMM86Q7du3q7jL5ZK4uDhJTEyUxMREadOmjXTq1Em6desm/fv3l6ioI/Mx+vDDD6WwsFBERG677bYjcgx1ycqVK+XHH38UEZG+fftK3759j8hxRBpHIiIej0cSEhKkUaNG0rlzZxk2bJgMHjz4iI0hRLZt2zb58ssvRUTk+OOPl2HDhh3hIzq8fvjhB1m1apWIiJx//vnSvHnzI3xEwJGRm5sry5cvD/+3bNky2bFjR/jv33nnnUM63yxbtky+/fZbmTNnjuzatUsKCwslJSVFGjRoIJ07d5a+ffvKoEGDJCUlpSZ+HKDGlJaWyqpVq2TZsmXhz8eGDRskEAiIiMioUaMOaX26c+dO+eabb2T69OmydetWyc3Nlbi4OGnQoIG0bdtW+vbtK6eccoq0bNmypn4kwNG4mgAOIhQKSUlJiZSUlMju3btl/fr14Q2EBg0ayIgRI+SGG26QxMTEw3pcY8eODW8gsLGzd2PnjTfeCP//kdrYOZBAICAFBQVSUFAga9eulUmTJknHjh3l6aeflvbt2x/pw0Ml27dvD4+n884775jb2Pnxxx9l4sSJIrL3s8TGDo5F48aNkyeeeKJWHjs7O1uefvppmTx5svq7rKwsycrKkpUrV8oXX3whTzzxhIwYMaJWjgP4PdauXSsXXXRReBOnJvn9fnnrrbfknXfekfLy8v3+rqKiQvLz82XdunXy/fffy7Jly+Tvf/97jR8D4ERs7ACGSy65ZL/fAFRUVEhhYaFkZWXJsmXLZOPGjRIKhSQrK0vefvtt+frrr+XJJ5+Ufv36HcGjRl3z23Hk9/slOztb5s+fH74bYvXq1XLjjTfK//73P2nSpMmROlQAwG/89qJSRCQhIUHKy8vF7/f/7sfdsWOH3HTTTbJp0yYREYmLi5M+ffpIhw4dJCkpSfLy8mTPnj2yfPly2bhx4+9+HqC2+P1+takTFRUl0dHRUlJS8rsft6KiQu677z6ZNm2aiIi43e7wV9rS0tKkpKRE9uzZIxs2bJBly5Ydyo8AHHXY2AEMZ5555gHv+NixY4f873//k7Fjx0pFRYXs2LFDbrvtNhkzZoz07NnzMB4p6rIDjaOvv/5a/vKXv4Q3e1599VV58sknD/MRAjWjefPmkpmZeaQP44gaMWIEd1UcZeLj46VPnz7SpUuX8H9t2rSRM888M+JXbg+mvLxcbrnllvCmzkUXXSR33XWXpKammvlbt24Vj8fze38EoFZ4PB7p3Llz+HNxwgknSMeOHeWxxx4L3+35ezz++OPhTZ1evXrJo48+Ku3atTNz8/PzZdeuXb/7uYCjDRs7wO/QtGlTueeee+TMM8+U0aNHy+7du6W8vFzuvPNOmTRpUsQFGrDP2WefLStWrJD3339fRES+//57efTRR8Xr9R7hIwMAiIiMHDlSRo4cWaOP+fLLL8uGDRtEROT666+Xe+6554D5LVq0qNHnB2pChw4dZNy4cTX6mNOmTQtvCvXu3VvGjBlzwDVRSkoKtaeAStjYAQ5B586d5cUXX5RrrrlGfD6f5OXlyXvvvSd33323mV9SUiLTp0+XuXPnyooVK2Tr1q1SXFwssbGx0qBBA+nWrZucffbZctJJJ0V8zvT09CrFmjVrJt9++22NP39lmzZtkvHjx8uCBQtk06ZNUlJSIh6PR5KTk6VFixbSs2dPOfHEE6V3794H3bCYNWuWfPfdd7Jo0SLJysqS8vJySU1NlS5dusiwYcPknHPOMYsMv/766/vV1hEReeONN1RMROpcnYJhw4aFN3aKi4tly5YtEX8ztc/vfZ0sfr9fpkyZItOnT5dff/1VcnJypLy8XJKTk6VNmzbSq1cvOe200+SEE0444ONMnz5dJk+eLEuWLJGsrCwREUlLS5Pu3bvLmWeeKUOGDDngv58wYYI88sgjIvL/iy0WFRXJ+PHjZcqUKbJlyxYpLS2Vhg0byoABA+Saa66Rtm3bHvTnW7FihXz++eeSkZEh27Ztk5KSEvF6vZKSkiKtWrWSvn37yoknnijp6enh34hXPpZ9Jk6caP4G8reFISsXzt5398qsWbNk4sSJsnTpUsnKypLS0tL9xuF1110nCxYsEBGRKVOmHLSWzb7PuvX5/q1QKCTTpk2TH3/8UTIyMiQ7O1tKS0slISFBWrVqJd27d5ehQ4fud1dZ5ePZ5/rrrzcfv/Lxbtu2Tc4880wREenTp4+8++67Bzy27Oxs+fTTT2XmzJmyefNmKSgoCM8bAwcOlEsuuUQaNGhwwMewXu9FixbJuHHjJCMjQ/bs2SNxcXHSvn17+cMf/iAXXnhhrRYqt8bxbz388MPhsbSv6O66devkf//7X7h4blxcnLRt21Yuu+wyOf3008Xt/v8NTMvKyuTrr7+WiRMnhl+3Ro0ayeDBg+XGG2886GtWUVEhs2bNkjlz5siyZcvCj+H1eiUtLU26du0qw4cPl+HDh+/3vAdSWloqn3zyiUydOlU2btwoPp9PGjVqJP3795dLL71UOnbsKPPnzw+Po/POO++gNTFKSkpkwoQJMmPGDFm7dq3k5uaK1+uVhg0bSp8+fWTkyJEHnZdERHbv3i3jx4+XOXPmyIYNG6SwsFDcbrckJiZKs2bNpHv37nLSSSdJnz59JD4+vko/76HIycmR//3vfyIi0rp1a7njjjtq/TlF7M9nRUWFTJgwQb7++mvZtGmTFBYWSoMGDaRPnz5y2WWXmeuKymrz8zd58mSZOHGirFixQgoLC6V+/frSpUsXGTlypJxyyikiUr25sKbt3r1bxo4dKz///LPs2LFDoqKipFmzZjJs2DC5+OKLD/o5hG1fN0GPxyNPPvkkv+gCqomNHeAQpaeny7nnniuff/65iIh8/PHHctttt0l0dPR+eWvWrJErrrhCysrK1GMUFRVJUVGRbNy4USZOnCgDBw6UZ555RpKTk2vsOGv6+T/88EN54YUXVJ0Bv98ve/bskT179sjixYvlnXfekVdffVUGDx5sPs6uXbvkwQcfVBeTInsXT7t375Zp06bJu+++Ky+99JK0adOmej/4AVRe7IpU7cK6JqWlpe33/wUFBRFza/p1WrhwofzlL3+RrVu3qr/LycmRnJwcWbRokbz99tvy3nvvSe/evVVedna2/PGPf5T58+erv9u2bZts27ZNvvnmG+nVq5c8//zzVV7srlq1Su655x7ZsmWLeszx48fLxIkT5emnn5bhw4eb/z4UCskLL7wg77//voRCof3+LhAISFlZmezatUvmz58vr7/+unz++efSoUOHKh1bVfl8Pnn00Udl0qRJNfq4VbV27Vp58MEHw7WcKsvPz5fMzEzJzMyUsWPHyj/+8Q8599xzD9uxffHFF/L0009LcXHxfvF9427p0qXy3nvvyR//+Ee5+OKLq/SYkd7ziooKWbhwoSxcuFAmT54sr7322mG5gK+q8ePHyz/+8Q+pqKgIx0pLSyUnJ0cWLlwoP/30kzz11FPidrtlw4YNcscdd4S/wrPP1q1b5b///a9MnjxZ/vOf/0QsxJ6fny9nnXVWuJtiZX6/P/yZ/fbbb+WEE06QF1988aB1v9avXy+33XabbNu2bb/4pk2bZNOmTfLFF1/In/70p4NuWFf2/fffyxNPPCE5OTn7xcvLy6WoqEg2bNggn332mVx00UXy5z//OeLF35QpU+TRRx81633sG2u//vqr/Pe//5U///nPcsUVV1T5GH+vzz//PPxejxw58oh1RNy1a5fceeedsnz58v3i27dvl4kTJ8pXX30lN9xwg9x5551Verya+vwVFxfLPffcI7Nnz94vvmPHDtmxY4f88MMPMmLECHn00Uer8dPWrJ9++kkefvhh9TlatWqVrFq1Sj755BN5/vnnj9DROdeSJUtkxYoVIiJy0kkncaca8DuwsQPUgMsuuyy8sVNSUiJLly6VPn367JdTUlIiZWVl4nK5pHPnztKpUydp1KiRxMbGSmFhoaxcuVLmzp0rfr9fZs6cKffee6+89dZb6rem9913n4iIjBkzJrwRsC9W2W+7dNXU84vsXdg888wz4f/v1KmT9OrVK3zhnpubK+vWrZOMjIwDFtHbsmWLXHvttbJ7924REUlOTpaBAwdKmzZtxOv1yvbt22X69OnhbmRXX321fPLJJ9K0adPwY5x00kkSHx8vy5YtkylTpoiIyIknnmjeddS1a9eIx3IkZGdn7/f/cXFxZl5NvE6VTZ06VR544IHwplxsbKwMGDBAOnToIPHx8ZKfny+rV6+WRYsWSVlZmQSDQfUY+fn5cvXVV8vmzZtFZO9v2E466STp0qWLuN1uWb58ucycOVP8fr8sWrRIrrrqKvnf//530Numd+3aJbfeeqtkZWVJ+/bt5cQTT5S0tDTZtWuX/PDDD7Jnzx7x+Xzy0EMPSadOncw2px999JG899574f/v2bOnpKenS7169cTv90tubq6sWbNGlixZst8FtcjeMXLffffJli1bwreZn3DCCfttAO7To0ePiD/HP//5T5k0aZLExMTIKaecIu3btxeXyyVr1qxRm741bfHixTJq1KjwxklUVFS4TkhSUpIUFRXJ2rVrZeHChVJUVLRfAcxLL71UBg8eLFOmTAkXpvxtEfB9fs8t8B999JE89dRT4f9v0qSJnHrqqdKoUSPJysqSn3/+WbZt2yalpaXyt7/9TcrKyuSqq6466OO++uqr8t5770lcXFz49RbZe7Ewc+ZMERFZsGCBPPPMM/LYY49V+7hrw/Tp0+X9998Xt9stp5xyipxwwgni8Xhk6dKlMmPGDBER+eabb+S4446TCy+8UG666SbZtWuXtG3bVk4++WRJS0uTHTt2yJQpU6SgoEBycnLk/vvvl08//dTc7PD5fOGL0fbt20vnzp2ladOmEh8fLyUlJbJmzRqZPXu2lJWVybJly+TWW2+Vjz/+OOK8tHPnTrnhhhvCd+nFxMTIoEGDpEOHDuL3+2XJkiUyb948+fvf/y7XXnttlV6TcePGyZNPPhneHGjfvr306dNHGjVqJD6fT1asWCG//PKL+P1++fTTTyU/P9+8iF6+fLk8+OCD4bHdpk0b6devnzRu3FjcbrcUFBTIhg0bZNGiRQfcUK9pv/zyS/jPvXv3llAoJN9++61MmDBBVq1aJfn5+ZKSkiIdO3aUoUOHygUXXFDj84Xf75d7771Xli9fLvXq1ZOhQ4dKs2bNJD8/X6ZPny4bN26UYDAoY8aMkaioqCp13ayJz18gEJDRo0fv98uLPn36SM+ePcXr9cq6devk559/lgkTJki9evUO/YX4HebOnSv33ntv+NyZmpoqQ4cOlebNm+/3+t11110HvVMV+/vtZ0NEJCMjQ8aNGycLFy6UrKwsiY+Pl5YtW8rAgQPlsssuk/r16x+pwwXqJDZ2gBrQqVMnSUpKCi+aFy5cqDZ2kpKS5K677pILLrgg4sloy5Ytct9998mKFStk7ty58vXXX6vfpO9bIH/88cfhBWlVFs019fwist9F89///nc577zzzMfz+Xwybdo0c4PB5/PJfffdF96suOaaa2T06NESGxur8l544QUZO3as5ObmykMPPbTf1zx69OghPXr0kAkTJoQ3dnr06FHlC4kjaerUqeE/x8TEmHfZ1NTrtM/69evl4YcfDi9MhwwZIn/961/Nu2lKSkrk66+/NmtG/f3vfw9v6jRo0EBeffVV9dWIlStXyu233y67d++WrVu3yuOPPy4vvPDCAV+Tzz//XKKiouTRRx+Viy66aL+/u/vuu+XWW2+VjIwMKSsrk3feecf8ze2+8RkVFSWvv/66nHjiieZzlZSUyHfffbffnWnt27eX9u3by/z588MbO8cdd1y1x9O4ceOkc+fO8tJLL0XcYKsN2dnZcu+994Y3dXr06CH/+Mc/zI0Zn88n33///X7v/b4NrDVr1oQ3dg5WTL6qVq9eLc8991z4/y+//HL54x//uN8mxP333x8exyIiL7zwgvTp00c6d+58wMd+6623pHv37vLCCy9Io0aN9vu77777Tu6//34JhULyxRdfyKhRo6Rx48aH/PMcqvfee08aNWokr776qvr5vvnmG/nTn/4kIiLvv/++ZGRkyO7du+X++++Xq6++WlwuVzj35ptvlquuukp27NgRbgF81llnqefzer1y4403ysUXXyzNmjUzjyk7O1seeughmTVrlqxbt07ef/99ufXWW83cv//97+FNndatW8vrr78urVq12i9n9uzZcvfdd+93zohkyZIl8tRTT0koFJK0tDR54oknZNCgQSpvy5Ytctddd8maNWvku+++ky+++EIuuOCC/XLGjh0b3tS5/fbb5ZZbbtnvNdsnEAjI3LlzJSYm5qDHd6gCgcB+d8jUq1dPbr75ZpkzZ85+eftanc+aNSt8B+bxxx9fY8exZMkSCYVCMnjwYHnqqackKSkp/Hf33XefvPnmm+GvxLz11lsyePDgg37trSY+f2PHjg1v6sTFxcnzzz8f/trVPlu2bJHRo0dXaTzVtJKSEnnkkUfC586BAwfK008/vd8G93333Sevv/66vPnmm/Lll1/W2HNX/ipjTajK12UPt6VLl4b/3KpVK3n++efNO8Dy8vIkMzNT3n//fXn00Ufl7LPPPhKHC9RJVfsCNYADcrlc+32VY8eOHSqnXbt2cuONNx7wNwwtW7aUV199NXzR/tlnn9XYMdbk869cuVJE9l4ER9rUEdl7ITF8+HDp2LGj+rtJkyaFb7v9v//7P7n//vvVZsW+x/jTn/4kQ4cOFZG9v/VbtGhRxOd0ikmTJsnHH38c/v8zzjjDvLio6dfplVdekdLSUhEROfnkk+XFF1+M+BWp+Ph4ufjii9XXlNavXx/eRHO73fLKK6+YC/9OnTrJK6+8Eq5fM3XqVFm9erX5XJXdddddalNHZG+b4ccffzz8/z/88IPKycvLk507d4rI3oV3pE2dfT/fiBEjauUiPyUlRd54443Duqkjsrduy76L7eOPP17efvttc1NHZO+YOeuss2pk06Yq3n77bfH5fCIicuqpp8pDDz2k7izZN46HDRsmInvvLnjrrbcO+tiNGzeW119/XV1UioicfvrpcsYZZ4iISDAYlB9//PFQf5Qa4fF45JVXXjE3rf7whz/IgAEDRGTvVzRnzJgh11xzjVxzzTVqg6Jx48b71Wr5/vvvzedLSUmRu+66K+KmjohI/fr15V//+lf4dYx0Dli9enW4c43X65VXX31VbeqI7L178rHHHlNfibTs+2rvvg1Za1NHZO956o033gh/peftt99WOfvmzKSkJLnpppvMTR2R/3+nofVV05q2e/fu8NwrIvKXv/wlvKnTv39/ueWWW+T222+X008/PXyXzrZt2+Taa6+t0ZbnoVBI2rRpIy+88MJ+mzoie+fzUaNGhc/rgUBAxowZc9DHPNTPn8/n22+j4eGHH1abOiJ73/vXXnut1u96tEycODG8tmvRooX861//Unctut1uGT16tJx99tlVGvP4/yp/xXTs2LHy3nvvSSgUkvbt28u1114rd955p4wcOTL8FfbS0lJ58MEH5ZtvvjlShwzUOdyxA9SQyif4/Pz83/04jRo1kt69e8vMmTMlMzNTKioqDusipirPv++rOeXl5b/7efZtasTGxlbpVu/rrrsuvCCcNm2a9OrV63c/9z613aK58tdZRCTc2nzevHn7bXC0bds2YmeUmnyd9uzZE94M8Xg88pe//KXKBVIrmzRpUnjRevrppx/wK25dunSRM888U77++msR2bs4vv/++yPmp6WlyZVXXhnx79u1ayft27cPF1TduXPnfnVAKn+tyKondbhccsklh/02cZ/PJ+PHjw///0MPPXRY7kSoipKSkv3uUDtYJ6B77rknPFZ/+umncHHlSK655poD/v3w4cPDm5H7NqaPtCFDhkiXLl0i/v3gwYPDF/5er1duuOGGA+buc6g/X3x8vAwePFg+/fRT2bVrl2zdulXVu/jqq6/Cfz7nnHMOWNPrrLPOkn//+9+yfv36iDmrVq0Kb0SffvrpB71DpHHjxnLWWWfJ+PHjZfPmzbJu3To57rjjwn+/7xzl8/kkGAzWiXbhv/3K16JFiyQxMVH+9a9/hTfx9tmyZYvcdtttsnHjRikqKpIHH3wwXHS5Jtx6660HXFfccccd4Xl+2rRp4a+IRXKon785c+aEv5rcsmXLA/7CqEWLFjJixAj55JNPIubUhspj/uabb474FUURkTvvvFO++eabGtvcadmypfmV+9/rYLWzjoTKn499c8F9992nNrP/+Mc/ykMPPRRe5zz++OPSr18/ClYDwsYOUGMqFwQsKio6YG4gEJB169bJ+vXrpaCgQEpLS/dbAOTm5orI3kXp1q1bq1V4sioO9fk7duwoS5culS1btsgLL7wgo0aNOuAi57fy8vLCRV27deumfmtoqXwr+q+//lrl5zqSDtYK1OPxyGmnnSYPPviguSip6ddp3rx54fe5T58+v7tQ9OLFi8N/jlTAuLIzzjgjvLFT+d9a+vfvf9BOGK1bt5a1a9eKyN4iqJUXqWlpadKgQQPJysqSefPmydixY+XSSy897N01It1tUJuWLVsW/gpWy5Yta2Tzs6b8+uuv4a8wtG/f/qBzWuvWraVz586yYsUKCQQCsnTpUjn55JMj5h/o7/Y93j6/Lcp7pBys+2DlzZQuXbqYX4ncJzk5WVJSUiQ/Pz98x9aBhEIh2bhxo6xdu1by8vKkpKRkv3NA5aLqGzduVBs7S5YsCf+5KrVEhgwZcsCNncpfRxo4cOBBH09k7x2B+/z666/7bewcf/zxsn79eikrK5O//vWv8uCDDx7xtsi/LRYuIvLII4+oTR2RvZ/fl156SS666CLx+XyybNkymT179gHvQKwqt9t90PesSZMm0rVrV8nMzJRAICC//vrrAd+XQ/38VR5Pp556asQ7rPYZMmTIYd3Yqaio2O9rdPvujI2kWbNmcsIJJ9TYWqVJkyaO+Hr5ofhtPcaLLrrI/JkTEhLkmWeekYsuukg2btwoJSUl8tFHH1W50DdwNGNjB6ghlRdtvy1cvE9hYaGMGTNGvvzyyypfXFgdTH6vmnr+66+/PtzS/d1335Vx48aFb2dPT0+Xzp07H/BCevXq1eGLiHnz5h20repv7dt4cro+ffrI/fffH/E3TTX9Oq1bty785+o+VmX7auuIyEFrn/w257cdfX6rKl9dSkhICP/5t4tBl8sl119/vTzzzDMSCoXk6aefljfffFMGDhwovXr1km7duknHjh1/151K1VGVduw1rfL7W9cKhVd+3ytfkB/Ivo2dff/+QBePB/p6kciBx8yRcrCxXvmXBVX5XOwrfF756z6/VV5eLh988IF8+umn5leGLdY5oPIcUJWOcgfLqXwH48MPPywPP/xwlY5tn9/OdVdffbVMnTpV/H6/fPXVVzJ16lTp16+f9OnTR7p16yZdu3Y1v9Jam35791yLFi3MWkj7tGvXTk477TSZPHmyiOwttl0TGzutWrWqUme4jh07hu9o3bhx4wE3dg7181fT46mmbdu2Lfw10qZNm1Zpk/D44493zC+h6oKYmJj9xsZNN910wNyrrrpKnnjiCRHZ+9lgYwdgYweoMZVvI7VO+tu2bZMbbrhBtYU9mN927fm9avL5hw0bJo8//rg899xzUlhYKMXFxTJ16tTwVy3i4uJk4MCBcuGFF5rfk8/Ly/tdP8M+B7pwqUveeeedcP2SUCgk2dnZsnbtWvnggw9kxowZMnfuXLnqqqvknXfeMeug1PTrVPkrgr9ttV4dlcf6ge4i2KdyB5PCwkIJhUIRfyNb3a8OWbe6X3XVVVJSUiJjxoyR8vJyycvLk6+//jp811BSUpKceuqpcskllxyws9WhqMrdVTWt8nipa91Cqjtmfpt3sM5FBxs3lceb1eXtSKjOMVfl67j78iN9/SM/P19uvvlm1eL6YKyv3Fb3/TxYTk3PdV27dpUXX3xRHnvsMcnKypLy8nKZMWNGuNtYdHS09O3bV0aMGCGnn356rW/0iuy/uSEi0q9fv4PemdKvX7/wxk5137dIqnrn0uH8/NX0eKpphzp/4eASEhLCGzstW7Y86GZh//79w39es2ZNuD4XcCzjEwDUgGAwuN9vHK0T0kMPPRTeVGnWrJlcdtll0qtXL2nevLkkJiZKTExMePHz8MMPy8SJE2v0GGv6+S+88EI57bTTZMqUKfLLL79IRkZG+LempaWl8v3338v3338vAwcOlBdeeGG/3xBWroPSoUOHA36f3hLpjqi6zOVySYMGDaRBgwYyYMAAeeqpp+Sjjz6SnTt3yv333y9jx45Vdzkdi69TTbnllltk5MiR8vXXX8ucOXMkIyMj/BXJwsJCmTRpkkyaNEnOP/98eeyxx2p8QXg4LhSB6njqqafCmwNpaWly6aWXSr9+/aRFixaSmpq63zngtddek3//+9+H7dgqz3UjRozY72tVVWFt0A4ePFgmT54sU6dOlenTp8uiRYvC3QUrKipk5syZMnPmTHn//ffl5ZdfloYNGx7Sz3Awv70zsypF2yvnHOrmF5xr586d4RpFNaFJkybhDoh1RYMGDWTPnj0iUv3PRjAYlPz8/Dr3Cw3gcGNjB6gBK1eu3K+uzm9bnS9fvjxcDK558+Yybty4AxYarMmvX9Xm8ycnJ8sll1wil1xyiYRCIdmwYYPMnz9fpk6dKnPnzhURkZkzZ8rjjz8uTz/9dPjfVf6NYf369Y/6745b7r//fpk/f76sWbNGli9fLu+//77ceOON++XU9OtU+fEOpc5IcnJyeAGWl5d30LtTKn9NIikp6aC/pa4pDRo0CHcSCgaDsmrVKpk3b558++234a8YfPnll9KoUaMjdht35dfiYIU2D3anWuXfEO8rRFpXVJ5vqlpcvvKF7IHmKxxcbm5u+M6PpKQk+fjjjw/4G/GD1YlLSkoKj7G8vLyDbiIfbFOi8tzUv39/Oeeccw6YX1WxsbFy7rnnyrnnnisie2sHzZ8/X3788UeZMWNGuH7MfffdJx988EGNPGckiYmJ0qRJk3DXvqrMg7UxV9bFz1/lc0hVNrAO9yZX5Z+/qs9dk8e4ZcsWef7552vs8fr06VPnNnbat28f/urtkfpsAE7HrxSBGlC5iF9iYqKqX7J06dLwn0eMGHHQRdK+wrA15XA8v8vlknbt2smll14qb7/9tjz33HPhE++UKVP2W0xWLpxalfbXRyOv17tfd6j//Oc/arOlpl+n9u3bh/98KN3AKrc1rkoHnso5lYtoHk5ut1s6d+4s11xzjXz00Uf7dRgZN27cEft6TuU72Q5W++VgNVEq3+VQ12o7VH7f9y3eD6Zy3oG6LuHgMjMzw2P8tNNOO+jXHNasWXPAv6/8fh4styo5h+uc0KJFC7ngggvklVdekXfffTf8FbfFixcflm5plbt97dq166D5lXMO5euzlW3evLlKdaYqvw+1/fmrfE6pifFU05o3bx6+o3bHjh1V2hzb1/gAVXMonw2Px8NX3wBhYwc4ZJmZmTJp0qTw/19++eXqKzUHq79T2cqVK2XLli0Hfd7KXx2pfBu7pTae/2DOOOOM8GIwGAzuVzy1SZMm4eKyOTk5+3VE+b2q83rUFSeddFK4c1FRUZH85z//2e/va/p16tevX/grQgsWLJDt27f/rsfp2bNn+M+VW1hH8t1335n/9ki6+uqrw53c8vPz1aZa5fFUm5s+lW8dP1hh6VmzZh3w77t27Rq+c2LLli3hu/R+j8pzWE18nrp27Rp+TdeuXSsbNmw4YP6WLVvCF9oej+eQin2jeueArKysg3av6969e/jPP/3000Gff9q0aQf8+8pFgb/77rtwB7Xa1LNnz3ANNJG9BYJr27Bhw8J/njt37kHv0tt356vIoRW8rywYDB70/di5c6csW7ZMRPZ+/mq7GHvlr9Id7NhEqjbmalJ0dPR+TQD2tdqOZMeOHeHXryb07dtXMjMza+y/d999t8aOraYMGzYs/MvAzZs3H3R9Uvmz0blzZ/F4PLV6fIATsLEDHIKVK1fK3XffHe6WUK9ePbnmmmtUXuXfJByoAGIwGJTnnnuuSs9d+db3g/32qDaev7p+W1zxiiuuCP/56aefrlanGmsxXPlW7qreal4X3HrrreE/jxs3LvwVp31q8nVq0KBB+MIiEAjIE0888bs2Lc4999zwAuy777474JhatWpV+CsgIiLnn39+tZ+vNgQCgf3q4Py2Q051Pl+HovLFwvfffx8xr7CwUN5///0DPlZUVJSMHDky/P9PPfWUWfi2Kmr654+Pj5fhw4eH//+ll146YP6//vWv8PgdOnQoX8U6RFU9B4jsfe0PVrT/7LPPDv/566+/PuCmyJQpU/br2GbZ16lKZG+h/zFjxhwwv7KDbY5UVXULt/8elcfy1q1bD1g3ZcOGDfvNCZU3hQ7Vm2++GV63WF577bXwuWHw4MG13ip+wIAB4U3uLVu2HLDG39atW+XLL7+s1eOx7Ps6n4jImDFjpKysLGLuq6++WmPj8ljRpEmT/Qoiv/322xFz93X326cmPxuAk7GxA/wOO3bskBdffFGuvPLKcDHGmJgYefnll80F0L67MkREJk2aJD///LPKKSgokAceeEDmzp1bpe8OV741et68eQfMrcnn3759u1x99dUyZcqUiJsMoVBI/vvf/4Z/K1+vXr39brUXERk5cmS47fHatWvl2muvPeAt+GVlZTJ16lS59tprzQuTyq/HwoULq7RhsW3bNklPTw//V92OYTXhxBNPDP+2sqysTC1mavp1Gj16dPhOlV9++UXuueceycrKMh+rpKRExo0bp257b9euXfj7+YFAQO644w7z6zWrVq2S22+/Pfzb9+HDh9d6m9oFCxbIqFGjZPr06REvXPx+v7z88stSXFwsInvb0v62RkirVq3CvwHMzMystU5sQ4YMCT/PlClT5IcfflA5e/bskdGjR4drcxzIddddFy7SunLlSrnpppsi3oFXUVEhkydPlvnz56u/q/x5sv7+97jxxhvDdwL98MMP8vTTT6v3yOfzybPPPhu+EywqKkpuvvnmGnn+Y1m3bt3Cd0zNmzdvv68P71NeXi7//Oc/ZeLEiQc9Bx1//PEyaNAgEdk7ju644479WlbvM2fOHHn00UerdE574IEHwsf4+uuvy7PPPnvAWj87duyQt99+W2655Rb1dxdeeKGMHz/+gJuSU6dODd8FGRUVtd9dSLUlISFBRo0aFf7/v/3tb/vdebDPli1b5M477wx/PgYOHBjx+K677rrwOez1118/6DG4XC5Zv3693Hfffer1DQaD8uabb8qECRNEZO9XWH9b+602eL3e/WrIPfnkk/LLL7+ovK1bt8ro0aOrvGH9+uuvh1+b66677pCO8bzzzpMmTZqIyN73595771XdwoLBoLzxxhtV+gxBu/fee8O/cPn000/l/fffVxtkxcXF8sADD4Q3k9PS0uSyyy473IcK1EkUTwYMU6ZM2e82Wp/PJ4WFhZKdnS2//vqrbNiwYb+TTbNmzeTJJ5+M2Dq5ffv2cuqpp8q0adMkEAjI6NGjpX///tKlSxdJSEiQzZs3y7Rp06SgoEDat28vbdu2PehXXAYNGiTffPONiIg89thjsmDBAmnVqlV4YZyYmBjuolSTzx8KhWTx4sWyePFiiY2NlfT0dOnQoYOkpaVJMBiUrKwsmTlz5n6bJKNHj1ZfT/N6vfLyyy/LtddeK9u3b5cVK1bIyJEjpVu3btKtWzepX7+++Hw+ycvLkzVr1sivv/56wIvr1q1bS+vWrWXTpk2ydu1aueaaa+Tkk0/e706eAQMGqA2mumDUqFHhi5PPPvtMrrvuuvACsqZfp3bt2snf/vY3+fOf/yx+v19+/PFHmTVrlgwYMEA6dOgg8fHxkp+fL6tXr5aFCxdKeXm5vPPOO+pxHn74YVm2bJls3rxZdu/eLZdffrkMHDhQunTpIi6XS1asWCG//PJLeFOnRYsW8uijj9bCq7e/UCgkv/zyi/zyyy+SlJQk6enpctxxx0m9evWkoqJCdu/eLdOnTw9vZrlcLrNwckxMjPTr109mz54teXl5cuWVV8qwYcMkNTU1vGDfd8FwKBo3biwXXnihfPrppxIMBuXuu++Wk08+Wbp16yYiIuvWrZPp06dLaWmp3HzzzfLWW28d8PHq168vzz33nIwaNUpKS0tl8eLFct5550nfvn2lS5cukpiYKEVFRbJu3TpZsGCBFBUVyRNPPLHfV1JERE4++WRxu90SDAZl3LhxkpubKyeccMJ+dzadf/75qoXzgXTs2FHuv/9+eeqpp0REZOzYsfLjjz/K4MGDpWHDhpKdnS3Tpk3bb+649957wxub+P32Fbr/6KOPRGTvhfOXX34pPXr0kNTUVNm+fbv8/PPPkpWVJQ0aNJBTTz1VPvvsswM+5iOPPCKXXnqp5OTkyMaNG+XCCy+UwYMHS4cOHcTv90tGRkb4lw7XXntt+OsfkS54e/bsKX/961/l8ccfl0AgIB988IF8/vnn0r9/f2nXrp0kJCRIcXGx7Nq1S5YvXx6uBVe5dtg+a9askccee0yefPJJ6dq1qxx//PFSv359cbvdkp2dLfPnz9+vltzVV18dsYbNvffeq2KVC8K/9tpr6t+efvrpEYvTXn755TJ37lyZNm2aFBUVyY033igDBgyQHj16iMfjkbVr18q0adPCmxeNGjWSJ5980nys36N79+4SDAblp59+krPPPluGDh0qzZo1k/z8fJk+ffp+X5O88cYbD9vXIK+66ir56aefZNGiRVJaWiqjRo2Svn37Ss+ePcXr9cq6detk2rRpUlZWJtddd91Bx1NNi4+Pl8cffzz8y4oZM2bIOeecI0OHDpXmzZvv9/olJyfL0KFDwxtkR6vXXntN3Y1Xee387bffqpqNxx13nNx+++3m43Xu3FnuueeecKHo5557TiZMmCCnnHKKJCcny/bt2+WHH34If3U6KipKnnnmmWO6AyhQGRs7gGHcuHFVymvYsKGMGDFCbrjhhoNe4Dz55JNyyy23hE96c+fOVb+p69y5s7zwwgvyxhtvHPS5zzjjDPn0009l4cKFUlxcrH4D26xZs/3aY9fU83s8nvAFX1lZmcyfPz/ib/RjYmLkzjvvlEsuucT8+6ZNm8onn3wijz32WPhOhaVLl+5X7Pm3GjVqFPFrGQ888IDcdddd4YuKjIyM/f7+iSeeqJMbOyeddJJ069ZNli5dKhUVFTJmzBh55JFHwn9f06/TmWeeKampqfLII4/Izp07paysTKZNmxaxtoHVCjwlJUU++OADuf/++2XBggUSCARk+vTpMn36dJXbq1cvef7552v9dv7fHmthYaHMmjUrYm2apKQkeeSRR8J3HvzWPffcI0uWLJGSkhJZs2aNunNp1KhRNXLRc//998vmzZvDn8d9G1OVXXXVVTJ69OiDbuyIiPTu3Vs++OADefDBB2XdunXi9/tl9uzZMnv2bDPfen+bNGkiN9xwg4wZM0ZCoZB89913+9VKEtn7FY3qbOyI7P1qYWxsbPhrhdu3b5ePP/5Y5cXFxckf//hHufjii6v1+Ijsvvvuky1btsiMGTNERML1Nipr0aKFvPDCC1WqYdKkSRN5++235Y477pBt27ZJeXm5GidRUVHywAMPSNu2bcMX4r/92mNlF1xwgTRr1kweffRR2bZtmxQVFckPP/xg3sm2j7WxExUVJX6/P+K5YB+PxyNXX3213HXXXREf/2C/ZFm4cGGVjqnycz733HPy5JNPhi/858yZY9ZQS09PlxdeeEG1Sj8UUVFR8tRTT8mdd94pK1asMDfwXC6XXHfddXLHHXfU2PMejMfjkddee03uvvvu8FxorS/OO+88uf3228Pj6UBfoav8C7iaqMFy0kknyXPPPSd/+ctfpKioSHJzc2X8+PH75aSlpcnzzz9/0DupjwYLFiyQBQsWRPz79evXy/r16/eLVd4UtVx77bUSFRUlL730kpSVlcnatWvNhh4NGjSQZ555Rv1SAjiWsbEDVEFcXJwkJiZKUlKStG7dWjp37izdu3eX/v37V3mxkJKSIh9++KF89tlnMnnyZFm7dq2UlZWFv6Z0xhlnyPnnn6/ubIkkKipKxowZI+PGjZMffvhB1q1bJwUFBRGLTtbU8zdp0kR+/PFHmTlzpixatEhWrVol27dvl4KCAnG5XJKUlCRt27aV/v37ywUXXBC+8ySS1NRUefHFF2XVqlXy1VdfycKFC2Xbtm1SUFAgUVFRkpKSIq1bt5auXbvKwIEDpU+fPvvVRqls0KBB8vHHH8tHH30kGRkZ4U0LJ3zXfdSoUeFb9D///HO5/vrrpXnz5uG/r8nXSWTv3UvffPONfPXVVzJt2jRZsWKF5Obmit/vl5SUFGnTpo307t1bzjjjDOnYsaP5GPXr15d3331Xfv75Z5k8ebJkZGSEf5OWlpYm3bp1kzPPPFOGDh1ag6/UgfXs2VO+++47+eWXXyQjI0NWr14tO3bskOLiYnG73ZKamirHHXecDBw4UM4///wDdtLo3LmzfPbZZzJ27FiZP3++bN++XUpKSmp8PMXHx4e//vDVV1/J6tWrpbS0VBo0aCDdu3eXSy65pNqL106dOsnnn38u3333nfz444+SmZkp2dnZ4vP5JCkpSVq2bCk9e/aU0047LeKdhnfeead07dpVvvzyS1m+fLnk5ub+7po9le27s2PcuHEyc+ZM2bJlixQUFISPa+DAgXLJJZfU6MUs9haAfe211+Srr76SiRMnyooVK6S4uFhSU1OlVatWMmzYMLnwwgslMTGxysVpO3ToIF988YV8/PHHMnXqVNm0aZP4fD5p1KiR9O3bVy6//HI5/vjj96sVc7Dfrvfv31+++uormTp1qkyfPl0yMzMlJydHSkpKJC4uTho1aiTHHXec9O7dWwYNGiQtW7ZUjzF9+nSZNWuWLFiwQFasWCHbtm2T/Px8CYVCkpiYKK1atZI+ffrI+eeff0Q2+2NiYuSJJ56QkSNHysSJE2X+/PmyZ88e8fv9kpaWJunp6XLmmWfKaaedVit3pDRp0kQ+/PBDGT9+vEyZMkU2bdokhYWFUr9+fenbt69cdtll4bsGD6fExEQZM2aMTJ48OTxG9x1X586d5cILL5RTTz11v6/YHWg8Vb6b5PTTT6+RYxw2bJh07dpVxo4dKz///LPs3LlToqKipEmTJjJkyBC57LLLpGHDhsfExk5t+b//+z8ZMmSIfP755zJjxgzZsWOHFBUVSUpKinTo0EFOPfVUufDCC8NfKwewlyszM7PuX/EAAADAkd566y155ZVXRGTvV7gi3cWJ2rFt27bwV8P69OlTJ7siVcfixYvl6quvFhGRs846S5555hkzb/DgwZKTkyONGjWSyZMnh9vbA8DRiOLJAAAAqDWVv6J5wgknHMEjwdGg8njq0qWLmbNu3brwHaTXXXcdmzoAjnps7AAAAKBWTJ8+XZYsWSIie+uFde7c+QgfEZxs586d+9UUHDJkiJm3r/ZL/fr15aKLLjosxwYARxIbOwAAAKi2Z5555oBF3H/44Qf505/+FP7/yy+//IC1v3Bs++9//ytTp06NWCtwzZo1csstt0hhYaGIiJxyyinSunVrM3ffxs7VV199wILdAHC0oHgyAAAAqm3GjBny4YcfSuvWraVnz57SrFkziYqKkj179qiW4t26dZOrrrrqCB4t6rp169bJP//5T6lXr5706dNH2rZtK3FxcVJQUCCZmZmyaNEiCQaDIrK3IUTl7pG/9eyzz8qzzz57uA4dAI44NnYAAMAxacqUKbJz587f/e8TExP5moeIbNq0STZt2hTx7wcNGiRPP/20REWx7MTB5ebmHrDNfJs2beSll16Spk2bHsajAoC6jTMsAAA4Jn3yySfhr2z8Hs2aNTumN3Zeeukl+fHHH2Xx4sWyfft2ycnJkYKCAomLi5OGDRtKz5495eyzz5a+ffse6UOFA9x+++3SqVMnWbBggWzYsEFycnIkLy9PPB6PpKWlSZcuXWTIkCFy1llnsUkIAL9Bu3MAAHBMuu666w55Y+fbb7+twSMCAACoPjZ2AAAAAAAAHIrWBAAAAAAAAA7Fxg4AAAAAAIBDsbEDAAAAAADgUGzsAAAAAAAAOBQbOwAAAAAAAA7Fxg4AAAAAAIBDsbEDAAAAAADgUGzsAAAAAAAAOBQbOwAAAAAAAA7Fxg4AAAAAAIBDsbEDAAAAAADgUGzsAAAAAAAAOBQbOwAAAAAAAA7Fxg4AAAAAAIBDsbEDAAAAAADgUGzsAAAAAAAAOBQbOwAAAAAAAA7Fxg4AAAAAAIBDsbEDAAAAAADgUGzsAAAAAAAAOBQbOwAAAAAAAA7Fxg4AAAAAAIBDsbEDAAAAAADgUGzsAAAAAAAAOBQbOwAAAAAAAA7Fxg4AAAAAAIBDsbEDAAAAAADgUGzsAAAAAAAAOBQbOwAAAAAAAA7Fxg4AAAAAAIBDsbEDAAAAAADgUGzsAAAAAAAAOBQbOwAAAAAAAA7Fxg4AAAAAAIBDsbEDAAAAAADgUGzsAAAAAAAAOBQbOwAAAAAAAA7Fxg4AAAAAAIBDsbEDAAAAAADgUGzsAAAAAAAAOFTUkT4AAAAAAACASNLT06ucm5mZWYtHUjdxxw4AAAAAAIBDsbEDAAAAAADgUGzsAAAAAAAAOBQbOwAAAAAAAA7Fxg4AAAAAAIBD0RULAAAAAAAccT169DDjx6XFqti6nLJaPhrn4I4dAAAAAAAAh2JjBwAAAAAAwKHY2AEAAAAAAHAoNnYAAAAAAAAciuLJAADUUen9uquYN04XDxQRCVWUqtji2Utr/JgAAKjs5N49dDAqycz1+ApV7OdFGTV7QHCMP/TupWKdGkabua6AjtWP9tT0ITkWd+wAAAAAAAA4FBs7AAAAAAAADsXGDgAAAAAAgEOxsQMAAAAAAOBQbOwAAAAAAAA4lCszMzN0pA8CONLS+6broN/O9Xp1LBBhi7RhXLyK7SoqMXMz52fq4+plHJeIZC7SuQDqlvQBuqOViEhCPd0ppLw8aOYGivXk4hb7tJ2cFqNiHleFmZsd0BNckttl5s6cPNuM4/D768B/qFjQY3cESYqJU7FAhF6oUUE9ptbn55u5hcElKvbfeePtBwbgWKeffKaKBYL2uSo6pOehaL894XiidWujXL+96PZ7i1Rsxi+zzFzUbWf06WvGG9UzzmFx9oVVgrGkmberzMxdtHhRlY/taMEdOwAAAAAAAA7Fxg4AAAAAAIBDsbEDAAAAAADgUGzsAAAAAAAAONRRVTz5/85bqGIF5WlmbnR0tIp5o+3CXcXluvhXg/q6KK6ISHGuLvK1NTTfzJ056UIzjtqT3sMuRmzVIk2Kt4u+VRhFR10+OzclWe+d7i6MUJU5oAvSuYN2MdOMzKX2Y+CwumLkNBXLKaln5npj9BhJS/GZubm5en5KSdGFcUVESkt0Me7tfnt8zPrySjOOQzfgrIEqVuG3P7/uKF08uVenFmZu9949Vaw0r9zMTWsQq2KBkP37mzmz5qhYQmoTM/fneT+q2JJv55q5qBl/OukpM57S+EQVSw6l2g/i0uMvLl4XLRURKSnSudEJRqcAEfGX6nlrY8U8M/fZr2+xjw1AnTH0FF0kWUQkObWZiiW47LVI/bT6KlZWYa9xkrz6MUIJ9rHtztqjYoGQ/bgff/q2/SA47M45qZ+KtWlkF/p3G91qGqba66fsXH3BtmG33STC7dHnsC9+WWDmHi24YwcAAAAAAMCh2NgBAAAAAABwKDZ2AAAAAAAAHIqNHQAAAAAAAIdiYwcAAAAAAMChHNkV64xzdfcrEZFWKf1VrCiou4SIiLiMbhFBr93ZyKr/XhGh0ntCY93tpHhnrpn76+6/qljmDw+Zuai+9F5GByz7bRNvnO5C5PbrLlUiIglBXdXdE2PneqN197TskmIzN8qtx19FyO5gEgrp5/MbMRGRzEV00DpU51wy3Yy3TzlFxQpCdtX/2Ci9j55dZlfyj7eaAXjs+Sk2NU7FCnOzzNwlW15QsczvHjZzYRtwpu5+JSJSEdJv2rVXXWLmZn63RsU6n9rZzE2Ksjo42qdtj0vnZhXb801Q9DidNXu2mbt7x04VK6iwz2tLvqNbVnX96UTdASsptbeZ27WpPq+5vPY6Jytfzy9Bj91ppMKnzx8t69mPK0a3rC1bCs3U2z+1O63h8Lr5Gj0PxMQlm7ke47Tkj48w5xhdY4Mee93iSdXr482rt5u5n39ud57FoRt+su6AdUKvPmZuvZIUFfPF2WuRpBQdzy6xu8DGGlNL0J5CJClJn6sWr11r5u7avVrFfpo2xX5g1IhLT7LPVV++eoOK+YvKzNzyMj1nrFm9ysyNM7paH9epg5mbnKDnkTPvfdPM/ejnRWbcabhjBwAAAAAAwKHY2AEAAAAAAHAoNnYAAAAAAAAcio0dAAAAAAAAh6rzxZOHnzlTxfod/39m7u4KXXzJFWWVPhYJFusqXS6jyJKISFlxkYrFpdSzH7cgX+c2aWDmbs/UP9v4ibpQGQ4svadRJFlExKgR6bbruIlV7zYU4ZMRG6v3Qz0l9h5pTD1dTC4np9x+XKNibkWpXegyLlXH50xfbOaieoad/Y2K9T3uIjN32a4cFWvSopmZm71+s4rFNW9s5hZt3K1isc3teaRi9x4VS2plP27BpkwVmzChnZkLkW6nn6hi8W77s15epguDjrz8DDM36NNV3EuL7ceNc+lKpt5Y+1zlq9AFUkt8djHvOI8ulutJsovl7tquixgG/LqArojIokW6ucGcb+2izNjr73/Qc07rtrrAqYhItFFQP8oomi0iEvCVqlip286NKS9RMW+SXVzXX6bHWXRqqpm7bkWGiq3Z9WczN9oo7Pzy7C/MXNj+/nAbM+5z68+7z2Ovj6PK9Zq3PMr+vLsqdK43qb59cMZaOrGpnbtkxmQV+++nLe3HhWnowMFm3BOj1yj9unQxc/fk6/VqvWR73JQX6tyCgF1oOaFCL8YL3fZ6NyVGL8ZLxX7c/AK9HvIHtpi54ydNNOOI7Py+PVVs4eTnzVxXsb4eTmjU1swt2L1BxXKMsSciUp6jmzk0adfePoaQXmulpaSauW1Pu0fFJi3IMHPrMu7YAQAAAAAAcCg2dgAAAAAAAByKjR0AAAAAAACHYmMHAAAAAADAodjYAQAAAAAAcCi7rPjv0Ge47nJQXq47T4mIpMXpTiFFbt29QUQkyd1BxVbvtitlh3y6Gror5lcz11+mq6978nTXABGR+NSGKlayo8zMLUrVXUWi1zYxc0uzfzai55m5iCxzse70IyKS3k13y4qJs/cy6yXrLjPpHVvbT2gMP7fHHpN5JbojTePOdrutUEycis1epLvRiIjklOrOKMeaE8/4k4oVldlzTmriySpWLPZnuL5XV+3fmZNr5jaMKVCxer4VZm5yEz2/RAdWmrmezrrrXiOv7gQgIrK9qR7TeRt11xoRkR3Zc4woXbEicXt1p6t+ffuauW3b605k5RG6OlSU67HQsavd9SyYq3NjXXZ7P19SIxVLKM4zc4uDuuPRrp3bzdwOHfQYWbHQ7sLXrX13M47I3CH9GQ4V6G5oIiJBj55zYlrvMHNLjO41iQH7/NMqWp9/JFV3yhIR2bNNzy9bd9rHGypaomK7g6lmrlv0WD+vt90FdeLCsWb8WHLyGXoN2amp3RHRHa071KQ0WWPmFughJglx9vq4pEJ3co0pttfd5c30/LQzQ3eAFBEp2mN10qMrViSDhoxUsWZtOpq5zevp9YXXY39+WxiNersen2jmBqONbo32pZ1sy9eDrHcH+1opN0/PQxu32efW5dv0td2uPN0ZSUTk7LNGqNjXkyeYudgrxqWvPZastNemobg0FUvI3mrm5vj1eSk5QlfGUqNDX26+fV4rM/YLvPX1XCgi0iTN7vznNNyxAwAAAAAA4FBs7AAAAAAAADgUGzsAAAAAAAAOxcYOAAAAAACAQ9VY8eQFU59SsYtHWMXPRFaW68J7br9dpC8/50MVu7CnXeTLUy9DxUqzi8zcqKAuqOSJ0YUyRUSWbNcFyJLj7OJLcUW6cFen4+yClOPWbDSiFE+urvT+ukiyiIhH1y0WCRoFIkVkSM+eOtUqJiki3Zvq+J48e0yWu3TBwYQoez81NkEXuoyNq2/mfvWjLprYs1sPM3fx0gwz7nSzv31axUaOnGLmrq7QFfzcPruqX86O8Sp2+60JZm6P9DwV27PLLuqX6tXF3cqMgnEiIt8u1Y/RJiXazG3u1XNO8nFzzdw/L55lRK8wc48lfQafacYD+qWVRUvsosEndhqmYmvy7fNE/y66CKg73j7/tE/Qj1FQahSpFBF/UE96/mi70GV0Qz2PZXl1cVMRkY15G1RscK9eZu6q9btU7IJz9WsjIvLFpB/M+LFm/q4vVWzYEN2IQUSkWUfdJMJtDweJ9egBXFRunRhFlmXr975plD1Htuyin7BN9/lm7l9nzVCxzxe+Z+Yerf4w4H4Vi2lyupm7tkKvhd1+u3h/dN5CFRs4yD5XNWyqC/VnZ9kNBKITdROC1AS7uPvKHF1Y3bUr28wNFOs1TpteduHVN1YuMKKXmLkQEb9eV2bvscdNklsX32/czn5/bxoxUAfj7TEW7dGXlPlF9lhYt0GPvfpN7MLf1iq4ZXt73Mx+a7mKJaba58BQjj3+EVlJtF6zdrDfNqmo0O99dKKeA0REmrv1uao43x47XuP5vCH7GqyguS6cHe22191ZZXaBeKfhjh0AAAAAAACHYmMHAAAAAADAodjYAQAAAAAAcCg2dgAAAAAAAByKjR0AAAAAAACHqrGuWJaVYncPaRDUNc5/mnqpmZvefYKK7cx5xswdkNpCB5vYFbh9ft11JiS7zdz6iZtULMqoKi8i4vbqzjXxYlfaLg18b8ZRPZlzM6uce/WFw814VLR+j/p3bGjmHt+knoptzc0xczfvMbobNU8zc90B3WkkNkqPPRGRCbrQe7W6X6XUSzHj+bl2Fx+nWB1YZsbTylNV7OfvbjBz07tdpGJdu2y2c9vqMVLRxt4vTzA6LLmi7U5XJ/bXVfu9bt1NUEQkN6RzG7js7kb3vjTHjB/rykN2JzNPgj5F9ujW2czNMjqQ9G9rtytqE6fPS13r2+eJFp1196mS3K1mbmGZPrfGRxWYuYEo3R0pu77dMenf3+ux5/fay4cFC3RHtj259vkSexX4dfePX/P+a+a+8vY6FduSY7/HZWUBFTOa54iIyGM3na9iN789ycz1BPVkVi/JXmuV+O1jO5Z8M+c5FUsf8byZm+bX64ucQnstPX/eqyp28xV2t60u2U1VrEWa/Z7FJurzUklQjzsRkcSAPqc0PN4+r5WV68FXmGt3vsku1x2/EFnIrReFqQl2Z73iMj2fr1hvdwoa/cwHKpaTbXfb8gX0+15hdEEWEYkzuhAXletubCIiUR49blrUszvGhtxGp6sKezxmZ+0w44gsu8zovhbwmrmuBN2NLM9nrwViyvX6xx0d6VpJn9ci9bMqDOm/aRpnd3Xb6TMW6Q7EHTsAAAAAAAAOxcYOAAAAAACAQ7GxAwAAAAAA4FBs7AAAAAAAADhUrRZPbuwZYMa//1YXg4xMF7VctMoucrz0V11QsjioiyyJiBj1RqVJPbvQZX6ZLr7kC9lFllwVpVV6LhERo6YTatnaDTvN+B+vPlvFGtr1tSTFo8dkUYJdhLBBrB5/DTu2NnP37NTj97jGzczcf0bZxcqqyhehgJnTNXTZc8uP3w2p+oOEKlQo2W3vgScaRbcnjR9r5gaCOrdbP7vQZSigJ4229XUhOhGRzGm6wKk/EGFyKbeLBB/ropLjzHjvnp1UzJtvFzRPa9lbxb6Zahc9feqeLiqWF22fq2I2bVSxwiI9RkVEEuvpeSGpoV1kcsXmLSrWON4+r83OWKtiFww70czt3bevii2aRyHUAwmIXje8+f0aO7lCF7j+1+xpZmpI9Dxy24mnmLnPvve5ipWV2YuXl+fpAtmRFjoP9bfXgce6hi49X4iIBEu+VLHM2a9U+XE3rLXXxyNO1EXfC/Pt4rH+fH3+KArYlwsxFbqQbsMU+2fbsnW9iiW57HOV357ijnmDhl5uxuun6ULJ5WV2keO4lFQVu/mCk8zcVeuMxhEBu+C1dfbIyTWKGYvIJZdeoWJbiuwmJNvmTtPBCNdVb0zRzVRaNrUboTRoqONnnjbYzJ3y/c/2Ex5jgsaF67bddoHsNi31NXXmD3p+ExHxG4/bpdsgMzfGpcdU/Rj7gm1JxgwVW+23B4+v6OhYH3PHDgAAAAAAgEOxsQMAAAAAAOBQbOwAAAAAAAA4FBs7AAAAAAAADsXGDgAAAAAAgEPVales78dXvftVenq6GR/eXXcQ6tupo5m7cNl2FVuw0q76nxavf/SUpGgzd1C6rpweoSC7fPr9chVrmKir1YuI7IrwGKgZ1ph66Fq7ynqTFP3ef/bZbDP3hHa6y8zg4X3M3NydugtXUoR2D+9+NU/FOjdPM3M9brt7TVXFRttdvErErm7vFD9+UfXuV5HmnKljnlCxXsfZn+EYr55HHvrPEjN38otXqVjjRnYlf5fRX8ITbR/D3f/WnZe+eeVaM1eE7kSWxV99Y8YHnqPni5svGGrmLlulP+u3XmzPN/WT9bh5fYrdQSu9ZbKKnT/Anm/KSnW3iISiIjP3m+8zVKxXK/1cIiJ78vRjBI0ubyIiGYv1zzHxm+lm7rFmYIQ55/6rdSeW1FTdOU1E5B9v/aJivfv2NHMLsvWYDEXoXvX8XRer2H0vfWHm9u+tn2/95o1mbrnZKwcxO74y45Pn/KvKj3HuMN1xbPQIe9ykxuvf406dZ5/vhx+nu9l0amV319u1U69nQuUlZu7cdTr35Db2eQ22shz7yqHIp2NNmtvri0lvPqZi7oQGZu6a599WsU+++cnMvXpgcxVLS2lp5vbp3VXFNv+wyMz94Mv5Kvb6dXa3vecq9AsRac7LztFduBo0amrmHmv6RDhXzRmv18ct4+2OnlkV+nV/+j17nfPmk7rbW5M0u1upy6fPKW6vff3+17cWqNirT1xm5pbLHDPuNNyxAwAAAAAA4FBs7AAAAAAAADgUGzsAAAAAAAAOxcYOAAAAAACAQ9Vq8eSa0LZ5qopFuexCWK1bJKnYL+uyzNzsoC6+dEZruzhcqU8X44qNsYvPJjVM1c9VbBfLRe2ySvIFCu1CjrFer4rN3mWPnUGDeqtYRYGd63F7VMxVrgu2iYh8n7lUxYb1vNLMzSktNeNV5YnSx4W9GtbTn+3ycnsPPDbGr2I/T37ZzO2QqF/z8sICM7fIr8dpbJwuaCkiMvunf6tY22R7fhLRhRARWacTeqjYgjkZZm5qgzYqFii2i5PWi9WF/hYv3WzmXjroIhXLyrLnm8YpulhmVr59DLNm6uLwNw4ZZeZ6qzHddO1uF3aGSLTLnke8Xh1PidfnJBGRtAZ62TYo1i5QGpJcFevXtp6ZGxWlj+H45rpxhIjIWU30Y+Tl6MLdIiKBiK0mjm2T5zx3yI8RH6vHgitkj7HSbD1nZJfaBdBTm+umJTu3rLZzk1NUrDAv28zdtHWDil1x8ulmrkhmhPixLcpjVEkWkYSURiqWvUcXTxcRad5EN+XIizDHjxp9hYot277SzF3v1mPh5YcfMHNdQb12GnlafzO3fsWtKrZoi90YR/xVn2+SUvXrkJ+fX+V/fzTzRCh6H+3ShZKDbntt6grqc8L/xuriyyIirY3mRcU5u83csqBeS3u8dhH2j/73uIq1jLOLiot8GCHuLNyxAwAAAAAA4FBs7AAAAAAAADgUGzsAAAAAAAAOxcYOAAAAAACAQ7GxAwAAAAAA4FCuzMzMw96y4MRe16lY20Z2g661WXNU7MphPcxcr+juU8kputK2iIjL6DpTVGp3rwoFdecAV4TuFnFGZW9Xha4iLiLyzOe6C1JmJp0AasrwU7upWKjUHu5f/vNmFSuOsx83zagW74/wHgeNvVO3y642Xxqnc+tH6CjS7SbdCSljcdXHTmpqqhnPy8ur8mM43b3XXG3GZyxfrGIL/md3ukrzFKlYTLTu9iAi4vPp99Ifst9ft1+Pp5DdwESijHFTXmE/bqsRf1Mx5pzIHnrwThXr2truFJSdr7vd/TBtgZm75OMnVezXnXYHiMZGA7smjezORmKNkQjnquVZumNS02j7PHzWA7qb2rmD+5q5G3fqTm9/+tuhdwBymvN7XqViV5+nO3eKiDz51QwVm/nKHWauO8romJdgdwRxBfQ8UBbhXGVNMK4I5yqX0cVLfPbj9rruRRVjzqmeswbqsSQiUu7JULEKn/15//tI3c1zT4meA0REoo3OQolJ9oIoyloPGeNORKQgqDs6RVfY58uHxq9TsYxjbNykp6erWKPGjc3c1JhkFeuebncrmrdsj4r9+oVeU4qIBFJSVax4h92VMeDWYy+1nt2BKGSsUdxue9zk5+l1VjA20cztdtpIFWvXxD5nFxvXfDkldnuwPXv0+f1onsfuvqmHGf9pvp7nl47X6xkRkYpsPb/ExdvzU8BYC5eW2XOD28gNBu2xE2d0l4yQKt3+73kVc+J7zB07AAAAAAAADsXGDgAAAAAAgEOxsQMAAAAAAOBQbOwAAAAAAAA4lF0psZbNXvSuivVKt4vD6VJrIo0bppm5pXm6+GRFkfUItkgvxsvfrKjyY9x17gkq5nLbBQhRu6ZO08WpRwztZ+YaNd8kodh+3HKjoHFIjAqnIrIqTxcai1CPUo5P1Y9bFGHrNUJtwioLRSjaeyx54f0PzLhVsHDH9vVmbsuOTXXQbRcsjNI13CIWtm1/9gNm3LL2q3+qWGx0eZX/PSL7xz910ey3XtIFqEVEEuJ08cr8Qvv84yvVBYY7JtnjxlJabD9uhUcPMpfL/qy3jdMFd10uu0J3XoE+Xk+sfcY8FgslW75c/KGKDU+/1My13vmg0QxCRCTWo9+3YKld8NPiMYrdioj0vN4uEG9Z8p4uKo7aM3mmHksiIt2Nc5XbbX+GPUa8SUKDKh9DVJS9xtkV1EVsXdH2GGvgz9PBGHsuC9hPd8wrj3BO2ZGrCyLHxzY3c1Oi9Xnio/+NN3PPHnmJDsbaxdqt1Uxeob0W6TrkMhWLtC5dMf1TFXMFIpxby3Xc5bHHo89YjKekpJi5+fm6gPPR7MUxGWa8jzXnBErMXK+xRgiI3dDIOi0lRCi03OsKXaw50hXNwv8+pJ8qaJ9bjxbcsQMAAAAAAOBQbOwAAAAAAAA4FBs7AAAAAAAADsXGDgAAAAAAgEOxsQMAAAAAAOBQR6QrlmVRpl313+pQEwraVf9jEnQ18xiX7kokIlJQqCucR+pWdNMfuqtYQpT9uJbYxNQq56J2BYL2++ZNTFKxsjy70rvbqLAfqe/Zn/6hO8BNevYGMzdkdE+LSdIdJw74hFWUn59/aA9wjAkG7HGzYoXumNfmuM5mbmyM0Q0gZD9u5mTdoSbWZ7dpszpJrFm13MzFobv5rr+a8XdeelTFUlPjzNyCMn0OC1bYXT5Sk+zHsHQ+60EVWz/pCTvZ6MhWaHQUERGpl6b7NuXl2vMjIpua+YkZH2h1GomwIMkq0h2wEqLs39FFe6v+u7vM90ermM9vr7UCAb+KZReWVfm5UDOWZGaqWO8eeiyJiJRU6HNNrNEdSUQkxhxPdt+Z5z/4VsWeu+YkMzdkjMeCUj2WROSQ1zhHqxJfoRm3OhoWltjdfxKMNnw+n/0+TJ30mYo17dDezG3ftqMZt+yY8baOFdut0MpK9Npn1tQvzdyYaH1ZW15h/2zFRXodnJNvz2M+X9U7LB9rfJHa9BrdsqzuoSIifn/VO1XN//wfKuYtj7AeMeYRv7/qXSSdiDt2AAAAAAAAHIqNHQAAAAAAAIdiYwcAAAAAAMCh2NgBAAAAAABwqDpTPLk6QhGKuFnVj33uGDO1MKgLYcXH27mxRixS6eSSMl0Aqqy03MyNVBwRtSnCXmZIF22LTbYLF1f49fsWNArYiohMeOUuFYs0dr5ftEnFXK5dZq7LeDqr0Hh1ZRrFGCESCNhFRF0e/UZs3qzfRxGRbTv3qFhcnD3nVEe5UeA0Ic4e5x628mvN9Xc9rmLvf9LfzI2O1/NNedA+H+SX6vc30qkj4zN9DAXl9tjdtjtPxYJiF4jcvqNAxW6870n7IFBt+tUV8fsiFC7260KgJW67CO72LF1oNdp76Mu+XXm6+URChELNjlxkHo2MRUO5316NlAX0/OQP2ePxwctPVLGsCns9VGwVsY2wdmJ1XD0dW+vCxXv2ZJu5uUX681tWZjdnSEnWY2Hn6pVm7uJfZqlYcmLVi/9HkpWr57HYOKMZhYiUlehz2OYdu83chg3TVMwf4fKysJARKSJiXc163BE+w0ZDmLJy62wnsmnbThVLjj/0sVNmzDlJ8fb50nOUnKxY5gMAAAAAADgUGzsAAAAAAAAOxcYOAAAAAACAQ7GxAwAAAAAA4FBs7AAAAAAAADhUna8B7TEKkYciHHacV1fttzrGiIikpeiOR6/9b66Z6zb2v0rFqO4vIqMu7KNiSd4IFcPpinXYRSh4L5t36krtLRulmLlRukmAvHXfJDPXZYydbVJi5o5dt0TFCovLzNxL7n9GxWIidDsJGV0nWj410sz1GJ21jrVOWdZutyc+1cwNGfOLK2jPOQ1SE1TsyifsceNx6aOoCNgdTP7z53NULClOP5eISCjEnHM4ReqWtztXd09slBpv5pYV6XPNF7d/Y+Za725+yO7KOPKF81WsyGd3RomJtjuQoGZEGW+cO8ru3BFjrD0izQ1WR5rrHvvczC0wOl3FJdnzyJhHzlWxWKMDiohIlHXCRK2J1HWz2OiulxBvv2fBoH6UBV/pzkQi9vq4MGSvW/qdqbsQlZfZc6SbcVMtv65ZoWKx7mQz1xtjjBKXvX70+XRuVIRbAhrX18/3l3c+NXOtrsChCF3aHr3pShVLTrLPl0lJ+tquzOgkKCKyJ1vPee4IHVArKvQ5+1hkTfPuWPtaSYzOjq4IV2HNGqSq2NA73zRzrUcIRegqOvXFG1SsXr16Zu7R0ouPO3YAAAAAAAAcio0dAAAAAAAAh2JjBwAAAAAAwKHY2AEAAAAAAHCoOl882Sr26S8vNXN98bH630cocmwVG7z9sn5VPq5A0C4AVVKuC2wVRXiZraK2qF1fTZtvxi8YdqKKffrP281cl1HY9ubnzzNzrXe4wigoJiLyykM3qtiTY74wcyvEp4MRilcG/VUfZ8daoWSL29jubtE41czdvUd/3pNCdpG98hJdmPajv44wc613rCzCuPH59fPtiFCQ0uVizjmcZsyeZ8b7dtNFypeP/4eZ6zYG5IjX/mA/ofH2VkRoILAnRxeMP/22f5m5c5cstJ8PNcLuo2C/b9HeGBWrqLDXOcVl+jzxzqMXVPm4AhEKXeYX6TVYyGMXe/ZHKOyM2pGRYZ/DexuNEf5+ZYQ1r9G1pP85uiitiIi1jC3x6bW4iEggpMfCv76yjzdjCWsRaz2WbryPIiJer/78lfn0HC8i4jMuoU7q38PMzchcpmKxEQpbV/j0PPTkdRebudakF+m6Kic7V8W279hp5mbl5BhR+x4Gt1f/HD6fsbYW1sb7mMWTI0zx7jhd4DoQ4VxVUaELWf/4yigz1zpf+iKsc8rLdCH37CK7uLtEGH9Owx07AAAAAAAADsXGDgAAAAAAgEOxsQMAAAAAAOBQbOwAAAAAAAA4FBs7AAAAAAAADlX3u2IZXRmKS3V3GRERj+hS2R6vvXeVEKMryPvLy6t8XJFeuHqJcSr21IfTzdwlS5dW+flQu/xlulJ70GVXWR95/79VbPyzEaq3G+M3JtruKDDms69UbP6SRWYuao/V5SMxwe744g41VLHinevM3JgGrXQwZ3OVjysuwja8K7Wpil10x/NmLp1G6gaPWHOA3Vqi44gnVGzVF4+audb5Mtro/CEicuqtT6vYYjp/1BkxUXaXQ581TIL2uaphQrSKFZbaXUUt9hGINE3U3U5Ov3uMmbt4KWOqLog23kxXhA6Of/4gQ8X+eVV/M9dttKhJjLFPVn/6cK6KMeccftZs0bVTOztZTyGy4tc1ZmpI9DopFLC7TFldga2xJCKSXD9ZxR559iMz12J1vxKxO2DR/erAzC54Ffa1c0K07o7nCmSbuWlNWqpY4R57fWw1rzIa+YmISEqDxirW9wq9phI5etbH3LEDAAAAAADgUGzsAAAAAAAAOBQbOwAAAAAAAA7Fxg4AAAAAAIBDOaB4slZUaheZTEnQJcGiQ3bhrsffn6FiJ7RMqNaxWZZt0YWdl1KMq84LufSY8vjsgmCPjb5QxfrfqAuRVtfiJRTTrgsCxqRTVmHvgXuNim3NmzUxc7tf/k8Va9nYqExYTRkbCnWMgqV1WsgolBxn1+eWjZMfV7Hjzn/wkI+BoqV1h8+oZlpSZq9zrGLYSdH24Blwqy7037NNUvUOzpC5Wc85i4+SwpNHK49xCkuMtYvK/vX6YSr29Hi9Zq4u5pxDF6m4b3p6uoq53fb7GwzquSUQocBwnFcviJoc19nMvWL0kyqWEG1fg1XHzlxjLR6hWG6ccSItLrWPgULJ1Wetj8vLrSt1kYRoHY+K1g2GRES6jviLirVuElO9gzOs3VGiYkf7+pg7dgAAAAAAAByKjR0AAAAAAACHYmMHAAAAAADAodjYAQAAAAAAcCg2dgAAAAAAAByqznfFsngjVEPfla07NbRrZlfgtmp4Wx2tRERio/X+V4XfPgY6YDlTqU93CYiO0GkkaIyetx+5xsy9/m/vqdiSo7wi+9EoId6eR8or9BjxldnzSJkx6WzeVWHmlvj1BBMI2RPf0V7h/2jkMhqQuFx2Z4mA8bav/fIpM7flH/6kYsw3zpSclGjGyyp0hxe/uaKxfTBp1u8+JjiX1RfIWsuIiPhCOn7HyFPM3Eff/UHFmHOcJznRXuO0bdtRxdbOWWXmWn38iow1koiI36+7FfmD9r0GUd6qX6paHbDoflW7vF67u2u+0cE62Wu/x1Zjrc++nXtIx3Ws4o4dAAAAAAAAh2JjBwAAAAAAwKHY2AEAAAAAAHAoNnYAAAAAAAAcypHFkz3uqu9H5eSWVjmXwsfHrgpfUMUKCnQxbhERl+hqppFKVwarXtMSdVnArpYeYxTBTUqIr/LD/jhnwe89IjiYUZtUoiMUIPQbRbNDLruQtsttDEg4kitklSIViTOKT0ZzosFBWLXZve4IlwB+Pb/4IgyxkLEeQt3g8djXSsGgnluCAb0GFhFJiI9RsX69etpPaAwF+1FFfEF9rvL5rBLf1UOh5MPPFeFd9hjjIVBeZj8G00iN4Y4dAAAAAAAAh2JjBwAAAAAAwKHY2AEAAAAAAHAoNnYAAAAAAAAcio0dAAAAAAAAh3JlZmbSTgEAAAAAAMCBuGMHAAAAAADAodjYAQAAAAAAcCg2dgAAAAAAAByKjR0AAAAAAACHYmMHAAAAAADAodjYAQAAAAAAcCg2dgAAAAAAAByKjR0AAAAAAACHYmMHAAAAAADAodjYAQAAAAAAcCg2dgAAAAAAAByKjR0AAAAAAACHYmMHAAAAAADAodjYAQAAAAAAcCg2dgAAAAAAABwq6kgfgBOkp6dXOTczM7MWjwQAAOD3ibSeYe0CAKgrOFf9PtyxAwAAAAAA4FBs7AAAAAAAADgUGzsAAAAAAAAOxcYOAAAAAACAQ7GxAwAAAAAA4FCuzMzM0JE+iLqiZ8+eZjwx3qVieQU+M5dq3QAA4Eizuoq4XHo9IyKSEq1/zzdjQUZNHxIAAPuxzlXR0dFmbnys3raYMXNRjR+TU3HHDgAAAAAAgEOxsQMAAAAAAOBQbOwAAAAAAAA4FBs7AAAAAAAADhV1pA/gSEnvpgs11U+z97nKgzruYksMAADUUckevVDxxtjLPrcEa/twAABQrJr+zdNizdw95WW1fDTOxvYEAAAAAACAQ7GxAwAAAAAA4FBs7AAAAAAAADgUGzsAAAAAAAAOxcYOAAAAAACAQx31XbG6ddfdr0REEtN0Ce7ohAjdIkoCKlZkVPAGAACoC6KjvSrm8dq/z4sOsqgBABx+KckJKubyRpu5caX6mhz/H3fsAAAAAAAAOBQbOwAAAAAAAA7Fxg4AAAAAAIBDsbEDAAAAAADgUK7MzMzQkT6ImtL3xN4qlmYUSRYRiYrSP3aT+vY+V1aWzt2wp8I+CJd+vqWzlti5qDOG9O2lYq1S7fHgdgVVLC7aY+aWl+vY5lwjKCKuoH6+7xZlmLmou64a1MeMB9x+FUsRuzhcMFrnbsm2p2qXTpWvlyw+wBHiSOvfR5+rgkHjjRSRoFu/7/FuXRRXRMTr1kUFc3z2uAmJji9ZuNTMRd0xuLceO0lxkQof6zEVE2Wf1wJ+PR6yIxSp9Hr1+PtxzsIIxwCnKW+wXcW27dxl5jZq2EDFYj0R1t1ZLVTso3mTzNwr+p17oEPEEXTT6a+a8ZCxnElz22vjsii9ji6piDFzfYWlOte12cz9dNqzZhyH34A+/VUsOdVe50QZ56W0evY6Jy9HX39vMWIiIiE9zGTpUb7O4Y4dAAAAAAAAh2JjBwAAAAAAwKHY2AEAAAAAAHAoNnYAAAAAAAAcio0dAAAAAAAAh3JkV6z+A3VXCBGRr1+/RcUqSuwOROVlujL38hUrzNzEGF2pvUOXjmZucnycip12p11Bfs7PGWYctef0Prr7lYjIv+7XHRhirHLqIhIs12Nnz267Y0RqnB4PcQ3qm7nRxji74clPzNxvFx3dVd2d4vlRF6hYfIT98tiArvAf8OWYuV5PkoqV2A0CJMoTr2ITZtjj4+sldOg7nHr36mHGj2+pO8kUlUTo6mB0xSoqtc9r7uhYFUuM8OubGK/uXLN2Z66Zu+go7yJRFw3p0d2MX3RWVxUrKbDHjiegu1qVFReauVFGpyt3XIKZm5Sg2998Pn25mfvtHDr0HU6lTbeY8bgdLVUsvpM9FkoCeo1TVGyvh1whn4o1SrbHTUVQj0ffmlQzF3XDn68Yr2Ix0XpdKyIS466nYr5QlpnrDeh1S4U7QsfYeH2+XLt6nZmbXf69in094z9mLmpG7572NfnbfztHxdwBe8th465iFdu5bZuZG4rSndZO6n6cmRvl0ee1qx4dZ+YuXJhpxp2GO3YAAAAAAAAcio0dAAAAAAAAh2JjBwAAAAAAwKHY2AEAAAAAAHCoOl88Ob1XuoptmvaamZtTkKdiKU3tgkqFO9er2K68MjPXv2enijXq0MHMjRJdSC4lJcXMbTvodhXLXHR0FG+qC07v3UPFPnn1fjM3MagLA8Y30IXgRER8ZfkqlrXVLjoa9OiCYAnJzczchARjn9UouCsictr1/1Cx7zMojFtb/v0X/VkVEWlkvD3lQV3AVkTEG6ULAwbz9XwhIhKMK1WxkCSbuVHRegqPdtvH8Mm3P6vYR9MXmLmonu7d9Lmqc0t7DikI6vcszijyJyLiEqN4cokuQioikuw1cgP272/iYnW8pNwukFqQq+e8mQsyzFxU3ylGoeTrLj7FTjYK0J5ysi6oLCLi9+niuK6QPc7yC3SR0+TkNPsY3PoY5s/dYab+5ws95/y8MMN+XByy8rZ5ZtxnrI+LihLN3JgSPRZK0uyCuaUbdW5Cii7+LyIS49LjJqm1fV7zbm6uYh/P/MjMvXzgFWYcVffU3QvNeJxbnxP8Yo8Fd0DPN8lu+/0tEKOoclSE+aaiSIViUxuaqSsWz1CxVyZeZz8uqq1bul7n/Pz+w2auz6PXI1Ex9vVw0Bg7GzbbzUXigvq6Kq2Rni9ERKLj9TonyqWL/4uIDLr0ryq2NNN51+TcsQMAAAAAAOBQbOwAAAAAAAA4FBs7AAAAAAAADsXGDgAAAAAAgEOxsQMAAAAAAOBQUUf6AA4m1mjg8Mtyu/uCO7G+irUssXNz83Wl99Rku1p3bpLuMFNe6DJzdxjdStbt3GPmNqjnMeOoGTFGNf91awvM3Kj6uhp/SoWdm1fhV7F4Y+yJiMQEm6rYjjy7E1Jot678HxNrN61rmFLnP7qO9Yfu3VRsyEn9zdySON0dIq1lgpmbVag7hSS3tecRX65+3IDXHo+eMj0/5ebvNnPdIT3ndEvvZeYuzVxkxmHzGr8mKTU6WomIpMTEqFiXTg3MXF+xnsfi4u1j2JOj55YWEcZjebEee8vWbDdzs/fY4xQ1wyX6Pd6ap7voiYj0791RxVZssT/vJX49/rx2QxBJ9upzYHa+PieJiOTu0eucRifY3R7jvmHsHKovlnxrxocO66RiMRHWplk7K1QsvqF9Tqko12uc2M1258+oVvr8UxYht9RvdMvy22PMlzpXxSJ1v3p1rO6UO/r/7E6WsOXvtrsCF0Trc0pCK7srY0mhca2Uaj9uMNBGxYrKs83c+EQ9N+3cas95pXmbVGxo9wvM3LgofdL2h+z1+beLJprxY028cdk6b4P9GfYm6q6g9WPs3PxC3Qk2Od7uKhpnPG7QZXdq+3WD7qxV4S8xc+unHB3X5NyxAwAAAAAA4FBs7AAAAAAAADgUGzsAAAAAAAAOxcYOAAAAAACAQ9X5CqxW8eSeDXWhQRGRBqm62GCM1y6olNAmWcVyc4rN3LJ4XUguOdp+6Urq6wMO+o0fQkRcPvbValNJlC4c2aC+/R7HxuiCgx6vLnAqIpIWp8eDO2gXBPMbxSubNLQLdIWCelwX+iIUqXNTkLK2lEfr98wTbc85qdH6fQgU2GOsUwNdtbQw335/m7TRY6Qozy7EG0jSYy862i6YWxGlx25KhAK/qB6/MURiI1SqPblfVxVLTrLPVfXSdKXkXbvtoqdNG+uxEIrR5zoREU+aHmNxSbpIpYjIlh0zzDhqRshYIgzt3cTM3bNro4olJuuipSIiberpNcaGbXZxUEnURSbrR/jdX9AoOlq6yz4H9unb0n4+VNkF3c8w403idaHYFUs3mLlNjbVpvZR2Zu6OVatUrFGDRmZucIUuRLop2z4HpnbUxZNbRihkunmPLvbctM1aM7fP8fZnBVXXpuV6Mx6TpN/L4gq7sHujNP3+JnjttWp8m74qtnm7XXQ7VLhVxVocp+crEZFv1q5QMZ/km7muoDW/2Wuyk7oPVrFZS342c49m1iV1c1eEwupBPXZaxNvrnLTmeq20aUuefRDGtVL9aL22FRGp30LPe1mF9vW723N0XJMfHT8FAAAAAADAMYiNHQAAAAAAAIdiYwcAAAAAAMCh2NgBAAAAAABwKDZ2AAAAAAAAHKrOd8XKK9MxX5SuvC4ikh9MVLGCYl1ZX0QkLkdX0I6Ktqt1u0RX6y6psDvJ5BgF1Vul2seb47e7I6FmlAb16xvltbsbdWqtx05ivfpmblmerrDv8diV/2OMeJnP7koSFas7GaUl6o44IiJZJXYFeBy6H+ZnqtgbD15q5rbt0ELFhg3oZuY2bqLHU0lRnpm7dYfuJtC2bWMztzyop/ENG9eYuW9+rufDmZn650X1uVz6s15QbJ8nPvp2noo1SbW7J6bG6zkg6LI7dyRF6TmkNLjFzC0p1o+RF6G7X3EF801t6tJVd/XxBexuQfUbpahYTLQ9djat091KPDF2p7aibH1uLBX7vBYyzmstW+pzqIjIL5l03TtUny2YYMYHZetuaG3i9PgQEVkxfY+K/bz8UzO3RecuKrZzWYaZ27bNQBXbnvmDmRtcq+eR7an2+TK1ve7mF2rR0Mwd0HekGUfV+eQbM961aQ8VG3D6aWZu27a6y1p+hLXIliy9jm53bnv72Iz5bfkCfQ4VEXl7gu6KNXPJUjMX1VcY0HN/5rbtZu6nU/XacmdRhA7CBfq6yB1hh+KR689SsSfemWzmBoylS6PGqWZubqm9rnIa7tgBAAAAAABwKDZ2AAAAAAAAHIqNHQAAAAAAAIdiYwcAAAAAAMCh6nzxZDHq7pXmGhWVRaR+nC5+PGvqeDPXH9SFAjunDzJz46N09aWGcbpIpYjI4oU/qdg6v12wN1Bo/xyoGVbJxi/m2oVE73/6a/3v6+nifZEet1WCXSAytXEzFVu4McfMjXXpwraBgP245WX2mELt+PKXVWb8rOG6iOC2Ul0UUETEv0UXjSuNVJM2ZOS6dKFmEZGVu7eqWOMUu2B7hV23GzXAqp8en2AXtc3K13N/7AknmLnRRlHmzCVLzNxTeugC3UtWl5q5bToep2KtIhTL3brxZzOOmpGWpM81izLtc9U5gzqp2LKly+wHrtDniehgmpmatWenivXr3dPM3bxVz4fbV9qFJ7ds0wWcEdmbc/Wa9Zb+dnHgerGrVeyFFz8xc7+equeMvDL7hBA3YZ2ORVhynNBjt4pNm2HPFzH1dZHw6HJ77LbsUk/Ffh73nJk7+cevVKxnj3PMXNi+WGAXOT5hwAgV2xKbaubGF+vzmjulgZnboL6+htrpsxdE64p1I5TOJw4zcwOhR8w4as9/v5ltxrft1OeEV+ZEWEuE9LXOHSeebKb+a6z+vFvNIEREXl6oi2y7gvZ11R39+tvH5jDcsQMAAAAAAOBQbOwAAAAAAAA4FBs7AAAAAAAADsXGDgAAAAAAgEOxsQMAAAAAAOBQdaYrVnp6uhlfP/VlFWubZJfn31ak44+8nWHmjnv+KhVr1iDezI1y6wraoQgv3X2vL1Kxj1/Uz7XXzAhxVEevCGPnf288oGINvXbl9IJdm1VsxmZ7nHVP1fuhjRvGmLkXn3eKil1esMfMHfXGNBU77QTd5UZEZPVqfbyoGeeecZKK3X31YDO3RVPd2eHDCXPN3I5NElXs8gvsTnxZu3UnmbZJujOEiMhr72bo52pkd+2jmdqh6x5hvrnq7BNVLL5eYzP34wmzVOyC7q3M3GWbtqvYkpD9O5lLztRdJFbtmmbmjujfQcWydmWbubNn2N2yUD09I4ydp+8ZqmJNvXb3xIRovfb4fvp6M/f84bqDVvsmqWZuy2jdzS8xQiukcbN2qNiIgW3NXLfX7gwHm9UBKy0p08ydPzNLxZp5G5m5vvISFet/hh4fIiLFRtOYeV/Y3au6hnRnragSu9vWkCv1+N/js8fYkpkLVMznt7smWR2wXn3l72bu6DseNuPHkrOHDVCxW2+9zcztfkJrFfvq08/M3Enl+hrqr/fZ1z+l5Xpe6NnQPq+Ne+pFFZtcYnetLabzZ42IdE3+3iMXqdjOPbqLq4jIE2/rDljpvXuZubk5uitj0OiUJSLy9OiLVezef9kdsLv30M+3eecmMzfmKLnX5ej4KQAAAAAAAI5BbOwAAAAAAAA4FBs7AAAAAAAADsXGDgAAAAAAgEPVmeLJkXhEF0srC8Saud5QsYp98+k/zdzjkvSPXpiz28yt8Ouipe54u9Dy5In6+dom2Lki/44QR3XEeu1hXFBSoWLNm9rvxTlD+6nYzDe+N3MzcstU7LmLdTEvEZGCgjwVi1TAtl+b5iq2aO0WO5laprXG79dvkCfaLkbcPEUXRP5lyRoz9/R+eoxk7baL1cZ69Ry3fbculCki8vW0H1Xs7PvvMHMZN4fO67ZfxNQkPbc0aZ1i5l4wRBcmfPrtz83cto304944or+Z26VdExUbeVoPM/fTidNVLClCgW67hCGq69zhXc14arwuvu+WhmZu7la9Tqnf0S502ahxSxUrydlg5pbq06UEc/LM3GbN9bzXuIFdKDzWu8uMw/bGtI9VbNSpl5u5Ff5vVaxJvC5CKiISKtDFsfO22JVmG9cvV7EUt10gtYMxTH9tYo+F3SvzVKzLcfbssi6n6r93nrdwiopRJDmyKOMcFuGSRnr16qZi1935ZzP38kt0AWav1z4HFpbk6Vixff5557OJKjbqStY4tckTYZ1TVKKvf+Lj7PeteWO9jj0ttoWZGwrphiE9W9sFsq0FSbvm9vnywqapKpZvXMOJiASOkpUOd+wAAAAAAAA4FBs7AAAAAAAADsXGDgAAAAAAgEOxsQMAAAAAAOBQbOwAAAAAAAA4lCszM/Owl4FOT9cdHE4+yd5jmjVPd6jZ+O1LZm4wN0fFoqLtH88f1I/rD5ip4gnovwgG7cf1xukOTRFSpc2IJ1UsMzPTToaIiPRN1xX6GzWzu2JlZ+n37aXHb7AfOKC7Q5SLXendG9JvaIzHzvUXlqqYx2OP9Ypk3Xkp2m93rbjpr++o2KLFS8xcVM/pg/UYc0UYC/M/+LuKbSguNHObevX7HuP12gdhTRouu0vBtgrdObBZtD3G2o58VMUWL2LOqY4rLupjxrfu1G2FHr3e7pY34qzBKjZpaoaZGxOtY/17tTFz4+P0eCo1xoeIyKIluntOQrLudiQicuUfdbfHhcw3B9TLOFc9eNsJZu7spbpLx90X253PStesVbGopAgHUW50FTW6moiIiEvPGS4jJiLiTTIGZbnRVktE3l6in++Zlz+zj+EY8sd//cuMn9+rmYoN79fFzJ25aL2KffjhJ2buoK6tVOx/kxeZudEuvT4+d3hPM9fr1eclX4S19He/rFSxBGuCE5HEFN0R5+OXHzBzpy7cqGLH9TnTPgjIH4b1ULFy3QhNRER+njlXxfJj7fXQCYl6Dbt7j91NzWdcV3kjrId2RuncLgl2x6RGx3dUsUVzlpq52Mu6Jr/5slQz9+3xurve8rH3mLmFRfr8E/Lan3eXcV0VinTxbORGEjSutzwhuzXxgOtfVLGMJc4bO9yxAwAAAAAA4FBs7AAAAAAAADgUGzsAAAAAAAAOxcYOAAAAAACAQ9lVZ2uZVSDYKt4USU6WLvooItIwIU7FXO4YM9cq3xTrtve5Op77kIpFKt208ktdTNUTjFSsMMKDIKL5mbqQ1Yk9e5i51nt051PjzNwX/3ihikX5deHjSI9bYteNlDv/+VGV/r2IyGt/vVLFKqLsQmPiZvDUlu9+1mOsf+8eZq7PrysOtojW81AkwaA95+SUW4VM7fe8cZTODQTsgrl2FNXx0WcLzHiv7rpYbqzXriLqD+q55dxz7eKkltgYu3jle2OnqJg7wri55KLT9HGVlJi5Afdh77HgeIuMc9VDd9jFtGOi9Pt51kC70PKXG9bpYFlslY8rNs4uOvr0lytULNKc88B5xxtRezkZHWMXqjzWPXuPXXDU4i+xC3ie3LONiv3nPXuWj43W56rrLtRzViTeKHssxJpjxM69aLgubBsK2nPkpJkbVcyTaq/nvQm66O4brz9t5o667U9m/FjyzQ8ZKtavr33+cZXoZhAppfb7uzVXF9YN+CN8/suzVSgY4RosLba+iu3KLzBzfRWcq6rLuibvYaxnROxPdm5hsZkb5dHnJbc/wsWS9VwRzj99r7cbKFnmvXuXDkYaIkfJZRV37AAAAAAAADgUGzsAAAAAAAAOxcYOAAAAAACAQ7GxAwAAAAAA4FBs7AAAAAAAADjUEemKZbGqcovY3bJ8AbvKepbRLSutYRszN9psKmKXys6c/KKKxfrtKuCWPXvsLl4RK3OjWmYvzjDj/Xt2V7GA3+4Ycfff/qv/fZ/2Zu7IIZ2rfGyP33mpiiXH+8xcn093T/vj3z+O8MhHSfl2h4j0US3UjUbEX2G/vw1Tq965ZvhVj6rY4nE6JiIibj2Z5ZZE6H/FsDmsfBE6grRM0u9PYZTdHabcZ3Q980XofBOjT+kXjzg1wtHpUd00yRjQIoybGvKPVz414w/ecZGKhSJ0PuzXt4uK5e6yOziu3bytysd2So8WKnZyC7vDXzCkx/WAfp3M3DGZc6p8DLDNmLPJjA8d0ErF2rdrYOZ6jTWv22tfAgSDem4IRTgJPvmhfn/vvWqAmRtldH8LRViTHdeuoYpt2pBl5rbqPEzFRhkxRBap0Wp5SHciK87PNXNTkhNUzBWh09XgM29RsWnTxpu5LmPsVRjHJSISoZESqiljid2Jz+qWFYrwomcV6S6b3gj3k6TEGxNUhDlnwTujVcw6J+39C70e311gny+Plmty7tgBAAAAAABwKDZ2AAAAAAAAHIqNHQAAAAAAAIdiYwcAAAAAAMCh6kzx5OrwuO0KR1HGNlVB3m4zd/P2XSqWGFf14qaRlBlFLRPjvWaux5GvvnP4jIJeXrdd2FZc+n2bt2ClmTpvoY4HIhT0rg7rEVwue+/Vxdg5rCLU/5OQUVEyKtou6pdTqsdjpIKFP419XMXyKuzcPTn5Ohi0kyksWHvMGSBCQT+XSxdKTomyi4gWluuCxglx9jll1KVW0VJdlF1EZHdOgYrlGoUGRUSiqJ5cqzzR+v30RJhz4o0C2bGt7IK5/phoFauXZBdE7tnrAAf4GwXFuvhkcZk9fusl6mM4pX9/M3fG3LlVP4ijVEH2LBUbMPRcM1eXJhVZtz7bzD2lezsVy9tlF0uPMk4U/ghz2X1XGgMnwvmnuEzPe8Gg/bjzF29RsYq0vmbutlVTVKz58WeauYjEnuP9RgOA2KR6Zm6pX58/IhXo/m76JBWriFC8dvuW7SoWMgp8i7DGORJcEeaGUFCfEwIRLnw37tENiaKtiu/VtDu3SMXiou1j8EYdHYOHO3YAAAAAAAAcio0dAAAAAAAAh2JjBwAAAAAAwKHY2AEAAAAAAHAoNnYAAAAAAAAcqs731rG6xrhjU8zcoE9X3PfYvUqkSf1kFTvzvnfNXKv2ejBoV8/++pmrVKxho4ZmLuXba5fVUCoUsl/zRK9+l4sjlOg3GiFJw2S7envA6Pjgi9B9oLxCx9s0TDJzV+6x+mGgtgQidWvI0pX8mzfSXWBE7I/7hDsnmLkhY9bJD9mdRi56eoSKbdlhdMoSETdzTq3xGK+ty22fYncV6veyeazdldHqYnT9uW+auYGAPgf6XfY58M1Pb1KxnXm6U5aISHSEziaonjtGjTDjzdMSVSzotueRUp+Ox9uN+KR5A73OGXLjBxGOzuiEZK5+RL565QoVC0XoVur16o5fLtehdzs5WiXXP+mQ/r3bbb+2yQl6HnE3tz/XOVt1J5lF720zc4NGR5xghHV376tbqljL4+z1cdnETDNuoQPWoYuwxJHSYn1OiEu2u2K5o/Rn/dvz/2zmuoz5Jjeku+2JiJzz3ydUbPMG3TVNRMTFGqdWeT1Gd1dPpDWv7pIWaW5IiNfrn1ueGGfm5hrrlMRkfa4TEXnjzyNULDZCB+yoqKPjvMQdOwAAAAAAAA7Fxg4AAAAAAIBDsbEDAAAAAADgUGzsAAAAAAAAOFSdr4hoFU9OiLYLH5XH6QKELr9dcLTCp4ueTnn+BvsgjGOo8NkFoCoqylVsa45+LhERV6SKrKgZRoHrU/p2M1N/mvWrikUF9XspIiJGMdKsIns8WGXcrGKDInZh218355m5UUZBStSe+QsyzPiJPXuo2OyP/m7muoyP+/kvjajyMfiD9nyRX1CoYjf89R0zN2Ph0io/H6onZJxN3R67GN9X3+vCoLdccYqZ6wvo+eI/k26OcBA6FAj4zdScQn1eGjdxoZlbVmE/Bqon0tzvMxo/rFtrFwfdtksXGO3WIsF+XL9+3358+2r74IyxU24cl4hImbHOWbXdPl+Wlui4P6CLaqJmvPzmR2Z8xNnDVGz0xT3tBzHWIr2ua2HnGt0kfH573BSX6/iDz88wcyd++7P9fKgVc+ctMuP9e+sxMvOXX8xcvzHfnDHhn2au1dzE47bvNdiySRfuvvn2B8zcjAWscQ43X4V9XkuK1kWVCyKcU8qNNcabj1xS5WOwGtWIiBQUGY1mAnaBbX+EY3Ma7tgBAAAAAABwKDZ2AAAAAAAAHIqNHQAAAAAAAIdiYwcAAAAAAMCh2NgBAAAAAABwqDrfFcsouC9ut139OjYuWcX8eVvN3MRGrVSsbM8m+xiMWKQXzlu/qYoNvPpJM3fxEt0ZBTVJj5MLB3cwM8vLdUX2BfOWmLkBb5yKuXy6U4mIPXbseuwioWjd2STGbXcambfA7mCAw8tt7I0H/WVm7olXP6di8z5+xMwNGROf12OPnDNv010n5i/OMHNRe4J+/Z75I3Q+9ETpM0iw3P6sjxk/X8VuvnhANY9O+/SbxSr22H++NXMXLbbnQtSMwjJ9/li+UXeCERHJ2aI7fXZuZD/ukp16/PVqandUtNZa0XZTN1mSpbtafTjNPif5jMctjjDWUXv8RifXWHOFIvL8eL02HTUi3cy1xo3Hba+Q3/86Q8UmTv7RzEXd4A3pzkbBCrur3eChF6vYrBlfmLkho3NaMMKtBhddprsjzVuoz184HPQHPj7aXpsWl+kTiCtoj520eD3O8krs66rqaJqsr6vO/eO7Zu78RUfHOoc7dgAAAAAAAByKjR0AAAAAAACHYmMHAAAAAADAodjYAQAAAAAAcKg6XzzZqj1ZXm4Xaoo2agImJNczc08Y+ZiKNa1vFxWsjrU7S1QsYylFko+EoDF2Ssvs9zjg0nucJw7sYub+NONXFYuLiVBlshoqKvTYsQoTou4IhHQBwJgIs+rP7z+gYn2u+PMhH8N8CtvWCdZntSJgF/qPi9LnsAK/Lh4oIpJfoovlthj+cPUOzpBVpIsYZmQsPeTHRWSv/XuiGb/91vNUbMvuAjPXG9LnmqxdOWbuP/49Q8V2FhYf6BCrpGOXZipWUaHnQhGRGGOsW8XhcfgFXfa65c+X9Vaxu1+ecsjPN2texiE/Bg6voEsXOveE7OLnMyY+o2JDhw065GOgUHLdYU3zpWX23O8P6euq6Ch7nXPqbf9WsbaNdKOa6tqeq5uZzF90dK9zuGMHAAAAAADAodjYAQAAAAAAcCg2dgAAAAAAAByKjR0AAAAAAACHYmMHAAAAAADAoep8VyyLNybGjPuDugOJx6jKLSJSbjRl+Oy7uYd0XKj7PFF2lfVzBugOWDMzF5i5Vp+b0nK7KryVGxNtf+zcbt09ZP4CugHUZd4oPZF4IjRIC/r0aPjl/UfN3H5X6vgSuus5Tky0PRhKjdYS5RG6CrlFj7Hvf1l4aAeGOi/Wa69d5i/domK9m7czcwuMMdUkKd7MXblTd+Hq26f1gQ5xP9ERzmvf/LhWxZZmMpcdbj6/X8XsGUfE49JrkRfuONPMveXZr1WMc9XRw+PS55/4ePu8VlZinKs+e9vM7X3mNSrGvOBMCQmJZtxdrjt6FvrsjohW9Msf5h3KYR2zuGMHAAAAAADAodjYAQAAAAAAcCg2dgAAAAAAAByKjR0AAAAAAACHcmTxZFeEkm9RxjZVrCN/QtQEv18Xqy2v0MW8REQ8Hq+KnX1yPzP36+9XqFgGxQKPSUa9domJUD3ZqEdpFtcWEQna9eVQhwWNNy0U4X2MjtJjJOjSc9BexsDBUWX6zA0q1jnFLkhpjYat23abuV5jLiqNUDE3u0gX1538ky58XF2ZFEStG0L6bBMI2GeggHGyivRb4Chv9KEcFeq4kHFeqyi3x01UlL7ginQJxhLHmax1TjCozx0iIjFGAwCr4YgIq5yaxB07AAAAAAAADsXGDgAAAAAAgEOxsQMAAAAAAOBQbOwAAAAAAAA4FBs7AAAAAAAADuXKzMykODkAAAAAAIADcccOAAAAAACAQ7GxAwAAAAAA4FBs7AAAAAAAADgUGzsAAAAAAAAOxcYOAAAAAACAQ7GxAwAAAAAA4FBs7AAAAAAAADgUGzsAAAAAAAAOxcYOAAAAAACAQ7GxAwAAAAAA4FBs7AAAAAAAADgUGzsAAAAAAAAOxcYOAAAAAACAQ7GxAwAAAAAA4FBs7AAAAAAAADhU1JE+AADA/tLT06ucm5mZWYtHAgAAAKCu444dAAAAAAAAh2JjBwAAAAAAwKHY2AEAAAAAAHAoNnYAAAAAAAAcio0dAAAAAAAAh6IrFgAcIT179jTjjZO8Krar0FfbhwMAAAA4ntVh9mjvJMsdOwAAAAAAAA7Fxg4AAAAAAIBDsbEDAAAAAADgUGzsAAAAAAAAONRRXzy5X4+TzPjxsX4Vq3AnmrkJ/iIV2x3U/15E5KsFi6pxdACOFSf37K5iberFm7mlPl0oOd7DPjwAAAAOv0MtRmz9++o+Rm097tFSaJkrBQAAAAAAAIdiYwcAAAAAAMCh2NgBAAAAAABwKDZ2AAAAAAAAHIqNHQAAAAAAAIc6qrpi3TXsXBVrn5Ri5jZ0e1QsuzRg56box9iYrztliYhcMvgUFRv38wwzF8DRZ0if/mY8OV53wPJExZq5iboplmSFQod0XAAAAFWV3rubirki3BOQYixn3EF9rSUi4onSl585RWVmbsbiJfq4ekTogpThvC5GdVF1ukyld4+Qu8R4L1wRnq+X0ZFqkf1eDunfUwftpbR9bLW0lK6tjl/VxR07AAAAAAAADsXGDgAAAAAAgEOxsQMAAAAAAOBQbOwAAAAAAAA41FFVPDnXpX+ctonJZm5CnC5kmlBmVCwVkYQYXZXp9LSGZm5RkV1UGc7To7suGiciEvDoylspoWgzNzo2qGJZpXblrlBAF+8+3EW3UD3D+w1QsYap+j0XEfG4/CqWEG+PhbKgkRtjz0+nGoXkps1dbOaibhjat5eKtWtpF5mMSUxUscQEuylAeXmBigUrYszc1Wt3qdiUOYvMXADA0csqkiwi4o326ljIXuOUlus1rC9Codok4yECLvtxu/U+fAVwj2Y1UdzXLEZsv23m88XH2PeTBKP0gwwd0NfMjTcKJbsK7PVTKKjHpJ0pEqjGrS69u+nPS125XuOOHQAAAAAAAIdiYwcAAAAAAMCh2NgBAAAAAABwKDZ2AAAAAAAAHIqNHQAAAAAAAIdyZWZmOq62+D/+7yYzXrSlXMUS68WZufVjXSoW7dXV30VE4mJ0t631WSVmrtujK3vnlNidsp6Z/LEZR2SRqrpbqlOhvJvxuFFue98zOdroSBPKN3OjPAkqlltuj51gUJd6D4idu3TpUjNuqa3X7FhyWk/dxUhE5OW/nKViZQUVZm5eYamK7d6pOxOJiIhXzznHt21hpiYn6K5Htz470cydOq/q4waH7px+umOZiMg5g7qqWMBldz0rLzFO0V59rhMRCfj0uElMsZtfusp0b4gps5ebuRNm02UNAI4G3Xrpjj7uCNc/LdPqq1iFzz7/BEO6m2dehX2JGROnny8hQnclt1v/xc5C+7rKX6qPQVz6ek9EJHMx6yGRCNcI9ktmxyO8b8e11mMn1mX3pEoI6nVKSYTrKgnq63pXdKReV/pxMzdtNzOjjWOrMDrUiojZla2uXD9xxw4AAAAAAIBDsbEDAAAAAADgUGzsAAAAAAAAOBQbOwAAAAAAAA5V54sn3zbkfBXzR9sFkeOLdfHJxHi7oFJpWUDFoj12kclQSL9ERT67WlSMR+cGQnYVKm+qLh727CQKKotUr+BvdXgibGUGzYJg9tiJ9er3ONEo5iUiEoouU7GsEns8xEbrMVURiDZzU+P1+M0ptIuvHqq6UhDscBnco7uKjXtptJnrMsZTbHw9O1d0sb/NW+zicHFSrGJJaU3M3NgEfRD+UnuMnT/6eRWbnkEBwZpwRs8eKnbh+SeZuRXW+xvVwMwtKNIFtuNjdVF2ERG/Tz+uy6OLa4uIlBcazQaS7Mf938Q5KvZdxhIzF4dft566GKqISMio8JgYsIukVqTqOaMiN0LhyCh9rspcfGydJ44G3Y1znYhIrO7jIL6AvR5qkqjXzdvy9bpHRCTGrcfYvAXMI7UlvWeEdbRxqZMWoahtbrleazZqaF8rFRfreaGoyL5WSk7Qg6yw2B43CYl6jRPpccVYMmcuZG4SOcB1VaRCyVXM7daxjZlq9ACRkNjnn6R4fa4qyNNjT0QkLUafl7IjnNeSjfVxWbn9A6/ZtFHFcvMP/brqcF9DcccOAAAAAACAQ7GxAwAAAAAA4FBs7AAAAAAAADgUGzsAAAAAAAAOxcYOAAAAAACAQ9mlzWvZxaeeoWJt05LN3ONapalY+R7dXUZEJJRsdIBoZlfKDtTX3T8CpXaV9foeXb09xugaICJSuEMfW2HI7mxUbnTmOmP4cDPXF9Q/248/fG8fhMNYldrtd02kWvXJjcLn3gjV3xMTdOeYfv162sdQqB8kwR6+klOqu2XViyk1cz0u/VNPmznfzC0uMR/BzI02uh0Exa427w/peKRK+kdrt6xol54Hlm4zX3BJSqqvYk1CdmeH/Ar9uAn19b8XEfGVxauYJ8XuWLRxa4GKFZht3kTqpxyRKf+oMjxCp5Fol37N83PsrmeBRD1h5ObtNnOjkvT5IxBXYeYmefXjlsbY4zFkdNzb4dKdskREOndormK9e9sddRYupMtNbeo7oLeKeRIb2slF+vPuS7LPP/Ee3c0vvp691ir16/Narz59zNxFCxbYx4bD6rRh/VVsxLn6cy0i4irUv/NNTrM7pK1drVdlp5ycauYmxunOjkMG2R3dfppOt8ZDFalT3Yn99Tks0ehKJCLSpFmiirVKs9ctLrdePwYq7FV7qV+fw1qmtTRziwJ6ztq6Pc/MXbTFXqsh8po9vZuxponUL9tYWgYq7OuJlOQkFTv3tOPN3FKjA2Nysr2OzVil17xntbU7E3ti9DF89s1CM9dnLqvsY/AY672MpXVj7cMdOwAAAAAAAA7Fxg4AAAAAAIBDsbEDAAAAAADgUGzsAAAAAAAAOFStVtLsf+KZZrybUcG2tNgu6LchqAuO1mtiF4k9qUM7FSuIt6scH5eoCzVlF9rHsG67LijZprFdLbdFG12AcOUuXehJRGTO7O0q1jTFLhtcWqSP4dzBuhieiMikn+ea8bpLjwefO1LlrqrLXKILhZ04YJCZe+apJ6tYyGsXve7SuZGK5eXbRSZjG+rCXcVGIWwRkZSQHutxCbrYoIjI5O8/V7EFczLM3BO763ESjLSnG9KfLb/YhVqPVkFjymjqtQvyNYjTr1dTozC7iEjj+rpA9+oN9uN6G+qCg/W8OWZuchs9jReU2AXfQt5IZclRVR6jGLmISGpzXVCycUNdBFtEZEeuLqocE21/JoMleiwUhewix2VuPZ7cJfbx+ir0OdBVbB/DHtceneu3mw2gZnRLt4v3x4ieR1xirzHaNdKFT3dn24UuG9TT56Wg3x47FaX6+bYV2mutgQN0cdyZcyiMW1tOOflEM37BGbrotitar09ERFKbGkG3/Xnvm5ylYnkF9ryXkpaiYuedbq+lzz+nr4p9+ZXdTAK29L52oX+XUc+4cWP783v6wAEqFjTmIBERT6x+DF95tpm7bZs+Bya3sIvANzVOS7Fp9py3aOM8FUvvHaEByMKjswFIJOkRGj9E6LtiijWWlvHx9uf91guG6GCcngNERNql67FTUmgX3u7UXq9zKorttW29JnqOa9SolZl7/xMvq5iv1H5xFixdbMbrAu7YAQAAAAAAcCg2dgAAAAAAAByKjR0AAAAAAACHYmMHAAAAAADAodjYAQAAAAAAcKha7Yo1d/aUQ36MK8/4g4pd2KePmdulo+5K0sCo0i4iUhrUHUF8IbtbxKAB+jGKCwvN3NgEnTush10x/Pvp76rYp59NN3OPbkaXqJDd1cfKzVxa9cr2fTqmmvHG9fVH4bThp5i5bVu1VbHCLevM3C27dKe14463K7KXenT19Xa/2t1Dxk3W4zeS2Ut0l7T09AjV8SHlbj0Wpiz61cyd+es2FcsusDukFeXoTkahCDPw2SeeoGJfz15mJxvTVotmaWZqfpndZQBVN2VRhhn/cMxLKjb0DLtzYZd2uu1M0dZi+wkD+rMeHReh65nPmEtT7A4mhbt0t7uYFLsDxKQZS1Ts7HMvN3NRfd2M+bhHB6s1kUijVP3ZHtLHns+tx9iyR3c4ExHJMoZfk/p2xyIJ6HXOglUZZup/Pp9mP0YVeWPsbie+cuYyi7eB3UlzsfF57xFvj4Uoj37fQwn274G3b9XzS9sT7PPPnvV6PbTZn2vmdjqhnxlH1WXOt9fG5vrP1dLM/c/EWSrmL7O7MjYyhkiWz76uattSz03f/pxh5sb4jHNYsj0ePUbztoxqdL9KrZdqxvNy86r8GHWB+R57IlxXhaxrMDvVZ7zsK9bb1z/3vKY7n3Vvo6/TRUQa1NMd0YrL7M5ne3bo8de8XQMzt7BQj7+84p1mbq6xPvZFeCF6ddev7yKjE/ORwB07AAAAAAAADsXGDgAAAAAAgEOxsQMAAAAAAOBQbOwAAAAAAAA4VK0WT64JUV6997R+V4mZ26SeLvy4uWy7mVvh1xW2vBHq0UantVGx5h3tQmOrMmerWHnAqOYlIrvy7ALMEIlYuStCuKoWrtlsxq+5+joVi29tv8cpSbqYY0yE3Hpt4lQsOlHHRER2l+kBOPhsXTxcRET+/E87XkWRPvgho4BzIGAXvztauVx6zlmycouZm966mYpdeLseSyIiwaCeB97869NmbqBkl4pddloPM/esm65WsVCEOeemKx8w4zh0n0+aoGJP/+txM3fbQj0PPf2FXYAw6NPFuDv06W7mnpeu3/cNz75v5uYZp9GQ3y78fflzj6pYwSHOxfj/rPl45YYdZu6ltw9VsfTuHczchl79yLuK7CLdHZJ0zN1AF7QUEZFoXTz5/7qcaaZ++OVM+zGqyB+h+CpsQ/v3NOOdGtRTsYWrs81c/3ZdnHRzhIYWN5ysm4NkTtdNBUREvGX6vezjt9/fwEDdQKBHhKYPGZl1o2ipkw3rb88h736sz1VDhw8xc60R8sPU783cvt30e7nJZ6+N+3Y5TsWM5ZSIiMyZdmgNaMr9VW9MUpdlVuMzkW68F3YbBRGv8S4nu+0349Onb9C5cXbh7YZuve5evMEurN7KqM3epfdAM3fJxtUq1shj39PS8twnVSxSG5+Asf7p3d1ely1coptP1Cbu2AEAAAAAAHAoNnYAAAAAAAAcio0dAAAAAAAAh2JjBwAAAAAAwKHY2AEAAAAAAHCoOtMV68rzhpvxm42OLwNbVpi5+bm6k8y9z68wc5+5oL2KpZ/QysxNa9VRxZo3SjVzG/9JP9/Ho/qYublHSfX1Q2VVb0/v1i1C7tIqP243o9L7n/482sw9rm0TFfvyw/FmboVHtw95/M7LzNxco/FZy4QYM/e1V15RsSnuVDPX5zPDVbY4QsX8Hj16qFh1qus7Sc8IHTbeePBcFWsQa++Bj/1WdzLakx9t5rZpqqfbhim6o4iIyC3n6s4m701ba+Zuy9PjqV1Du2WR1fEL1dMrwrh58bFrVezNZ58yc4efdKGKzVquOw2JiHTs1EXFFi/dbeb2qac7TkSVbDRzvdN055pGA9qZubFReuwWHOIchP/PHa07LfbtpdcoIiJN6+k5Y/n8VWbuuhj9vnU8vrmZm+TWc0Z5hDaUi5YsU7HNfns56XFF6itSNTHR9nxaVlZ2SI97NBh66okq9odBvczcggJ9nujXyc5duW6DiuXv0OtrEZHyoF4PrV6lO9GIiDxy1mAVW7VdP5eIyEqjS86hjaRjT3qEc9XHr/1DxZYZndBERGI9ustUWj3dYU1EpEVUqYr9EOEy88wzhqnY7I12x756DfXzndIy0czNmHFoa5w4rz3f6J/MeSJdV1kfrFCErmNxxvXLX++6wMwtr9Dnj3e/XmTmnny8bnXVPV13xhMR2bhdz0U75trzyOSfF6vYoE6pZq7VaS3SaHK79Yu2MOPwdr+KhFU+AAAAAACAQ7GxAwAAAAAA4FBs7AAAAAAAADgUGzsAAAAAAAAOVWeKJxfnF5nxoMujc0vs4lY90o9XsZNPWGPm7gnVV7GmbXSRZBGRrVkFKuby6uMSEbn3gn4qtjugi8uJiLgDZhgikrm06kWSIzLqPvoDdjHI7um6QOlNdz9i5t5y9R0qVh6IM3PL/bp6coE91OW/X0xUsYduud9OrqUqghkZGbXzwHVQUoQi1kkxupBplMfObdZYF7x99dFnzNyOLfQY6dHcnht8Rn34do1SzNxPX9LjtEG0nRuk+uQhi/TbkChjQl+9aqWZ27ylLvT32B91IVQRkaI8ff7JKdRjVEQkMVWf0t09TjJzW53RVcXKCvLN3N3l+hjEbc95iKxnD7uYaYzo9URqTIQ5p6Feuzw+ZoKZe+eFZ6lYksdu2lA/Vc9FZWV2QdUX3v9Exf5y5eVmbm75oRU59njstRZEjPrC4nLZBWijS/NU7Mt1diHTqwfpRiLuGF1sXURkWH+9dspfu9XMfWSanvfuu0KvmUVEFhbYYw/VEOEKz1ehz1XNUuzP2aWX6GYS3/z0vZlbuEcXtX3sT7eZuQ3r6eu4q8/tbeZuWK7H0+vjppq5WWWHVub4qJ5vQvb1T+ZS3SClT3e70HLIeIyycns9EhvSE9TiVVvM3Ov/cIqKrdlsN4lokKTXt6VB+zzz0y8/qtjoMx80c6tT599fh6/fuWMHAAAAAADAodjYAQAAAAAAcCg2dgAAAAAAAByKjR0AAAAAAACHYmMHAAAAAADAoVyZmZl2mexadPmwP6hYyxZ2Ve2lW3WXjgdutrsv9GmrS1qnJtudJayS1j5f0Ewtz9XVtmOi7T0xT1q8fqoyu1r3wFvGqNjc+QvNXFTfGad2V7HCQnu4L1owS8Wy3PZ46JSku8Hk59vvsS+gH8MbZbcq2B7S3UqOT042c5t00RXrF83Vle2xV+90/Xpdf1k9M/eDSbqT2eL/jDZz/QU6NyHB7toXCOqxUFrmM3PFpecXl9XmTURiYoy5KEL3g+63vq9ic+Yy51THxX/Q84qISGlIzwtP3H2RmVueq88T0fF2JzMJ6C432aUlZmqCMRaKS+0xVj+5iYolp9nntXe+1nPLP576h5mLyAadaHcaiTeWKVEhex758Z0nVGxzmT0emkTpDi8xRkxE7JYgRldSEZEdFXpMNfXaY6fjRX9WscWLqn6uio62X4eKCqN14DHm4gt0F6HcQnt98e0Tt6vYa/+bYebGu/V6ZvjwE8zchql63ssqsDsTzZy7R//7RnouFBF576fVKrZsxXIzd3Emax/L8DN6mPHcbH3989Vbz5u5UUl6clqzxu5WFDLWKB1aN7APzqePIRShK9HOHD2eQlH2NeP/3faAimVWY3ykpqaa8by8vCo/htOkp+tujfVT7TfDG63j+QV27rx39blq1Q67u15alD5/pKYmmrlRHv3e+wN2m6rNRlfR+hE6Tp52xwv6cSvs60CXcb4MRmir9f/Yu+84O8uq//dr99l7+qT30OskIYSE3kFAQFFEBREVxIaPBduj2OARFMGCYkFQpKgUFaUISAsBQnoZeg3pbXrd/fzh75zz+531vT0zTibMPfm8/1xZufc9c1/7uq59zX6ttWrVKhkfKnxjBwAAAAAAIKQ42AEAAAAAAAgpDnYAAAAAAABCioMdAAAAAACAkNJV1obYHx99wMUuOO1MmVuf8kWSvvmj22XuPVef62Ib23zx5SDZvC44+sFv3NTva/zl6otcLJbURb7KpZ1et3qX8tATvmDVIbNnydx8ty+wVRtw7rmp0xeqLAY8y2ShzcVyUV1gqy5e52JbunzhVDOzfEDNXWjLmla72NHzfOFJM7OE+eez95RRMrfpOV88ubPTF8EOFNFT8CGfusHFyuK+zMyW/PLjPlgOKPgWMPbQf3c9oAvhzRYFCDdsCFh/uja5UCSgGKSSUQWzzeyKn/u1NaCen33mvFNcbONbemK5976HXYziyQPX1qXXifYuH5s6Wj+4aMQXiZxeUdH/mwgYEGub/U2oApFmZlPqRcHbgDmnMMhtTjmgEDzM7vqrL3x/9OFzZW5zxzoX+9D7dCF4ZVRAI5J9J45zsVhUz09VVWtcrNCl58hVN/pCyQMpgguzfz60UsZVsdxLvqWLJ19/9ddcbI/ddeMJpWy6qO05F32539e483fX+OuWhuZ7Ccw3//LEAr9nNjObPcM3AKgQBZXNzHp7/OeXafW+aUOQSEDx/kTa75uTouGImdmkkl8bSwVd3D0f8c8+aMe8YrX+/QwHfGMHAAAAAAAgpDjYAQAAAAAACCkOdgAAAAAAAEKKgx0AAAAAAICQ4mAHAAAAAAAgpN6WrljK7x/4u4x/8LSTfDCg+8Il3/Ldqw6bva/MPfPYA/t9b9//6kddbEo6J3N7en217W98T3fVSiSS/b4HDK1S1D+L9lbdraGmulJEde30uSdd7GILHrtT5kbUsI7pThSBpdrRb08u8h1FzMyOFN2y8gFdz3bffYyLdTZnZW5zu++8FmTBL/24yZR1dwnVdWL33UbrXDrxDQuxvH9mtQ2600i+0Nfv637iwve5WH3Md/H7Fz+J9ASMXewYQe8+NZ2XSgGd7cS+obdTd/lIpwPWD+HDX/ipi83//WU6WXXXiwV0dRvkWpWnBeSABHXB22+03+53pfUeNCt+5UHdgqre8R0XW3LTJ2RuQ7V/vYZMwMcQ9jg7VV+vnvsvv8J3y5pxqO+MZGZ26tGH9vv1/nT9d10sH9C1s6/Xr2FXff/n/X6tgWhv738n5ZFisN3mgta1MfW+q1Vrh+4aG4mpuUhf+eCzv+liz/zOx8zM4jH//ZX6mv6vVWGchvjGDgAAAAAAQEhxsAMAAAAAABBSHOwAAAAAAACEFAc7AAAAAAAAITVsiicHeau1zcXyWV1QKVrpizI9u3i1zH3ymVU+GFAcbiDy4hLxZEBBsKwuIoWdrygeXHVdncwtF/1zi8X1W+mZBff0+x42rtvoYqWAMRnGgl5hURS/3GhEPwdfGs6sfowqrm3WUfAF1xuqMwO5NWlTsy/2t6W1U+am4pzlDxVd4lW/U0uiSGRzW7fMzeV80e2YHHlmZj63NWCy6C74f0hG9fgICGMHUWWSywFjR/WOqKjU80ix7B9cKaD5xCO3fsfFgsoWP7p8jbivgHeAmDobGxsDrtx/gy34OVIFjRv1Z9xK03vQCaP8eMrndO7Guz7d73tr7vVjpDMXsJ/v91WxI5SLuiFMueyf2epnlsjcpmd9vE9V4h6gRa82i2j/d8EDm2/0dZua9GfJkWrmTF0ge9Vq/3s4/JBZMlctNQ21AYWL1Ts+4CP5C3d/J+Aa3tZWvyfamtWFwtWcE8ZP6cydAAAAAAAAIcXBDgAAAAAAQEhxsAMAAAAAABBSHOwAAAAAAACEFAc7AAAAAAAAITXsu2Llc0UXK0V0R5BC1lczjwSU1VZdbrpT+rrqCvmSvm6taKkzriolc9d06Sr0GDpBHSM2bfOdhSaMa5C5sZh/29x71mUBr+fHSUdZP/d33fptF1uzbpPMjUboizVUkjF/3l2OJmVuX953MqpI+jnLzGzy2HoX2+1918jcnt4+F0tVVMjcF279rIvFU/p+k8lhP+WHlnpHJiqqZW6r6IhYH9QBL+rXj1v+EtARSMwL+aJe1y7+0H7iv+sxFthpBzvdui1+rZoyXq9V6qndetEfZW5Z7Gk2Rfw8ZGb2i3V+/K1Zv1nmPnvmx1wsKdZQM7OyeA9M+ulHZe440emGTllmkYj+e+3qZr/vmD1Vv6+zvT73wS+9FfCCPtRZ1F1nzvjhHi72YrvumhQVnQMxdIJ+3/mcnwMSAV1gS6ILUkd3j8wtFvw+qTug++gl//NrF6ut0t1HLzjtcBdLpgK6PYr3ypQr3yVzI7vYfLNqVf+7gBXLeuy8sdHvj/eYqPemkZh/9r+/5P6AV/S5PQGfq86/9gwXW79d58ZE19gVTStl7syZM11s1SrRbfttwDd2AAAAAAAAQoqDHQAAAAAAgJDiYAcAAAAAACCkONgBAAAAAAAIqUhTU5OuVjVMzGqc4WKnHHeozJ3/jC/2NCnWK3NL5qt8BdajFb+hQkknq2tsyupfcZ+4xqqm/heswo4zd/YsF1v81OMyt1z0hU+jMV2gVBUWDCp8vGHdRhd79wc+JXOfXfakfj0M2jGHzXGxF26/VObWVvpCcKWyLgbZ1+fHTSqZ0DchhkihICoTmllLe5cPxnSBujkX/szF5j+zVN8DBqRxpi+ueNUXPyBzo2L9SWb1uOnp6fD/PxJQBFuMm0hUrz/dojGBVepiz1f84h4Xa1o1cgtHDpVGUYDTzCwqHufUWl3I2kTziCdu+Z5OFX+7K6oKpwHyAXPOYyvWuNjnLv+VvkbUF6qMBBRqLeX7vx0dyYVLh8IxR8xzsZd/pwtTx+J+XSqKfY+Zyf1xrhAwl4kpZ94nb5W5859epF8PgzZDzEOf/ci7Ze4/HvfPYXxlQKF/8bYul/UcohqLFIo6d9ErzeK6MnVAolE/P5YC5kfmm4E7/CBfYHj1HVfIXPUs1Bj5X//g5PL6uXV0+f3xiZ/6icxdsGyJfr2Q4Rs7AAAAAAAAIcXBDgAAAAAAQEhxsAMAAAAAABBSHOwAAAAAAACEFAc7AAAAAAAAIRXQWmMYifjy12cet59MLYnq628sXyZztxTTLjbBugPuwYcSMV2te2O0xsXKhU6Zu2oVHbCGi2jZdxEq5nw3DzOzQ48/18WWLrhL5pZUlX9R/d3M7PRzzvPXXbFS5mLoFEXHos0t7TI3m6t0sVE1ukNaPJnyr5XXc46aXYKa9tXW+jln3w/+UObSAWsIibd6Ma+7MlrUrz/NuaxMrRs93l+3ffOAbk1J19S72Deu+7PMbVpNR5AhJRoORaJ6HimL3HJJtBsys6PO/46Lzb/tu/oeRJuZRELfw/euu9H/94heL9WPsXIZe5+dLV/wY6SrT+9ND/6UnwdeuUV30FKtkFIx3e3xgPNvcrEFzyzW18XQEZuJs4733UDNzIpRv7A1LV4uc7d29bnYqLTe70bEuIkFzHn77DbJxV5bs0HmrqBb47BRKvvnWSj6MWJmNvP917rYC3ddJnNVt6xkUo+zoz5xtYstXrFK5o4UfGMHAAAAAAAgpDjYAQAAAAAACCkOdgAAAAAAAEKKgx0AAAAAAICQGvbFk4uiimg+7wvdmunCW0cfNUPm3vnwShdbH1DUdiD6ch2DvgZ2vmLZFy4tF3UxyCX3+cK0Bx1x7KDvYflKCkoOBzlRh7SzNy9z6yp9ckebzt3j3O+72LRxvojuQG3q8K/31EJd3BA7V1DtZMv4UG1KFxz9+rV/crExNYNfuje0+DmvqYnCk28HUXfbSnlRJdlMFquNlnTuLT/8lIvtdcbnBnJrkuhTESgW8GNgJxN76d6cnkdevfNSFxt72uWDvoWVFLYdFkSddNncwcwsFfdjZNZh82Tun+6418Ve6tD76IEQU56tpqD/sBcRXQF6dY8IW/yH/3ax3d7z9UHfw644TvjGDgAAAAAAQEhxsAMAAAAAABBSHOwAAAAAAACEFAc7AAAAAAAAIcXBDgAAAAAAQEgN+65YSiKlO8mcdLjvgPXcimdkbp+oCp8S3XDMzLpLvgVELKCDVizm48tWrNIXxrARj/kBUZHyXdbMzMp5n7v8gd/K3Bnv+KiLrabzTOikK3QnvjVbfRe8qQ3VMjcvWlHc9dCiwd0YhrVITHe6KoiOR6NS/V+OH5y/9D++J4RDoSRawZhZPOH3GPGEHmcR0QrpkRu+JnNP+Ljv2qc6KQ3UcjohDQvZgt/glvO6vVlEtD3b/o9vytyGd1zhYuxxwidTVSfj7zr+KBe76xH9uUrNWHRa3HX1iOklX9CLSizpk5+7Q3fim/GBb7kYHff+X3xjBwAAAAAAIKQ42AEAAAAAAAgpDnYAAAAAAABCioMdAAAAAACAkApl8eRiwReeNDNLxH0BwbNOPELm3vqQL7T09IrVg7sxhJaoj22Foi7ylYz5t01M11neEbUnsZP19uZdLJfTc04y7h98V6cvqGxmFpGlBTGSRSygIr+Yb7LZ3qG9GbztdkQh0VOOOMTFcrmszI1E/N/ugmahklisKHw6goji/aqgv5lZqSxGScBUxh5nZMhl9RySFIXZ333ykTL3zjvu2ZG3hJEoolegSMTvpfWu26yoa77jf+EbOwAAAAAAACHFwQ4AAAAAAEBIcbADAAAAAAAQUhzsAAAAAAAAhBQHOwAAAAAAACEVaWpqoqg9AAAAAABACPGNHQAAAAAAgJDiYAcAAAAAACCkONgBAAAAAAAIKQ52AAAAAAAAQoqDHQAAAAAAgJDiYAcAAAAAACCkONgBAAAAAAAIKQ52AAAAAAAAQoqDHQAAAAAAgJDiYAcAAAAAACCkONgBAAAAAAAIKQ52AAAAAAAAQoqDHQAAAAAAgJDiYAcAAAAAACCk4m/3DQDASNLY2CjjTU1NOy0XAAAAwK6Db+wAAAAAAACEFAc7AAAAAAAAIcXBDgAAAAAAQEhxsAMAAAAAABBSHOwAAAAAAACEVKSpqan8dt8EAIRRUKeq/orFYjJelY64WHtXod/XpVMWAGBHmTFjhozHxJ+HV6xcPcR3AwBQ+MYOAAAAAABASHGwAwAAAAAAEFIc7AAAAAAAAIQUBzsAAAAAAAAhFX+7bwAAQsvXOLaIiJmZlUWZ+poaXbs+V/QXiQQdw5cC4gAADFDjDN8UIJFMydxyPOf/f0BTAYr6A8DQ4hs7AAAAAAAAIcXBDgAAAAAAQEhxsAMAAAAAABBSHOwAAAAAAACEFAc7AAAAAAAAIRVpamrSbVmAXUjjTNHFIeCdkRC95KKFgFZIMX92mi0UZarqGKG6U5iZNa2mu8TO1DhLPwc1RgJGgqWr/b9UpnVjwnKfb3W1vV2PGzHErBjQKYtxAwAwM5s542AZLyf8WhWN6Wsk40kXy+d9pywzs0Ku4GJNq1YG3yAAYED4xg4AAAAAAEBIcbADAAAAAAAQUhzsAAAAAAAAhBQHOwAAAAAAACGlK3cCI5Qskmxm8YSvDFjI6mK1+Xz/Xy/pawUGVtcNLNCLt1/AM6uo8IUj6+t01e1EwscaavQU3Nnur9Fa0NctlkRc167EMHHUoe90sVGj9CBLikKm1RldyXR7t5+zNrfpStqFrB83y559QOZi+Dji8LkulkzoN3w85p9xKqnnnKxY77b26jWwVPZjsmnRapmL4au+tkr/Q8r/zbc6kpap5VTWxdq7qmVud76n/zcHABgwvrEDAAAAAAAQUhzsAAAAAAAAhBQHOwAAAAAAACHFwQ4AAAAAAEBIcbADAAAAAAAQUpGmpibdagUIuRmiy1Q0oTuC1Kd8d4hCQbe/GlXhO4KUA95FlRnfCmltq+5gkoj6izRndReJsmpWopvfWNPqJv0PkGaJcZPI+O5XZmZ3X/tRF8v1+C4hZmbFnG+R9sobb8jcatFta8r06Tq30ncrOf3SX8vcvh5/lt+0YoXMxeDNnXeKjD9+6+dcrKtVj5vunH9jb1izRubWZCpcbMLkiTJ37LgGFzvs3Gtl7sJn/ibjGDqHHHqwjP/86+9xsS2b2mVuKe7HzptrN8ncikq/Vk2qHStzJ4zOuNgnrvmzzF2+kPVnOPjAe892sURM/203VUy5WDyh9yKxSKWLdZT6AnL9WtX06jqZu2zZYzIOILxO/MBJMl5V4eeGMTV+HjIzi8T9/viNTVtlbqzk57iH7njo391i6PGNHQAAAAAAgJDiYAcAAAAAACCkONgBAAAAAAAIKQ52AAAAAAAAQmrEF0+ecZAvhGpmpn7odFEX1i3W+fOvXKsurGtxf+WmFRQPHEqNM/QzNl8L0urj+iyzo8cXmayticncvj6fW8rrt1E86gstdxV1bjrpc3M5nVsUP1vTcsbZjtA424+n5+79oczt7O52sepxk2VuT/MGF9u4tUvmRrpaXKx2yjSZm0n4MZJO+4KWZmaNp33JxZifdoxZs090sd7Vd8ncoqh0nkuOkrmFbl8UcPM6Pz7MzLqs2cWmT9hH5saT/h4aqutkbnKvs1xs+bL7ZS4GTs0591z7aZnblveV8ysyNTK3t6vDxdZubJO5Set1ser6cTK3MuPX0UREF5j/0Jd/5mJNq5hzhsonP3qxjMfEnqGmWo+bsvlC7umSuICZ9aZ8UeVyzhdCNTOLmG8g0KNrMlvTiy+42OPzH9XJ2Kk+c9HpMl40PzeNzdTL3NZiq4sV+vQYK0f8561f3fiPf3eLGAZmnTrLxc4/w8fMzHrzvqnMfrtNl7kvt2x2sXi3/qyUy/u57K57/NxiZrbqiZUyHjZ8YwcAAAAAACCkONgBAAAAAAAIKQ52AAAAAAAAQoqDHQAAAAAAgJDiYAcAAAAAACCkdBuokDrk0DkuFs00yNxoj//RixnfFcLMLFX2nQMqanQp/76S7wYwe46/LzOz5UuXyjgGpmm17rBxyDzfaSQmutGYmY2t9+NhythamVuO+Mr/kZI+I40lUy42KaVzN/b5MbVlmx5nr7f6Su/YMSpEY4bFL2+TubEa38lo93KbzG3v9LFRtWNk7vZotYvFixUyd5toK9K9Vd/DmIYRNeUPK9Gof1/fuaxN5nYX/TqxdcMSmdu6vc/Faur0WKhI+Q4k2595U+Z29fk55NAZE2XuuDrfsQI7ToV4Wy7aqDvmFQq+412q7DvMmJl1d/lnnElXydx1zX5t3L1Sr1WvbPRzzuhRuitJXUB3SQyN5g7fecrMrHaMX1O2FPV+KN/q9y1VDX7fY2aWLvpujfmCXi+7in5+ionuSGZmUfNdQrHzfeJj73SxYrWeQwptfvO0TXS0MjOrrTnAxTrivnOomVm+z895n7joXTL31zf+TcYxdE44R3/Gff+pB7rY02t8J1kzs5TY3za99aLMPezQ2S72+rrnZO76DX5xveCCuTL3C9/6iIv9+PKbZe5wxjd2AAAAAAAAQoqDHQAAAAAAgJDiYAcAAAAAACCkONgBAAAAAAAIqVBW0pzROEvGU+YLd0VNFyCcMsoXr2xu1YXk6mp8UcBIQZ+JZXO+QuqWLv1rPmzuDBdbuHi1zEWwxoN9kWQzs4SoIRgfp4uOnn6QfxY9ZVFF18wOnuLjazZ3yNxXN/j4XruPlrn7JPz4W7YuoHjyguddrPEg/XtoWqGLS0OrSPqijfuM0gUA95zkc1NJPcYqd/dzTmeHnp+6Kv2cUxtQyDQbybhYLqcLmVqBgpRDJZ1pd7Hdsno+f2Sxf082JAOKTMb9s+xYo5/vuMmTXawm1yZzX9/k77ejUCdziyVd8BA7RlzUF24o6KKymbIviFxfreeGyARfBHft+u0yd9Jkf41kXM9P2bjf56S79VoV0K8AO8CRhx/qYgfvv4/MzbZudrFiWT+c3cf4cdO6Tc85DVP8NfKioL+ZWSbnx15rV8BcNsbPh3NmHCxzl65eJuPov4s/dqaM50SjGevTxfTHjfLjpq1ZP99UVYuLVUSTMjdZ8o1ttnXq/fl//9fpLnbVdffJXOwYJxzqC2GbmT36z9ddrKJSPzcx5djr23Qh+CUdC10sYTo3t83PI3+9Tc97111zqoyHDd/YAQAAAAAACCkOdgAAAAAAAEKKgx0AAAAAAICQ4mAHAAAAAAAgpDjYAQAAAAAACKlh3xVrRqPv9LPPNN1VaExNnYsduv+eMrdx9zEutr5Fd6HYKqr2j2+okrnRgu98s/qtF2TuXQ8vlfH+qq2vk/H21rZBXTdsmpbprk+NYuwcM+MgmbvPPn48TKutkbm92T4Xaxitx+T+e/uK7MmEaIFiZtGELws/d1/9Fn1wwXMuRverHaOn6H/nrX36ma1p9mOhN6CDULTLd7OJBYyFUr7oYpG4fy0zs+6S73Q1bVStzO0q664TGLyOPt+VYfkrT8jcQ6aOd7H4qIkytyTmm2jRjw8zs96cH3uper8mmZnttVuDi6Wj+m89W7t0dyTsGD2iy+bN9+uOatu2+m4y3b2+a4yZWbbXj5OynnIsIoZUOWCHWBYNSEbVVcrcbt1ABzvApMljXWzqFP3Q9p20v4udMEt3s2kYXedi3d1tMnfjVr+uTZ2u90N9Yh19Y+MrMvfq2/ycUyj7sY+Bu/iCU1xs9r56/RlbN8rFTjpCdyerSla7WDZg3Gze6uesKZP9PtzMrKfo9zhvtuhxc8s9C2QcQ+e/zjlNxq94v+8Qu8cYv/cxM2vt9PNWsUt3cOwt+z1NrOTnITOzRNpfN5LRndrW9LXJeNjwjR0AAAAAAICQ4mAHAAAAAAAgpDjYAQAAAAAACCkOdgAAAAAAAEJq2BdPVnX+3lqvCyqd/ZHDXWzPaeNkbn3cn2lt7eqRufuMLfn7Gq2LfFnZ55612zyZeu9jq/Q1+qmQ94V58e81JHwxLzOzfcf4om/btzwvc/N5/4yTCV04srraF6RrPEQXLGyaf5+LtQQUScXQyed9ZdBkKSFzW7a0u9jSJfNlbqHkx83uexwoc6dO8IVti3p6sudX+GKBqwp63MRyumgcdoCy/93e89SbMvX5Vc+6WE9cV7WNRX3hyP0n1+tbSGVc7NWNfoyamUV6faHlqPnXMjMr9jFuhlJJzA3vPtwX/zcze2vjVhfLdW7q93Vbu/TccNIxfp/SGlA9uaVpkYsVinqM3PqsLvqOwetp9+/ttRv0HudzH5jrYtkKXVhd1VDvKevrTpvs563xtbp4/7pym4sdtdfuMvcXVXX+viJ6fsLA1IvnvvLVjTL3rJP3c7FF+iOYTY/7gsjt7fr9n874PVXTNl1pfZtYAyendGOc7a0P6ZvDDtH62u0u1vRms8yds9seLvbosg6ZO7bk14+U6bWqkPHjoT6vm5Y09/gxNUrs1czMXq1oc7Gnb/iizP38N38k48MB39gBAAAAAAAIKQ52AAAAAAAAQoqDHQAAAAAAgJDiYAcAAAAAACCkONgBAAAAAAAIqWHfFSsiOoXMOGCyzB1b7av2v7RSdyWpqUq62JQ9J8jcdNFX1c6VfOccM7PVL/nX2xLxr2VmFosM7lwtlUzJeLfp6uAjVWOj7h7y9f+6yMWO20t3VcjE/TN+77dXyNxfnOe7BBx55L4yt1Qz1cX2nOg7HpmZHfTjZS720JcPk7kYvKBx88Zj17vYbjW6K9aTK19zsZ/9+RWZe82njnOxSaN9NzYzs3338HNcd4dui3XBl5tc7IbLTpO5Zq8GxNFfQePml197lw9m9TqR6PFdGZqa1uoXFGtgTY3u9njuCbNcrKNTd6G48hf3u1hDTZXM3azvDAMUNHZW3XWFi21t1t1kbrnLd8FbvUR3xTrpIN+9M1lfJ3NPO2qWi93x1Bsy96mlG1zsy6fpNfBW2yLjGLy6Or8HPOSAsTJ33Ci/P/7FX1+SuVNr/Z711GN1B8dotsXfV6FL5t5xv++mNrU+YH8s/u5MT6wdo5Twv8k999xL5k4S+9XNG9fJ3KWiA9bc/ffX123wnWS7Azr9Nr/hP1e92JyVuZGo3qthx1i7znfA2rJ5vcydcvhsF7v54aUyNyI+z541S6+Xe1f7blljAxp3/nr+My62IaA7cnLOdBcri07Xwx3f2AEAAAAAAAgpDnYAAAAAAABCioMdAAAAAACAkOJgBwAAAAAAIKSGTfHkWQfpIkmpkj97qo3rYmv11b4Y14+ffUzmfvzUo1ysKqKLcdXW++vmA4p8/f6BR13sC+8+Q+a29PXKeH/FRFFN/G+i/vezrVmfZZ553DQXO+vEOTK3WD/Jxeon7SFzX1jT5mLVdbqY6fc+ebKL9dTqQohmCwPiGKx4xFdhy5b0VLn3br7g+lXf/pjMHV3hx+MB++iC7bmcv4fKujqZ+/sbv+FiyYKen8r2sIxj8CaIdSKb80XZzczOONEXIn3yJV2AMJ/3c9YHjpshc3t7feH8TI0u0D1+791c7JW3fGFEDL3dJ41ysYLpArQXnHu8i73Rqosnb0z5IpHf+NR7ZW6lKF753hN88Uszs5qYL+S+etN2mWumi8lj8MpFX9iz6OuKmplZZcyvYY88s0TmXn6RHyPZ3naZO6Y642KdXZ0y99aH/X78+i99Submn31ZxtF/X7vkbBnP5UTx2Qm6qce0Wl+A/cuX3y5zv3ie/6xTldZ7p/Fjalxs3Ra9/vzgR/71vnnJeTI3laB48o6w6OHvyXhdpt7F4mVdubjY4/e8Ty15XeZ+6IxjXGxUnf6MmxcNgjpy+rPd/GX+9T74Lt/IxMysZP0fO5+88AIX+9VNv+/3/x9KfGMHAAAAAAAgpDjYAQAAAAAACCkOdgAAAAAAAEKKgx0AAAAAAICQ4mAHAAAAAAAgpCJNTU26nPVOdsQ83RUrk4q4WDygQ80fvvdJF9uU052uGqL+uhUBXabKUXH+FdFnYs35gouNjvnXMjM79nPXu9jKFU0yV6kL6JLT1tbW72uMBCcep8dOsyiw/91LPy5zD5nqn9HYhrTMLYm2Ez09uvtNrs2Pv0RCj4fMWN+9Jp/tk7mHfvw3LtbU1P+xA7Pzz58p48897zuNvPrgdTI33+G7f0Qj/v+bmRVLIh7RYyEiulaUTV83VuG7BJYDrrvfe77jYitWrJC5MJvZeIiL7buvXn9ee8V3MbrrqnNkbmuXf5bxCt+VyMwsKZ5lX19A1zMxN0Viel2Lp/3rpcW6aGZ21td8t4em1cw3A3XhRQfJ+JKlft+QXfxbmdva6btpdmzYJnOzUb+9qxPd28zM4qKLZLGkWyz1tfquWIW0745kZrbvWV91sdWrV8tcaGef7ru4mplVpsWaENWdXf553XdcbK3oomdmNj7mx00sYB8bLft4yXTu5qKPT67QuUde8lMXey2gc+AyxpP0zS+8R8ZTcT9uCqb3u7++/Fsu9s+X1sjcqXH/uWjquCqZGxVrTcn0WrVks19bp4v1y8zsW7/we7Wrrr1T5iJY7+t6/Xlrg19/EubXAzOzxul+vdsasD8eK/Yu5bz+/FMUpxaxgG7ZmyN+vzYxro89nn7rDRd79B8vydy3tvgugdfdSFcsAAAAAAAADAIHOwAAAAAAACHFwQ4AAAAAAEBIcbADAAAAAAAQUroK5NugU9desq4eX+Ro+hh92zFxTDU5VdH/mwgoOLqm1RdwigTkTqsVBZwiulCTKgA1EOXysKh7/bZ75HFdxLOx0RdVvvJnd8jc27/ri5y+0eaLYwXJFfSz+OjlvphW0FP7w+UfcbFocti8RUecW29dJeNq3Dz+1DKZe8SMPV2sWA54ZmLKCJhGbMYHvu1iQeNm9V+uFFFfjNXMrFDQcWirmpa4WGPjnH7//1SmRsbjvR0+GFDoX5VlD/qLzIe//7f+3ZiZ3XLZu1ysO6ApAHaMm27UhcrVnNPTvEXm9uT9HiM5epTMVeUkI7o+qe1+yuf1PwgvPvATF4vmdAMB9imDd/d9C2T8hKPnuVgyoYuT9na1utgY04WWRR3TwEmnOeefb9A00hD16093Tq9J21v9/WJgunv1e0+VzI4ldEH+QtavVSfsM7nf9xAPKLpdI4roxtSHODNLZXxh9nJOf2gU9bnxH9gmGjyYmVXW+iLblWX93PratrpYbUBxd7X7KQZ8SH557XYXi6gmR2a23zS/NvaV9ZyzeeMmf11RENzMrKZKFxsfDtjFAQAAAAAAhBQHOwAAAAAAACHFwQ4AAAAAAEBIcbADAAAAAAAQUhzsAAAAAAAAhNSwabkT1DdBFTgvlVXJfrNkxlep7u30Ha3MzOKJgNYQwleuutXF7r76EzJXFQdPVOgq4PKHG4D29v53bcK/ZLO68v/Xf3CLix08Y1+Ze8oR+/f79a649AIXm5jQ3W96+/xY/f5PdBcv7Fy5vJ5znnnWd8uaspvvlGVmNnVcnQ8GTHwr7/uxi0VzXQF35+/t2UVLA3IxWE1N+nerOhsFjZtUZZ2LRYp6bsoHPnfvN186w8XSlXqtU8tPKuPvy8yCF2gMmc5evU7Uxfy6n481yNxc0e89ArZPtv3pn7tYS5veP5noKtIQ3axzsXMF7Cs7e/2DLxV1d5iGGtXxRU8Cx37ochdb9afLZG5ZdK5p79bzXkm8XlA3WgQI6BRkJT8WgjpSFfN+jHT26s8e1VW+e1UuYL6ZfNJnXazpwZ/K3JK4t0K2V+bmA8Y0Bqa1Q8/9DTX+GdeITllmZulSnYv1dIqOoGaWK+iuispPf+u7f17/tXNlbl+fHyf1dQHdShN+funr0/NTW9u2f3eLbyu+sQMAAAAAABBSHOwAAAAAAACEFAc7AAAAAAAAIcXBDgAAAAAAQEgNm+LJQUoiVlYVis3Myr7wUUWlLupULPuCkkVRUMzM7I4f+yJfAfXA7NEVb/nbKuliXqoMnCrAOVBNTU2DvsbIpQthqWJyy5c/J1MXLlrtYpGBFBcNqP9XENeIpQZwXQyZWFS/h2NR/9A2rvNzgJnZ8hUrXCyTGvwD7sv5e0undcH2aP9rxmMHiMf1xFAUc0A5XiFzN7d0u9iouiqZm6j1saBSkm3tvihzOq8LNccYNztdLKKfXDwmCp8WdDHTt9ZscbHxo3ThyGZd01Lntna6WF9GD5J4lIK3Q0UVIw6qLxwRxYij8aTM7VB1uwP2OE/e8i0Xaw+og7pua6u/bFEXaU3E/A9SDPjhZs2Y4XPL+oaTSf8zL1vmmyCMBLGAibssihFHAjaxiZj/FFaT0J+rEgMYjy8+fr24MZ3b2uzHTTHr10Uzs5q0HtMYmLZWXRy4vdWPqZrdxsjcKRN8biKuC/33icY26YDGQ3/86aUyrmze5sdOi9j7mJklSn4AvvTqGpk7ZcqEft/DzsY3dgAAAAAAAEKKgx0AAAAAAICQ4mAHAAAAAAAgpDjYAQAAAAAACCkOdgAAAAAAAEJq2HfFkgKqrG/Y6ts6TBpb1+9L/Olr9+sLi25bm6xXpv7qlZX+vrY0y9zzvvIDF0vG+v9Iplx5loxHRWctOmX9Sylg8HR0+WrolUldol80a7C2Cn1dMXSsUNTXrc/55NpkUNck1bYCO4Jq4hJJVMrccsFX8o+UVS8/s1E1/hpfv+khfRPiHooBrfiuvPBkFxs/dlTAdelQM1REoxErl3VXh5TolpUr6XEzZbzvInHh136tb0I835zo9GBmdsN3PuJiVSk9PiK0UxtScdUlLaK7u3T1+S5C1RV6cthrylgX2+N8v+8IEglYq5b/5vMuFtSxKMKfD4eMaEIkO8mamb3V7Pes08bo/UVJPPcHvvxgv++rtaz3J+/90Qdd7I11m2TutGnTXay6QnfQyol1ONbaInNf7/Ad3Uaqjp4eGR8nuirmAroCb2zzLc4mj9P7oZLoRPbP8/8gc8uiBVZHwLg58foPuNjLmzbK3Ch7nB3imDO/K+NP3/MdHwyY5DsK/vNsbY3+jBvp8Nf4xaduDrg7/4x7yrqL5EXXftjFWjr1Z/Kk+LzV0qrH5C1/uTHg3t5+LLkAAAAAAAAhxcEOAAAAAABASHGwAwAAAAAAEFIc7AAAAAAAAITUsC+eHFE1GwOKQX7x2ltd7I6rPytz46JC6od+eIa+CfFy+aIuUXf9Ny9ysSt/9WeZm4/4gm+ycquZlQv6Z1YolPwvMVFg66RjDpa5Tz3rf2eVAQWyLeKffV1WPx9RS85yAUVwLeKTX2rRxQKjQRXEMWjqNzt94gSZu2GDeMBZXbCwUPDP8sqLTu33PeQLes7J5nxxwzXbuvR1g8YeBq1c8k+tr0sX3qup8kX6esX/NzPL5XxRwBuv+oS+CXUJNQmZWWu7LyIaFUuSmVkp3//1B/8B8ettqPVFs83MCjlfkLuU0wVhszn/QF+75Sv9vq1CwJzT2uHnl2JUF3suBxRgRv8dddRcGa+o8BvkhOrYYGbv+fy1Lrbs9itkblTsQ0/74Sn/7hb/D/mAZ75liy94++Gv/FTmVo/246mlXe/Jcn26cOquThUoNjPLR/1GoJzT7/Wj3vclF3tj/k0yV428E285N/gG/z+KAZ+r2jt8Y5wPf/HnMvfIo6f0+/UwcBu2t7pYXUZ/R+Rnv3rcxX70Nf8Z2cysLMq+f+oXH+n3fRUDzgWa29r9ff3uAZm738G+2UC+4PfXwx3f2AEAAAAAAAgpDnYAAAAAAABCioMdAAAAAACAkOJgBwAAAAAAIKQ42AEAAAAAAAip4d8VS3RxCWqyEMn7qtrlsq6yfval17vYnddcEnBh/4LJqGrXZfbbO//u70F1vzLd8WvV8tX6HjBw4rmdcuQ+MrUkxsmaFUtl7uZSpYtNsG59C6JNQCrgOHVTrMbFymXd7WTVKsbJUFHTy+Tx1QHZE11k4+svyszMGJ+bbd4gc1WB/1hAI7TK0b5j16evuFnmrlzNuBkqJTFy+vp8Nw8zs1ik1sdSaZnbkPYPvqNPd9tSDbDUHGRmNqXev96pX/idzG1qWqUvgh1CNasrRPRCkaz2c1Fvsx5nFTV+nBU6m2WuGjsBTTptzEQ/l417xzdk7orVdOkcrAULFsv48cf4blnpGt9xz8wsbn7Dmc3rrpvzLvAdtFb96ZsytywGTiqmx+7pn/+hi41p8PspM7NC1F83qPsVnWAHpqfTP/f66ozMjZV9F75sl+80ZGa252mXudj6J3X3KjVu4gHjZsaZX3Cxk47YQ+YWyrT+HErnXOS72C35+3/L3K42v0/p6tEdW7/yY989+vqvf1jmlsUGOR7Xi9V3f/UnFzvwwHEyty/rP6s/tOBJmTuc8Y0dAAAAAACAkOJgBwAAAAAAIKQ42AEAAAAAAAgpDnYAAAAAAABCatgXT1alj8uFgOJY4qeJFHTh4u994RwXO/zCKwdwZ1pArWaJU7WhpYpsF4q+EJyZWSzqn8ahhzbK3Lse8YVE3wyqbDsAxaIugImdSxUuzuZ0sXRVmHbilMky952fvs7Fxo/WhS4HYt12XwhxFQVLh4WOLr1WpTK+CGi0qAuZnvLl211s/wnJwd2Ymb2wwRd8pwjp20MVbNejwawq5sdUS9QX3jcz20MUNJ40pmIAd6a9tqnHxVYzdna6x+b7osqnH+8LKpuZFUVR2XRC71sW3voVF5t1ni6OPRBLV/a/eP/Jxx7iYsxPO0avaDSTb9H7z5zlXKws9stmZu1PX+NitUd8ZGA3Jxx56FT/Wr29MjfubxdD7JAzr5LxW+84zcVKWb92mJmde8pBLnbwB782uBszs0eeWjboa4QNZwsAAAAAAAAhxcEOAAAAAABASHGwAwAAAAAAEFIc7AAAAAAAAIQUBzsAAAAAAAAhNey7YimFUsB5lGgtEUvoLkgRkXzL5RfK3A998yb//1UbiwFasYoK/ztbPJmW8WPmHuhizy97Rub2iWdfUdADIiuaTsRjevzGRGetZSt8By7sfMmU7iQzZtQoF9u8MaC7hBgi9z22ZFD3heEtUtbzQst2P0YmTK7v93XvePDZ//ieEA6ZlN6etYp2WZ3duhWM771m9peHFw3irjDc3feY75RlZnb03JkuFg1o5lkQ7V0X/v6bMnfOeZe72IpV/e9+FeThJ1gbd6ZkwGelZNwPkmJA+9983s84HU//QuZWH/FpFztiru9+FSSZ1J1Kf/LLe/t9DQyttg6/zykFjJ3urB87P/3yuTL3k1fe5mILFq0Y4N2NXHxjBwAAAAAAIKQ42AEAAAAAAAgpDnYAAAAAAABCioMdAAAAAACAkBo2xZObmgZfSPjEQ2e7WG9PT0B2QNU4QdW/XL0D7hc7X7GoykmaJUThuDOOO1Tm3vboCy62mPEwspWLMpyI+7Px6ePHDvXdICTiCV3gUWlv65XxSP+XKowgsYAi+5l00sUqMtVDfTsIuZKoWZpJ6YK57UWfrFdAs0JpB3QSwZC44ab7B32NIw85yMWqM5UyNxH34yZodGTzPvenv6Lw8Uii6iQH9JOwVNLPRcWA3I4+XYAZ/8I3dgAAAAAAAEKKgx0AAAAAAICQ4mAHAAAAAAAgpDjYAQAAAAAACCkOdgAAAAAAAEIq0tTUREl7AAAAAACAEOIbOwAAAAAAACHFwQ4AAAAAAEBIcbADAAAAAAAQUhzsAAAAAAAAhBQHOwAAAAAAACHFwQ4AAAAAAEBIcbADAAAAAAAQUhzsAAAAAAAAhBQHOwAAAAAAACHFwQ4AAAAAAEBIcbADAAAAAAAQUhzsAAAAAAAAhBQHOwAAAAAAACHFwQ4AAAAAAEBIcbADAAAAAAAQUvG3+wYAAP+nxsbGfuc2NTUN4Z0A2BUw5wAAhjvWqn+Pb+wAAAAAAACEFAc7AAAAAAAAIcXBDgAAAAAAQEhxsAMAAAAAABBSHOwAAAAAAACEFF2xAOBtMnPmTBk/ZFTGxZY09wz17QAY4WbPni3jk+tSLra+LTvUtwMAgBO0Px5blXCxrV35ob6d0OAbOwAAAAAAACHFwQ4AAAAAAEBIcbADAAAAAAAQUhzsAAAAAAAAhBTFkwEza2xsdLFYNCJzi5Gyi6UqfDEvM7NCseRipayPmZmVy/66TU1NMhfhc8mh81zs2PF1MreqWHSxfSqSO/qWAIxgJ8ye5WKNY+tkblvWF2evSbJFBAAMrSMP8oWSx9cErD/iI1QmxvdU/m/8JgAAAAAAAEKKgx0AAAAAAICQ4mAHAAAAAAAgpDjYAQAAAAAACCkOdgAAAAAAAEKKlgfYpTTO8t2vzMws4TtgRSIxmVqd9LnpmO5Y1J3wna76Cn36HqIpFwq636aVdMsari484hgZn1ZT5WLNMT8+zMxGJytc7LGWwuBuDMCIdNLco2V8bG2Ni2VNd3ussYyLbSn2Du7GAAD4X46YfZCMV2X8cUQ0rr97ki76NWxLyXeS3VXxjR0AAAAAAICQ4mAHAAAAAAAgpDjYAQAAAAAACCkOdgAAAAAAAEIq0tTUpKt3htBphx/uYjXxfEC2/7EzaV0st6fHFy1t69WFTCNRf1b2j8UrAu4BQ0kWHo7owpGZlC9cHI3qYlylkh87BdNjJyHKkxcCinzlij5e7g14e0b9z9G0crXOxZC5+IhDXWzmWF1IO1L2c1Eqpsdjn5he1rfkZG40mnCx781fKHMxPBw250QXS1Tov7PEYiUXq0jp+Sab9XNIe1bPIZGyH3tLFz0iczF8HDdnrotNa9C5YjtitTV+vjAz62jz88v6Zj3nmChe+dDKlToXw8KcebNdrBwJ2l/4eF2lXqusx89FW7N63ETi/hqrn12lrwsg1I6de7CLjanR80g04vcuVRV6n9MravpvaA+Yc0QTnCdG+GdyvrEDAAAAAAAQUhzsAAAAAAAAhBQHOwAAAAAAACHFwQ4AAAAAAEBIcbADAAAAAAAQUqJnz/B3+iG+K4SZ2cdPn+FipaLuirW921fQbm1pk7mRhK+qvcc43YYiLtpQvHOOvy8zs/uX0sVoR2g8SHS/MrOY6IAVjekhP3lsrYttae2QuUVRvT1W1tXbI2nfIamiLytzx1T5zlzNMZ3bKzq1Bf0emlY0yTj675tHzJPx33/xHT7Yo+ecSN4/s/Ztm2VuMunHTXr0WJlbW512sU8c6TugmJld/tRyGcfQOHj2cTJ+3pm+W0SuR3fLK2f9uOnpbdcvKDpAVNbWydSaSj/fHHrEKTL32acf1K+HIXPyrDky/qPPHe9iY6p0p6t1m3tcbMu2TfoFS37vMmfmbjI1l/e5J8/U+5yHV7HP2ZnmHq7n/uMO3sfFent1J5mM6Ai6tblN5qZH+bVq/0y1zE3GfLeteUfNkrmLFqyUcQDDy4mHHCTj137xdBcr9ug5Jyb2x9u26v1xpsLvXSpGjZG5NZUVLnbyoTNl7sMjpEMf39gBAAAAAAAIKQ52AAAAAAAAQoqDHQAAAAAAgJDiYAcAAAAAACCkIk1NTb6a2TBy6uxZLnbx2UfL3FKp5GLVlb6wqJlZe3evi7W2+kKDZmbxiC+GWpmpkbnRpC/YGwuoUf3rux53sYdWjYziTTtTUNFg84/CxleIoJltKfi3QWVc53Znfa4YImZmFq32Rb6KHbogson6l+WA65qvV2hW0AWcm1atDLgIlK8e5gsl//RHn5S5U4q+EFwkPVrm5rPNLtbRouecfMEXx61vmChzowkxdmO+YJyZ2alfuM7Ffvj0UpmLgZk5269LX/rwu2RuQUwtM2ftIXOLhW4XC6h5aj3dLS7WUKeLCkZEgdSXX/Bj1Mzsx7f+3cWWLXpE3wQG7B0HzXKx3/7wczK3Qbzfk1V6P5LNdbrYW+v8GDEzS0f9nqi+YbzMTWT8WpOMqkXJ7LSLrnaxh1ezz9kRGmf7vc+ph+8nczeKZhCjx4yTubl2P0ayAQ0iUm1+DeutzcjcCtF4ohjV++PFq193sZU0HBkWZs/xxf/NzJJiTcmX9fcHGqJ+HmsW+3Azs4S4xKIlK4NvEEPmmIN94eFbr7lE5kbyfqNSO1avKbkev/dobdb742LW74+rR+v9cSrpx1Q5r+ec9176Exd7MoRzDt/YAQAAAAAACCkOdgAAAAAAAEKKgx0AAAAAAICQ4mAHAAAAAAAgpDjYAQAAAAAACCldGvpt8A5R3d/MrFZ0Jmpp75O5hZjvQLSu03cUMTPrFV1JkplKmTu5yrcriqZ1t603Xt3mYg2j9a+5Ou27DMw+eIbMXb4sfJW5d5qAvm4p8Yx7Mvoss1ZUSW9v913WzMySMX+NQkx3uhpT4a+bqdcdi9Zt8eO6ql535urs9PeWTA2bt3OoVcR8Z4eta31HETOzLfFqF8vGtsrcVjH2Kmp0N5vUNj9GckU90Isvd7lYzR56jE1s0N1KMHjRqH+vvrRdzwsH7D/VxVa88pbM7enx4zElui+amVWm/HPP9+nx+Eqzn0MmjtXjsSIZ0IYLO0RV1D+LjW/697WZ2abRtS6W7vLdr8zM2vKio2eN7tpXlfD3sK2g55Ftb/iuSbGYbuE4qo51aaioJb+3T4+F3cb7cXPabD0WsgW/rqXj+jlubPP7lgMm+f9vZtaR8/PIfc+skbliOsXb4J0nznWxD75rsszNiTWltk7vo99a7+Ojx+nOa1UVDS528pH6s9LDT/FZaSglxFr10lrfpcrMLFPn55dRW3VuR85fN5PW+5Fi1MfjfptkZmYbNvtuj2XRKcvMrKF6ZKxVfGMHAAAAAAAgpDjYAQAAAAAACCkOdgAAAAAAAEKKgx0AAAAAAICQGjaVgmKmi2Y1F31FpIqMLuTYK4pMTqzVZ1cV1b748boNbTK3RVRaHptOytypE30huc0duqhgW8kXi4oFFEjFvxEwistqTHXrQm7lgv+9T6zWz2LiWD92XnhLF0nt7vaFu+qqdUHKuqS/xlZd99REnXDr7qXA6Y6wLuGfe6pWV2Zr2brOxZLjxcMxs90rRFHmbXpuqG7wYzctxqiZ2bYpBRfLZnWB+Zf79Oth8DIxX6j/2H11BdC2DYtdrCatJ7LpE/01XnwjYB4Thf7ru/34MDObVvbXzW6WqTZz33r9D9ghukQxx/p6XbC9VPLv7UxczzlpPxwsktPFdf1KZVYZUBB5/2l+rG4PGGcdJfY0Q0Y8nulTJsjUL13wDh9M6ff1AeP8/nbdljaZ+9Kra11sj8mTZG51g29Qstt+vuGImdkDC34s4xgap550tIy/911HuVgs6Qtxm5nV7ObXlEhe753Gj9niYm19uoHNhAm+ePIHzhkvc088YraLPfL0cpmLgSuLNWXaKL0fGZPxe6JEpf78M6XeX3jjFrUqmfUl/cQ3PuAzeacYqq29ekyWY8PmSGRQ+MYOAAAAAABASHGwAwAAAAAAEFIc7AAAAAAAAIQUBzsAAAAAAAAhxcEOAAAAAABASA2bEtAPLF8p4/NmzXCx1lK1zP3rM4tcrCunOzUUc76KdzngmOtzHzjWxa76/RMyNyIaQFSkdceKbM5X5l6ysknfBIIFNPqprKlysd2mT5G5XW3bXSxd1p3aaqN+oOw9SVd63236RBd7fa1uPbN7va/yP6pBdzdq6fIdsLa0+J8hSLoyI+O93T39vsZI1Zzzz31Dt+5Qk540ysUKUT2tbuz2z6xYrSedbVk/N5TKurtMNO5fb1Tad24zM1vXq+dDDN6U3X2HmWef1904Xnuj2cUiOd3VbsO6LhcrJPXcNHl0nYut39Iic9Vwmj5Fr63RKj+/NTY2ytymJtawgWrN+W4yy9fp+fz2h5a52JYuPW/nu8TiqIeOffuiU13s8pv+oZNFU5FRo3SnnNZeOvENFbGNtaPnHCFzW0p+P5Tq0+Pm+dd857RYhd7Hjh0z2d9XRA+yV0SXm8ljxsjcrNhnYehMmaC7TC172c9Dsya3ydxRGd+9KlKruxXlSn7vNHl8wN5pix+PW3o3ydwO3aAJO0jWfPeqbClgX1npn300qZ/xaxt8By1L6NyieLkNAR9dijF/v5Mb/FxoZtaaHRmDh5kTAAAAAAAgpDjYAQAAAAAACCkOdgAAAAAAAEKKgx0AAAAAAICQGjbFk4OUzFd4XLO9VeZub/O5/3PvXQFX9rnfOPMsmTm/aaMPVtbJ3Mtu+Z14JV309PIz3hVwbxiQgGKQnd2+6GidKKhsZta83hcYnXnSiTI3UvYFtlY9pItMjhX16LYGVHc75ag5/rVM5y5tWu1iW5r7Xzw5X6CIbpBSxP/OH1mpC/Wde4ov/Pjqi76Iu5lZtuArjtbV+8KTZmY9vb5Y4IxGX0jezOylpoUu1lrQ46azKyvjGLzaTKWL9W3UhYsf+PGHXKwiqd+TpT4f/8cDvoCumdn2lm0u9l+f+ITM7Yr4MVbK6nuY8ZGbXSwVC5h4MWCqMPr9i1+UuWtEkclfLF0QcGV/3U/NOVRm3vbgYhcrmC6Ye82iJ/0rBRR3/+qcuQH3hsHyJbfNKop67p8iatg+et+fZW6p5NeqPQ48SuZmYr44dkODLoi8dOGDLvZaXlTiNrNSH2vVzrQh4HNVYYuPv7mxRuaOjvjczZ26qu2hU/089ujidplbu9ceLlYdUOc236fnIewYkaifdV57Te9z9p/k54FXntNrVU7sj+vrJ8ncbN7vU2bO1M0cVi+f72JNb+o5p697ZBT65xs7AAAAAAAAIcXBDgAAAAAAQEhxsAMAAAAAABBSHOwAAAAAAACEFAc7AAAAAAAAITVsumId3KgrWj9+63dd7P5nX5W5Tzz1hovtPUNfN9G5WUR1l48ffPkjLvaxb/9W5u5z4IEu1lBqk7m6pwEGLKCQ+Vc+9k4Xe3lDs8wdlaxwsT1qRsvctj7fTaZQ1GekXzz7CBf78e8flrn7j027WFxUfzczeyEuxuoAmgGk4gkZL2Rz/b9IyJ148EEy/t0v+e54R08O6NxR4Z/7Vb9bqa/78cNdbNaeeoz1tPupeXKDfmbv+41/vSvEa5mZtdMwYtAaA9aq7336aBfbI6071XW3+44vX77Dd7ozM/ufC/zrHbH/FJn7wnO+q8gjS/V6ef2zfi684uw9ZW4y4cfj0pUrZS6CzQ4YO7+79jMu1vTyVpm78vm/utiYg2fL3OqWDT4Y0fuO88/x8973fqm7ik4+QLxe93qZG2GfM2hBc87NV33Rxd51uGjFaWZbuvza/sM7Xpa5v/mOHwuTx1fL3JT4FJEr67305be94mK/v1J3ozVbFRDHYJ1wzJEudtC+02Tuqjd8R9DLP3KCzF38qp9v7vy779ppZrbPXvu72EPLnpG53/+v97jY/OfelLlv3LhGxjEwBwXMObde80kXO366nuN7xHdHvvIr3dHzus/4MXnIPuNkbm+f/9A3bWxG5h51nX+9m750jMwtBayNYcM3dgAAAAAAAEKKgx0AAAAAAICQ4mAHAAAAAAAgpDjYAQAAAAAACKlhUzw56ISpo9cXfBs/vkrmnnbyHBf7+AxfkMnMrEMUT/7I+06RuVWZpIsdM3c/mfub89/vYstefl3m5gdS7RbBdJ0+m1Rb6WKtrW0yd+oxvpDbr+6+W79crsvFvnXR8TK3YZQviHz2yTNl7l+ees7F3nxtncztq0q5WFNTk8xVYrGAX9ouJBnVs051hX+/F0o+ZmaWjvvi1md94FSZO2raBBcrZdtkbnuHn/cSzR0y99wP+zmuYeIeMjdiC2Qc/Xf0ofp3W53yxa27umpl7svP+0L/WVFQ2cysfUvJxV5f/YLM7fZ13a1iw0aZW9qwyMVym3Qx70RAsXUMTNA+p+n1LS6WyejsCeP9MzqvYqLMzeZ88e7JkyfJ3HLBz2X1Yg01M/u8mMuaO/T8lGOfM2jRgJqeFUn/D+3d+r1aUe51sZt+/U2Ze8gEX4i0easoxG1msbgoWhr3+xMzs9/d+HUXO3jqKJkbsVtlHIPXl/VrzfQ9a2Tu9tfXuNgv75gvc4/f1zch2bvejzszszOO8cV5l7+umtqY/fcPfcH4D52m1+HyyKh/+7arrtTv4Yq4X5c6e/xzNzNrGOU/Z5z/Id/UxsysbpJfU6Lm9z5mZttb+lwsWeMbR5iZXfrpk/xrjdOFwiORx2U8bPjGDgAAAAAAQEhxsAMAAAAAABBSHOwAAAAAAACEFAc7AAAAAAAAIcXBDgAAAAAAQEhFmpqahkXLgiu/criM//FB3+aje9FvZW5n2Tf52r69R+ZGov7HbqgV1f3NzPK+W4QFVF5v6fK5kZhO3v8dF7vYQDob4V8+8WHfDc3MbPVLvrPQU7/8ksytzPix09mdl7nlctHFqtK6E0VUVJAvBZTtz4umOHHR9cLMbM6F17nYwoULZa6Syeix3tOj3y9h986D/BiZc4h+Zg+t9A/ipst8tzszs4mlVhebNLla5hYLftxsb9a/71LBdwOIRvRYaBjrO9eU8n7sm5nN/Nx9LrZ8+UqZC+2uG86V8QefanOxSz+g17Wx29e72PQ9dAeifI9fUzZu9uPOzKxU9l0oYgF/vhk9zs8B+W7dweQzf9/mYr/67b36wgh06ScPlfGHF3a72G+v/KTMLUZ8h76s2PuYmcXKfp+TiuvcYo+f94LGTnfCXyMmumqZmX36Mr9Wsc8ZmI+dpztprn7FrxP3//xbMnf/Bj8Wunp9h08zs0LRr1WVGd35Jl7291AQ65eZ7gRbDNhM73fuj1xs1WrGzY5wykm+I1XMGmTu3d/9qIt97bq/y9zqhB83F3zgMJk7qsZ3XWrp1J0h//zgay5WH/B57Td/9x27lqxaJXPxLwc3znCxw+fp9/vy5/w8/4cf+M+yZmbjCy0+NlF3tS7m/dhpbdP742Kfzw1aq+rG+/14Kav3x42fvtPFnl20TF94GOMbOwAAAAAAACHFwQ4AAAAAAEBIcbADAAAAAAAQUhzsAAAAAAAAhJSuovc2+PrVz8j43f/wRb5+dbsu2njO+053sbpaX0wySLGsi+VOPe7j/b7G2gW/cTFRWw470K9vWSrjjY2iQFxZFwe1si/EVlMZUCFbvW0iugb54R/7oXgtfdVnfnepTw0YO11duuhhf5VFUc2R7P4VfoycMfcQmVsjijnWV+pCctbj55f16/r6fV/lsi+Eamb2zu/81ecGXOMf3323i0Viu9bz3Zned/EfZPyRhX79OeKAqTL3xUfXudhrz+uCfkrR6mT8K3f7IpEBNbfth2f7gomRqC4onkjqOAbm2l89K+OzxVp18Xd0k4jrLvOFKqMFvR6oWaBX1ye1z3znBv0Pwi+++wkXi0SHzXZyxPnt7br464wZftx0tW2RubEJ412sNj223/cQi+m99EkXX9vvazz4y8/7YFGvlwE9JrADPPhPX4T6PacfL3OjlX7C+PFVupmEUl+j904T4z4ei+rvGuy+3+4uVujQDQR+9sDj/b43/MuyptUudvS8g2VuROyP163fKnPHjvf72w1rAz6DCcWy3ne846t3yDtTHrn6PJ8Z1/vjSHRkTDp8YwcAAAAAACCkONgBAAAAAAAIKQ52AAAAAAAAQoqDHQAAAAAAgJDiYAcAAAAAACCkQtnGoFAoyvjNt9/jYtP3miZzj5i1V79fr+OZ611sa4/uoJXLdrvYrX/UXbyw8/Xm9HOrzviONJGo7gKRL4nK6QFNiP7xs8+5WG0m4DxVtMBKWP875QxEb2//K9OPVPcuXiLjJ8/13QDyJf2AMynf2SEZ152u8nk/NwT5xTc+6GJ7pAK6h4jhFE/rThQjo+Z/eJQDWlIdOMOvSy3re2Tu+i3NLhb0HE8/fA8XO35sSuYWSwUXm3XQFJlbWLgp4BUxVIIadHzxCt8ta+aBu8ncD548q9+vd93XPuRipYBuj7k+34Xr0u/rbnHYuQpF3Upzy2bfiW/UON9tyMwsmfAfDcoBLTp/edVnXWyPuoButGJQb93k7ws7XzRgwplW6+eA3iq9xykW/TWKBT2H7HX+1S722G8vkbk1Gf96maBNN19X2CGeXLRMxo8U3bLyAXPOi29tdrHR1aNk7qgaP+cErYE3fPejLrZ70P7Y/HnBq2v9fZmZlQP2+WHDWwAAAAAAACCkONgBAAAAAAAIKQ52AAAAAAAAQoqDHQAAAAAAgJAa9sWTVanbckkXlC0VfTHINa++LnNffu5FF4sHVWoagJYuX5Q2FdPnZzEqme50pYAiXxFRiK1c0kW6tzV3ulhVOiFzVYm5Xl0j1R5Zud7FKhJ6kKjShI2NjfrCQiSix+Tq1av6fY2Rqrnon3s0osdNXBTHVbW1zczWb8+6WF1lWuaOTfg5rrOkn1lnt8+tLuoicFGO8odMMuHngGhUP4dU3D+I8ZPrZW4h6WeRmipdEHnv/f7dHf6fWjr9WtXSqddWVbzy8LmHyNxnAoqSI5ja56TKutB/oeDjK1f5/YyZ2Zuvv+liHWKPMlB9Yn6JBJT0DlhqMETKZT3nqD1De4suIrplW6uLZVK6YK566m/4eu9mZtab92trpiJgj7MD9uPov3I54P0rCqhXlnWh2upqv5/J5fU81vTHT4qo/wxnZtaR9fF80DgfGfVvh62i2PPGovqzUlwMqbaudpn74hr/uaoyYM5RlgfEe0TDnHRGF3dPJEbGYjUyfgoAAAAAAIBdEAc7AAAAAAAAIcXBDgAAAAAAQEhxsAMAAAAAABBSHOwAAAAAAACE1LDviqU6R8ViAbdd9NWvy2VdrTuZ9Ne45YFnZG57R5eLVWWqZO6HTp3rgwHF/eOiMwp2HFX3PBbT3ataen3HolGVuvPMuIZqFzvlk7+RuXnRBaJLF2S3rRtec7G+vO4ScNS5V7lYNKXHU0RUsZ/044/I3BrRWaupqUnmjlRR1ekqViFzC1k/bmIBbRkmja51sTO+dWe/76sQ0O3hnm+d7WKV6YAOJrSoGbQLzz9TxsfU+d95MaLXqjYxCdTqIWbjGvxac8Slf5a5hYLv3hYNaL9473ff5WI94v+bmSXi/n5LOhX/ATHlWFBToAqxhHXl9MNo7fQtGCePq9G5bR0uVl2tc7e3+T1RQ7XeE20R+yfsGFGxuYxV+P2JmVlbn++GVh+wVo2qzbjYuV/7i74JMU4Letttt135bherrdfdAC2gSxOGRiyu98ZvtvuHuXeNfjbZnO+q+LeP6k6rRdF9tCeiO2idfcPBLvZ6lx5kbHGGlvrYWorqz0rZvF9/kgOYc75y8xP9vq+ArYtddf7RLtZQq9cquRCHEG8BAAAAAACAkOJgBwAAAAAAIKQ42AEAAAAAAAgpDnYAAAAAAABCatgXT1a1jBoP3EfmPveCLz7bne2TuQVR3e3Dpx4WdBcuUjJdqam71xcPS0R0tVxV6BJDK1mhi3xFY+JZBBTSKoqqof/45UX9vgdVNM7M7JeXX+JimaQugnvh93zR3WJAcd1o1J/flgIqn+5qhZKViPhFFkRxbTOz7rgv+FZT1rm5vJ8b/n75OfoexJyTD6ie3Jfzr9dS0HNOucicM1hF88/RzKwkfueb1m6VuVu3+mvMm6znprx4Zk9d8x6ZWxZDpCern3lWjJtXm/XPlhPrWqkUUCEVA6YKJc89yBeyNzN78tnnXSwS8CxU/dn1W3yR5CCd2f7nbtiuc/nr4dCJimm+XhQhNTNraffv4VFxvb/IZ32h5T/8wBfpD5LN6fGYz/viuItf3S5zIxawocGQuPOv/5Dx95xxoostv+1imRsR7/Z3/W5Gv+8hl9PFk3OiCc553/ibzF2xmD3sUIqIRaW+Us8527vFnGP6M3mx4J/91Rcc1+/7ygZ8ni6I6766Xd9DJKhDSciw5gIAAAAAAIQUBzsAAAAAAAAhxcEOAAAAAABASHGwAwAAAAAAEFIc7AAAAAAAAITUsO+KpRw1c3cZVx0glix7TubWVfkq3u1dnYO6LzOzsfW1LvbN6/8uc1eupnr7UCqJ8RBY81x0Lgvq+dKd9d1kqnRzCSuL7kbRiL6LQ/eb7GKHXHi9zGXsDB3V8a6zt1vmlpOVLlZToUdOLl3nYolsi76uiMV1kzYrZPx1L/rW72XukuUr9UUwaD2iy9RLG/Xz7d3quzLkJ/q1w8zsmY1+PB41KSFzVVesjG62ZYu3+HH6x6dWytxCwcf6VBD/EfUXtrOP091kCqJr36LFep9joiNiMaibmZpfAhbMSMxvHSviejwsWcFaNVTKJf+Akkn999rK6jr//4vNMndTvsbFJlu7vgcRSwT8yXhdzq+XF1/+S5m7fOVqfRHsVEUx35S69Vg45JN3u9jimz8mc9V0E4vrde3ID93gYvc88KjMxdAqig5lVVX6KKG327/fy71dMrcjVedidbnWft9XwLRnnel6F/vprQ/J3CcXLun36w1nfGMHAAAAAAAgpDjYAQAAAAAACCkOdgAAAAAAAEKKgx0AAAAAAICQGvbFkwu+bqTlS/o8KhLx8d333UfmfvhLP3OxMdW6cNdANHfmXGzFKooHvh1UIdFcXgwoM8uIan/RiB4PJ332RherCKrcNQDrm33x1dVNjJ2drSDGTVePLjiaSfp4rKzH2Dlf/o2LjRuTHtjNCeubfSHepSsoPDlUbr71QRn/yPmnuNjWdl2Qv1JU+m/b1iFzf/jbp1zsq1m/zgzU9N3HuFg+r8d5OqEq0QeWoscAyWWpHLQf8fFD5upCywsXrXKxeDSgCrsSkBop+ULJlNLe+Ypi3GRz+qGpaE3dKJn7rW/7YrXNO6C5yIYWv1axPx7eSmKt6inpivyrbv6Mi9WecNmg72EZ+5lhQ30m7+7We4GyaBQzur5a5l5yxV9drLY2oCvNAHT0+Rt+6tnlg77ucMY3dgAAAAAAAEKKgx0AAAAAAICQ4mAHAAAAAAAgpDjYAQAAAAAACCkOdgAAAAAAAEJq2HfFUmrr6mX8sBm+A9bdT/a/4v4jTy37j+8J4ZBI6mr+WdGWpCoVk7mqu0RvTleFzxV8l5nurM6lA9bwFRUd98zMtrb1uNiEcTq3Vzz2ex5ZPKj7wvBWWaE7G616dbOLzRw9Xua25vzcNCqlu0Ws7eh1sf331ddVEgk95z26aJ2LMV8NraraBhl//0lzXOwPj/Z/71Io6fUnJTpDllTbpQB0NxoegvY4BbEXKZR1d70+MUTue3zJoO4LISW6fOYDWuDFzOd2Pn6FzE0f7btlrVrNHBJGsbg+Sogl/D6lZH7PbGbWI9alp59YOrgb20XxjR0AAAAAAICQ4mAHAAAAAAAgpDjYAQAAAAAACCkOdgAAAAAAAEIqlMWTi4W8jFemfdG4kw+fMdS3gxBRhY/NzGKiOG6h6IsNmpmp0pOPP6OLV86cOdPFVq1aFXR7GAaKRV1cVIlG/IjK9fbJ3KCxh5Fh2coNLjZv6liZGxN/UunqaJe5cZHcpacm297pq1rOX+wLHw9UE4WSd7pcVs8jqaQvyH3+qYfK3GcX+nWJZzlyyJWqpCvbxsWckwko7g78P0Tx5EJZ75HKZbHLCVirAmq4Y5jr6fWfv/uy+jN5TOxdRlVlZG6UHfIOwzd2AAAAAAAAQoqDHQAAAAAAgJDiYAcAAAAAACCkONgBAAAAAAAIKQ52AAAAAAAAQirS1NREbXIAAAAAAIAQ4hs7AAAAAAAAIcXBDgAAAAAAQEhxsAMAAAAAABBSHOwAAAAAAACEFAc7AAAAAAAAIcXBDgAAAAAAQEhxsAMAAAAAABBSHOwAAAAAAACEFAc7AAAAAAAAIcXBDgAAAAAAQEhxsAMAAAAAABBSHOwAAAAAAACEFAc7AAAAAAAAIcXBDgAAAAAAQEhxsAMAAAAAABBSHOwAAAAAAACEFAc7AAAAAAAAIcXBDgAAAAAAQEhxsAMAAAAAABBSHOwAAAAAAACEFAc7AAAAAAAAIcXBDgAAAAAAQEhxsAMAAAAAABBSHOwAAAAAAACEFAc7AAAAAAAAIRV/u28ACJtnTj3FxQ7/x4My9/mz3+liB9x9/w6/JwAAAADArolv7AAAAAAAAIQUBzsAAAAAAAAhxcEOAAAAAABASHGwAwAAAAAAEFIc7AAAAAAAAIQUXbEwYj1/yvtc7IAH75K5vRd9wsXSN/5a5s6qn9Dvezh00m4u1tnv/232yoffI+N73/KXAVwFAADsqhobZ7hYJBKRubGEiMV1bi4SE9G8zC13l12sqalJ5gIABo5v7AAAAAAAAIQUBzsAAAAAAAAhxcEOAAAAAABASHGwAwAAAAAAEFKRpqYmX80spM46cq6LTalRhd3MSiVf3K22Ul+3o9vHNrfp4nDxRNLF/rhgib4whtTGD33YxSbedku//3/dpefKeE1djYv1NffJ3LHjKlxsc2dB5rZsb3WxzkhR5lb++h4XW3DyyTL3rx0dMq786Nln+50Ls2OPPdvFxjboOSceLblYKqVze3I+d22LHgtFkbt4wV9lLoav89//aRlP1fo5pD7l5yAzszZrc7GutiqZu+G1bS725EJdMB7D20EzfWFcM7NC3G/vakt+PJmZPbWCfcpI0NjYqP9BFEpOxPTfdgsJP27qY35va2ZWSmRdrKNL92UpFcS+OeATCEWVh4ejjzzWxYpF/8zNzKJiOCXieo9TKPh9S1dJDwa181m1cKHMxfBx9pHzXGxyjZ5zymU/N9QFfCZv7/KxoM/kMfGZ/PYR/pmcb+wAAAAAAACEFAc7AAAAAAAAIcXBDgAAAAAAQEhxsAMAAAAAABBSHOwAAAAAAACEVCi7Yp1/+MEyfvmnT3Oxvq4efZGir8i+ecMGmZquSLlY7dixMrc64ztOfPO3D8rc3z2xTN8bBmTD+RfI+KRbf+9iY/77YzL31cUvuNgBjRNlbjnva/SnU/qMNJtNuFg0obsbdWd9p4E1W3VHq5aIH7/T7n5K5mLwDj36PTL+xM1fcrHWbaJkv5l1Fn1XktWvviZzKzO+kv+sqVNk7oQJo13syI9eK3OfevR2GcfO9cid97pYIqa7h/S1+yW6mGiXuZGcbyNR2eDnIDOzynSdi33xyr/I3PlPXiPjGDqB3Y2EVFR3IaqL+Hg0mZO5iXi1i93/DGvKcKbGSER0vzIzi0d9PJrQubmc+FggujqamZUt42KpmO6aVCyIuUxf1pJlP28tbVqqkzFo8w4/SsYvPutIF9uwuU3mRtN+PG3e6ru9mpmlMn5uqo3pDo7jRvnPVb95YJHMXfrUMzKOofORw+fI+A8+d7qL9XYGfCYvic/k69bL1HSF3x/XjBsvc2sr/ef3L//qfpl70/zl+t5Chm/sAAAAAAAAhBQHOwAAAAAAACHFwQ4AAAAAAEBIcbADAAAAAAAQUsO+ePI5h852sasv+7DMjXT6QrNjJk+Tuc2bfaHkfF7/Kjo7mv11x02QucWiL0yYTqRl7qeuvNXF7lq0QuYiWFDx5Py2jS42/cF/6oucd7gLFXp9gS4zs7goPllRoZ9xspR3sc6sLp5civjxF40FnL3W1LtQW1wXe25r8++Labf+UV8XdtBh73SxzY/4QtxmZr1l/yxTDb6YsZlZT9tWF3v9dV0EN5r0z2xcg57LMlW+6FwmWStzpxzh586lz94tczF4259vk/FMjS8yecg8XSy3u3eLi0WKuljulpKf86ZV6nHT19vrYm+83ilzT/2gLxL+4CPXyVwMXOMM/+xjuq6tlVRcFGY3M6vJ+ILc5T6dW5v268+6br1WVWf8uvTMopUyF4M3kELaibjeM+RFw4W46YLtBdEgIhZw3XjCj5uCrs9txaLY4yT1eByd8sWTt3bqCzc1NekXhDTj4Lku9pVzT5C5W3v9WKis9EX6zcy6O7pdrLldF9KOl308VVkjc0WtXItGdFOA3/3lURdbteJZmYuBO3eeb1700//RTWnUZ/Lq0ZNlbssWXyg5l9PrT1d7i4uNHq8//5SK/jNYXbUu0v3Rb/3Wxf60OHyfyfnGDgAAAAAAQEhxsAMAAAAAABBSHOwAAAAAAACEFAc7AAAAAAAAIcXBDgAAAAAAQEjp1hpvg7MPmSHjoqmDbdzoK2KbmUUrfCeYV55bJ3O7xHUrKnSHgExsrIu1iUrxZmZt6/pcbMIeKZlbV+Wrus+b57uAmZktWrRcxkeqH5zsK6+bmX314WUuNrHa/87NzKZN891gOi4+RuaWMr7sfvq0cTK3Y18/HiKiwr+ZmS1sdaHW/XS3rUMX+fG3KuM7WZiZHdA93sVeu+wamav7IyFIRdSfdz/8mu5eVUr4Lg6FprUyt6PVj9N0Ws85m1v91Fxb3yVz+/J+7O09qSBzRwe8VzA0/rlKj5u9D93Dxa75ye0yt2+DHwv1k32nBzOz3Wv2cbEXNtwjc1uKfg75yAnTZe7E0XoewsAEdjcSjYHSAV2xRo/yHRjPefcsmZtt88+tplpfd+02PxdNH6WfezTlu+KcdqResx94yq/Z2DHkX2bL+pnFxSAr1we8r7f5OSddq9eUWM6vgfm0745kZlYs+G6e+c7tMrdTTHER9UbBgFWIhlIvd+g9bL7XJ0fbdPfEXNaPkWRSd6/a3uNzdx+jczds8eOpoUHvndIVw7rRc2i8f07AZ/K4fw+uW+87R5uZ5c2vE71b9Wfyjph/bmnxuczMLJP0e5f2gK7WbWv8nnfM7vq6DdV+/M2de5DMXTyMu2XxjR0AAAAAAICQ4mAHAAAAAAAgpDjYAQAAAAAACCkOdgAAAAAAAEJq2BRPjif1rbQUfYGtqZN0MeLmTb4IW6pGF9iaJioTbt2ii5MmRFHletPFlxJjel2sp00XJWsr+mJP0ZwuirmrUUWSzcxeP2mOi40eM0rm/rHalw0eP2V3mVs/brSLFfaZJHPffNMXCptSq89Idz+kwsW2r9djffGJ/uco9umxc/s/NrnYtq99XOZu3+ILOHe198jcS/7ygIzvSiJx/3z3tJdk7vZm/36vjevC6q+l/byVKOg559DpE/1r9W2Tueu3+mLyqYCChYVCh4xjaJw3VxfS/tLlX3WxUq8uSNlR9oUjmyO+YKmZWXKmL57c89x6mfvWNv96dy/2xU3NzA4/0hfsxX9Ab0csJmrYxqv0s7j04vf6YLpO5h5xnC9eubVZF1BvzPm5IRnPyNwJ4/z4qxvnx56Z2fGH+6LKjz1DQeUdQZULTSb0IOvL+XUpomueWqba5/YF5I5r8OOmWU9lFo/6PXo2oNZtdY0o1tzB36J3hHLRf86oLemHVp3xc0B1QIHiZJ2fb95YqwfOuCq/D65K6c8/XUm/z4p1+5iZWbmgi3xjYII+kzeX/O93/Bid27rF702r6vX8tGelj2/c5D+7mJkl034eaIjqc4HkBP9ZJ9uVk7kbe/3PFs+HbzwxSwIAAAAAAIQUBzsAAAAAAAAhxcEOAAAAAABASHGwAwAAAAAAEFIc7AAAAAAAAITUsOmK9aenl8v4cfNmu9ioibqz0aS9fAeiSExX4K4Q3bYKs3Snq0LBV2qPm++qZWbWG/Hx2oAuBZf/fr6LLVzRJHPxL3v8c6mLZS/5pMxd2+a7f0zdc6rMfbbkn1vFkjUyd+L08S7WbKKtiZklCo0ulk9skblr1/oOWOt6dEX2de2+E0VlTbXM3bDdV5b/xr2PylyYdfb49/uXrv+tzF3/hu/4sKWoz8tVJ73mDt2lKhL3Ff7L0YBOFOZzUwFNjNq6BtcVq72jXcZra3wHOpgt3bZYxj91/uEudkB9ncztEp3xSpV66d6wznfQmnLmLJnbu92Pp7a07rz2Zq9eGzFAepmwsnhrH7qv7vbY1t3mYmfM8F30zMwmj/PXGFPv/7+Z2eaNfp8ybfcxMrejz+ceuJvvgGJm1p7VHUgweLGo37dMnzJZ5rZ2+u4wR+6tu+vts5d/7uWU7rQYyYpujym9Vm3b5ueyhetelLnPr25zsZzpjpMYmLzY7z6+QndPbG/x7+tcXj+HXN4/91JZ50bK/h7KMf25qizmzdq0XpPyAa+Hgbn9Gf2Z/KjZs1xsTEC34d0b/WeSaFzvXRIl/9wOnKPnnKL4TB4Vn73NzHpEuD6m7+Erv3rYxZ4J4WdyvrEDAAAAAAAQUhzsAAAAAAAAhBQHOwAAAAAAACHFwQ4AAAAAAEBIDZviyYEivhhXa7suxnfY9NEu9th9f5C5uYIv1LT7AUfK3ETE506epIsVLnji7y62VryWmVm2yxeS2xFuuOEGF7v44ouH5LWGgzsCCrrWjKp0sW/Nf0nmdrf4orLZpC/GbWZWGVnjYl1ZX8zLzGzeHj5234K1MrduD5+cCqgDV9OyycVOO9IXGjczqxvtCyFeetw8mXvt44v0C+5S/Jxz5Jx9ZebNbzznYgft5Ytrm5lVxH3B0S3bffFlM7Pz3/dOF7vz2Rdkbk1Pp3+tgKLx8xfq4rj9VShSmDDI1d/7jIudcbJ+nx3S6Auc/u0ZXbyyutdXjtxmeu04fE8/D5Xf2i5ze7b6sVCT9QVWzcwmHv0OGUewxhm+cL5+V+qN2NPLX5O55555gottyAW8Lzf5Z7+1Ra+X6ZhvNrCurUHmrs/6OWdizViZG7D9wQAEjpuSX6s2bvPNEszMyqJY7aqeepm7fpVv2tD0it47HTLN5z7znC/ibmY2Zbbfo9TYdJmbz62UcQxeURSq/eDxev+4ZsNWFyvl9L6lLKrAt3XqBiDHHeM/b7UVdG7rc8v8PaiK82Z2+0K9v8aOURTFqTdu7ZW5h06oc7F/3v9HmZsTe8v9Zhytb6Lk9zl7TNT77mXz7/OvFbAo5XpGRqF/vrEDAAAAAAAQUhzsAAAAAAAAhBQHOwAAAAAAACHFwQ4AAAAAAEBIcbADAAAAAAAQUsOmK9bcRt9Bwsxswd1XulhdYbPMjUV895CvXO+rqZuZ/eXaD7jYtCl1Mjff57tFJDIJmfup65a62N9+dK7MzUVXynh//fWvf+13ruqUZRa+bllbPvJRFyuPy8jcJVlf+fzQ3XUXiAdEd6IvnneUzH2l2Xd8uP2uxTJ31KhpLpZIrJO5//0x3+3k6TUtMveOm990sVPKfvybmXW2+GvQ/cqsMWDOWf/4T11s8bpqmXvffX4uKq95S+Ym0ikXyydrZO4Rcw92seVrfCcaM7N18/08cMD0qTL3qcjgzvKTcT3vwey4mXUu9vqz98vcU/b+uIut267HmOq/WFenl+76su8WUehcI3MTW/18MSrluwOamfWl/NjFf0A3crGi6Jj3829/UOZOHOe7Pa5YrTvBbEz5Fzzh0P1lbmXcd02KivsyM5u/1K9h7Wn9w5X0soQAal0K6opVO6rOxdq7umRuMuW7fH7nolNk7lMrX3axZS/orlhzZsxwsQUvPCNzr770HBd7IqDbY9OqVS4WNJRmi9/Z8qamgOxdR9Ae56mbv+1ia1t0p8X16/x+d/GzK2TuMY2+M3GsZpTMPePomS525wI/7szMnlr0uot94eT9ZO7tAXMsBmZewNh54k9XuNj4mO68mRAT1zd+tVzm3nH1+11s7ym1Mjda8t3TKmvTMvdzP/Ofyf98jV5b+0zfW9jwjR0AAAAAAICQ4mAHAAAAAAAgpDjYAQAAAAAACCkOdgAAAAAAAEJq2BRPrkonZTwpjp4iMV1QKVb2xXJvvc0XXzYzO2CiL7hb6NYFoPIRUTA0qsvZ3X3X//jXGqsL9hbLf5Dx/opEfLHDkW7czb9zseZzTpO57dX+9z7zmCky95H5K13s3gWvydwZ03x1trGJdpl77OzJLrbopfUy95d/fNbFTpjri9GZmcV9jdRAX/vbw/1P3pUEVKScVOuLk+5junjsF770YRf77+9eJnM7NvuCbw/+6Xsyt0pMh5ecc4zM/UNxq7/us7oIYUdOF0jsr2iUvwUEKRX8+hNUc3jLK77Y7ZPP6/XnOx/0RSZ7W16RuXtOHe9ia0TxdDOzG+5Z6WJXf+ZUmbsm4n82/P8QRTyD3j3Fkk8ulHWh8r3H1LnYF79/h8y96pNnu1i2SxfInjTFl+ne0qILtl9/460uduNln5W5tuttU3a4oOLJPX1+Pj9gxhiZW17ri+B++XK/nzIzO/lAvwY2jtdVac86YZaLLXtDNzj56CU/cbHzTttT5paCKo0LA9gOwcz2murHSFdZ72Ev/KhfE15v1g0i1sd9AdsffME3PDEzS4vKuuecNFfm1pifs5a/5fc9ZmZl02sjBiYW8PkyIz6Ul61O5laJ/c9tt/nPyGZmB4omOBWFNpnb2eOPLorqc7qZ/fkvfo+9X70+QzAb3Gfy4YJdOgAAAAAAQEhxsAMAAAAAABBSHOwAAAAAAACEFAc7AAAAAAAAIcXBDgAAAAAAQEhFmpqa+l96fgh99RNzZHz+Ct+NY8Xd35e51T2+SnpFWlf2zhf9dQt53fkjUii5WDngt5aq9O1sCkXfDcfMbNoHfuZiS5au0BeGmZnd9KEPuVj9ZF9N3czsyU5f5X/TOl35/9sXnOBiP/7DfJmbifnxcPY7Z8vcqipfvb2rV4+H+5943cVqMhUy98nVvmPXhw7aR+a2tfa42CU3j4zq74Nx9rlHyPibr/oODM1P/lrmbjDfSaZte5fMTcR91f5MWlfyN9WRIOAYvrur18XSGV31/4BjTnGxppVN+sJCR4fuqFNTU9Pva4xUv7jyAy42ZTfd1e7T+x/oYovf2iBzM32+m82ESVUytyrpx1N3Vq9r67v83DQ2peem2970133/x74hc/EvjY2NLjZKPzbLVPr3e0+X7oW0ff5vXGzhmnUyd1LCTxoTxukunerVVLcuM7PnW/yYnFyhO5tOPPULLrZ8ef/nnF2NGjeja/Xkn0r6vUgyoeece678uIt9/Wd/l7nVCX/dC94/T+Y2VPvn3tKl+1Td9YDftzTU6NaBP/vzYy5WxBwFeAAAXIRJREFULPv7MjNTM9zqJsbYxz56iIwvXd7nYr2Lbpa5LTk/B/Rs1p0W8zE/j1VV6+cbi/gxHdQJLdvq9zjFjN7373v6Z1xs1cpVMhfBvnzRQTL+zyV+j/Da/dfK3Opss4tlgj6Tl/y7OJcbyGdyPXYqKv34K4jP/2Zm9adf7WJNIZxH+MYOAAAAAABASHGwAwAAAAAAEFIc7AAAAAAAAIQUBzsAAAAAAAAh5asnvk1+8OulMn7UHF/AafvWjTK3fpQvNFss6YJ+UVG/KZnS51z7nne5iwVVnH757sv8a8VyOlkVSN0BbrjhBhe7+OKLh+S1drYLb7vNxe78r4tkbmOs0sXaMr7oo5lZotIXBPv650/u931VBhTBTef9M44EPPfJ08a6WKFb3+8/m1701xWFMs0olBzk7j88LeOqeOXyFatl7ph9x7hYXZ0uFqhEyrrI5LwzPymietZ59l5fTLVU8AWzzUxXmRyAoAJ1MPv01//kYj+98mMyt2XcWhfbp97PV//i1zVVJNnMbGuh2sViST0vTKvc7mKlvB6PTa++4mLvl5n4d1p1XXVr6/Lvq4jpQtY58d6eM2VCv+8hFtdFmfNFP04icT12Dhjr57hyMauvOzTbnF1KS7suGqyeTn2DL4xrZmYVPv7Dy8/u9z3UVetGDmOjfi6KRQPmnL2muVi+s03mXvP3R1wsHrCVZlXSfvu7JTKu9jhd23Tx/t6oL7Yeq9PNEmQB9oD3/+4nfUr/g/DKw7/0wYC1qlTU7xUMzA9v1I185oqx09upi2nXV/kRkSvqz+RKIqUHz5T3fKvf11h333ddLBINmEhGCL6xAwAAAAAAEFIc7AAAAAAAAIQUBzsAAAAAAAAhxcEOAAAAAABASHGwAwAAAAAAEFLDpivWQOQLurXLug3rXWz0GF+F38ysMqXqt+tq6gvuusrFxpruVqRs3LhO/8MQdZgZKR2w+uuc626U8Zv+y3ekqQno7NCQ8bF8RUD1dvHcSgGF+C/4/p9d7BffOEvmplOiu0RJj5HKKt+VpLV7ZFd6fzt19+hOI5ktr7lYtNp3JjIzq6z03SWCZoDVf/q2v4e075pmZmYF/9y7t6wJuPLg1NbWDsl1R6pYXHd1iIs5JBLVoyEd9/FySXcgOuMrd7rYkqvPlLnFpL+3nqyeQ/IF3aEJAxPUr0XtRoLmhg4xzxdLek80pkF1WtNXnnbsZ1xs4xM/1TcR838TbOkM6v6pw9CamppcTHUxMtN/mY0GdN2ssU4Xy0V1J7500u+TCnk9xvb5yI9d7PGbPytzqyr8R45Ce7vMVT8cQ2nodPXo92864bsQl2INMjdf9uMmaB7rWvwrF9vQEjCHFH0HrOp8wOcq7HTZgM/k27b7zpv1o6bK3GRMrY569Lz4oJ9zaoodwTf4/7G9eWu/c8OIb+wAAAAAAACEFAc7AAAAAAAAIcXBDgAAAAAAQEhxsAMAAAAAABBSw754sipZGo3oEoRxcUzV1rJF5jZtbnaxqqBiuUJQ6aUWUdiwKqNKI5rFAwprDtYNN9zgYrtaQWUzswuv+62LffQDupBoosIPnkhAgdJ02hc5zud08bCbv6leT+f2qAJkRV08rL2118UuufdmmYvBi0V18dhoTBTS7m6Tuc+/5gst11SlB3AXei57tmmti6WSvri2mVlUTEVBhTmVSET/LWD16lX9vsauJCEKH5uZpcRjzxf1elCI+eRyMaDQ/zXvdzFd9ttsmyiWWS7pe6it8nMedhy1Iuhdg1lZVOqPJ/TepbPXX7kc0LThpYd+5GIdWb1Wbdne5mKlgl+TzMwCaoJjB1CrUlBPjkjEP8uKrG4CUi0Kq+dFkX4zs4U3flTcWJfMbevzRXADtjhy3Pj//S+q4DQGJhLw242JBxHN6oLXb7z1sotNGFUjc9e29P/etrf4wriVGf3xNRZQPBw7hprlgz6Tixr71tHuCyqbmb25we9v6yr7vz/Wu2OznpyfJWsCPpPHghbdkOEbOwAAAAAAACHFwQ4AAAAAAEBIcbADAAAAAAAQUhzsAAAAAAAAhBQHOwAAAAAAACE17LtixaO+wnmkQldZz3f4/h9BXUnG1Ve52Lu+dZe+CVFkPa+bRdg/fvJZF8tkdGXv/fd/VV9kkHbFDlj9FUvo7i75oj/jTFfrt0dJdK96+LLnZW5RdDDJie4UZmbvu/ogF2srBtxDMWAAYtBUJX+L6HGTFD0C8gG5k8c1uNh7P/ldmRsVk05XSXetaHr+dRdLJfU9TD3oBBHVXSSiorvE2D/p+1WdtehUYlYI6DK1KevbL0yq1n9nyYmOe/devUnmRkXXsraA7n6nXzrVxd7YqMdYpqpSxjF0gppJvbLBdxzaZ2qFzC2J9edv5/9Z54p2Sm2mx877fv1eF9uwTXdCiog9HAZmIHPpSccdKeNvtPruMPtM1c+mJ+v30vM/5zsemZnlC/66vQFdJI/7wX4utuKtVpkbFdPhKtaUHUI15C1HdSfNzr4eF6up0M93ryljXWz/j3xP5srmVQU96z3zy0tdLBvQGZLpZmip3280pT+T57r8+pGK6uc2aUytix3z+d/J3LK4h2JAV9FHr/mwi1Wk9Xo5Ur7rMjJ+CgAAAAAAgF0QBzsAAAAAAAAhxcEOAAAAAABASHGwAwAAAAAAEFLDvniyKrBVX5mRuS19voBTvfkicGZm+aIvenrPFe/X9yBi2bwuALV1wxoX601Vy9wXn39OxpWZM2e6mCqMuCOM5KKnN96qC0d+4D2nuNhNl50ucwvi137KVfvL3IgYwOWyfm694sL/de0TMvfphctkHIOn3lZTxk+Rudu3b3OxzKhJMjefz7nYn3/1bX0TatIJeL//4ee+OGFFrk3mfu7au/1l9R1YLOYL/BYDinaP5DljMLLtev05+3/mu9iCK06VufG4//vLGV8eL3PLogBuryj2/q+4H49f/N1imTtjzjQZhy4cPlDRpH/Dp8v6727HfcTPGZue+EW/X+tdt75H/4OoW5oPKFDa1t7p7+uCH8jclatX9/veMHj/fPwpGT/+mMNdbOVtutFGTFQuPuane+sXFHNOLq+L6+ZE7meveVTmrljMmjJkxHt93JjRMrWvt83FclldVL0v5+PP/fbrMld9tisGzDfNbX6+UfsTM70GYsdRTTWqKnTh7bzVu1gk1y1zczlfpHv+Ty7s933l1QczM8vm/D6ntaDHTmSEjB2+sQMAAAAAABBSHOwAAAAAAACEFAc7AAAAAAAAIcXBDgAAAAAAQEhxsAMAAAAAABBSw74rVqnkq1QnUvo8qqqq1gc722VuoXaii8U7NshcVSc7GXAklhztr/uhL/9cX3cABbhVB6xUXLXOGZhsYWRUAR+sguhyFsn6Ku1mZp+6xne0ueG/T5a55Yj4/Qb8yj9xxf0uduffHtLJGDLq8dRUi7nFzCJiIugt6Gm11LnRx2oaAm5C3IVqI2Fmc6f5jgTHfsp3vzIzW033qp0rqrvDlEXXmPYevVa940rf5Wbx988MeEE/RhJJPR6P/+rfXOyBx5+Rud/8yjkBr4cdIu/f7zX1+rl1tPs5p5jzXT7NzMadfJmLbZ3/Y5lbFjNfPKDzzH5nfc3FVjG3DGvxmB9P5Z4Omdt48R0utuJW3UFLzjmJhMw85LxfudgTCxYGXBdDRfZJjOlnlqnznY36tmySuTW1vgNwb0ebzBUf7YK2ODZ58jgXm3Cqn9vMzFasZh4aSqrrWCSmO1KlKqr8/8+2yNyKcb7zZnH7moB78LGgj8MR8Zl87nn/I3NXrBoZHRz5xg4AAAAAAEBIcbADAAAAAAAQUhzsAAAAAAAAhBQHOwAAAAAAACE17Isn50WFrd6+gGRRqLauXhcnPf78H7lYdY0uHjYQm9vzIqqr5aZT/tff2NjY79cqBVRfjooKZEG5+Jdi2f/O+sp6PPz60lNd7LiLfzPoe1iyfNWgr4GhUQg4Ak/FfRnCnqQvNmhm9q5v/MDFaqNdg7ovM7M12/yE2EQh02Hhi9/1RUjNzB59fJ6LVcT1ILv7u+91scYv3Da4GzOzR59e3u/cK66+c9Cvh2CqkGiuTxekLJb9nJNK6SLHbU/7QskNR39qYDcnUCg5fMqiyHE+7oubmpmt++tXXazqOF2sdiBGSnHSsFOfBvoCPqfUxXyh/2y8TuZOfYcfN9PHJgdya9Jrm30jExpBvD2KYpgEfSbPJH1ydY1uRLLbu77lYhPGVgzo3pTXNvmxs3KEF9jmGzsAAAAAAAAhxcEOAAAAAABASHGwAwAAAAAAEFIc7AAAAAAAAIQUBzsAAAAAAAAhNey7YinJZErGe0v+nCpX8hWxzcx6RMOJRx9ZPKj7GijVASsV950LBkp1wMr7RhpmRvec/1u55H9BBdEpy8wsJbqvPXb9RTL3yE/c4GKrRnhF9pEoXaE7O+SivuteMaevERNdSe59bMmg7gvhlC/67omFgp6ku4s+/sAPzpO5R3/uFhdbtIxue0NpZ6+hx8w7yMXiuimWFc1vdFoXXC9za474tIuxVo0cmZTv8tmX153XomLcdM+/Quamj/bdshg34VOZ1l1gO7Mi1qO7eaoV7C//XDSIu0IYJBJ6f9xX8vNIUk851iu6bW3aqtttlRN+L51VDalt5HfAUvjGDgAAAAAAQEhxsAMAAAAAABBSHOwAAAAAAACEFAc7AAAAAAAAITXsiyfncr4cVy6rq5PGRK3bmoCCYIMvUTx4quiiKqg8VK+F/40onlwsFnRqTFSqFIW//hUeDiMNgyXqZZuZWSrhp9DqZF3ARXbc/SDcyqKAYF2mQuZuyvr5pjegUGBPLqAyIUYM0RvB0indUKIn7/92FzCVWSnoHzAiRMSTr8ykZW5ZNY4IaMDBuBkZolH9d/5M2s8tlVV1Q3w3CJNoJKAIu5hG0ipoenv89AoaP/wn+MYOAAAAAABASHGwAwAAAAAAEFIc7AAAAAAAAIQUBzsAAAAAAAAhxcEOAAAAAABASEWampqoaQ8AAAAAABBCfGMHAAAAAAAgpDjYAQAAAAAACCkOdgAAAAAAAEKKgx0AAAAAAICQ4mAHAAAAAAAgpDjYAQAAAAAACCkOdgAAAAAAAEKKgx0AAAAAAICQ4mAHAAAAAAAgpDjYAQAAAAAACCkOdgAAAAAAAEKKgx0AAAAAAICQ4mAHAAAAAAAgpDjYAQAAAAAACCkOdgAAAAAAAEIq/nbfQBg0Njb2O7epqWkI7wQAAAAAAOD/xTd2AAAAAAAAQoqDHQAAAAAAgJDiYAcAAAAAACCkONgBAAAAAAAIKQ52AAAAAAAAQoquWP+bmTNnyvichoyLLW3pGerbATBM/Oioo2T8iwsWDMnr/ebEY13s4488MSSvBQAAMBypzsR0IAY0vrEDAAAAAAAQUhzsAAAAAAAAhBQHOwAAAAAAACHFwQ4AAAAAAEBIRZqamspv9028HS6ZO8/FYnUVMre6WHSxl9t7Ze5dS5cN7sYAvK2CCiUryVjExS554kmZ++I7TnWxDakxMnf/cquL3dPdIXM//dj8f3eL/wf1sw1VAWgAb68TD5ntYolkg8yN5P2c88Bi9jPASDPYYsTq/w/0GkN1XQoth9OZhx7sYon0WJkby253sTufWbLD7yms+MYOAAAAAABASHGwAwAAAAAAEFIc7AAAAAAAAIQUBzsAAAAAAAAhxcEOAAAAAABASMXf7hsYahcddrSMT6qscrG2gHOu0XH/a3qkUBjcjQEYlj5Ys7uL/bnrTZl76YS5LnbfOy+Wue+u28vFNrZ3ydy5Ew50sYn3XiVz7z39LBeblWR+Gs4OOfRQHwx4ZA11MReLx303NjOz3phfqzq39ekLR/01ljy7UOdi2Djr6DNdLO8bd5qZWUPFdBeLlAP+nldZ40InzTtdppYS7S726FN01wOGk4F0mWo8KCB3hego5ZckMzObfYi/xvIluiPVkcf6vZOl9XUbD/Ydk6yU08mDNFQdv3ZFHz7hHBfrLehG3PXJvV2sUNL7nFhVvYu98/D3yNxiwnd7fHD+4zJ3pOAbOwAAAAAAACHFwQ4AAAAAAEBIcbADAAAAAAAQUhzsAAAAAAAAhFSkqalJVzIKoU8ddriLHTBKF18qFbIulojoc668KOC0tt3/fzOzeKzCxb7/9LMyF8PbQTNnyHgx7t8yNaWUzE1nfFXLLd369cpFXz2Vgm07xm+P0YXVlLPrG1xscU7PDcV8s4u9t6pa5na0tLlYT4euelpVk3Cx1nxe5lZn6lxsY68u9vxQhb/uYUk/Z5mZHfiPf8g4+u+Qww6T8VSFHyOVFfo5RCJ+vkmndaXl7qx/vvm+kswtmh97+ay+7sIF/5RxDJ3TjvBFks3MKmvGu1hdIiNza6p9QeRiWc8jUdFLI5rU+6e2dl88ua+sF7bb7rlRxrFzHX7ksS4WSwUUJ435OWdMnf6osL3VX6O9W69r5ZjPXbHgSZkLbUAFkQNyzS8TJpaDQFUVuu9OruzXj3hBV1pOiW1SW2fAx9GiX8NiAYV1Cwl/jableh89W/x+lrPnHrCzj36fjFdUTnCxqXV1MneU2Hfni/pzdjHqx18yrsfZtq3bXawnopuW/PxPP5HxsOEbOwAAAAAAACHFwQ4AAAAAAEBIcbADAAAAAAAQUhzsAAAAAAAAhBQHOwAAAAAAACEVyq5YX509W8Z//q13ulj3th6ZWyr46u092331bDOzdCbtYomaWpk7elSli138g7/L3P9ZtFLGESywyr8wkI5S6rrxgC5ptaLzWTzRJ3OTcd+VZHN3h8wtl3yl92JEdzBZvXq1jCtD9Tt7u/3oqKNc7IsLFvT7/3e8++My/myv77ZwUNs6mTs27eeG2rJuL1Gb8NetTOvODlExFjZ052RuRDQDWKuHo3XV+jnu3mxSJ4sOJkE+/vBj/c4dqeYd6jtg1dWNlrkH77Wvi3Xme/WFy34eam3tlKnpjG93kkjq51tZ4ePPv7lG5m5tbXWxpU89LnMxcKcf6Ttg7bXXgTJ3QtR3D4lW6mecFM1r+gp6foqKTkilou5+k8n4SWfZK2tk7pa2F1zsgcful7kYvMOPPkbG//ujp7lYa6feH5v4VLDhrfUyNZP2Y69+7FiZW1vp907X/FF33FvwKGvKQMh9nn77mqmlXW81LS46aVrAHJI2tTfW+5ZYwn9Wau3R61pC7LkL5YD9UNkP3nzAnsxEE8gw7YHfDmcf6ztgzdxXfyafEKtzscrRumtspOSfWySiO3qWyj5eiqhWb2YZsTbOX/aSzN3QsdzF7nrwHpk7nPGNHQAAAAAAgJDiYAcAAAAAACCkONgBAAAAAAAIKQ52AAAAAAAAQmrYF0/+6tx5LvaLn14scyeJim99RV2oKRbzRbra1rfJ3FLSF5irqhovc5MZf1aWjqRk7jsu+YmLXbt0mczd1Qyk4G8gUSAuGlAPtizi5aJOTqd8vCKvq9QlMr5o29Yu/ZYTNQitr6DPXkfX+Pi2Nl1MbrCGazG5nx97tItlyrpYbW3SvwdPqqySuYlst4s9JIrHmpmdY/75JhJ6LPRFfG5FwCOL+LqC1htQWzciXq6c1WN3W6WfD5sLumBhw6hRLjbqr7frm4DNPfI4FzviwP1l7tptLS42cepEnfuqL1raMLpe5m5p9YXZ60XxfzOz7q4uF6ut88XezcxeXefvodDdJnMXL1ko4zA7/YgTZDyenOxic2ccJHP7en2V00xa7zF6Ov2k0aeqrZtZNOsno6iYN83M4qLqaCylc9/Y9Ja/h95XZO4dD1FUeSBmzPEF26//xkdl7roWv4Y1jJsqc7evW+ti5Zhe19q2bHWxMZP1XFbo81X96xp0I5LLfnibi61c+pTM3ZUE7o2DCiX3k9ie/IuYLspqw2xmFvF726qiLuyeF4892yaqGZuZxX2x3GhAYfeqen9vHW26CK/FxA+X15uy4boPHiofOOZUGU/Ep7vY8SecJHMrRJOiUlmPh75ev+8uxgP20lm/rtVWiE2zmRUK/nnW1Orcp1b54sl9vb74v5nZr++5W8aHA76xAwAAAAAAEFIc7AAAAAAAAIQUBzsAAAAAAAAhxcEOAAAAAABASHGwAwAAAAAAEFKDrKM+9CL5rIu99ZbvUmVm9mbJd7mJVbXL3Ja0P9NKjR8jcyuafbn4Nt1YwlIv+A4z8Sm6Cvj4ugp9kV2MqvKfCMj1/UAGRj8Js+pK39Hj8KP21ffQ6qvuV9fqqvstXb76en1aj99o3Of+84mlMrfTN7SxoLdzXHQqKKuWYWZWLPsq9kFdGN7uLgGXPPFkv3P/fsKJLtbbtkXmpkt+LJwT0y0jykn/e9yyh54c2o+c4mLZnO4CMW6Rn7c2NuouXvvN9x2WOvfxr2VmNmqlv27DY3fJXAxMbYWfXboDOo5V1/gxtnzpGpkbFX9/ae7YKHMnjWtwsWyXbqe2pdWP6bFj9XhMqI5u1Xr9mjfvCBdbtOhpmTuSnXz8+11s7PjdZe742joXKxf0ahcr+3ghqteU2Gg/P1XmdVfGpFgnpo/RK/HrG/2+LJ7QubWV/n5b+/R6eepJZ7jYP/55r8yFWYX4la/esF3mFsr+/br1uTUyt1d1XhMdPs3MUjXjXCzfo8fuuu1+3HQW2mRupiKoTdOuLWjf1XiQ2KcFNJlS279IQu8JE3E/yCJp3X3UusUetNp3QjMzS0Z8h86aUb4zkplZTzHjYrlevQb29vi5JRHTHfus5MfY8l2s+5WZ2ZknX+Bi0ybqzz/j6v3n5Gy37iS2vcPvPd7sel3mFlQ32YJeJ8aLz2tdJd259o21/k2w7956fzy2zr/eik79JnrXaWe72N8eGB6dsvjGDgAAAAAAQEhxsAMAAAAAABBSHOwAAAAAAACEFAc7AAAAAAAAITXsiyevqfDFjIoRXWCrtdcXER01Thd43M3X4rKNW3UBqIZx/tfUUNaF3bZOVnFfMM7M7IWcju9yIr5oW14UchyoplW+CNq8ub6wp5nZmSce7mKlpBgkZjbnwBoX29asC5RGxSWKAW+72gofT2d0Qe/7HrrfxZY8s0Lmzpt5sL+vgHvIln08b7r4XZgcE/Nn2JWiYKmZ2TWvb3Kx9xw7XeamSr6w4NY90zK3daMvwlab0nNAz8G+OFypqJ/ZypN8IcOOQofMXfjoBhe7VGZioPp6/bq021j9zN581Y+xaTV6/alMijHWrIsyt23215jUoAtH9kV8scE1L+uC4rmCX9dKcV1UsLQD5u6RIFr2RdQ7u/VzqxDFj6eM139322eMf555sXaYmU2s8s9izWa9Vq1v89eoiev5aa/dfKy9Z7PMXfmKL+abqdKFlrt7wr/W7EzRkn8+BwTUtc11+fd7NKML5o6v9YXg31inG5H0lfzYnZjWc05VvR97ubwu/F3ODbZVxsjUOEc3s5AdRwK6kMTFr7aQ03NIuuQ3sfm87N5he47ze+Mt2/V6MHqq2OPkdG5fnx83m7p88WUzs0TKzzd9WV2Ed9lqvWfe1STEWtXa1SZz06L5y6S4fm4t7S+52PiMzh2T8M94XbtuRNJZGOtiVUU9j9Sm/GDfvG6VzO3O+TdMQ72eyzq69esNB3xjBwAAAAAAIKQ42AEAAAAAAAgpDnYAAAAAAABCioMdAAAAAACAkOJgBwAAAAAAIKSGfVes1pyvir21d6PM3Wf/vV2sorpe5vZ1+6ru4ybqe8hmfeeBeEL/6iaN9xXkq1K6qvbabrpimZlZWVRJF52ygnKbVvvuV0GOmemrqZuZ7TXNV/N/7wmHyNzpUye4WG+7r8RvZvb6Gt8FZb/9J8vcrrwf6y+8pn+2P9z7NxlXFq1a5mKNjQGdFULuRwcfJuOTK6tcbF6v7kLUbL4jyNaArjOJPfz8kor41zIzS8Z9x5fmiJ6fus13HMpH9Tl8Q8rfbzqpc1/Or5ZxDF4267svXHjOOTK3rsLPb8kK3cJk/9G+y1prQMOYjqKfHytLugtFb8SP6e5O3U1t3vnfdbFFTy3WNyFkKnWHwZ5h3FlisAplP7/Ux3WXj+Yuv05satsmcxe94Duq5dp9xyMzsz6xxesL6Oi5z/SpLva3+WtkrmgyaGMzuktNb9kP1lRcdyvtaGuWcWjdOd/t5+CZB8rcMXV+j1NO6nWtWuy/TojpsZsr+LUqHtHrT1vU329dWe/1vnfHozK+K2mcIfZpSf0crCje17oZlBVFQ8PdJlTK3Imj/J75uDkzZW7j3n5vu3aTn6/MzNZs959/9pg6TuZGSv4z1MqXVsrcPz24wMUKYj9lZnbQwf7nWLpUd8qKBYzpkSBrfq0am/b7SjOzLe2+O14q9ZzMfWWT75SY79B7jL4K/4x7Cnqjs9+efs6499XXZG4q4XNronr9SY/y+5R0VHe5bdmuO4gOByN3pAIAAAAAAIxwHOwAAAAAAACEFAc7AAAAAAAAIcXBDgAAAAAAQEgN++LJBVHo7/v3Pi9z03/2hWab+3plbkkU4d1n6miZ25X1RU9bs7qwlHX5IoYlUdDSzKxP126FmS6obGYWEO6vJ5e/LuNnvuNEF1u62RcJMzPb1uoLfuYKuiBlPOqLti1f5wt3m5m9LoqSTUuNkrnFUkBx6X4KeuOXRYHEoirKN0xNEgXYzMxaO/3PcFNCVxbsLPnn81ReF1Dbb6svALi17Q2Zmy3610uldcHC6dMmuVghXSdzVzX5IrZ9pYCfLaAAM3YA8autDSiyP7rGxx//yy0yd4mYC/c/8nSZW5X0BZhzRV2kf8mCh1ysHDDBxnODW6zyosDqSHHSCR+W8ZpKPyA6+9pkbibjizbu1aCLEX/no75A/MQJej3I5v3v/aH7dNHrqVN3c7Ejj79A5vZ1iaKYAWvgfu/5pYtNm6yLadfU1rnYaSceI3MfeGS+jO9a/Pu1r03veUdP8XuJf/ztdplbLPv1Y/bcd8jc3h6/P95rtB67zzzl55ySeC0zs7K47q5mII1BGmf5QstBy70qv9y8vU3m/uo7n3ax6RN1g4gJohj3y1sDmkmIKWvqgQfI3PUbfcOcC07bU+b+9ZGFLpbP6/WrLPZkfX163FWm9ZwVJmec8gkZbxD7kZZu3RCmpsa/t9u36OL9f7/Or42TJ+g9UZ9Yq/7+l6dlbk5sJy78xTdlbrbU7WIFVT3czKad+nMX22cPPX4bRvn59H3vPFnm3nX/wzI+VNjlAwAAAAAAhBQHOwAAAAAAACHFwQ4AAAAAAEBIcbADAAAAAAAQUhzsAAAAAAAAhNSw6Yp1VKOv6G5m9pnz5rrYsXvpivt3PbnWxRY+pSt7p+t9l5tJY3XV87Pm7OtifWV9JvbNax90sbEBHQKek9FdT1OTr/zfOHOGzl29ut/XbRRj6vIvvFfm7j613sUWL39J5r4iOg6dd9ZxMjcd9+OkuqJC5j75hK/mv1k3jLDBNqpaIX7nZmazZs1yMfV8hqv3P/2EjHe952IX+/ir/vdtZnb2Z85xsXm76y54r7y2ycV++8BbMvej8ya4WIPoVGJmNm336S5WEdDx68Lr3nSxL7zTz1lmZr+VUQzE3ENmy/h9N17tYste0h0czzjMz01X/36FzL39xx9zsUy1Ho8ZMd/kirrz2hW3LXGx33/fv0/MzKLRwc0BmYA5rz0b/taQHc1+DjAzq6jxsXSd7l51xeff52Ljkx0yt7sj72Kf/PsrMveGi/w4O2ivyTJ38m5TXGzFi80y96p7/Hj4+xfmydwe0RGtHND1srPLdySsHz1e5u5K1F7GzGzh7f/jYrXRNpmbjPqx99Wf6jXwj9f5OWfyGD2PlPr8ddNVuovkZ65d4GJ3/MS/1r88GRDftTXO0Htj8w0RzQKmVz+DmL3jmINk7mjxLH930z9l7j7TfWfh09+l98br3vLzZs+2Tpl7+833u9jeY3UX48gAvq8QTfj+YFUZPc6D5qww2b7Ff0Y2M6tq8L+zyrGqd5rZYTP9PnZaPGA+Fx2E33/HazL3+o/PcrG5+/k1yczsNTF2Hlv4qsz90Xyfe/0Fej7tzPt3RtBzb2trc7HRk6bL3J2Nb+wAAAAAAACEFAc7AAAAAAAAIcXBDgAAAAAAQEhxsAMAAAAAABBSw6Z4cjKqz5imja1zsaoaUZXQzI6a4yvK/n3lRplbn/DFJ0+dOU7mdvX4AlCxqlqZW7HHRBfb0BZUIFIXCoNZ06r+F0keiJh47mZms3bzz+2z371J5n7ronNdLFpU5ejM6up9Uebubj+ezMyuv+0vLnbdVz4rc03X4By0lStXDs2F32Z/WLPGxeoCxkKu6KfFqlo/PszM9jvQz0X7HLBO5m4T89acffaTud29fT6YUNURzc48/SgX21ShC9+Z6cJ16L+i6crlFeaLxFYndBFRi/jn89BTN8rUyRE/txSyvTI3J4r6J5K66PajT//RxcaLn8HMrLX31zLeX9GA9X0kiMf0+h5PN7hYR7sutFwtCpTm2sQcYGYTp/pmDNMqX5e5z7/m9xhTx+viyX3i5cZX67Fz5v5+/L70ui60XB5Aof9kusrFuru7+3+BXUxtxr+v8j16zklG/YN45MGfydw9a32x80hvi8xtzfp1NJLU9/DY4/71dsvo5iJmvwmI7+ICirk2LfMFzWfN0kViU+I9mSzq/UVtbZ2LPfKy3kccfdRhLtYjCqKb6WYQqaLO/etTvpD29f/1OZnbnvUTWdDqk8/67iSxmN47FUQR+LBJxAPWqkr/2bdlW0Ch5Yx/v3dt1kcJm5p986L6Qlbmrl/r5/lNb+jP7z1dfgDnY7pR0sSib2DRulYX5C8X+l8gO1HtP9t1dOiGBzvbyN1tAQAAAAAAjHAc7AAAAAAAAIQUBzsAAAAAAAAhxcEOAAAAAABASHGwAwAAAAAAEFKRpqam/peBHkKXnjdHxp94zlfQvvM7Z8rcWJ/vAJGuzcjcaNlXQ+/t1hXDS6IKfSSgy0dlte8GkDD/WmZmR375fhdravKV7fGfeeeJM1ysrU0P922L7nKxZ9fqiuzTK3wF+NENurODqq9fDHjHPd/iu2VNr9RdSSaf8DEXW7Z0aDqJhckVM2fK+DdXrXKxzx3pOziYmS3o9J0ZPnfh+2XuHmP8PJBK6a4K5ZKfB4Kq8Bd6/FwUi+lWaFHRUadU0F3aLv7eHS62ejXjZiAuPv9wGX/hVd+pauHtP5K5DQmfW4zqdaJY9PF4RI+FiFjXyuWAFnqi+0dJjFEzs6nvuszFVq3076kglZWVMh62jkeNjb7LzLgG3/3KzKw6UediJxyhfw9/e8avNX/6/udl7n4NvjvL2Cr9jPsKvntIXz5gnGX9XBQP+NNfSixLvXndNWbyOT91senj9O+sN+uv0SXGv5nZtm2+C9dI3T99/pMB++OFfn+84Z/XyVy1P66u0mtVUex5u8WaZGYWUetawB4nLTrqqP21mVntiX7OGanPd0eYIeYm8XHEzMyqMn6+6OvWz+HZP17jYp1JnTsh7sdTX6/eixQjfnKJBXyuahNr48SE7sQ0+fQvuFgpoDGxer2lK1bI3LB1dlRr1bQxY2RuXWasi51wqP5M8+eFvlvWecfr7muHj/Pz+YF76o7S2ZxfqzZs1Z2j8+J5JgP2x6NH+8Uq26s7Ex//vUUutv+UCTK3q8fPvW0Ba9X69b4b5lDOZeEaqQAAAAAAAPh/cLADAAAAAAAQUhzsAAAAAAAAhBQHOwAAAAAAACGlq0+9Da69famMHykKQB02+0CZu2zpEhfLBRR8k0QxLzOzd1/xz35f4t5vn+RivQG1KzG07n/EF4WdJcaTmVk+74t4zpk0ut+vFRWFSM3MEqLgWiqgCNsBo/01ygFV33JB1Ql3capIcpCfPrVQxt8vxsjPf+8LnZuZXfmZ01yst9sXVQsiapuamdllP/9Lv6/x/c+9xwejAQWcGTeDdsOtz8j43DmzXWztupdk7vSD9vHBaGIAd6EXlb1O9YUjg7z6D1HYuaQLXVqJcRMk26vn896uNhdbsFRvuWqT/tmvWLpc5u525H4u9lZ7/zcZAfXa7eCPXdXva6y6+Rs+GNU/W1kU9LaAQpc5EQ4uvO0LkI9UP/mV3h+rAqk1qaBitf755Mu6OYOSDngO40/4Ur+vsfmRq10sWur/eolg6m399GJdoHWmGDdTGgLGQtEXwK3q1u/fTtEoJqAev23p9e/fSEBTgPGi6HZ7pE/mFtR0o2/Blov9YrEYsCkbAbq79Rzd0bnNxZ5Z5X/nZmaj0z6eNl04v5D1D2P5stZ/d4v/h4A6//apm+f3+xo3XniMi0UTepyVRPHjSMBa1Rv18doqXRi6paX9393iDsc3dgAAAAAAAEKKgx0AAAAAAICQ4mAHAAAAAAAgpDjYAQAAAAAACCkOdgAAAAAAAEJq2HTFGog+VfbczPY54AAX623rlLmbtmzo9+vd8vXTXWxMRlcBV/Wz99rP39e/9L/bFnaMoN4ufXn/L9m8rrrfUJvp95VHHXyBi21adJPMjcb8OWu3voWgpjgYIvmcfr//6Nd/dbEDDthd5h43Z89+v96lF5/lYrWxgA5pOd9V5PpbHuj3a2HoFEVHETOzF1980cUmTdtb5lZXpvv9ek//9WcuNial70E1SHvlpRdkblC3kv7q7vZdB0eKzpzu8qGaH3b26q4ZGfGISwEd7JYs8x2SRjdMkLkTx42VceXhm77uYg2F/s85z7+oOzclEr4nTS6vO8/09vpxsnlri8wdyd1rBiMf8HuJlHwXoqrKepnbmw3aeHgbF1zvYvFcQMcyMY2o+8LANTXpDlj9VVTd68yspq7GxVq3d8jcaMx/pAxo0GlnX+y78D192+U6Waw/tfX+vv6Vq8P9FQvocDsStGa3yng87n9pzV26K3CNaI4XS+jviGTNd+iLlYO+T+LXu4CGVHbJOUe72Ez1sczMSqItWymq58hU0o/fvoC9f1eXfw+sWbtJ5u7stYpv7AAAAAAAAIQUBzsAAAAAAAAhxcEOAAAAAABASHGwAwAAAAAAEFLDvnhyu4iJGrP/6x980auqMboAlPX5gkrjG3QxrvEBL6c0t3X5WKsu4ByLUgF3uCgV/XhIpSpkbl/eP7egJ7lm4e9cLBtQR2vzpmZ/XwVdxJAT2aGjysfGRBE4M7Ny2T/M55telbmrml72wR1QU60kBkOKAbLT5fK+yF6hqAvgqjVs47o1MneTKB6bCChWqLwSUDF+6Rv+uulUQOHIiL/IzJkzZGo87q9RKumbWLFipX69EWD6eF9EvbVV7WjM2nt9IcZcQAHbaKWfNLZv1c0gXnjxFRdLVyRk7kA0d/p7y1TqMZnL+vfFpu264HRdvS8uHfAWsryekhFA1Ee1vj49Hl9704+nhlpRNXWAunt90e2aqv+rvTuPj7u87j1+Zh+Ndlm2bOENsEmdIjDBxgZMcKCvEiCENiskkJKmKWmhSZpcbm625qZZgGYhhSQlDW0JS8heCEsT9mA275bEvnjBu2xJI2kkzT73D+5f93x/uVK9RD/zef95fPybn/R75nmeeTSvc/R4PIJr2B42XV1dMq4KLZ97xhKZW6uqwsW6CLysMxuwOV5317f1PwiPbNgsogENbMR8EbTNCvr9KAdanHoq+6N5vsHPvr79Mrc/l3WxfH6+zI01+lglpp9G34BfU+pS+ohirpgbBv3UYmZm+9Ra1aAH5fi4X1Q279orc6fPmOZiZVGo+fXr6vihwvYfAAAAAAAgpDjYAQAAAAAACCkOdgAAAAAAAEKKgx0AAAAAAICQ4mAHAAAAAAAgpKZ8V6y4OHqqRZIyt1YruljUdDXqhXM7XOyEd1+jrytihYBODc/c8SkXq0/q87N4/MC7U2ByAh6bvbrbdy5bOEd3xarV/FV+/V7f/Sro9QarutvJu370Fy62ebvvXGNmFonQUe1wqga0dkiJBzwuOqyZmSWS/hrjImZmspNEUIel6Sk/H9aLMWpmtl1U/cdBIn7lyYzuHlKo+LUqldBjobWpzsUu/YefytxYxK81A2XdPeQ50eUjmUrJ3LMu+5qLJQLWNWX2ty+R8SbRleRI6T7y8nbfHS8TbdXJCd8ppBrV+4PcmH8PZ+L6/d7a6MfOJ3/yhMytlP28FQ1YZ67+wFkulkjq7WRzk+82Wijrziij4meLlvR1x8Z8J7E3mph4PLE6PcYKw36MpAN2RHNntrnYwov0/lgNkUpFj5ueH/n9cTLlx+j/vXJAHBM1mbm0ptpJmdnWXVkXmzdLj7G4GJDfvfQHMjcinu/u2rjMvWn7sy62+bU9MveB0y9wsUQ0qMWa/5ln3niFzHzTEbxWdb/U7WINsekyN5Ly+4lqRP9+x8f97zeo8WZLg/+89Xe3r5G5FbV+BLTL/sYHz3SxoLE+bZqf94LWqqERv4eLF/QPNzbmu2UfSnxjBwAAAAAAIKQ42AEAAAAAAAgpDnYAAAAAAABCioMdAAAAAACAkJryxZNrVX/2tHvnXpl7zNwZLjZWKMjc8bwvfLTp55+RubJ+YFUXSB0cHnWxfF4Xey6XdFFLHDo9AcXOThKF0fau/vGEr3vBzz884dxKVRfu6u8fdLG3i6KlZmabenom/HqYnKgo6nf6KcfL3HWbXnKx9oguAFguieKVAWMhEvX3EBGFcc3MSiU/Fz0/ooskq4KFOEhEQb7OmdNk6t6+PhebldDFcmvm15TbvnJx0E24SKGki//9+9Ufd7F0sy90a2b2qWtvFzcWVPjbx6sB62XYik+q++0Sa4eZWSzmCymOVfwcb2aWENuUBXM7Ze7OXbtc7KiKnnNKVb/HuO6i02WuqqObF3OWmdnoyJCL7a/pfc5Av28AUAmYhyKiAGalosdv2MbOoaD2pvGAwqCppoyLVQPmhkLJN5N4+aefC7gJH1JrkpnZ6NiYi0VNF08O+DFwiPzmsfUyfsHKZS725E+uk7lR8cyuvPXyCd9DKaDxxC3f9J/NrvjS9TK3EPHNSWpiP2VmVguY35SwzTcHulblKvtkbtK/hS0S8NxeHfG/94UZnVuu+bno+g8slblq0hkPeJa5Yb/m7qnqo489u31B7mrQ919EuDJF9jl8YwcAAAAAACCkONgBAAAAAAAIKQ52AAAAAAAAQoqDHQAAAAAAgJDiYAcAAAAAACCkpnxXrIr5KtOv7d4hc+Oia0z79AaZ29LgK/GPjflOAGZmNVVsO6AhSEdrs4vN+bN/krndPd36Ijjs4uKtUCnqTiOzzvDdZPatuUnm1sTgiQVU6H/z+Ve4WHfIKvEfGfwzO3PJ0TKzWvPz09beZ2TuSCTtYtNMj7GIGDe1qu5gsq/m57JaVHfc69lEN7VDRa0TDfW640ttuu/gGMn5TllmZvlUq4tlCr7TkJlsbGSpgFW+a9ExLvbuv/9nmdvdzTx0SIk/sXXM0h3VLCbmhr7NMrWv2uhinbVhmavWqnRCr1X7k+0u9u2b7pa5aq8UFd2vzMzKZT/Hha0bzeGk5pxcXq8pjSnfFatW7pe50zrnuNjwntcmfA+xgP3x9Jkzfeysv5e5G7tZq6aCcsHvcaoBe5Hl7/+8i63+2TUyV803yYSeF774rRtcbE33WpmLQ6smHtFoQFesxrhIDlhTNo/5rqDHpX33ajM9djJJfd2tZT/v3fiLx2SuFDCZqW6NU2Wt4hs7AAAAAAAAIcXBDgAAAAAAQEhxsAMAAAAAABBSHOwAAAAAAACE1JQvnqwMZksyXuz08dzgfpl7/Ef+w8fm6kLLk9HzWs7FpkpBJQSrmC82G4/p3Ny677tY8/IPHPA9UCh5alBl4MoVX9jNzCwW9WfjXYuPk7kPP/2Ci+0JKBY4GaWSn3OCirvj0KmKIqLVsn6+atzMnOULi5qZnfe+L4sL6GKFk7GjP+9i3T3MQZMVtL53dXW5WEQ0eDAzK1X98ywH/N0tJYo5Ns86SuZe8YVb/f+v13PZZOwbKkw4t77OL6TZMV18lb3S5FTEnDM+HlDINO3jqZQu7t643DdyOHpWanI3Jzy33a9Vm5hzpraI3xtXCn7tMDO75ZtXuticcy4/4FtgXTo4JrNWBSmJ6aWsNj9mFo/6eErsfczMfvCLVf7/1x34EYVaq4K2x5m0/5ehfPjWKr6xAwAAAAAAEFIc7AAAAAAAAIQUBzsAAAAAAAAhxcEOAAAAAABASHGwAwAAAAAAEFKh7IpVq+iq/8+/tN3FVpyoO42oK9x+71MHclsIsZRoFJIIfHf4Su/Dq32XNTOzuiWXuVgPFf5DJ57QHUGWn+g7YPX0bJC5RRFLqBYDZlYWZftVJyUzs2jMxzdu6pa5OLziqYyMZ5K+G00lMipzS6LhxP2PrD2g+8LUV1+vOxZFox0uNvzaFpk7JsZObVR3FS2JblslnWqxaEDLSEF1wJrKHUXCLhGwVvXnfHejaWm9puTFuPkx++M3pFGxR4nGgjrr+YHz0A+/IDPP/uhXXYzuV+GUDPiwNCDGTi6goaJaq+rG/JxlZpYX++NCwF46Gpl4i9ghMfGFca3iGzsAAAAAAAAhxcEOAAAAAABASHGwAwAAAAAAEFIc7AAAAAAAAIRUKIsnJ1MTv+2XNu86hHeCI0VV1N2Kx/Q4m0wxrpooCIbwqaoBYmbxuC8ieNayxTL3t0+/4mIbQliYDRNXq+jqs2oGaazn7yxHumhUrx0VX1/YagFzTlpU+p+7YI7MVa+mCuOamRVEdfeKurFJCmPxyTCLRgOKiIpYMT8ucyNy5OCNqKwK4I7mZG4koMGDUmVvPKXFYrpAvloTgj4SxUVjj0xy4g9ez05m42JbVakc+IA6UtYqdpIAAAAAAAAhxcEOAAAAAABASHGwAwAAAAAAEFIc7AAAAAAAAIQUBzsAAAAAAAAhFent7aU2OQAAAAAAQAjxjR0AAAAAAICQ4mAHAAAAAAAgpDjYAQAAAAAACCkOdgAAAAAAAEKKgx0AAAAAAICQ4mAHAAAAAAAgpDjYAQAAAAAACCkOdgAAAAAAAEKKgx0AAAAAAICQ4mAHAAAAAAAgpDjYAQAAAAAACCkOdgAAAAAAAEKKgx0AAAAAAICQ4mAHAAAAAAAgpDjYAQAAAAAACCkOdgAAAAAAAEKKgx0AAAAAAICQ4mAHAAAAAAAgpDjYAQAAAAAACCkOdgAAAAAAAEKKgx0AAAAAAICQ4mAHAAAAAAAgpDjYAQAAAAAACCkOdgAAAAAAAEKKgx0AAAAAAICQ4mAHAAAAAAAgpOJ/6BsAAADaaSct9sF4RubGymMutmrjpoN7QwCOaEtPPMHFWtpmyNxqacDFHnp8w0G/JwDA/x/f2AEAAAAAAAgpDnYAAAAAAABCioMdAAAAAACAkOJgBwAAAAAAIKQ42AEAAAAAAAipSG9vb+0PfRMAALxRnL38bBer1qoyNyGaV6YrCZkbiZVcbKBalrm1uO+g9fhTq2Uupo5lJ5/qgwG7uEx9zMUa4roZ6n4xTsq5SsBdFFxk7Xo6IR1up5yw0sXKEd+lyswsEzvaxZIWkbnFhB8jzRk9bvqLfow0jPt5yMxsyPa5WLQ2qu+h7K+7sbdX5gIAXsc3dgAAAAAAAEKKgx0AAAAAAICQ4mAHAAAAAAAgpDjYAQAAAAAACKkjqnjy+acvdbH2Ol0czmq+MFtTRv8qhkf9NQZzuiBlVBSdu/OJ9foeAITaqStWuFhLwySm1JgugluO+PklN6qvOz5edLFNT6+d+D3gkDnzVF8k2cysuaXDxeIVX+jWzKypodHFimW9/mRiSRer1etxM5QbdrFqWRc9/dU9P5FxHDqnnHKajNdnml2sFtFjJ5EURXDr9dgZyPm/80Vrev9UMlFoOa/HzhOr7pdxTNwpXW+T8UjcP/dMtEnmNrUucLH2tjqZ21Dv55G6lJ5H9oz7eCGvx+Po0LiL5cr7ZW62/ykXi1V0gfm1PT0yjkPj03+r56aOuZ0uVhdpkbmx5IiLvdanC3Rfc/XtE785TBmnLvefyUslX3jfzMwifh6JR/V4yFT9/LKvFnDdqF/Detce2fMF39gBAAAAAAAIKQ52AAAAAAAAQoqDHQAAAAAAgJDiYAcAAAAAACCkONgBAAAAAAAIqVB2xXrf6Utk/Mr3vtXF8uO+Cr+ZWdz8j71vz16Zm0n7DgHJ5jaZ25D2XW5uuHOVzP3JYxtlHFPDuR96u4wnYv48dEaz7kRRExXZdw0M6tyi79T2mx8/8PtuEYfJkuW6C8TfvN/POQNZ323IzGyk5J9vdmRU5iYzKRebIeYhM7PWRt/Z5Ka7Vsvc1auekHEcuLOX+w5YxyxaJHNn1FpcLBvQ8SXT5sdC/1Be5qYyfm6K5fQS39Lix9Pzr22Vufv3veZiv3viYZmLyTt1qZ9f2tqny9wlxy50sf58wD5HdOkc7h+Suem06ECS8GPPzKyxzu9zejZvlbn7Bv3rrXvqEZkLbdlJZ8l4Y7TFx2bpOef2r1/uYiPjes7JlfycMbBb748bxVrV0tYqc2fNnuZif/axf5G5uwb9GlYae0XmbtjULeM4cJsfudrFZs1skbn5IT+eRqv79IVLGRea0an30XGrd7Howkv1dXHYLTnlLTJ+9pLjXGx/v97zZlJ+fzw64ju+mpk1t/ixk9NLoDU2+M9gv+vZLHPXr+nVFwkZvrEDAAAAAAAQUhzsAAAAAAAAhBQHOwAAAAAAACHFwQ4AAAAAAEBITfniyRcuO8nFPv3Rd8jc4pAvWtrW0Slz+3btcrFazRdZMjMbGfbFblvbZ8jcatkXe2qs94W/zMyu/o/7XOzutZtkLg6txef7cfaX79ZFunPjYy626E1Hy9wXdvmCg3UlXbBwfMwXRP3ZXc/I3I0PUizwUDlh6ckudtVF58jcbNU/y8YmX9jNzKx/MOdiY0O6OFy50U/LzeW0zLWkz02ZLrT8g1/e72I9a9fo60JauWyFjEeT7S62eME8mbtnuORiTXX6mRVH/RgpVHVuouRzR6P67zcNCT928+aL4pqZjY/5NbBc3SNz73nAjzH8fsuW++K4f7LseJn76l7/LDpmzJK5OzbvdLFpHS0yd/eufp/b3ixzc2Iua2nXhU9feHmri5UL/rXMzJ5ex1w0GW9b8Xcutn3Vr2RuoeKLk9bSfs4yMxsZ2O1iuWG/7zEz21Psc7FFnW+SuaVywcU6putGJAtPu8TF7n3oSzIXB66lpN9708UUMF7Q80JdOutiu3eMyNz6ej+HROP6c1V92q9h6aTeZz2TO0HGcXB0Le5ysXeeukDm7h7ze4yGtC7IHzc/Pw0P6IrITXH/Wb3fRPF/M2tr8vGhUf0ZbH2vL87e3R2+gsp8YwcAAAAAACCkONgBAAAAAAAIKQ52AAAAAAAAQoqDHQAAAAAAgJDiYAcAAAAAACCkdBnpP4ALlupK5vXiDvf1+a4QZmbFSJ2LbXnBd4UwMxuN+Vg6LYJm1lQ/08X2V3Uzsf27fFeSzvm6m01TnX+9Jacslrnr1myScUzOORctlfFLLvTj79EePXYySd+RZtOLq2Xu2St9t62eTc/K3F17faX3D39Y3+//+Mpfutg3v/jvMheTk4n45/Cy6ExkZlas+Pf2M+v0uDFxiUjCd0cyM5suOmu9FtUdAnbs951GVpyku520NOhuStDOWHG+i03rnCNzpzc0uFg17js9mJl1iIYex8xrkbkV1ahKD0fbNzbqYouOni5zR/b5biV7sn4smZm9usPHBgv6Z/vTs851sfsf/i+Zi9c1N/hOIX2jvsunmVlUbD3WbXxZ5qpOn/tGdXejubP8nFEp6tydoltJY7ueW5LiPRCN6r3WslNOdbHVa56SuTCrb/Rzzs82ZGVu/7DvBPPw2t/K3OEB/8wyjfrjwsLZR7nYNTsfkrl7s2UX+9if+y6UZmYzmvw+/5wzLpC5v111t4xj4jY9NyTj0ekdLnbUDL0XGdvj39fTZ+iuZy/sbPHBpL5uJt7oYvuGBmTubf92qYv9r3+8VeZi8pJi6u4v6X3sjCb/3C5crvdP+Yrfe6QCjij25f1cNm+67j5dLPnua/c9qffo3VHdGTts+MYOAAAAAABASHGwAwAAAAAAEFIc7AAAAAAAAIQUBzsAAAAAAAAhNWWKJ8diupjeYMUXW+uY6QsNmpnl9vnCW/VtuhhSS71/vT17szK3IgoqzUrqQk3pmXkXGx72P4OZ2X5RACpW0gUpcXCct/J4Gb/rvl4XS9XpcZYQBSX3FvQZ6S+3+yKCzUldeHt0xI/JX9y8R+Z+51vvl3EcuKioAdqU3ydz123wRdimR3QBwGLKF1reu1sXSB0r+IKDdaLgrplZZbe/t9X9en6qmh+7XSfrwvW963v0C76RlP37enjAFx02M0vWfAHBttZpMvcd57zFxdKNer6JJUThyME+mTtryK9VmQ59D6lpvlhh+9h+mbvpFV+cN13vmxWYmVlAIUUEK437otdHT9fbsy2De13sOPEszcw6m/2c8/xWPedk9/h5a167bvwwM+UL2+5+VY+dYsnvc8oxHzMzq0X02gitFnnJxd5cfVDmfvWOW1ysuaYL5tbV/HgaeEVVcTcbzp7oYu05vW957SU/bz061Cpzx8o+d8x8IVRM3hc/+wEXu+o975C50YGsi8XKTTI3VfRrY62m55CTO/xGa8tmPTfV6v09LIrp9TKS1OszDo6K+IjakNZ7gU9f/k4Xa21pkbmL5/gN7su7+mXu9s2+m8PchZ0yNxX19zZ7gb7uvatelfGw4Rs7AAAAAAAAIcXBDgAAAAAAQEhxsAMAAAAAABBSHOwAAAAAAACEFAc7AAAAAAAAITVlumLd+fRGGT91sa+4f/zxS2Vua6uvfp1MihY3ZpY0Udo7oav+V8q+y0fUdLetcdFBqyng/Oz7v97gYqs3+u5MOHi+9vGPyvgPP+HfCrWc7lD22jZfdT8ZKcrcZEOzi2X7dEebZNp3xZq1YKbM3V71r+f7quC/o67eP7Pd4wEdGBL+vV2oNMjc6TExD7T41zIzmzXTdzLauUdX8p/fOsfFhgM6c0XNdx4Yyu6SuUpLa4uMZwezE75GmFRjvqNhQ1qvKWOis9EW37zBzMy+9aO7XGywqDsCRcx3OCsM67GQSvncfFnPTYmUH4+tSd16rVzyrxcr6W4ng8O6OxKCFau+S9TlF79b5rY3+bkomdbzU2uDH6vRgP1Iyfz4i5V196qhuOjoOaw7c534gS+62NOPrpa5mJyRvJ9zNu/9L5n7uXctdLF0e7vMrZp/lkENy0piPEXLLTI3Ue+7AUbyumvsys/8wMVWrVqjbwKT8seL/WeoVbt8h08zs/nT/P6ifXBA5sZE685sNitze9f7z0qt83R3pcJLfg0r1fsOxGZmJy3R3b1wcFTFPLB0wTyZm6n5Z9QY8Enl5Wd8t8dEXH/OniE+18f6dUe1Usx/fj9lTovMLVaOjI6efGMHAAAAAAAgpDjYAQAAAAAACCkOdgAAAAAAAEKKgx0AAAAAAICQmjLFk4NUzRfpK+pakNaW8cWPH/ntT2VuseIL4/5R1+kyN5nwhQnndvjipmZm6x+608UK4rXMzMr5gB8EB8Xorp+72Lq8Ls7W/8puF/vZU1mZmxQDcP6MJn0PYvymtugC2ZWEL0Yay+tiXhdcdYGL/ey2/yFzP/65b8o4tOxQ1sWWHO8LT5qZ/fw5Xwj7+GWn6AvX/Fh45vHfydQzj/Wv98pePV8s6TpORHXR0xdFgcRt2ydePLlQ1oUuw+70M/5Mxpsa/JqSL+oiffX1vnDxO846QeY+8OQWF5vX4f+/mVk64Yuql3KtMvft73y/i6155TmZO7pts3+tuN4S/OZhf79HNehCy63N/t7+ZOUKmfvgo4/L+BtNteb3CJGi3jfMntHoYnf98haZW6n5SpdLTztX5o7k/Ht7Uasfe2Zmm1bd72Jqr2ZmVs3rQu6YuNOW/omMJ5v9+/VHv3le5nav2+piuaj+225NFNJe1Kn3OPmonwe27huSuemCL6YaUJPZRsZ9Aee3nr5c5j72xNMBV4Gybu1aF/vzd+li7a2JGS62aq9+as1V/3yHanqMXXZ2i4s9d1+3zM2Pi6Y04rXMzBad9VYZx+R0dXXJeFQsCc/u1Hui7156g4tlAwoUq1Fy4gI/9szMOmb7gt6/e1YX/44O7HExsdyamd41B/0eenunbqMjvrEDAAAAAAAQUhzsAAAAAAAAhBQHOwAAAAAAACHFwQ4AAAAAAEBIcbADAAAAAAAQUlOmK9aSgMrTT/zndS6WHt8hcxMJ3y3iUzdukLl3X/s+F1swu0XmRhO+6n9Tk38tM7O/vn6diz18wyUyt2j63nBw7NnpOzM88Lt7Ze75K1e62O4R3c2jrtl3h5g2pu9hQdOIi809Suc++Jyv6p4I6DzjewSYVUUHFAQLqna/6vavuNgdD74gc1uTvpPZrLo2mZss51zskaLuOvORC31nh51bfHV/M7NjRWeUYxuTMnd7nzjLn8SwqUvo64a9701heEDG86IJWEu775JoZnb71Z9wscHMfJm7ZuNNLrZ9w5Myd9aMZheLz1wgc//0rSe52O5B3bHirp/f4WIXLnmzzB0til9EwHwzNOzn3aa2dpn7RrP8lJNl/D+v/4KL7dmtuxud/McdLvaFf1kjc2/954+42IwW3RmyI+O7zCTSviucmdmnb1jlYrd/w7+WmVmlulrGMXHRhH4Pf/8T73KxV59/UeYmR3yHmede3qdzU36HMa1Fz3t/ff4SF9s/pO/3n27242ZmwB7n8R1+VamxxzkoTjp2postiOsuU8m47xW0c5+eQ57Z5ef+2XP0nmF4RHS6ym6Tue07fEfQgXK/zLWVZ+g4Dorr/+dlLnbeqaozq9lfbd/uYju37JW5lYjfY7Q16znnu596p4s9tUHv0b/2z79ysT/q1J/f73x2v4yHDd/YAQAAAAAACCkOdgAAAAAAAEKKgx0AAAAAAICQ4mAHAAAAAAAgpKZM8eSYLAdrFhWVPatRX7zWzKy9ucHFfnXbV2XuwlZf0KtZ1wOz7GjFxUoxXVTwsfu+7WJzG3QBKLNbA+KYjLUPXyPjbfXTXGx8xBczNjPr3fSai2Vi+rnNb/DnofUVXSxwtORfb+uoPk8di7W42FFturBgoqaL7ip/+1eXudj3b7p5wv//iBUw+7XV+ed+zAz9fj/2fWe52Ld/+qDMLQ0Nuti/flUXHO3sqHexyy/yBZXNzO77nS+Wed9Dvoi7mdlwyo+b3t5emavEYhMfd2ESi5VkPNXQ6mLDWV20ceF8X9R2c0EPsi98+WMudsWVupj+86O+QPcj3/jfMrdW8QUw/+LCt8nc5tHNLnbPmldkbsTXzwxU1+SLPedyvnD4G1G55PcSZmZtjX5+6d+v5/541D+Mxx/6vsydk/HXrYxmZW4u5jdAyXq/pzIzW/WEL/49Kxmwz6ndrOOYsGpFj5v5Hf69VhzW++OODl/U/5GXdbHQas7Ph1865wSZW6v5wraNLfoeZhw718Ve2LJb5kZEneRVT1KI+2ColP14GujbKnPnzPXr2lPd62Xuu1cu9v/f12k2M7PpTX6+iR6tmwJ841FfdPuSt58qcwcLAZ1MMClR/ZHc5s/y80g64/coZmZXffQcF7vkyz+VueM5Pybv+Pify9yqmHMWLpovcxevWOFiTz3znMxVP3LPJPbHUwXf2AEAAAAAAAgpDnYAAAAAAABCioMdAAAAAACAkOJgBwAAAAAAIKQ42AEAAAAAAAipSG9vr6g9f/h97JITZfzpHt8B4pl7bpC5DWXfdSbtm1+ZmVmp6itwVyv6V1Er+A4BAQXDLZ7xnSFKlbLMnfNO37FrMh1q8Lr8lltk/NVt4y6WSY3K3KcfecnFyk2+M5GZWWrMX7eY15X4qxU/fqMx3SmnLLrJNFQLMnfxmctd7O67dFedzbuyLnYDXbHsQ5eeIuObX/G/8x0PfE/mlkV3st27dee1Ws3POTPadeebWMTPMAHTk40M+zEWr9Pdq05472ddbNWqx/WFhZaWFhnPZrMTvsYfWldXl4u1tvlOD2ZmjQn/fBafoJ/Z0z0DLrb513qt6pvmu3+M9enOeomUX8TSaT2HiOnG4jG9WmUH/DhNNurfw1tO9x1IZgf8zopFP86HCr6LhZnZ4OCQix3Ja+DnrzxDxh982q8fr97zHZkbr/rcTFo/40rNTxp5sZ8xM4tU/eCp1fR1Ewk//qqqjZGZzTzv8y62Yf1GmQuzty4718WWnaznnHWbtrvYfdd9UOYO9Pv3Wi2gy2FcdaNVk4uZ1cS4iUb1dWtx36Utabrj19s/+wsXW8e4mZTLPuTHkpnZtCb/HBJJ/Tnlqx/8sIs9t0evVc01vzdumq4769WLOWQ0YG7aP+Zz50zTH+6+cscaF/vatd+SuXid2hMdf5zeY2ze5sfJptu+JHNT9f67IzsCxk5MrB8d0xplbkR0CQw6yMgW/L+o9cvM7IT3fNnFunvCtx/hGzsAAAAAAAAhxcEOAAAAAABASHGwAwAAAAAAEFIc7AAAAAAAAISUriD0B3Djbd0yvkQUdXr86bUy97zlx7lYsTKJHzGgyORx7/2MiwUVanrl3mtcLBrVRclwcAzmdVG/to46F6uO6WdRGu33wdGszM2LWFBh2+5XfUHviCiMa2Z20rG+KOZ4QEHKrZs3++vG9TltW7MuvPhGd8utvsiemS4kd/8jT8rct5661MVmtAfNOT4ejerCkW8+/9MiqsfCM/dc5zMDCrZnh3wBzcmoiWKsR4JSwLywv5J1sedf8IUnzcwak75g6LZXn5O50dgsF0tkgsaNn99yBV+k0sxsyVkXuVjQE+t+9Of+lUq6sGG1KK4S1fNYUbxifb0uRD88nAu4uyPT1767SsYfXHqyi7VmdOH8UsXP87VoWuaqFaEuoZ9b59s+4a8rM832PPwdn1tRK6NZpaznOGiPrf4vFztrxTtkbjXqn3BjU6vMHR0R77Wa3jtJEb2/+NOrfJHjIL/95nvFdQNakQR1KMGE3XyLH0tmZh941/ku1jeclbk7z3zFxVoDimMrtSE9j+03v45GA9aU9Lhf7/bm9Jr96JOPTfje8DrVsOCEE/w+OEjfQFbG54hmDLNnN034ukFTw6kX+T1vkCfvEHvpakCjpCNkzuEbOwAAAAAAACHFwQ4AAAAAAEBIcbADAAAAAAAQUhzsAAAAAAAAhBQHOwAAAAAAACE1ZbpiTUaxpLssPCA61xyz8M0y9+hO0TkgoAXEM/d/z8WS+azMrVX9vT3y2OP6wjgoBrO6G0dri+8G1dqqO0SNVXw8HSnJ3FLZd68Kkiv4yv2nHdMgcwtF/3NUIvp+46Ixz/i4vt/Bwb7fc4eYiPG87uzwzIb1LtZ2VIfMPapjhotVA5qSrPuF766XTgaU7K8U/X2t36BzD7Cp1dABdtWaqgoV3WXKan4+Hw14n9X5JnxWLAbMITued7Foc7PMTdT5zhJBBh713SJeLLTL3Hze/8ylvpf1PSR8F5RSwDo8Pu7nx9yYHjeVCh2TglQCOndUi767UWNLi8wdK/h5K6jxx54nf+hitXzAWicuEi2PyNRoUGsTTNjDj98j42euWO5i5YBFJZnx80tcdNwzMyvkdXc85c6rP+hiDWk976mRkKxrkbmMm0Pnx7+618XOO/cMmRsRLV9rUT03NQd2dvQu+dwtLvafX/ddHc3M6jJ+/RnK6q5YSdGdEpPX0+M7ZZnpblnjef1+3/baXhdrm94icxsy/kNNUBPWB278uItlmvT3VGqi89/O7Uf2ZyK+sQMAAAAAABBSHOwAAAAAAACEFAc7AAAAAAAAIcXBDgAAAAAAQEhN+eLJqmRpxHTBxWjEx7e9+orMXb160MXqUqIi7SSVRMHD+rQu5hXlWO2gCCoOnB30v+AFs3Uh0uYW/+zHRvXboxrxuYmYfpindYki3QHyRV8MLhpQ3DAuxtkLL22RufPmdk74HhCgpgv1RaJ+zunfuUvmvvi8L0ybTgZMwapoXEAtyQe7d7pYMqaTY1Ef7+ryxfCCRCJ6nPf0dE/4GmEyu2OOi2WHdGHREVGMuFjQhd3jMT9uqiMDMveFZ30RwxnTdKHlp2V0u4zu3r3fxTLptMwtF/z99g1kZW5zc5OLVU0Xp87lAqqHv8EUSn5+qVT07yYW8ZPDaM7vZ8zMXtm6w8WmNddP8u680bwv2N4UUDg1cqAV2xFovOCfQ9D+OJHwc3+1mpK524d87oy2RpmbFMOpaKKSvJkNDvnC33WiGLiZGbWTD69qwB4nmvRrfqmi9wFjZf/QKmX9/r/lHy52sRG9XFrfsF8/qhVdsLcg9tE41PScExcfckeG9fv9+Zf9/qetaRJrVb8OZ4dHXSyd0OM3foRMOhwtAAAAAAAAhBQHOwAAAAAAACHFwQ4AAAAAAEBIcbADAAAAAAAQUhzsAAAAAAAAhNSU74qlilRHUw0yt5zzldPjUV2Rva3JV+3/3K2PBNyED1VE9Xczs69cstLFUindIaAW1OYGk3L6ef8g46vv+UcXi0b1kI/W+44P9XHVk81sNOtj61ZtDby//1eppp/7W1bMc7G6uoDuRnHfmWt/v+4886Nf/uuE7w26c1TQuBkr+TFSn0zK3LZGX+H/k9+4U+ZWyr4jzkhEd8l5Ys0mFyuVdZeCK76acbFoQnftUyNvzrXv1bmis1Zvr+/mFDZbdm5zsWRErz+JpHg+UT0WVEePaFQ/h6Nnd7jYeR/5tMyNigWzFjAWfvXDb7lYIq7/1tNQ78dNvqKvO5zzrU2iAXNeJeAabzRqmxLP6A6Oo6IpW73olGVmNnemv8aii6+RuWqvFbTPWfcff+9i+YBOOVZln3OoiKXKaqbnnHTSr1WFql5T5ne2u9iFV94YcBf+Jgo1fd2fXXuZiyVk79vgDow4NAKGgvUV/Vo1M6ADXrno56E133sx4BX9uBmp6o5WKz9xnIuNFfS8UguYC3FwqM5REdEp2MwsV/Tv7caAPcacDt9B+C8++UOZq55w0Fx26zc/7GLtLbr7Z8T0HixsmDkBAAAAAABCioMdAAAAAACAkOJgBwAAAAAAIKQ42AEAAAAAAAipKV88WZUyWjj/KJm7bZsvnhTNi0qDZlYe94Vmv37p2QF34YtFFUVxUzOzatUXg8xWdUGmgLrOOEi27x10sURC/9I39O5wsUWdLfrCojjbySvmT/i+yjV9D6WKLxz33LZRmds4a8Bft+SL3OG/QTyeBcccLVO379rjYnUBhSNrIn7dVRdO+B7KYm4xM7v+Cx91sVRCF7O79hZfIL4SMB6jUX/uXw0oUBemQsnqXrtE8Wczs4T4PRZLOZlbFjVA582fLXP379/tYuOZTpk7ni+62L03+cLHZmYRUdgwGlBMcsfOfS6WyvfL3IGhIRcLKv4fE8W4SyVdFDNM4+ZQqpl/XyUCdmetLb4ZQ7mo35eFYb//ef6Oz+kLi7FTCtjnjI6NuVhdiy8Ob0Yx00OpJIrVjuX8szEza6jzBdArJV/o3MysIArm3nn95fomxDQQtE5kR/x+JpHUzUXKRQqrH0733/+UjJ+xfImL3fbZ98vceNwPhqVXvCngFf3YrQbsnQZH/Br48et+LXOfWr0+4PVwMFTFG769vUnmjo6qzy/6GeeLfo9w83f83jZILaARw5CYD/v26TmyGrAXDhu+sQMAAAAAABBSHOwAAAAAAACEFAc7AAAAAAAAIcXBDgAAAAAAQEhxsAMAAAAAABBSU74rlqpRPbezWeeKitZ7Xtwkc1Oz5rtYee+WCd9XIuBIrDbNd0G56us3y9xNPT0Tfj1M3ns+cp2Lrb77MzJ3bMh3hxhp05XTN+/3Ffq7jmqUuarIekI3k7Fnd/oOJqct1V11xvO+a8Vvn3hMXxiTUhOzzrxZ03WuaHiX2+c7ZZmZDYmuZc0BXdpUNB4w5yw/fr6LXfzF22Quc86ho3o9tDTptSqa9JPA1qx+wNMiIy6WKzfoe6iKTiNRPeEsaPNdJE64+EaZKxomWSyutw8lMc7pfvX7qXVitKA7FjWkfHejWtl3ODMz65g9z8UGd2/V9yAGcNCcM7Nzpou1r/yEzN3YzZxzqFTNv4fzY1mZG6n4uSgW0Jq1vcmPsaERPw+ZmRy8qjufmdm8GW0utuQvvydzN2zcqF8Ph1VEzAu5st8Dm5ld/vW7XewnX3pPwIV9KFrTE86V193pYk+sXqevi0NKdS5rbwz4UGN+HhkP6FQdj/j9RLmo18DJaKjzn83O/+T3ZW5396YDfr2pgG/sAAAAAAAAhBQHOwAAAAAAACHFwQ4AAAAAAEBIcbADAAAAAAAQUlO+eHJF1HYrFvV5VFQUbJt3zHyZe87Hrnex9mnpSd2bsrPfF3va1EPhyKli2QXXyvgPbj3XxTIRXSCuPDLgYrc/tPnAbszMHnp8/QFfAwdO1J+1ck0Xh4uL4snTZnbK3Isv/5aLRQ/C0XrfkB+n3cw5kxJU3Lerq8vFogEPrVr1RQULUVVS2SwVL/tg/VEyd+mHvuxinemAQqaT8Ore8QnnJpMJFysWfZFkMwol/3eofU4+r8dOY9rH0+l6mdu07G9cbP7M5ORuTnhue87F2Occfqr08cCQmFvMbGaHL7ScqOn38Fs+9C8uduJ8XbB9Mrq3+XGzcRPFtaeyihhlqZheA2/8/Ptc7N1f/NEB38Pq9d0HfA0cOkP+bW1mZhVRebupRc8jZ3/UFzRuSvo5a7Je3uOb4PQc4WsV39gBAAAAAAAIKQ52AAAAAAAAQoqDHQAAAAAAgJDiYAcAAAAAACCkONgBAAAAAAAIqSnfFUtJpjIy3tHhO3fs3eY7GJmZjYt2Avc+svaA7gvhlR8ddbFoRFdvzxV814lFRzXL3I1b/Ph7Ys2myd0c/uDSdbrrzKzpvpPR7r69Mlf11RKNlMzMbLTguwGIkJnRAWsqa8joDkTjkRYXKwzpDjWi2aPtGm+UuYlSv4uNlQI6usUnvvyrDlh0vzq0ksmUjA+M+omgIa7/RpcX+5wf3/vUAd0XpraYmjDMbG9f1sXmdupOsKrb1s13PXkAd4WwiovORpmY3rjka37k/NuXPiRzP/iFm12MvUw4xWKiPayZpUWL2UTMd4420/vjX96/+kBu6w2Lb+wAAAAAAACEFAc7AAAAAAAAIcXBDgAAAAAAQEhxsAMAAAAAABBSoSyeXKv54rVmZomYL7903NwOmavLy+GNqiqq2EZlCUGzpCg6WgoobJsr6GsgXKpV/YATcV80bn6nnnNqorDgQ09uOLAbw2EXVChQzyF6pcnU+cK4re163ERVMVR9CzY+7v9WUy7rosyTQaHkwy8qipa+HvexcjGgIGVAIV0cGSoVv6ZEo/rvtSo6lB0/yHeEI43Ytsg9sJmZBRTql9flU1goqfEQVYuSmUWjvqFROq2bAuDg4Rs7AAAAAAAAIcXBDgAAAAAAQEhxsAMAAAAAABBSHOwAAAAAAACEFAc7AAAAAAAAIRXp7e2lbQ8AAAAAAEAI8Y0dAAAAAACAkOJgBwAAAAAAIKQ42AEAAAAAAAgpDnYAAAAAAABCioMdAAAAAACAkOJgBwAAAAAAIKT+D29NDlegQk6dAAAAAElFTkSuQmCC\n"},"metadata":{"image/png":{"width":1142,"height":1213}},"output_type":"display_data"},{"data":{"text/plain":"<Figure size 1152x1152 with 64 Axes>","image/png":"iVBORw0KGgoAAAANSUhEUgAABHYAAAS9CAYAAAAiHt73AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd3xUdfb4/zMtPSS0UESadA29qCioqOjasK/7WXvFddUVdC1r17W7FtRVWCuKYhcL0kQQlB4SmtJ7h/Q27fcHX+YXPOdCIgnkwuv5ePh4yMnJnZu573nfO++5c44nJycnKgAAAAAAAHAd78HeAQAAAAAAAPwxLOwAAAAAAAC4FAs7AAAAAAAALsXCDgAAAAAAgEuxsAMAAAAAAOBSLOwAAAAAAAC4FAs7AABgv61fv14yMzMlMzNTrr766oO9OwfFF198EXsOXn311YO9OwAOoquvvjo2H6xfv/5g7w6AQ5z/YO8AUJsMHDhQNmzYoOIej0cSExMlJSVFUlJSpGXLltKhQwfp3Lmz9OnTR/z+g/NSeu+996SgoEBERG6++eaDsg+1yZIlS2TSpEkiItKrVy/p1avXQdkPp3EkIuLz+SQ5OVkyMjKkY8eOMmDAAOnfv/9BG0Nwtn79evnyyy9FRKR9+/YyYMCAg7xHB9bEiRPl119/FRGR8847T4444oiDvEfAwVdcXCzff/+9TJo0SZYtWybbt28Xr9cr9evXl6ZNm0rPnj3l2GOPlS5dulR525FIRK644gqZP39+LDZ48GDO73AFXhvAwcU7CaASotGoFBcXS3FxsWzZskVWrFgRW0Bo0KCBDBo0SK699lpJSUk5oPs1cuTI2AICJ7ddCzuvvfZa7N8Ha2Fnb8LhsOTn50t+fr4sW7ZMxowZI+3atZOnnnpK2rRpc7B3DxVs2LAhNp7OPffcw25hZ9KkSfLVV1+JyK7XEgs7ONyNHTtWnnnmGdmyZYv6WVFRkaxZs0Z++eUX+eyzz+T777+v8vbfe++9Pd64Am7BawM4+FjYARxccsklcuSRR8b+XV5eLgUFBbJt2zZZuHChrFq1SqLRqGzbtk1GjBgh33zzjTz22GPSu3fvg7jXqG1+P45CoZBs375dZs2aFbsb4rfffpPrrrtOPvzwQ2ncuPHB2lUAgIMRI0bIiy++GPt3q1atpEePHpKRkSHRaFS2bt0qGzZskHnz5v2h7a9atUqGDRsmIiKBQECCwWC17DdQ03htALUDCzuAgzPOOGOvd3xs3LhRPvzwQxk5cqSUl5fLxo0b5eabb5bhw4dLt27dDuCeojbb2zj65ptv5F//+ldssWfYsGHy2GOPHeA9BKrHEUccITk5OQd7Nw6qQYMGyaBBgw72bqCaffHFF7E3rhkZGfLwww/LCSecYOaWl5fL4sWLq7T9SCQiDzzwgJSWlkqrVq2kQ4cO8t133+33fgM1jdcGUHtQPBn4g5o0aSL/+Mc/ZOTIkZKRkSEiImVlZXLrrbdKbm7uwd05uMJZZ50l//d//xf794QJE/gkCgBqkU2bNsnTTz8tIiL16tWT999/3/GNq4hIXFxclWuIjBw5UubNmyder1cefvhhCQQC+7XPwIHAawOoXbhjB9hPHTt2lBdeeEGuvPJKCQaDkpubK2+//bbcfvvtZn5xcbFMmTJFZsyYIYsXL5Z169ZJUVGRJCQkSIMGDaRz585y1llnyfHHH+/4mJmZmZWKNW3aVH2XuToev6LVq1fLp59+KrNnz5bVq1dLcXGx+Hw+qVOnjjRr1ky6desmxx13nPTo0WOfJ+Tp06fLuHHjZO7cubJt2zYpKyuT9PR06dSpkwwYMEDOPvtss8jwq6++ukdtHRGR1157TcVERB599NFa9Yn6gAED5J133hGRXd9DX7t2rbRu3Xqvv/NHnydLKBSSsWPHypQpU2TBggWyY8cOKSsrkzp16kjLli2le/fucuqpp8rRRx+91+1MmTJFvvvuO5k/f75s27ZNRHZd6HXp0kXOOOMMOfnkk/f6+1988YXcf//9IvL/F0QsLCyUTz/9VMaOHStr166VkpISadiwoRx77LFy5ZVXSqtWrfb59y1evFg+++wzycrKkvXr10txcbEEAgFJS0uT5s2bS69eveS4446TzMxM8fl8al92++qrr2L1Zir6ffHGioWzd9+9Mn36dPnqq68kOztbtm3bJiUlJXuMw6uvvlpmz54tIrvqFOyrls3u17r1+v69aDQqkydPlkmTJklWVpZs375dSkpKJDk5WZo3by5dunSRU045ZY+7yiruz27XXHONuf2K+7t+/Xo544wzRESkZ8+e8tZbb+1137Zv3y4ff/yxTJs2TdasWSP5+fmxeaNv375yySWXSIMGDfa6Dev5njt3rowePVqysrJk69atkpiYKG3atJE//elPcsEFF9RooXJrHP/efffdFxtLb775pvTq1UuWL18uH374ofzyyy+yefNmSUxMlFatWsmf//xnOf3008Xr/f8/hystLZVvvvlGvvrqq9jzlpGRIf3795frrrtun89ZeXm5TJ8+XX755RdZuHBhbBuBQEDq1asnxxxzjJx22mly2mmn7fG4e1NSUiIfffSRjB8/XlatWiXBYFAyMjKkT58+cumll0q7du1k1qxZsXF07rnnyuOPP77XbRYXF8sXX3whU6dOlWXLlsnOnTslEAhIw4YNpWfPnnLhhRfuc14SEdmyZYt8+umn8ssvv8jKlSuloKBAvF6vpKSkSNOmTaVLly5y/PHHS8+ePSUpKUn9/rvvvhtrUjBkyJBq/7rsmjVr5OWXXxYRkUsvvVS6desmn3zySbU+hog9Nrdt2yYfffSRTJo0STZu3CihUEiaNGki/fr1k7/+9a/SqFEjx+1Zr/doNCrffvutfPXVV7J06VLJzc2VtLQ06dy5s1x66aWVvq6oifFU3RYuXCijRo2SWbNmybZt2yQ1NVVatGghZ511lpx//vmHxQLEofLaAA4VLOwA1SAzM1POOecc+eyzz0REZNSoUXLzzTdLXFzcHnlLly6Vv/zlL1JaWqq2UVhYKIWFhbJq1Sr56quvpG/fvvL0009LnTp1qm0/q/vx33vvPXn++eclFArtEQ+FQrJ161bZunWrzJs3T958800ZNmyY9O/f39zO5s2b5e6771ZvJkV2XZRv2bJFJk+eLG+99Za8+OKL0rJly6r94XtR8eJUpHJvrKtTvXr19vh3fn6+Y251P09z5syRf/3rX7Ju3Tr1sx07dsiOHTtk7ty5MmLECHn77belR48eKm/79u1y5513yqxZs9TP1q9fL+vXr5dvv/1WunfvLs8999w+33Tu9uuvv8o//vEPWbt2rdrmp59+Kl999ZU89dRTctppp5m/H41G5fnnn5d33nlHotHoHj8Lh8NSWloqmzdvllmzZsmrr74qn332mbRt27ZS+1ZZwWBQHnzwQRkzZky1breyli1bJnfffXesllNFeXl5kpOTIzk5OTJy5Ej597//Leecc84B27fPP/9cnnrqKSkqKtojvnvcZWdny9tvvy133nmnXHzxxZXaptMxLy8vlzlz5sicOXPku+++k1deecV8A3+wfPrpp/Lvf/9bysvLY7GSkhLZsWOHzJkzR3744Qd54oknxOv1ysqVK+Xvf/+7rF69eo9trFu3Tt5//3357rvv5H//+59jIfa8vDw588wzY2/GKgqFQrHX7Pfffy9HH320vPDCC/t8s7ZixQq5+eabVTvn1atXy+rVq+Xzzz+Xf/7zn/tcsK5owoQJ8uijj8qOHTv2iJeVlUlhYaGsXLlSPvnkE7nooovknnvucXwTPXbsWHnwwQeluLhY/Wz3WFuwYIG8//77cs8998hf/vKXPXJKS0vliy++EBGR1NRUOfPMMyv9N1RGNBqV+++/X0pLS6VJkyaOHwjVhNmzZ8uQIUPUc7xixQpZsWKFfPLJJ/LYY49Vumh8Xl6e3HnnnfLzzz/vEd+2bZtMmjRJJk2aJFdccYXceeede91OTYyn6jZs2DAZPny4RCKRWGz79u2yfft2mTt3rnz22Wd71Jw5FB3Krw3ArVjYAarJn//859jCTnFxsWRnZ0vPnj33yCkuLpbS0lLxeDzSsWNH6dChg2RkZEhCQoIUFBTIkiVLZMaMGRIKhWTatGlyxx13yBtvvKE+NR0yZIiIiAwfPjy2ELA7VtHvu3RV1+OLiPzwww+xW3BFRDp06CDdu3ePvXHfuXOnLF++XLKyssyL6t3Wrl0rV111VayTQp06daRv377SsmVLCQQCsmHDBpkyZUqsG9kVV1whH330kTRp0iS2jeOPP16SkpJk4cKFMnbsWBEROe6448xPB4855hjHfTkYtm/fvse/ExMTzbzqeJ4qGj9+vNx1112xRbmEhAQ59thjpW3btpKUlCR5eXny22+/ydy5c6W0tHSPC9jd8vLy5IorrpA1a9aIyK5W7scff7x06tRJvF6vLFq0SKZNmyahUEjmzp0rl19+uXz44YeSlpa21+dk8+bNctNNN8m2bdukTZs2ctxxx0m9evVk8+bNMnHiRNm6dasEg0G59957pUOHDnsUp97tgw8+kLfffjv2727duklmZqbUrVtXQqGQ7Ny5U5YuXSrz58/f4w21yK4xMmTIEFm7dq2MHj1aRESOPvroPRYAd+vatavj3/Hkk0/KmDFjJD4+Xk488URp06aNeDweWbp0qVr0rW7z5s2TwYMHxxZO/H6/9OzZUzp16iSpqalSWFgoy5Ytkzlz5khhYaGEw+HY71566aXSv39/GTt2rCxcuFBEdBHw3fZ1LC0ffPCBPPHEE7F/N27cWE466STJyMiQbdu2yY8//ijr16+XkpISeeSRR6S0tFQuv/zyfW532LBh8vbbb0tiYmLs+RYRmT9/vkybNk1Edr2Zffrpp+Whhx6q8n7XhClTpsg777wjXq9XTjzxRDn66KPF5/NJdna2TJ06VUREvv32WznqqKPkggsukOuvv142b94srVq1khNOOEHq1asnGzdulLFjx0p+fr7s2LFDhg4dKh9//LG52BEMBmOLOm3atJGOHTtKkyZNJCkpSYqLi2Xp0qXy888/S2lpqSxcuFBuuukmGTVqlOO8tGnTJrn22mtjd+nFx8dLv379pG3bthIKhWT+/Pkyc+ZMefzxx+Wqq66q1HMyevRoeeyxx2KLc23atJGePXtKRkaGBINBWbx4sfz0008SCoXk448/lry8PHnuuefUdhYtWiR33313bGy3bNlSevfuLY0aNRKv1yv5+fmycuVKmTt3ruOCenZ2duz56ty5c2yu/fDDD+XHH3+UjRs3is/nk4yMDOnVq5dcfPHF0r59+0r9nSK7Xgtz584VEZEHHnjggC04bty4UW677TbJz8+Xli1bSr9+/SQtLU02bNggP/zwg+zYsUMKCwtl6NCh8sorr+zzTptwOCx33HGHzJw5Uxo0aCD9+/eXpk2bSlFRkfz000/y22+/iciuOzw6deokZ511lrmdmhhP1e3111+X119/PfbvFi1aSL9+/SQ9PV02bNggkyZNkoULF8qQIUMqfcebGx2qrw3AzVjYAapJhw4dJDU1NXaimzNnjlrYSU1Nldtuu03OP/98qV+/vrmdtWvXypAhQ2Tx4sUyY8YM+eabb9Qn6bsvaEaNGhW7IK3MRU51Pb6I7PGm+fHHH5dzzz3X3F4wGJTJkyebCwzBYFCGDBkSW6y48sor5ZZbbpGEhASV9/zzz8vIkSNl586dcu+99+7xNY+uXbtK165d5Ysvvogt7HTt2vWgXfhVxfjx42P/Hx8fb95lU13P024rVqyQ++67L7aoc/LJJ8sDDzxg3k1TXFws33zzjaSnp6ufPf7447FFnQYNGsiwYcPUVyOWLFkif/vb32TLli2ybt06efjhh+X555/f63Py2Wefid/vlwcffFAuuuiiPX52++23y0033SRZWVlSWloqb775pjz44INqG7vHp9/vl1dffVWOO+4487GKi4tl3Lhxe9yZ1qZNG2nTpo3MmjUrtrBz1FFHVXk8jR49Wjp27Cgvvvii4wJbTdi+fbvccccdsUWdrl27yr///W9zYSYYDMqECRP2OPa7F7CWLl0aW9jZVzH5yvrtt9/k2Wefjf37sssukzvvvHOPRYihQ4fGxrGIyPPPPy89e/aUjh077nXbb7zxhnTp0kWef/75WN2z3caNGydDhw6VaDQqn3/+uQwePHivXzM5UN5++23JyMiQYcOGqb/v22+/lX/+858iIvLOO+9IVlaWbNmyRYYOHSpXXHGFeDyeWO4NN9wgl19+uWzcuFGWL18uEyZMMD9BDwQCct1118nFF18sTZs2Nfdp+/btcu+998r06dNl+fLl8s4778hNN91k5j7++OOxN+EtWrSQV199VZo3b75Hzs8//yy33377HucMJ/Pnz5cnnnhCotGo1KtXTx599FHp16+fylu7dq3cdtttsnTpUhk3bpx8/vnncv755++RM3LkyNiizt/+9je58cYb93jOdguHwzJjxgyJj49XP8vOzo79f4sWLeS7776Thx9+WN1pVlhYKCtWrJDRo0fL5ZdfXqk39WvXro3d1XH22WfvtTZJdfvyyy8lGo3K4MGD5aabbtpjX4cMGSL33nuvTJ48WUKhkDzwwAPy5ZdfSnJysuP2dnc7uuSSS+TOO+/c49x0++23y9NPPx17Pf/3v/91XNip7vFU3ZYsWSL//e9/Y/++/vrr5W9/+1vsa7wiInfccYfcfffdMnXqVHO8/VHWV873h9NXRSvrUH1tAG526C4lAweYx+PZ46scGzduVDmtW7eW6667znFRRUTkyCOPlGHDhsUujKrz+8TV+fhLliwRkV1vgp0WdUR2vZE47bTTpF27dupnY8aMiXVI+Otf/ypDhw5VixW7t/HPf/5TTjnlFBHZ9an77k9y3GzMmDEyatSo2L8HDhxovrmo7ufp5ZdflpKSEhEROeGEE+SFF15w/IpUUlKSXHzxxeprSitWrIgtonm9Xnn55ZfNehcdOnSQl19+OXbhO378+Nint3tz2223qUUdEZHk5GR5+OGHY/+eOHGiysnNzZVNmzaJiEjfvn0dF3V2/32DBg2qkTf5aWlp8tprrx3QRR2RXXVbdr85at++vYwYMcJc1BHZNWbOPPPMalm0qYwRI0bECoSfdNJJcu+996o7S3aP491fAQmFQvLGG2/sc9uNGjWSV199VS3qiIicfvrpMnDgQBHZ1WVl0qRJ+/unVAufzycvv/yyuWj1pz/9SY499lgR2fUVzalTp8qVV14pV155pXrD2KhRI/n73/8e+/eECRPMx0tLS5PbbrvNcVFHRKR+/fryn//8J/Y8Op0DfvvtN5k8ebKI7Dpmw4YNU2/CRXbdPfnQQw+pr0Radn+1d/eCrLWoI7LrPPXaa6/FPsUfMWKEytk9Z6ampsr111/v+CZ7952G1ldNK37lbeHChXLvvfdKUVGRNGjQQC6++GK59dZb5Yorroh9LSgajcq7774rjz766F7/zmg0Kg888ICUlJRIvXr1Ygt4B0o0GpXzzjtPbr75ZvUmOzU1VZ577rnYhwybN2+OfeVmb/r16yf333+/Ojd5PB654447Yl/pW7VqlSxbtkz9fk2Mp+o2fPjw2AciZ555ptx66617LOqI7Lqb9vnnn5fmzZsflH08UA7V1wbgZtyxA1Sjil9LyMvL+8PbycjIkB49esi0adMkJydHysvLa/yrG1V9/N1fzSkrK/vDj7N7USMhIaFSnxxdffXVsTdkkydPlu7du//hx96tpls0V/w6i4jEWpvPnDlzjwWOVq1ayT/+8Q9zG9X5PG3dujW2GOLz+eRf//rXH7pdfMyYMbGL1tNPP32vX3Hr1KmTnHHGGfLNN9+IyK5CxEOHDnXMr1ev3h7dwn6vdevW0qZNm1hB1U2bNu1RB6Ti14qselIHyiWXXLLXRdSaEAwG5dNPP439+9577zUXCw+G4uLiPe5QcxrvFX++e6z+8MMPseLKTq688sq9/vy0006LLUbuXpg+2E4++WTp1KmT48/79+8vv/zyi4jserN77bXX7jV3t/39+5KSkqR///7y8ccfy+bNm2XdunXSrFmzPXK+/vrr2P+fffbZe63pdeaZZ8p///tfWbFihWPOr7/+GluIPv300/dZGLlRo0Zy5plnyqeffipr1qyR5cuXy1FHHRX7+e5zVDAYlEgkot6AV0bFr2jNnz9fRHYtwD/yyCN7fDVkyJAhMmLEiFih108++UROPvlkx4WpUaNGxWql3X333eYdkTXJ6/XKLbfc4vjzuLg4ufHGG+Wee+4RkV13+OxtThaRPRYWfy8QCMhJJ50kH374oYjsWnT7fR2o6h5P1a24uHiPBeG9/b0JCQly0003yb333lttj7/7K+fVZW9fI66MQ/W1AbgZCztANap4MissLNxrbjgcluXLl8uKFSskPz9fSkpK9vh0Z+fOnSKy66J03bp11V4ocH8fv127dpKdnS1r166V559/XgYPHuxYh8GSm5sbK+rauXNnSU1N3efvVPx+9oIFCyr9WAfT7q/yOPH5fHLqqafK3Xffbd41U93P08yZM2PHuWfPnn+4UPTuW+9FxLGAcUUDBw6MLexU/F1Lnz599tlRpEWLFrFPfXfs2LHHwk69evWkQYMGsm3bNpk5c6aMHDlSLr300gPepcTpwrUmLVy4MHYr/JFHHlkti5/VZcGCBbFPu9u0abPPOa1FixbSsWNHWbx4sYTDYcnOzt7rLfn7ul2/RYsWsf//fcHYg2VftUsqLqZ06tRpr29y6tSpI2lpaZKXlxe7Y2tvotFo7O6J3NxcKS4u3uMcULGo+qpVq9TCzu43cyKyz653u3P29kZ89wKWyK477SqjQ4cOsf9fsGDBHgs77du3lxUrVkhpaak88MADcvfdd1e5JtTvv1bSpk0beeKJJ9Rc4vV65YYbbpDVq1fHOp6NGDHCnAPWrVsnL7zwgojsumutuovOVsbRRx+9z6LYp5xyini9XolEIvLbb79JcXGx48JCgwYN9jgWlooLNdbrr7rHU3WrOH+1a9fO8S7I3So+f9Vh91fOa4tD9bUBuBkLO0A1qnii+33h4t0KCgpk+PDh8uWXX1b6zYXVweSPqq7Hv+aaa2JdCt566y0ZPXp07Hb2zMxM6dix417fSP/222+xNxEzZ84027Xvze6FJ7fr2bOnDB061PGrUNX9PC1fvjz2/1XdVkW7a+uIyD5rn/w+5/cdfX6vMl9dqljv4ffFuT0ej1xzzTXy9NNPSzQalaeeekpef/116du3r3Tv3l06d+4s7dq1q/HClpVpx17dKh7f2lYovOJx39ebwN12L+zs/v29Ld7s7etFInsfMwfLvsZ6xTfSlXld7C58vvurlpaysjJ599135eOPPza/MmyxzgEV54DKdJTbV07FOxjvu+8+ue+++yq1b7v9fq674oorZPz48RIKheTrr7+W8ePHS+/evaVnz57SuXNnOeaYY8yvtFb0+59fffXVez2vXXfddbE3r1lZWZKXl7fHYlI0GpUHH3xQSkpKJCUlRf71r39V6W+sLpUpYpuUlCTNmjWTNWvWSDgclrVr1zr+3r5ee7u3t5v1+qvu8VTdVq1aFfv/ysxfycnJsefvUHSovjYAN2NhB6hGFW9NtT4ZXL9+vVx77bWqjee+/L5rzx9VnY8/YMAAefjhh+XZZ5+VgoICKSoqkvHjx8e+apGYmCh9+/aVCy64QE488UT1+7m5uX/ob9htb29capM333wzVr8kGo3K9u3bZdmyZfLuu+/K1KlTZcaMGXL55ZfLm2++aX4CWN3PU8WvCP6+1XpVVBzrlblVum7durH/LygokGg06ljzoqpfHbLqGFx++eVSXFwsw4cPl7KyMsnNzZVvvvkmdtdQamqqnHTSSXLJJZfU2Keglbm7qrpVHC8H+mtg+1LVMfP7PKfORbvta9xUHG/V9Sn6/qrKPlfm67i7851qe+Tl5ckNN9wgixYtqsJe2l+5rerx3FdOdc91xxxzjLzwwgvy0EMPybZt26SsrEymTp0a6zYWFxcnvXr1kkGDBsnpp59uLvT+/g6V3r1773UfWrVqJRkZGbJlyxaJRqOyZMkS6dOnT+zno0ePlpkzZ4rIrq8aHqwC3lV5/e1emNjb668qY1PEHp/VPZ6q276u7ywVn79DzaH62gDcjIUdoJrsvl15N+sTrHvvvTe2qNK0aVP585//LN27d5cjjjhCUlJSJD4+Pnbxc99998U+3agu1f34F1xwgZx66qkyduxY+emnnyQrKyv2qWlJSYlMmDBBJkyYIH379pXnn39+jwuBinVQ2rZtu9cCzBanO6JqM4/HIw0aNJAGDRrIscceK0888YR88MEHsmnTJhk6dKiMHDlSfeJ1OD5P1eXGG2+UCy+8UL755hv55ZdfJCsrK/YVyYKCAhkzZoyMGTNGzjvvPHnooYfE76/eU+Kh3OoW7vTEE0/EFnXq1asnl156qfTu3VuaNWsm6enpe5wDXnnllT06ANW0inPdoEGD9vhaVWVYC7T9+/eX7777TsaPHy9TpkyRuXPnxroLlpeXy7Rp02TatGnyzjvvyEsvvSQNGzbc4/cr/tvj8ZiFuX+vUaNGsceoeBdRfn5+rCNgjx495OKLL67S34fDW1ZWlmRlZVXb9vb3q128NoDah4UdoJosWbJkj7o6v291vmjRolhhyCOOOEJGjx6910Kf1fn1q5p8/Dp16sgll1wil1xyiUSjUVm5cqXMmjVLxo8fLzNmzBARkWnTpsnDDz8sTz31VOz3Kn7iVb9+fVe0Jq9uQ4cOlVmzZsnSpUtl0aJF8s4778h11123R051P08Vt7c/dUbq1KkjW7duFZFdn7Tv6+6Uihdxqamp1doGdm8aNGgQ6yQUiUTk119/lZkzZ8r3338fK5r95ZdfSkZGhtx6660HZJ9+b1+fZFe0rzvVKn6KvX379v3ar+pWcb6pbHH5indx7G2+wr7t3LlTvvvuOxHZ9RocNWrUXr9Cs686campqbExlpubu89F5H3dkVNxburTp4+cffbZe82vrISEBDnnnHPknHPOEZFddTxmzZolkyZNkqlTp0o4HJYFCxbIkCFD5N13393jdysW+PV4PJWat5xyCgoKYl9BmjNnjnTu3LlS+//aa6/F2lw3bdpUvv/++0r93t5U9u6oA/n6q+7xVN32d/7aX9OnT6/2duf7s7BzqL42ADfj40Sgmnz00Uex/09JSVH1S7Kzs2P/P2jQoH1eJFntQPfHgXh8j8cjrVu3lksvvVRGjBghzz77bOxEPnbs2D0uhioWTq1M++tDUSAQ2KM71P/+9z+12FLdz1PFi7H96QZWsQ1tZTrwVMypWMT2QPJ6vdKxY0e58sor5YMPPpAhQ4bEfjZ69OiD9vWcfdWeqGhfNVEq3uVQ2wqMVzzuu+vm7EvFvL11ycG+5eTkxMb4qaeeus+6KEuXLt3rzysez33lVibnQJ0TmjVrJueff768/PLL8tZbb8W+RjRv3jw1l1XsWBaJRGJ3G+zNpk2bYv9f274OuVtlnt/i4uJYAW2fz7fPYsH7q7rHU3WrOP/sbmiwNxWfv0PRofraANyMO3aAapCTkyNjxoyJ/fuyyy5TX6mpyvezlyxZImvXrt3n41b86kg4HN5rO9eaePx9GThwoLzyyiuycuVKiUQisnr16tgnMY0bN5ZWrVrJypUrZceOHfLLL7/Iscceu1+P9/vnww2OP/546d69u8ydO1cKCwvlf//7n9x5552xn1f389S7d+9Yp47Zs2fLhg0bKlX48ve6desmc+bMERGR8ePH77Mz1rhx4/b43drgiiuukFdffVVKSkokLy9PduzYsUcR64rjqSYXfSpe4K5evVratWvnmDt9+vS9buuYY46RlJQUKSwslLVr18rcuXP/cGesinNYdbyejjnmGPH7/RIKhWTZsmWycuXKvRaYXrt2beyNts/n269i36jaOWDbtm377F7XpUuX2F2gP/zwwz47GU2ePHmvPz/uuONk2LBhIrJrvrj11lur/euRv9etWzfp1auXTJs2TUR2FcitWBi3ffv2cuSRR8bOhzNmzNjr12FXrVoVe4Pr8/n2KBqflJRU6a/Szps3L/aY7du3jxUtrlirbH8sWLBANm3atNfOWD/88ENs3mvXrl21ttq2VPd4qm4V569ff/1V1q5du9fFrokTJ1breePmm2+Wm2++udq2t78O1dcG4GbcsQPspyVLlsjtt98uwWBQRHadXK688kqVV/ErEnsrXBmJROTZZ5+t1GNXvFV5X7cG18TjV9XvC4X+5S9/if3/U089VaVONdZXVip+Haiyt0rXBjfddFPs/0ePHh37itNu1fk8NWjQQAYMGCAiu96sP/roo3/o4vOcc86J3Y01bty4vY6pX3/9NfYVEBGR8847r8qPVxPC4fAedXB+3+WjKq+v/VHxAnfChAmOeQUFBfLOO+/sdVt+v18uvPDC2L+feOIJs/BtZVT335+UlLTHAuCLL7641/z//Oc/sfF7yimn8FWs/VTZc4DIrud+X0X7zzrrrNj/f/PNN3t0Dfq9sWPH7tGxzbK7U5XIrkL/w4cP32t+Rfv6CmNlWcWsBw0aFPv/t99+O3aut1Tc52OPPXaP11DdunXl8ccfr9R/FRe/TznllFi84h2e+yMSicirr77q+PNgMCivv/567N9Vre32R1T3eKpuSUlJcsopp8T+vXsR0lJWViZvvPHGgditg+pQfG0AbsbCDvAHbdy4UV544QX5v//7v9inEPHx8fLSSy+Zn4ZW/NR8zJgx8uOPP6qc/Px8ueuuu2TGjBmV+r5yxVuDd3cTcFKdj79hwwa54oorZOzYsY6LDNFoVN5//31ZuXKliOw6cVe81V5E5MILL4x9Orps2TK56qqr9nqLeGlpqYwfP16uuuoq841Jxedjzpw5lVqwWL9+vWRmZsb+q2rHsOpw3HHHxb7rXlpaKiNGjNjj59X9PN1yyy2SmJgoIiI//fST/OMf/5Bt27aZ2youLpbRo0er295bt24tZ5xxhojsWiD5+9//bn695tdff5W//e1vEgqFRETktNNOq/E2tbNnz5bBgwfLlClTHC80Q6GQvPTSS1JUVCQiuz75+31Nh+bNm8fugsvJyamxTmwnn3xy7HHGjh0rEydOVDlbt26VW265ZY9b2Z1cffXVsTuPlixZItdff73jHXjl5eXy3XffyaxZs9TPKr6erJ//Edddd13sTqCJEyfKU089pY5RMBiUZ555JtZhz+/3yw033FAtj38469y5c+wOmJkzZ+7x9eHdysrK5Mknn5Svvvpqn+eg9u3bS79+/URk1zj6+9//bnYA+uWXX+TBBx+s1Dntrrvuiu3jq6++Ks8888xea/1s3LhRRowYITfeeKP62QUXXCCffvrpXhclx48fL7/88ouI7BpnXbp0UTmXX355rDDs0qVL5d5771XnvUgkIsOHD481HPB6vXss2Ne0iuewyrxWPR6PfP755/L666+r82RhYaEMGTIkdu7OyMjY4w18TamJ8SSyaz7c/dzsbTGrMq699trYXP3tt9/KsGHD1PNXUFAgQ4YMkVWrVh2wWnIHixteG8DhhK9iAQ7Gjh0rCxcujP07GAxKQUGBbN++XRYsWCArV67c41PCpk2bymOPPeZYjK5NmzZy0kknyeTJkyUcDsstt9wiffr0kU6dOklycrKsWbNGJk+eLPn5+dKmTRtp1apV7I2Nk379+sm3334rIiIPPfSQzJ49W5o3bx67ME5JSYl90ladjx+NRmXevHkyb948SUhIkMzMTGnbtq3Uq1dPIpGIbNu2TaZNm7bHIsktt9yivp4WCATkpZdekquuuko2bNggixcvlgsvvFA6d+4snTt3lvr160swGJTc3FxZunSpLFiwYK9vrlu0aCEtWrSQ1atXy7Jly+TKK6+UE044YY87eY499li1wFQbDB48OPbm5JNPPpGrr746dpt8dT9PrVu3lkceeUTuueceCYVCMmnSJJk+fboce+yx0rZtW0lKSpK8vDz57bffZM6cOVJWViZvvvmm2s59990nCxculDVr1siWLVvksssuk759+0qnTp3E4/HI4sWL5aeffoot6jRr1kwefPDBGnj29hSNRuWnn36Sn376SVJTUyUzM1OOOuooqVu3rpSXl8uWLVtkypQpscUsj8djFk6Oj4+X3r17y88//yy5ubnyf//3fzJgwABJT0+PXbDvfsOwPxo1aiQXXHCBfPzxxxKJROT222+XE044Ifa1xeXLl8uUKVOkpKREbrjhhn1+Ely/fn159tlnZfDgwVJSUiLz5s2Tc889V3r16iWdOnWKfVVr+fLlMnv2bCksLJRHH31UevXqtcd2TjjhhNjX9kaPHi07d+6Uo48+eo87m8477zxJTk6u9N/arl07GTp0qDzxxBMiIjJy5EiZNGmS9O/fXxo2bCjbt2+XyZMn7zF33HHHHXt8PQZ/zO5C9x988IGIiDz22GPy5ZdfSteuXSU9PV02bNggP/74o2zbtk0aNGggJ510knzyySd73eb9998vl156qezYsUNWrVolF1xwgfTv31/atm0roVBIsrKyYh86XHXVVfLWW2+JiHMR1W7duskDDzwgDz/8sITDYXn33Xfls88+kz59+kjr1q0lOTlZioqKZPPmzbJo0aJYLbiKtcN2W7p0qTz00EPy2GOPyTHHHCPt27eX+vXri9frle3bt8usWbP2qCV3xRVXSL169dR2EhMT5emnn5Ybb7xRysrKZOzYsTJ79mwZMGCANG7cWHJzc2Xq1KmyYsWK2O/cfPPN+1WYtqade+658sMPP8iwYcPkm2++kX79+klaWpps2LBBJk2aFKv15vf75ZFHHjlg3RWrezxVt06dOsmNN94YWyB6/fXX5fvvv5d+/frFXkO7n7/OnTuLz+fb51ca3exQfG0AbsbCDuBg9OjRlcpr2LChDBo0SK699tp9vsF57LHH5MYbb4wtGM2YMSPWOWq3jh07yvPPP1+p7gcDBw6Ujz/+WObMmSNFRUXqE9imTZvucQt1dT2+z+eLveErLS2VWbNmOX5KGB8fL7feeqtccskl5s+bNGkiH330kTz00EOxOxWys7P3KPb8exkZGY5fy7jrrrvktttui10E/r496KOPPlorF3aOP/546dy5s2RnZ0t5ebkMHz5c7r///tjPq/t5OuOMMyQ9PV3uv/9+2bRpk5SWlsrkyZMd6xZYtS7S0tLk3XfflaFDh8rs2bMlHA7LlClTZMqUKSq3e/fu8txzz+2ztkd1qLivBQUFMn36dMfaNKmpqXL//ffHPin+vX/84x8yf/58KS4ulqVLl6o7lwYPHlwttV+GDh0qa9asib0edy9MVXT55ZfLLbfcUqlb/Hv06CHvvvuu3H333bJ8+XIJhULy888/y88//2zmW8e3cePGcu2118rw4cMlGo3KuHHj9qiVJLKrnXRVFnZEdn21MCEhIfa1wg0bNsioUaNUXmJiotx55520vq1GQ4YMkbVr18rUqVNFZNedaL8vot6sWTN5/vnn5Ycfftjn9ho3biwjRoyQv//977J+/XopKytT48Tv98tdd90lrVq1ir0R//3XHis6//zzpWnTpvLggw/K+vXrpbCwUCZOnGjeybabtbCzux6K07lgN5/PJ1dccYXcdtttjtvv0aOHvPLKK3LffffJ5s2bZdu2beYdT/Hx8XL77bfLX//6V8dt1QZNmzaVF154IXZnzu67cypKSkqSRx99VPr27XvA9qsmxlPFD+AqfvX2jxo8eLAEg0H53//+J5FIRFatWqW+Nrb7Ouruu+/e78er7Q611wbgZizsAJWUmJgoKSkpkpqaKi1atJCOHTtKly5dpE+fPnstWlxRWlqavPfee/LJJ5/Id999J8uWLZPS0tLY15QGDhwo5513nrqzxYnf75fhw4fL6NGjZeLEibJ8+XLJz8+P3SFRU4/fuHFjmTRpkkybNk3mzp0rv/76q2zYsEHy8/PF4/FIamqqtGrVSvr06SPnn3/+Xgs0iuyq/fDCCy/Ir7/+Kl9//bXMmTNH1q9fL/n5+eL3+yUtLU1atGghxxxzjPTt21d69uzpeIHWr18/GTVqlHzwwQeSlZUVW7SorhoMNWnw4MEyePBgERH57LPP5JprrpEjjjgi9vPqfJ5Edt299O2338rXX38tkydPlsWLF8vOnTslFApJWlqatGzZUnr06CEDBw50LOhbv359eeutt+THH3+U7777TrKysmKf9tarV086d+4sZ5xxxh61CWpat27dZNy4cfLTTz9JVlaW/Pbbb7Jx40YpKioSr9cr6enpctRRR0nfvn3lvPPO26P2yO917NhRPvnkExk5cqTMmjVLNmzYIMXFxdU+npKSkuT111+XL774Qr7++mv57bffpKSkRBo0aCBdunSRSy65RN1Rsy8dOnSQzz77TMaNGyeTJk2SnJwc2b59uwSDQUlNTZUjjzxSunXrJqeeeqrjJ6i33nqrHHPMMfLll1/KokWLZOfOnX+4Zk9Fuz+JHz16tEybNk3Wrl0r+fn5sf3q27evXHLJJXsUs8b+i4uLk1deeUW+/vpr+eqrr2Tx4sVSVFQk6enp0rx5cxkwYIBccMEFkpKSUqmFHRGRtm3byueffy6jRo2S8ePHy+rVqyUYDEpGRob06tVLLrvsMmnfvv0e9aP2dQdInz595Ouvv5bx48fLlClTJCcnR3bs2CHFxcWSmJgoGRkZctRRR0mPHj2kX79+ZhHbKVOmyPTp02X27NmyePFiWb9+veTl5Uk0GpWUlBRp3ry59OzZU84777xKLfb36dNHvvzyS/niiy9k0qRJsmrVKtmxY4ckJydLs2bN5Pjjj5dLL71UGjVqVKnn7WDr1auXfPLJJ/Lhhx/K5MmTZdOmTRIKhaRx48bSr18/+etf/7rPc3dNqM7xFI1GY3eLeDyefRb5r6xbb71VTjnlFBk1apTMnDlTtm/fLqmpqdKyZUs544wz5MILL4x1WzscHGqvDcCtPDk5ObX/3Q4AAABc64033pCXX35ZRHZ95cbpLk7UjC+++CJ2F+jgwYNrVYelP6Iy42nZsmVy/vnni8iu+m7PP//8Ad1HADiQKJ4MAACAGlXxK5pHH330QdwTHAoqM55mz54d+38KsAM41LGwAwAAgBozZcoUmT9/vojsqhfWsWPHg7xHcLPKjqfdCzsnnXQSBdgBHPJY2AEAAMAf8vTTT++1iPvEiRPln//8Z+zfl112WbUUscWhqTrH05w5c0SEu3UAHB4ongwAAIA/ZOrUqfLee+9JixYtpFu3btK0aVPx+/2ydetW1VK8c+fOcvnllx/EvUVtV53jqbIFwAHgUMDCDgAAOGyNHTtWNm3a9Id/PyUlRS666KJq3CN3Wr16taxevdrx5/369ZOnnnpK/H4uPbFvjCcAqBpmQwAAcNj66KOP9iiyWlVNmzY9rBd2XnzxRZk0aZLMmzdPNmzYIDt27JD8/HxJTEyUhg0bSrdu3eSss86SXr16HexdhQswngDgj6HdOQAAOGxdffXV+72w8/3331fjHgEAAFQNCzsAAAAAAAAuRVsCAAAAAAAAl2JhBwAAAAAAwKVY2AEAAAAAAHApFnYAAAAAAABcioUdAAAAAAAAl2JhBwAAAAAAwKVY2AEAAAAAAHApFnYAAAAAAABcioUdAAAAAAAAl2JhBwAAAAAAwKVY2AEAAAAAAHApFnYAAAAAAABcioUdAAAAAAAAl2JhBwAAAAAAwKVY2AEAAAAAAHApFnYAAAAAAABcioUdAAAAAAAAl2JhBwAAAAAAwKVY2AEAAAAAAHApFnYAAAAAAABcioUdAAAAAAAAl2JhBwAAAAAAwKVY2AEAAAAAAHApFnYAAAAAAABcioUdAAAAAAAAl2JhBwAAAAAAwKVY2AEAAAAAAHApFnYAAAAAAABcioUdAAAAAAAAl2JhBwAAAAAAwKVY2AEAAAAAAHApFnYAAAAAAABcioUdAAAAAAAAl2JhBwAAAAAAwKVY2AEAAAAAAHApFnYAAAAAAABcioUdAAAAAAAAl2JhBwAAAAAAwKVY2AEAAAAAAHApFnYAAAAAAABcyn+wdwAAAAAAAMBJZmZmpXNzcnJqcE9qJ+7YAQAAAAAAcCkWdgAAAAAAAFyKhR0AAAAAAACXYmEHAAAAAADApVjYAQAAAAAAcCm6YgEAAAAAgIOuR48eZnz2k71VrOfdM2t6d1yDO3YAAAAAAABcioUdAAAAAAAAl2JhBwAAAAAAwKVY2AEAAAAAAHApiicDAFBLdb20r4r97fYBZu4PE6eq2Af/+qHa9wkAgIoyMzNVzOOQGzViOTk51bo/cI9uvbqp2KIXTjBzQ+GgiiUl+Kp9n9yKO3YAAAAAAABcioUdAAAAAAAAl2JhBwAAAAAAwKVY2AEAAAAAAHApFnYAAAAAAABciq5YgIhkdtbV/KtUzt+RsZGovQGrI0Bno8uAiEg23QOAWq//P88w4z3PbKZi6ZtKzdxmLXXulJ8mmbmZp/RXseemXW7m+qONVGxTecjMfeKUF8w4Drwxf1qrYh6Hj+jKgvpcE3U4r0XDOjcpwd5wNKxjZ397pL1hAK5ldboK+O23jueed66KeZzmm0jlHssJHbTcqXvPLmb849vbqlh8vL2NUJHuihUWY0AdprhjBwAAAAAAwKVY2AEAAAAAAHApFnYAAAAAAABcioUdAAAAAAAAl/Lk5ORUqRRsbXbStbNVzO8J2MnGXx1yqL3k9xoFCB32wSpiGAnbG570ZneHraCmOBZnMwq8eRwqUkYjxvF0KrRsrZ1aVeOqiMJxtcPAW3Qh05A1PkTMScPns3PDYT1uPB571vH7dG4wbFQ3FZGJr7ay9w377e8TrlOxI+J8Zm5os1GotqldkDKlpT6+iz+JM3PbX1SuYmvW1jdzty79TcXSWzQxczMieh/uPOlZMxfV49PTVpnxpCR97EvK7bkhahTq9zicrKLGBNX7T+3M3IU/rFSxgsIiM/fi8a3NOIDaw+na+JxzzlExj0NFZKswu8epWrsx3zgVWvYY1zhffPaFmcu1ce3Ro3c3FXv/ZvsatOOR9VQsKTnBzC0uKlGxLnfOMnMDAT2oZs2Yb+YeKrhjBwAAAAAAwKVY2AEAAAAAAHApFnYAAAAAAABcioUdAAAAAAAAl2JhBwAAAAAAwKVc2RXrpGvmmvFIQgsVi/faa1flJaU6NynZzA2L7lzjM7pNiIhEorobjc+faO9Dge5K8sObuoo4/hiryr/TSqZdzd/OrVJPK2O7RpO1Xftg/bpDl4BIFV61dAnYf6f9fY0ZD6S0UbFwyD44aQm6Q1JR1B6RRhMIKSkO2vvgNQZJnL3dsu1LVGziay3NXNhumXCtGW/o08c312t3r/rtO318Wl6dZuYW5zdTsUZNt5q5kdIjVCwvuMLMjRbqDljzP9edJUVEeg2oo2LNPXbHr7tOfs6Mw9mnp65SsZTEeDO3KFSmYoGIw4nC6MAYtSYXEYmWh1TM57c7tXUeeJSK/frjejP3tC8b2fuGA+rMh/R5qSzfvpppZnTzC/vtDrNenx57q/N01xoREZ9x8RPfWI87EZGxd9kdcbD/rGvj8wcNMnO9RkfEkMOVdMA4JUQd3oN5jSvpMvsSx340rz1uvvjiCxXjGrhm9e7d1YyvHXO/ipWW2MfNOsgFKyeaqZGw3kZa64FmbsBvXGtd8piZO3P6odEtizt2AAAAAAAAXIqFHQAAAAAAAJdiYQcAAAAAAMClWNgBAAAAAABwqVpfPPmUa3Wh5Pg6umCpiIhHdKG/UMQu1BQ1Cj96yu3KXXFJSSpWVlZs5opPF5gLhxyKnoZWq9j3/+1ibxeOrEJwImIuW3bpYBcznb+oXAcd6lFaRZWdXkReowhhpFwX2HZ8OLs+qXRtrwtrvvuRXfgUVXPqzatULC6to5kbCesCgOVGTETMQqZJAXttPRjWIyrqUEk7ZDxewKpiKCLluYtV7IfXdSFU7PLoDzeq2GajcJ+IyLRxy1Xs1cdPM3NfW5CvYuVFre2d8C7TuQV2bpNWuqjy+jUZZm5Cki6qHClvZ+b+Xz9dPHzqZP03iIhEIno8Pn/qS2Yudvnk1JU6mGAXT44L63kg6lDSvzSsz2txDkWvQ6n6vOQtsOenkHGMvVYRdxGRiN5uJOJwYjNcOrFlpXMh8qe7dGMQEZFQ/DEqFhewi2OXGlVs2yTYYyE3qK95t0Xs4sle44LG47PHbiB+gYp9fa++Foczp2vj8849V8XiHK5FSsr0tYjHa1/DRowi7h6H2wdCQX0e9frs8WhtIuJw1Z1gXHN/9tmXZi5Flasus6seUyu/eMLMjffr8VCniW4GISKyY50uvh+O2NcYwdUbVcxzhH1NFB+n5yeH3kfS4px/qpgbxwh37AAAAAAAALgUCzsAAAAAAAAuxcIOAAAAAACAS7GwAwAAAAAA4FIs7AAAAAAAALiUXYL8Dzj9Nl29Oligu3mIiMSl6s4boUI7N1j4q4r5ktubuRFjGwUlRrcjEfEaS1rxfrtTQ0LK0Trm0LGitERXiw8VGB0vRGTb3GuM6DwzF86cqpZbHQHmL7bHg1W5P8Fnr3uWhXRJ9Q7N65u5bVoeqWKdjkw0c9/7LlvFNuaXmblZDn/H4eSMuxJULJS/xMwNpOk5I1Sg5xYREU+RPg7RtA5mbkmu7tyREK+r8IuIeIx2asGgQ3eYJN35zxOxS/nHJ+htlO/U3a9ERLb/fIERnW/vAyQpIUXFkh26YnU6/QQV++Rnu3tivRTdGaJJvS1mbu7OtioW32SdmVu4ubGKdW2gu02IiBRFdZccbyP79fPJLN25JtNjz0HfTjJeV6eaqfh/4uL0uSYYcuiYZ7T0KHHo6JngMbp0Okw5/kLdMTIYtrcrHn3paHUIFBFJMrrU+B2634SNx/t04Coz98LvW9r7dhg57t5CFWuY0s3MTYzTx7fc6G4mIpIS0ONmqd1sS9Lq6HHqz7e7j/ri9Nj1Ru1ualsLHMYeTJmd9fXueefp7lciImJ02Aw6PN3jx32lYlGjM5+ISNSn3xf5ffZ1S5nRFauOP9nMLZA8FTvr9EFmrtUldNAgO9d6znKy3dcF6UCqZ1zeJsfbxzi9me5UtXWNfW0qxnVVUsB+n+1pp7frdTj/lHp0h76A1z7/NHTo/Oc2h8ZfAQAAAAAAcBhiYQcAAAAAAMClWNgBAAAAAABwKRZ2AAAAAAAAXKraiiePe7GOig28TRdJFhEJFi1XsWiRXcg0d9ETKvbGn+ziVtPmGkWK4+2Kbw1SdFGmaEKSmTtqpq78mBCyC0fGR3T8lj/NNXPvn2sXnELVWAXQnCQn2cXZLhzQRcUWrdMFwUVEbr/wRBXLLbLH2catm1XsT/2PM3N79eitYk+PHGfmzpmrC5A5PQ+HajG4sU/r5/xP/7TnnFCBLgobLtCFj0VEtmfdp2I/37zJzD2ySZqK5ZfaxXULg/r1Xi/enoIvH64LQ7euaxfS9vr1+vwtF/9s5vb6iTnHcsqjV5nxooiuFHjSGU3N3PSAPu5F0sTM7dpI567fYX/OckVLPcbyilPN3DrJen7bFrL3N9JV/20Tf+po5vrr/6hiWwvtIuHHD9SFxu+efLOZ++RJr5rxw83jG85WsTcfvcHMDXh0kchgWM8XIiK+OKPIcVQXkxQRCUT0/BIR+5rIG9XbLY7Y27354REqNm2uLlB/KDv/pRYqVl661MxNSOukYjvW2k01QvlZKlYS193MLVwzS8XK4uxxU8d4acfH2YVMk4qaq5gvyS6enB/Uc1xx7kIzt3hqPyNKoX9H5qndLnIcMRox5OTY78GyPn1ZxVq31+NZRKTMKMa9btlqM3fRBt1YoHmremZu2Ciq/PCz75m5kXK9D8nJ9jxmP2fYm6hRo7gor8DMLStboWKegH0sfAl60gkFHZofBYtUrNCfbuaWl+qq4HERXXReRMRrFBV3I+7YAQAAAAAAcCkWdgAAAAAAAFyKhR0AAAAAAACXYmEHAAAAAADApVjYAQAAAAAAcKlq64pl8tglxyOFuqPP5A//bOZmZj6mYl/+pLtqiYikGx1mUurbVdZzC3Wl7OJyHRMR6d3uW71dMUqDi4h4fCq0fkeimRp12gaqpCpdn3p3192vRESWbdIdQa68ZKCZm56kj/FOXeBfRERW7tS5KzbaFeS3luvxe8GpugOXiMicObrLU05O5TuN1E2va8Z35u6s9DZqo6hDF4iQ0QFr0nvnmLmZmfeqWNs2rc3cukYXvLKAXcm/kVePhYDXnnPG3TlNbzdozxclXr0+Xz/OnvcCh0bR/2oXDtndYc47o7GKbSmzX78ZyWEVi/fY56rMFS1V7Kk+Z5i5iXX1cd+8RneFEBFZvVxPRCd0sLtixZXrLhT9W9mf9Txb2lDFNoTsffAYnxeNfW2ymfvkSWb4sFOsh46s32bPDS++q69HNuXaXRmjYWMbehoSEZHn/nGRig0Z9r6ZGyzRO5ycaE8uRfafcVj5/FbdGejCN3T3KxGRbUYHLG+RfW6fNUxfH/Tuo7voiYi8cU0vFUsL2ef7nNXbVaxewzZm7vOzh6pYg7I1Zm7D8lwVu+6kL83cK40ukqiaqMNTOOarr1SsjkNHoL5/vkfFSoxukSIifq8+V3k8dpfQcMjINa5lRERCxuMlOexvcVmeinXp2cPMRdXtLNfPe9RrXz/FhfV5qSTOvo6tE7Y76Vn8UX3+iRP7eqQoQV+Pp3rspY/txt/mRtyxAwAAAAAA4FIs7AAAAAAAALgUCzsAAAAAAAAuxcIOAAAAAACAS9Vo8WSnwl1OhZIr6/sZi8x4s4b1VWz9jlwz16rzF4nYOxyO6mJP5Q51j6PGMxpwKPJVs5WrYfHH2ZUjbzy7j4rVT9JF2ERE6oseJw3aNDNzuzbXsTK/PR7SCnNVLCHJHpPJ/v0bPaVBu8Cv20UdJh2nQsmVVSdgVwDdVqLj87//wswtMw57v1POMnP9Xn18E5PsIuyTxoxWsbBDEWmJspZvOeOslmY8GtTFRcsL7YKjwfhUFVvx3kIz98Ehp6nY1nVbzdy6m/WY9vrtAqkd2uki8FGPLoQqIpK7UBcbbO6zx838ictUrGEruyizxzjfHXvOMWYunN37yidmvKysRMXuXjTXzE0zCpfee/RxZu6Q50eqWDhsn2eGLpqhH0vsOfL+Tr3N+OEuN0+/VkVEIgXzVezHF06o9HbDQbuQ9o6d+visNop2i4gkpqSo2NqtuWbuBR0eUDFvnF1MNRDV+7axyL4WSa7vUOX7MJeZmWnGzz33PBUrL7PHgjXLz/72aTO356U6Hk639y0Qp68vQpvt6+iiRd+o2NplS83chz8dp2LHpNjnqntfHK9iJeX2GDvPeM46d+5s5mZnV745yaHMejtbN11f+4iIeMN6jpsy9kMz12p8cvJpuqC/iEiBPgVKXMCeL6aN/14/lse+DvaGD42C7VzlAwAAAAAAuBQLOwAAAAAAAC7Fwg4AAAAAAIBLsbADAAAAAADgUizsAAAAAAAAuFSNNmYa96JdKdviVOm90xG601WbVg3tjUQCKrRqut0RJGRU9u7VuomZ27e97hCwtTzZzB05IUvFPF670rbuV4HqdOMlA1XsydvPNXOPaaGP57gx081cv193l7joarvTW8HGOBUrchgPOTNy9GNFC8zc0ohDO4tKig/o/RIRKRHdKcdNxj5d+W5fTnPO1olPqVhxyKFjnug556KXdFcTEZFVH1yjYr5AvJlbajycL6AfS0Tksv9kqdjCj64zc/2icyFyT++7zfgtE65VsQSffV6b9s+ZKvb1mzeauW0b6m1MeH+imVtanKtif/r7ZWbuTqNhV2LE7h6ydtocFVtUpB9LRCToN+Ybhw50UaOL5BtX6o5LhyOnOWfU3br7R90mjc3cs24bpmLe+q3N3OISff2T4LPnkZH3X6JiVz/8hZkbV+8oFSso2GLmOvTnO+zF7zRau4jIxCp0wDru+F4qdttZdlefjZvWqVi43O6aVBSn9y0x40gzd8NWvY2GKfZ2d27T47E4we4OVhzhCrlq9Hw8brzuJiUisvKrZ1QsKaWBmeszPv8PFdjvq8qb6TawDevaY2FhSF+DlufZue+M0p2NHr5fn5tFROJEd0damG1fk7Vq3kLFnDqrHm6czlW53z+hYv4i+31KmehrgStfXWLmzv3vhSoWDdrHotRYukjw2F2xrnslS8V++Z8+14mIREVfw7kRd+wAAAAAAAC4FAs7AAAAAAAALsXCDgAAAAAAgEuxsAMAAAAAAOBSNVo8uTr0aa0LF5c5FINMSjHifjvXG9Xx/sfUM3MjIV0st5HeLRERadMsXcXWbci1k1GjdhbrAoBxKfaBKwzp4qBPjltm5j7+9wtUbPUKu3BkwyRdzDdYYheIe+rbBSp2z41nmrnlkUVmvLK8XkpaOlb1jOjXe7nHLpZe7tHjZuOPz5u5yWX6uO8I2QU0vZ5EFQsH7aKn8z5/WMUapzkVx6YgZVXU26Rfv/n17cLlAY8uFGgVnhQR2b6zUMUu/u+XZu6kZ29WsdwdO8zc8jI9njyJ9px33qtf68d65iYzN/KOnpvkqGZmbr1N+vWDvWt8pC6UvGNHnplb1zie/25Wx8z1hXRx9qYOc4PXoyfEeL9d2Pbbfker2OKlm81cSpHavv33tv3ehiein92MOH3uEBHxpuriokO+t5slvH6JLo5dVpJv5m6O6DkyI9EeY4/P0PPeiMv0Y4mIRCcsNONwYLx+nSQnJajYjny7IPKin15RsePOvd3MDecXq9iEkcPN3PWb9PVQx/Z24e/HrrtcxY5pp+cgEZGCiJ6zHJ8ZLoOrzHo/nG+fJsSTqMfZrM/vNXNTyvXBKCyzryWs3jFBh0vb7LGPqlig0N5u0Cj27EbcsQMAAAAAAOBSLOwAAAAAAAC4FAs7AAAAAAAALsXCDgAAAAAAgEuxsAMAAAAAAOBSnpycnAPetCAzM1PFor+2NXMDRy9VscH9Wpq5xWX6TynRjQBERCTVp9e0QkZnJBERr7H8FTW6aomIlHr0AyY6PMPDp6xQsZycHDsZVXbW6V1VbMM2u+p59rt3qFhhwC6znmBUb4+P2gc5YvQE8frsQbktWKBiSVG7u0TPK15VsawqjJ20tHQznpeXW+ltuJ01DznZOel+Mx7w6E56hWG7RYDfWEePeO1xk2LEi0vsSv6BOqkq5rMmLRFJO+42FcvKyTZzIXLzO39RsSPq2XP/pi/1fP5rnn1OWfyi7gyxudSeFxrG6Tkr7DBufEafy7BDF8m8Et1lrWGyvb/NL39Qxdpl2t1s0jLrqth/rnzDzD2UVeU6x9NeX+d8/u8bzFy/Vx+jIo99nkgxuuAZjZR27UNAj4eo0SFQRCTfuNZK8di559/3joplc51TJU7nqntu1K+1Z9+0u1fdcFITFWtVt4GZGxbdsWhDgd1BKxI2rnEceqE1q5OhYqUeuzPk/R8vUbHD7frYOu7nnXeemfvll7qrolP3Uys87iN7jm56dHMVKwjobnsiIs3iddxTbF+LlKfpeCDBnsd+Na5LM1PtfchocJwZt4SNyXDgwIFm7vfff69ih/J4rMr18brPHjHj8XH6gsRbbl9jWB1bvX57PHhCle/umuTV+xAK2K+Lhmfp67L5LjzG3LEDAAAAAADgUizsAAAAAAAAuBQLOwAAAAAAAC7Fwg4AAAAAAIBLGaUWa55VcMrTvvKFmuIS7MJsXr9RuDhiF8sVo7hbnFFQWUTkfxNWVXbX5JoBLVXM52f97GD4ZlyWinXvYo+zogJdLNBj19cSo26kFDtUpAyaG7GLhyV4dTG4oMPwdRrVleX0tx1OnArfZXbWY2TK+B/M3OPO0IX2PA6FI8PGcx7ntwsANjnJLtZs+W3CA3ofHI5v2GHfYHv1yg9U7Lrhl5q58cd2UrEd384yc4PGcagXbxfdtmaLQMA+dUfD+hzodyjsXieuWMXKjMLwIiKlPl2sMLFDHTP3cCyUbNnf65ygQ+Fij+hjnBC1c0NW8X6HwurnDtEF+Z18/u9rjf3SxZdFrCstVJXjucoocOo097dqmKBi0VCemWuNkCPS7UKm5SHrCNtH3ePJVbEErkUOOOtytWDlHDN3Z2pjFQtH9fWyiMhy0QczFLSvd08+5/y97OGepo79SsV0ae2q8zkUl0bV5hyHqV9C5fq6Ic5nP+eJxnKE1XxGRKTZpY8bUXu76z/T19KhEntM7u/7qtqCFQcAAAAAAACXYmEHAAAAAADApVjYAQAAAAAAcCkWdgAAAAAAAFyKhR0AAAAAAACXOihdsSxVqcDtdSj77/HozhAhqxWNiMT5jT/doUD69ae3VLGo0Zli1w90FW+//1Cpte1+UYdDYXWfKi4sMXNTku1ORpYTb3pNxX5+Y7CZGzK6S0S9drn5/a3ln5ubu59bOMxE7Wd8+vdjVez0s+1uD0HHDn3aivG605Xf7zAWPHp9ftqEMZV+LFTNiOs/MuN/G6E7BZ3Rv6OZ6/XrDjNlZXZXrNQkfdydOg01PO1eFds67jEz1x+n57HyiH1eO/OMDio25tuF9k5c57BzqJbrnJJyPU6iUfu4JcUZnUYcOjh+9bg+cGGngWbEg2J35kLNscaT2bVGRCIR3QmmLGp/tptktKpyuua4d/RKFXvqstZmrjWkw46DDAdSOGS/fvMXf6Nic6ZNNXMbtj5aBx0GzjM3nqViaenJZu6SySNVLLBzkb3h/ZSQoLvHYe/KHdr3eo2DXxq2lx2SA5V/V/Pr6IdULMmh+7TVWSsUd2jPOdyxAwAAAAAA4FIs7AAAAAAAALgUCzsAAAAAAAAuxcIOAAAAAACAS9Wa4slV4VBTUPwBXUCwToJd6HZ7sS72FB/VxeV2sda/7OJLpV79lCaEKSpY20WMl0Jcol1ErUmajm/OLzJzZ/73BuPB7HF2xX2jVcyXVsfMtUqVORVNNF8uDq+h7Gy7uOdhxXhpO805Ab/+wex588zcXsf20NsN2QVz4wPW1GzPOZt3blOxzGPam7nisYseYv+9ct3/VKzn+fZrMvpnHQsY5y8RkZKgHmNer/2ZzPpxT6lYuZkpEowkqlg4XGrmfvPNYhXL+p65oib5jLlFRMTn1ePEaxRQFxHJKy5WsdQk+7wWqsK+RaJ6VHnj9HhC7eEz5owkh/NaUZkeY04lZR+/sK2KhRwmnS2RdB0MOM1QqAqvd/9aaqxbMt2MJ8XpcVM/2Z4tQhtnqFg4Yh9fazyV2ZfRUlCms5N89t+bnqSvnXKLKz+7OTUxgDO/z15K8HqMdyoO74eDhZtUrCxS+SWKQod4aqLeRkpqPTt5f7vS1BLcsQMAAAAAAOBSLOwAAAAAAAC4FAs7AAAAAAAALsXCDgAAAAAAgEuxsAMAAAAAAOBSruyKVR62d9vjMSqfG90bREQCRqX2Vyeur/Q+OD1xV5/WRsUSk+zOXB6HThaoOX6/3XmmLKQ7DiX47aO8ZL3uQpT+kt29qrRMd5nJ9tr1239ckKVivjqNzNy8TRtVLC7e/tsszR4714x7jM5aOTmHV/cbr9ECK6FBczN3+4blKubZvNbMXbP2CBXresUz9j4YU0OcQ/OQOaP/oWJzs38zcxMCTr1NUDPsNguhkO4W4fc5nA88em66/0LdgWvXo+ncsqjdTe2xL29TMZ8EzNz4gH0OQ82JOByLaEhf50R9dqfFxumpKnb6g6/bD1igQwn610VE5ON/XalipYV2Sxunjik4sALeJBULRnTXNBGROkYnpMdG6nOdiEjAF6dihQ7X6DddogdUp/r2tROqJhKx53lLvRQ9t5SX2BcY9eroDkJlYneOCoX1uBn85upK75eTt27uomLJiXYXPo9vg455K//cBBz7SMKZff4JG/OA32cfi+KwvjbNvOkFM9dqAOd1aGr969u3qFhc1J6frI6TbsTKAgAAAAAAgEuxsAMAAAAAAOBSLOwAAAAAAAC4FAs7AAAAAAAALuXKqnZFRXbBt8QEXVEp4lCgOBDQf/qNJze1H9Ao1GTULxQRkaBRF2rpmu1mbjSqC2iiZs2al2XGu3furmKTX7/JzA1H9IDIvS3P4RF1bnuPLjYoItK9nS5cvL4w32G7lXqoXSpfN+6wK5RsiRjFZrtntjNz5xRtUrGAQxHreim6AO3MN3QBWxERr884mMESMzfOr8fTqvVGJVQRKS3XxbxRc2Z/nm3Gmw8yXuuvP2nmBvx6LDw8WhevFRHxGFUFi8vsk1VZua422P2me8zcn7+ebcZRc8pL7SKevgSjkHUoaOYGjUM/7uEbzVyrxnZp0N5uRPS1S9jhvBYKO1wsoUY4ncM7d9ZzztMXH2XmxifqeeT+v7Y2c63Li6Wb7ELaZca5avDwaWYu1yL2c5BpNLgQETnvvPNU7MsvvzRzw0ah5e0Ol7Dx8foaNDHBvqgMBJJV7PVrOpm5UWPkxAXsi9iiIn0907W93dAibLw5Czm8YRs4cKCKjRn7vZnLeHTm8dnNFXx+fZ6IOBQ53pmnC3LnvDHETjZOVl6jyYSISLzRg6BOuh6nIiLhsMPOuQx37AAAAAAAALgUCzsAAAAAAAAuxcIOAAAAAACAS7GwAwAAAAAA4FIs7AAAAAAAALiUK7tipSTa61HFpboCd5xdrFt8HqNad5nddcbitCKWaFR1f3veVjOXKuu1Ryiqq+Y7FFmXc+4eqWLfv3C1mesxKv9HHdpX7QjpLiiMkQPPOjqJCXZ3mJ7H91exmTN+NHNnTP9Zxer6HKrwe4y9sNrWiMivi3T8H/+bZ+YynmqH6Ep9fIscule1Pv1fKrZ5nN1ByxojSfF2t6KM025XsexsxkdtUc/oTCQisrVYz0UJcQ7dZIwuH0keu9uWNbv4rO58IlIcSVCxPz/wupnLnFM7WKePkrB9TrnrvUUq9sJfOpq5HuNquF3jFDP39pHTVSyb8XHAWa/qlg7dtlZmL1Cxo1oarYZEZM3WbSrWonGGvQ+Vv8SReK/+wSn3fmcnGwYZHcNE7K5hzFdVF+/Qerc0rA+yddxFRBoc0UTFwmU7zNyo0dUtYnQEFREJxevx5+l9q5l7qBx77tgBAAAAAABwKRZ2AAAAAAAAXIqFHQAAAAAAAJdiYQcAAAAAAMClXFk8ObfIXo9KDOiiguXldu7wyetU7M8nNN6/HROR4RPXq9ihUpDp0GYUOY7YhW0nvHKjip1886v7vQeMk9rBKgNXUG4XC0zw6jHS5/hTzNwGA+5XsU/vOKZK+2a54NlsFWMs1W5RY5QlGIX3RUQ2fPOYijU89e793gfGSO2W63DtEucvU7FgqX0pd9kjb6qY36HIZFWEjOKVjCf3iXMojv3UJW1V7LaRi/f78Rgj+8/pOcw0ih+fV4WiweN/3mLm9misX+urNtrXxu/+vFnFiko2mrlV4VBT2XT2OfpvHvnhp2Yuhburh9ehIYzHKHodDtvntbYXPKBzI3ZDif11qM9D3LEDAAAAAADgUizsAAAAAAAAuBQLOwAAAAAAAC7Fwg4AAAAAAIBLsbADAAAAAADgUq7sipUab69H5ZfGq5hPSs1cq8r6hz9tMnOPqK+3u3a77kwhcuhX2z5UWeOhPGqPM49HdwT44bXBZu4pN7+mYtnZjBG3SQzYXSBKg3qMJPrKHbaiOwdc+PxCM7NHq2QVm7U838xlznEfqwFWcpzPzC0o0d0eN333qJnb+EzdeY3x4U4NM44044Uh3SkkHHaac7R583UXPRz6/D49v6Qk2LmFxnB6+jLdKUtE5K5RS1WMOcd9/vyXC8z4B++/r2KByCozd+02PXDSk+23mVHjovucc881c6vSx8/qgEX3q5oV8kTMeGpAv3feUVb5HmfMI38Md+wAAAAAAAC4FAs7AAAAAAAALsXCDgAAAAAAgEuxsAMAAAAAAOBSriye7PXbpbTSU6zikyn2NmSLimVRqAkVxIldECzqD1R6G1aBOLiP12ENPMmYi0L+xEpvd/78rD+6S3Axa2YJR3RRXBGR5IQ4HWReOeQVbl9v/8C4/PE5nGiqUnQUhzhjMJTYU45EI7pZgN0+AIeKxGT7vdK1N9ygc+s3MXNHnzNIxfKK7EF27nnnqdjIDz/byx5WDgV3D7xoyJ4dSsJFKpYQdLh44WRVbbhjBwAAAAAAwKVY2AEAAAAAAHApFnYAAAAAAABcioUdAAAAAAAAl2JhBwAAAAAAwKU8OTk59NcAAAAAAABwIe7YAQAAAAAAcCkWdgAAAAAAAFyKhR0AAAAAAACXYmEHAAAAAADApVjYAQAAAAAAcCkWdgAAAAAAAFyKhR0AAAAAAACXYmEHAAAAAADApVjYAQAAAAAAcCkWdgAAAAAAAFyKhR0AAAAAAACXYmEHAAAAAADApVjYAQAAAAAAcCkWdgAAAAAAAFyKhR0AAAAAAACX8h/sHXCDzMzMSufm5OTU4J4AAAD8MU7XM1y7AABqC85Vfwx37AAAAAAAALgUCzsAAAAAAAAuxcIOAAAAAACAS7GwAwAAAAAA4FIs7AAAAAAAALiUJycnJ3qwd6K26NWrlxkvLS2t9Dao1g0AAA42q6tIQkKCmVs3MaJi46bMqfZ9AgCgIutcFR8fb+amJ+hliwk/ca7ajTt2AAAAAAAAXIqFHQAAAAAAAJdiYQcAAAAAAMClWNgBAAAAAABwKf/B3oGDpWu3LjoYDThke1Qk4NcxAACA2sAf0J/dNUq3C1KGystqencAAFAS4vRyRMP0RDM3FKx8Q6PDEXfsAAAAAAAAuBQLOwAAAAAAAC7Fwg4AAAAAAIBLsbADAAAAAADgUizsAAAAAAAAuNQh3xWra9dMMx4O665WXn+00tuNRCN/eJ8AAABqUoMU3QHL4/Bxnsfnq+G9AQBAq5Osu1J7fHb3aU+Yc9XecMcOAAAAAACAS7GwAwAAAAAA4FIs7AAAAAAAALgUCzsAAAAAAAAu5cnJyal8xeBarnfv7ipWUhKyk42aTD6vXZApHA5X6vdFRBLi9VrZrFlZdjJqjW7duqhYJOxQINs49ikee+x4jdzckDGexC5qmT0/x94H1Fqdu+ixJCIiPj2eUj26uKmIiN+vc3eUOUzVYT3H5eQwbmqzLl2t+aYKp2K/wwkoZGzDIdVj/CA7e37l9wEHRfee+jqnXpJ9/gn49EklNSXOzC0oKlexDTt0TETE59ePN3f2bDMX7pOckqRiEbHnp5BxiR11yi0tVbHE5EQzt6SoZC97iIPp3dOyK51bYlyfiIgEjGLtfoeTlccIh4P2dq/6Qc+PODh69+mhYilx9v0kAb+O10m2c/OL9PXxptygmRsX0INn1sw5Zu6hgjt2AAAAAAAAXIqFHQAAAAAAAJdiYQcAAAAAAMClWNgBAAAAAABwKRZ2AAAAAAAAXMp/sHfgjzi2Z1czPvGVf6lYfGKymbtg1W8q9upr35i5Ho+uzv/KE/eaudGortR+bO+uZu4vM7PMOGpOZtfOZvy6kzqqWP2A3dlhxaotKpYYb7+UwlG9dtqyWbqZWx7Sld67dMs0c+fPo+tRbfDy6fr4DOtsd3boWE/PRTsKy8zccCRBxUqkyMwtKNddbjIz7XFDt6wDK7OzfRxSA7ojiMdX+Y4gUacGWkYHCKeuWNYPnPY3J5txc6B16dbNjF8/oJOKxXvsToszft2oYg1S9dwiIhIyOmtd2LOVmRs1uq916W7v7/y588w4akZSsn3NW1ykzx9NGzc0c9OMbjQbt+SbufF+PfbiEuuYuf50vW8bNm03c1E7vH7SXBWLMzpaiYhEQvqc4gvb9w9YXdbCdpNQOfqk1iq24IdlZu7bJ+v9pVNWzXKa+0c+d5OKxXvsbsNvfKs7rSWGis3csmI9lw27bICZGwwa76t6OJyr5hwa5yru2AEAAAAAAHApFnYAAAAAAABcioUdAAAAAAAAl2JhBwAAAAAAwKU8OTk5TmUYawWrCOinr99n5rapn65idZsfbeZuXjlfxTYWlJu5Lz/zkhGz96GwRG8jPs4uNJZ5/p0qRnHT6pPZRY+dv5/YzsxNFF3ENi7JLkJYWqSLCOblBc3cBg3rqVg0YhfBDYZ0EUKf1157febHtSqWTYHTGjP83B5m/OQjdbFATzRg5sYn6ViL1FQzd+XanSoWSE80c8Oix140ahfzvmhKnorNmKWL1qHqrHNVqlXMWET8xjnhslOPM3NLigtV7NMf7SJ/cV7j8bz2+eecvnp/x/y8wMzdVqjHGOeq6mONnfvOtgtZb9y2WcVatznKzF29dKmKbSiyx0OjjDQVSxbdDEJEpLRQnwPjkuy57JXJK1WMsVNzGhzZwoxvX6sbhqSm2GMhHNXzSKMy+1pk+po1Ktb4iKZmbnqqfrxQ2C78XVikz6NVKQyNqnn/DPs1GTQKpRvDQ0REQuV6vgj7Hd5iRvRG/HZdXbNZwDGntDRzl09bpWJ/HU/x5OpinaumjRhq5q7etEnFWrSzG9gsXTBHxbI32HNDo4b6+rZTRl0zd/tOXZy9Tmq6mXvBnW+omBvPVdyxAwAAAAAA4FIs7AAAAAAAALgUCzsAAAAAAAAuxcIOAAAAAACAS7GwAwAAAAAA4FJ265RaJMNoBHN88zpmbt12XVVs5YJfzNx6Ud3lo0E9o22NiLz5lO5eVeopMXMb6MYS4tR2rFky62o1qZnVRMhjV1kP+VNULD+3wMz1x+sNe1PsY1kc1l3SSoL2iEgMx+vfN8apiEinNMZOTXnkXF31v0e83elq6U4dP6q5HksiIlt36GO2qajUzC0M67nIv1N3bhMRSY3Tndc2FOwwc+/plKBiVpcDEXd2AziY4o0GM07dQy4xOmAVldstQSJGY6JzjrO7PX4/W3dBOqtPezM36NHzzZ9O7GXmfjJhuhlH9ainD4XsLNId7EREGjdurGKb1qw2cxPr6wuSlsl298+o14hH7DEZn6LnuEDU7qB1ZKo9d6LynLpBBbz6+KxevNDMTTYGWW6guf2AxnXL6h1LzNQi0dtdt013ohERyUvW55pGde1ujwXrJhhRu6tpUrI+XxYXFZu5sFndr0TsjlQJ+jJiV67EGUH7JFgc0te2/nh7HwJ+PUYWTdGdYUVEfFF9In53gO6CLCISDOo5y+fQyfKqiXTWEhGJN1YNlm6yX+/1GrRSseysufZ2U/Uc16W1fU6J9+nxkJ9vv949YuQW2tfdSXG1fkmkUnh3CAAAAAAA4FIs7AAAAAAAALgUCzsAAAAAAAAuxcIOAAAAAACAS9X+SkFG4a3ckL3bJb8tVrH8PLsQVnlEF3xrmG4XZd4Z1YXkIvn2dn1GpbGiqF301OthXa0m+Tz6GPnFLp68vUAf41SH4xMN6YKFXp89JktL9eOlJdjFJMujOjfeZ1RkFRG/j7FTUxIC+vi0aWgUBRSRxAb1Vcxfahe83mAUIs1sZm83Pa2RihXk7jRzV23Vhdy7HWkXcF5cYBV9twvBY//Vq5NuxiPlhSq2Ndc+TyT49BhJT7LHTeOmTVXMG7Vzg0aB1B0ORQU9TlWgUS28xrnKG7Hn/sIiPb+UGtczIiKhXH2eSHSofOoLGsfeaxe2jRg1TouM85eIiDjFUWnFRUVmvG6aLjialmSffwqKdCHSpg3tQtqzv31DxZp36m9vt1SPvUbJ9jGP8+t9Kyuxc/1+fR5ONIokizg3KEHllZfbhWobGdcSW3bY41GM4rNxifbRadpSn6vWbLW369mhr1ECPvs6Olyg57GwwwDxevX86DRdvXWyLvp79Q+HYUFlo56+16qwLSLhgs0qlpxkv89ONI5nVOwxGSnR18IpKQ3N3IBPn1s35tmNcTzWH+dCvDsEAAAAAABwKRZ2AAAAAAAAXIqFHQAAAAAAAJdiYQcAAAAAAMClWNgBAAAAAABwqVrfFWtLqa62HfbYnTvKy3JVLLW+XeU60eis5S3baOYGwrqSvy/eoQuSEWsYsLtbbCqh00hNWl2ox85vkTQzNzFdV2Qv99jH2O/VZfPL7EYUEo3X+7AlbFd6T0rV++D122MnZ8dq+wGx3+76VHc/uPDUXnbuAN0ppFvHNmbu8S1aqNicFfacs3jDFhXr183ebkZEdz1aOn+BmXvvA6+qWE5OjpmLqikzumls22Z3MvtwbJ6K+QL25yxlRgsib8DuQpGapDvUfLJ+rZnrM3rJhMvs+aY0zLmqJm0zrnPW5drniYyGepwk1dfdkUREgsU6Vir2sYxL0udGv9UpS0RCRqebuDK729bmkkOj08jBlJRkd4PaaXR32bLN7ixUGtLxcaOeMXP7Xvw3FVv5w5dm7gU3PaRiH//3MTM3t1R3/svofZyZK0ZH0fqN7bHr1DUMlfdO8bVmfMzQR1Us2uQoMzezdaaKrV07w8wt3KavUf58VCsztyhOd9DKWzLPzB1w6VAVmzFvjpmLqgsa54+8YrtD2T9eHq1ihXm6I6iISNR4D+Xx2t0enxtyrooNefJ9M7e8NFfFkhPt7To06HMd7tgBAAAAAABwKRZ2AAAAAAAAXIqFHQAAAAAAAJdiYQcAAAAAAMClan3xZI9HF2qqG9EF2ERESsO6oN9P474xc60aSX36DjBzkxMSVczr1wVLRUR+Gf+VznVYPvM7FDFE9fAaT+83U+ebub54XfgxPuRQEdk4bsUhu0BkwKPjxpAWEZE0n/5B0CE3ErWLp6JmFHvtorI9W+kigssT7SKiSds3q1hThyLs/nq6uNvqDRvM3NX166pY+6OPNHPjI/bfgf3nNSb6s07tbeb+OCVLxa5pm2Lmrgvp1/roJdvN3Iv66eKTr0/81cy9r1sDFVtVbM8r7y/cYcZRPeKMeb5uY7vQf1qcLlS5dNkiM9dvbLdpq05mbqhcV1oudvjsb/vKVSpm/Q0iIhLm88OqSDYKJRcVG1WwRSQ9LV3F3h7+lpn72c/TVaxeaJuZ+824m1SssMAu5j23XJ9rXn/yRTO3UXOd6xk11swtN06N331m5yYl6+LhFFSuIr99LRKXps9Lc+o0NHO92/Q4PfGoDmbulFx9PVOw0R5jP6aWq1inJseauYneWv+29pBz5wsfmvHSkhIVu2OJbk4iItLAo4/9vzrahdXvePYjFQuF7WvbWxfq93z1xX5v98AxPc2423DGBQAAAAAAcCkWdgAAAAAAAFyKhR0AAAAAAACXYmEHAAAAAADApVjYAQAAAAAAcKlaUz48MzPTjBdPfVzFVm4uNHM9ft2N5pa3fjNzf3jhYhWLBnT3KxGRHUZXkqbpduebf/w3R8XGvXKZmesVnYuqy+xsj53mDXRXkaNaNzVzy8K6pcfPs+1OI+lGrF375mZu1xZ6H7wJuuuFiMibX81QsZYJdve1XNFdAlA9bvjzQBV76Q4dExHp0ra+ir06eqqZ+0uCHmMPnnu8mRtnrLnH19Xdr0RE3v9OzyML4u2q/zvDdkdBVJ7TueqZ/zyhYunbZ5q502fqTg1/ObWLmbtzqz6+oxbb++YxOnMFHLoVnXNiZxUr2LDQzB1lh1FFTmPnhhNbq1i9gN2hLLdYdxqZucrOHdRbz0+5O+3rp2Zx+SpWHEk3c2ct0/PLoGMbmbnlstaMw2Z1wLK6PomIbM7TuVPmrDJzC39brmIDhl5n5tapm6FiHzzwgJn742R93RIO2t2N/nSOPo+mldvXQ4+8+LwZt1gdsLZtszt+NWiguwEebs44WV93jBl2m5nboX0fFXvjw1Fmbk5Aj9OWF/zFzI1L2KJi0Qw97kRElnw+RsXmldpzXn6Ea+Pq4HSuGjHkIhVLq2d39Py/+95Wsbi6+lwnIpJbqjt9Jvh1B0gRkf/ddZ6K3fDkt2ZuQn3dKXRn4VYz91DpU80dOwAAAAAAAC7Fwg4AAAAAAIBLsbADAAAAAADgUizsAAAAAAAAuFStKZ7sZOlGXSgwkJJq5paWhlXsh4/vMXPTinXxv1yP/n0RkcIiXQguqdguszR+5B0qVi/eLrRcInaBOVSRXUNNmmbUUTGfw1Jm24a66FuOw6ujMOxTse7tm5i5vpAuVhuN2uPshLaNVWzxarvIF2pOUaEuSOmv09DMXbsjT8U+eP0zM/f+23TB9vyCAjM34tH7UFKkx52IyFfD31exa68+28yViB1G5dlHQWTL/PEq1uW6Z8zcE2auUbF+L04yc9Pq6AnuyoHHmLneRD1pXXra0WbuNV9mqdiGTTvN3DKx5yxUjwbJ+npi+0670HlpVF83HNejmZm70ygwmuyz5xx/QE8OcaV6HhIROf7YFnq/InxOWB2SjULJRUZxYBGRcFA/573SNpi5i0r0Ne9lXbqbucEt61Tsv8Z1sIjIKS11sdotC3VhdhGRPh27qlhi/mYz1/HCzmA9Z3AWDOqxcNRR9jXsOuN91Qf/Hmbm3vLkvSpWXGoXa09K1kWzAxH77Prmk7oxwWV32+/tKj9qsDcej/0e98gW9VRs1SpdCFtEpE68bv7yZHP9vkxExFcer2JN0+3x4PPqeILPLpr9+bFHqdiq1fq6/VDCmRgAAAAAAMClWNgBAAAAAABwKRZ2AAAAAAAAXIqFHQAAAAAAAJdiYQcAAAAAAMClPDk5OQe8iHhmZqaKRX9ta+Z62i9VsaWf6c5TIiJFXt0tq6DY7iwR8OoOEHXi7QrcJUax7USf/bSV+HQHrJSEgJmbefaDKjYna56Zi12qMnaSuixTsfP72t1k/MYSZ9ihhZDHo8eJN2J3jYkY3Qc8Hns91ROvx4nfIfetsfNVLDsnx8xF1Zx4fBcVK3ZoYLf4swdUbG68ndwvqsdNqdGdT0QkFNIdCfx+u0vBxIjumHK80TVARKTz+c+p2Jx52WYubD172B1fyozzxLWndTJzT7/tcRXbOfpOM3dVkZ4D6hndr0REfKXGeIrTnSlERBL9uuNkWZ/bzNyht+h4VjbjZm+qcq6KM65z/nVOezN380593AqCOiYi4o/qc5jDZY5EvHp+sWcckTLR56qkhEQzd8SkFSo2J5tzlVMnJ+vK0mscGxGRomJ9fI/vbV/j3HbBSSr22tfTzdwEo/ffRQPtDlrJAb1vReX29fHHU/X1bZrX7hq7o1B3U5o2p/LXx8UOncQg8sAdx6nYVxPt7lXTZk1VsY317Q5EncvSVawwz+5AVBLU4ybJoYPwsrR8FWtXmmbmdul8vIplZevrZfz/7HNVOzPX20Gfq75+5nozNxrU42RH0D4BpUqpivkC9ntn8Rpxo1ukiMiOEj3O0rz2+L3oYd1hNmu++65zuGMHAAAAAADApVjYAQAAAAAAcCkWdgAAAAAAAFyKhR0AAAAAAACXsisw1rAco8irp70u3uRk4azZZjzzOF0QrE4dh0qBxppWiUOB1OMv1wVHPR67mN2iT4zCziG7sGF52OEB4Wh/x86oiXbRxitO0wUH/U6lI6N2oWTLJ1N/q3TupQOOVrGw54DXNj/sTZ2uC+316K0LKouIWTG3R7k95xSJHjcRo0iliMjO0sqvuZ9kFOGMhuxxEzZLc6IqZs+xi+l1MQoQ1nUo0vfbhw+rWLvL3jBz6xrTUChsH8dS4yTWomULM3f71g0q9usH/zBzow7nOzjb33NV4yYNzHggsF3Foh7dOOL//URFInZPAHlq3BoV8zoUYf/n6Rkq5nM4VznU/T3sFVWhuG9KHfv4Jifr41NiVXEXkbS6SSr2z7+eUul9SE+0C5mWmmPEHgu3Z/RTMa/XPtfd98oXld0180pt+3b9OhERqV+/fqW3e6h65PmfVeyrLnZTgORSfd3SdqNdkL9E9Jgut4ejREN6Iioutd8rtQvqwuzRiC62KyISMQrGY++sc5W3gz0eLMVl9rFI8um5oX7A6f2TtRxhnzzOvWdEJfdM5Kt/X2ls1Z7LDpWrY+7YAQAAAAAAcCkWdgAAAAAAAFyKhR0AAAAAAACXYmEHAAAAAADApVjYAQAAAAAAcKmD0hXLYlXlFhHJNDqNlDk0k5o64Sf9+yf0N3NTknWV9YBd6F2WfPkvFQvaqRI0ymrnTJ/mkI3qUJWx4+SD8QtULDXFrpx+zvEdddCh88clA3VleY9T0X5j7Lw/3u7AgwPLqdGC1YAkz6ErSXqSwwRj6Hv5v1UsZ9Q/7X0I6sHn1PkmSoeaGmM9tXN+W2fmnlq3uYpFA3XM3GhId5xwaFYkp57YVcWmzVts5no8xngM22c2mvNVj6qcq4rK7Rdxen3dkSrRs97M3bxxm4o59Ql94FR9vgs5TCTecv149dLqmrk0qdl/TtO29bKMc7iqr5OifxCO2J/teo3j7nQY//HkaBV79c6Lzdy4RD3nRBz+OK8x6Tg9D1aHMbpfVU3UYY4vC+ojHwza3aviEnTnNY/Dyeq0sweq2A/fjzNzS40unz6n0UAbvmqRnW2/9+jc2XhP43AsCoxr4Z0F9vXxkQ2N6x+HMTnm39caqXayFS1xuM45VHDHDgAAAAAAgEuxsAMAAAAAAOBSLOwAAAAAAAC4FAs7AAAAAAAALlVriidXRWJiihkPxOsiX6sXLTFze3dpoWLx6Qn7t2MisnXNBhVr3jh9v7eL6uFUVs0qDJhXZBfYem+cLirmj9v/NdKIUaTOqWgptUwPrKhTBdCoPu71Eu1ptdwoAJicZOcu+VwXbHdSWK5HddRrV5injmnNsV6T5T67AHvE+Exlx1a70PKAU/qq2LZcuwDhulxdaLlFq1Zm7tLfFqmYz6G+d9gOowb5yjea8TjjpR0O2IVi27RJV7GoY+uHyvMZHQCCZXrsiYj87+Z2KtbDobHBHIfi0oeT5ORkFSvIL6j074ccXqzhsHX1Y58RiiJ6I16Hk8ezd5yvYsVh+/zjNa7Ry0vsq5mQcbVmFUkWEVm7ZrWKHdlcX+PDmdO1sc+nz1Verx6jIiLhiJ5bEuLtk8rPP4yv9L4lyk4VC+XbAzLqVAUaNSYQsK9jfT49qo5IsN9nF5To80dyop0bqcI7oKJSY86I00W+RQ6d5iLcsQMAAAAAAOBSLOwAAAAAAAC4FAs7AAAAAAAALsXCDgAAAAAAgEuxsAMAAAAAAOBSruyK1ahVazM+c6bugNUsw+4eUhDV1bZbnvOUmevx6FLZAYcOAdNGXK9iqzauMXMDfrtjCmqO1+8z45GI1ZHKrrzuD+jxcH79bmZuMKS7BIS99nbH5S3W+yX2/kppmR1HjfB6HY6DV7+GQxG7I0hSgp5uT7nkITM30SjPv9NhGf6HUY+o2IbtdocaH2v5NcY6JZz453+YuW1OOFXFkuLt88H6LbqrQ+IxdvuGrWV67NVNtDtAtChpqmLt7xhp5npH9jTjqJrODt2gXr9Od44KRuzjVmbML4neEjM3HNHz1qVv/2rm+ozrHCejr2mrYkXl9v7GBfS5ymt0S8EuTp2fKs2hYUx5SaGKBeLtY5bo0+Nm51u6M5GISLREH99Aon2BXPdG3amqOM/uBuj1Vv7tCR2wqoHHvjZITNbzTUmRfa6K98er2DNnXGnmJnh057XVDtfcr3z9iorl7bDHjVMnWVQX/QR7jOMuIlKcl6ti1nXwrriei859dLi9C3oqk4RUO/WtO/9PxULFxWZuoApzTm3GVT4AAAAAAIBLsbADAAAAAADgUizsAAAAAAAAuBQLOwAAAAAAAC7lykpBddPrmvG+vY5SsbKIXUkrHNFrWllv/9PMtcr8JQZ04S8RkdLcTSrWqVlDM9cqrIualeC31zJLy/Xx9Pns3KhRZPKzrfPMXKsepVWMW0QkGtT7EIzahXhxYM2ZlWXGM7vrYqgLP3zAzA1F9HGfOOpB+wGNIRJyWoc3ci8a8pKZmjV3vr0N1IjCBePMeNbisSrW9/Y3zNyQcaopyraLkyZF9RgpE7sYa9Qo0P3NY5ebuRGniqyoFh6vPhZpni1mbkG5LlQZiE+xt2ucaz68UhdqFhGz6K5TjWOrsUAwbJ+rEuKsx2I81ZTZc7PMeKZRuPuVOy8xc71GBdr06+zrbmuIOFx2S0FIF1p+7MNpZu6sWXPtjaBGZM3PMuMdMzvr3OlT7I0Yg2HIN+/aqUZuIOBQwLlko4r9afBQMzc7J8feN1QP47ht2Zlnpqal6orGkaD9vrfMOH98eb9uRiQi5rnK+n0RkVBEN1AKeq2TkvM5zG24YwcAAAAAAMClWNgBAAAAAABwKRZ2AAAAAAAAXIqFHQAAAAAAAJdiYQcAAAAAAMClXNkVKznJZ8YjkqFioZ26S5WISOFO3XEiNS3NzLUK/Jfo4v67Hs+TpGJdBttV4XOo3n7AXXSK3RHk00m/qlg4YneeCUV13KnTlRWOOnQECZu5Zipjp5aIBPVBixodRUREMi95RMUWffQvM9caI16PPR7bXqg7a+VkZ5u5OLCKC3ea8bLEOiqW9b8bzdx7hv+kYpPmrdqv/RIR+eH5q1Xs6U8WmLnMNzXLa7Qa2b5tq5mbnFZfxTxhh26Pxfp6JC7OnkesWSvscP7ZmqsvgBrU1d26REQ8Hn2Z6XC6RA2yRkhion3MrnnkPRV77W67g5Z1KJ26qd3x5McqxtxSyxkvVo/XnhiOHzBQxaaNH2/mhsO6W1FU7G5FzU6+SMWys+jweVAYh75perKZunprvoplpNm5XmOCKguWmrkR4/rY6T2YL053jLz2gdfN3OzsQ2Mu4o4dAAAAAAAAl2JhBwAAAAAAwKVY2AEAAAAAAHApFnYAAAAAAABcypXFk4Neh92OhlUopW5DM/XoC57Uv24Uxa0OFIerPSJRu/C2JSHOzs0tDOrtmqUnq8Yq/UWNydrOOO5+e7189vv3qljbCx7a7z1gfqkdrNmiQNeHFBGRekn6XFVc4JCbnKBiJSH9+1UViuixy1iqWdkOz2/nzEwV61THnkeGXKzjPr8+J+36gb6miVpVKh04ndXqpgRUzOtQvNJqAMB57cCzjmXE4Zi99ehVKnb1/W/v9z4wv7iQ1SzE4RU846svVezo4/vu9y4wbmoTfeyDUadzis7NzS0yM69/+kMjuv/vq6wtHCpFkp1wxw4AAAAAAIBLsbADAAAAAADgUizsAAAAAAAAuBQLOwAAAAAAAC7Fwg4AAAAAAIBLubIrljditxpJbZCuYlu2FlZ6u1ReP/RFHbpiXXCK7kry+cRsM7cqq6H722fNqYsKaq84ozufiEjIGDg5H//LzM28+DGdy1hwnfqpunuQiMj63GIVS2hmd3C05pt58+25CYeOq8/qbMaf+0TPA/UcOmhNX7dGxd6+uZOZW1Cq5604n939Jsm4ciwvt+e9615fomIzspjLDjijA1awPGSmBgJxKmZ1yhKxu2Vxrjq0Rcrs17rHaEG0cMJ4M/foU09TMcaNO8V57PdVTTLqqtj6Dfn2RoxTzfz5jIc/gjt2AAAAAAAAXIqFHQAAAAAAAJdiYQcAAAAAAMClWNgBAAAAAABwKVcWTw6Xl1Q6nuC1167skoA45EXsYoERo8rxBf06mrnvjl+gYvMp+nZY8nr0/BK2BpOISNSV0y0qySonWexQZLKurk0qaZE8MzcSvx87BVcwao5KWZl9nfOXAUepmMfhM7rp63Th4qteXWTmhq2dqAYURK0dvEbx5DiH9g5FJXaDEhx+rPdKpQ7X0Sm8szrkRaP6RBEO2/OFdcXbsoHdUALVhzt2AAAAAAAAXIqFHQAAAAAAAJdiYQcAAAAAAMClWNgBAAAAAABwKRZ2AAAAAAAAXMqTk5NTQ70QAAAAAAAAUJO4YwcAAAAAAMClWNgBAAAAAABwKRZ2AAAAAAAAXIqFHQAAAAAAAJdiYQcAAAAAAMClWNgBAAAAAABwKRZ2AAAAAAAAXIqFHQAAAAAAAJdiYQcAAAAAAMClWNgBAAAAAABwKRZ2AAAAAAAAXIqFHQAAAAAAAJdiYQcAAAAAAMClWNgBAAAAAABwKRZ2AAAAAAAAXMp/sHcAALCnzMzMSufm5OTU4J4AAAAAqO24YwcAAAAAAMClWNgBAAAAAABwKRZ2AAAAAAAAXIqFHQAAAAAAAJdiYQcAAAAAAMCl6IoFAAdJt27dDvYuAAAAAIcUq8Psod5Jljt2AAAAAAAAXIqFHQAAAAAAAJdiYQcAAAAAAMClWNgBAAAAAABwqUO+eHL3bl3NeGJAr2m1OzLFzA2XhlXs143FZu6MufMqv3MADhtdu3VRsWjUaW3doyJer44BAAAANW1/ixFbv1/VbdTUdg+VQsvcsQMAAAAAAOBSLOwAAAAAAAC4FAs7AAAAAAAALsXCDgAAAAAAgEuxsAMAAAAAAOBSh1RXrIH9+qtYg+R0M/eIFJ+K+cP205EUr7vRJMTba2KnGvswYcqPZi6AQ0+XrnZ1/khYzyMeX7TS241K5A/vEwAAQFVkdtPXM96Ifv8kIhKJ6A7CTr08ox7jJ1H7esjqTJTZ2aELUrb7uhjVRlXpMlWVXI/Xfu/ctVsPFcuaN8fM7da7t4r54sxUc9/8NdRgtqY6flUVd+wAAAAAAAC4FAs7AAAAAAAALsXCDgAAAAAAgEuxsAMAAAAAAOBSh1TxZJGAinRplWpmxgd08a9wyC5O6vHr9a8jQvZTt2Nn8d52EC7SuUsXMx6NGOPEriUnomvJVcmBLrqFqunavauKWUWSnfh8dm7IGDfRqJ3bpZsep/Pnza/0PuDA62Ycs6hD4Uiz/KQ/3k4NlRq/bo8bKzqPcQMAh53MLnbhV79Xv68KRYKV3m7U6faBiHEG8tjnQKeitKia6iju282haLX5eJ07q1hiUoKZ6/Hoi95exx9r5sYblz+RYJKZG7SuiRyvtSrfzKSr8VzWlvdr3LEDAAAAAADgUizsAAAAAAAAuBQLOwAAAAAAAC7Fwg4AAAAAAIBLsbADAAAAAADgUp6cnJzKl4GuJU4/aYAZr19HV8X2+uy1q5DRASs5MWTnGl1uQhFdKV5ExG90R9q8Jc/M/X7KZDMOZ2ZVd4flyZz5la9Q3tmo9F6VJjWOxdS9RnJk/19yVam+XpWOArWlqntt06WLru4vInJV32NULD7eHpAr1m9WsY0b7LkhGi5TsX7H2scxYoyn1yfbx3H+/GwzjppxnNH9SkTk/k51VKxxit1CL96nj6833u4AESrT5zW/6LEkIhIM6bnpxtmFZu7Pc+mWBQCHgkzjetdrdP8VEUnw6hZEYYdLWJ9PvwHy+B26DUf1e6jy8nI717jIj3iKzNygvQlTTjbXuyL2ewS/Q3PXkHHs/Q6dN+uk6euUiMOGEwK6W1ZuoX19bI2dOIfrbo/o8Vu4Y7uZa7H+Xie15f0Td+wAAAAAAAC4FAs7AAAAAAAALsXCDgAAAAAAgEuxsAMAAAAAAOBStb548kl9TlSx9FS7cHEorIt0+QJGNWMRKS3WFbY8Dstc8QG/ipUH7UKXViFTj0NhqWC5jk+c8aO9E4cZx4K/1lPpUOTLY1SyXjqhmZnbpt/qSu5Z1Vj7ICF77FgvRKcxufrHVirWvN9Kh50wYnY9OzM1u5YUBDtQrLF3+XH6+RYRqROvj1pynYZmbv7OLSq2o8geC+vXb1Sxbh1bmrmhsC767vHaA+e1H/UYqS0F39wus7susP1guzQzt3czfQ4rC9qnYo9fH9/4gD3p+T11Vaw8uNPMLTeqw/scJobzxuWrGOOm9qhKgXxHVvFU45pKRMyTFePBfTK79zTjfr8uuB6O6CKkIiI+n1GcPaILoYqIRKRUxebPYtzUFKtIsoiYH+kHxH6vFIxYc4Cd64nqc5VjXxGjiG7EoVJtVfqVWJibdqnKecKpeLL1vCfXq2/mptVNVLEzT+5v5npCulDymIl204b8gm0qVqduIzP3nP66wcn4GYvM3NWLVuj9cnj/bj0TToWWD/T4444dAAAAAAAAl2JhBwAAAAAAwKVY2AEAAAAAAHApFnYAAAAAAABcioUdAAAAAAAAlzooXbFOOKGXivkcKk/7QrqqdstGcWau36fXqYIhXaVdRMSfoDtdlTl0uooaXYziHLqSSETvQ8jolCUisr1Y70NhudFhQESCQf13TJv+k70PLtPZqNReY4Oy8gXOJT7O7r5WVm50IXIYv9Go7iiQkp5k5hbn6+1GvA5dAoxOSFGjy42IiAT0mPQEHbqdGJyOxaHaaeC03no8Xt3vKDM3vo7uBpC7U1fsFxHxRYwxYjeXMJ/0sMPx9Rut06IO43zMTN0V69Ofshx2AhZrvhIR+dOROta3fh0zN+TRc0u4XHeeEhEJhXVufLw9N8UZ81CJNe5ExFumO9SIX5+TRETyfUEVe2Gh8fsikpV1aM4LtYXZ6cbpBW/wOMzoVTnnxsfrDkllDifXnNmzqrBl1JTORgesE7va3WwKy/Q80OoIe87JK9RzXMM69nXszjx93TI+a7mZm/VzlhnH/uvSRc8hEeO9i4iIGNegXof5xufTFzQtj6xn5rY5somKdT7Kzn37s59VbEu+Pcasa+5D9Vq1uljdsvwO72mscGrdBmbuoEGnqdjgPx9t5m7ZUKBipYVbzdyhL+n3vmdmNjVzz7lsgIp9MnmxmfvBiA/1PpQ6rAvU4s6Q3LEDAAAAAADgUizsAAAAAAAAuBQLOwAAAAAAAC7Fwg4AAAAAAIBL2ZUSq0mPY7uZ8USr+pJR+FhEJJpUrmK5DutRzayitEFd5E9EpF6Kjm/ZUWzmFkV04UijnrKIiKSk6AJzZeV2WcLc/FwVi4T13ysi5hLc8SfoYngiItN/mm1vo5Yyn52qjEy7PrZZyKpbt+5mbvt2uvLp5s25Zu7qjx5XsdyCQjM3t1iPh0ZpdsXcaJweVF0vedDMLcrVhcaycrLNXKsw2gGvmO4iPq+enwok1czdtk2/XkuL7OLuyV7jRZxiD/TSkC4MmGAU3BURserDR/32BOVUpB77LyFeH/djGuvi/yIii7fo45vuUKx9ZaEeN63q2cd3TZ7eh4517XPKuh061jjV3u6SUr1vkbBdPBnVw5q3d7Few/aMnuA1inR77ML5dVIaq5hPSszc3Lw8FQvE2dvtZhR7npddO4pMHoq69tTNSUREMjs0VLGCqN3IoVtLfb7bWGCPhWh0vYpt3plm5rZsXFfFTure2czt2kvHs2bZ1ziwZXZ1mEOMl2pGY6P6v4hcdcYxKrZoo/1e6cIBnVRs82bjRCMi383+VcW6H2MX1j2qZRsV+2DcPDN38jRdrD2zm/085Mw7vOYhp3OK37wstM8pVoHsOmkpZu65x+kxVSp6DhARicTrxysq0O+9RUTuu+44FZv1mz0mN+frbZx1vB7TIiKj3tIxv0NTgLkO77dqA+7YAQAAAAAAcCkWdgAAAAAAAFyKhR0AAAAAAACXYmEHAAAAAADApVjYAQAAAAAAcClPTk5OrW6Q07+/rvB/wtF29fb6qboyd8Che1XUq1vJlAbt5GCJ7v4RSLW7naT6dBeK8qj9FH88fYGK/TQ1y8w9lFmV2h0aAEnUKJJudb9yYnXoEBHp1LGdig179UkzNyGgx1njBN2lSkRk6YT5KtbqdLsz14YCvc5aL7zVzO188vUqNi9HP5aTTIfnoSrtsqryvLuJNR4b++zK+IU+/YQFw3ZuXFjnljpU3E+M150HysrtrjORqI4nOexvgXF858+vvdX93eTn2TNVrHVGIzO33REtVGy18foXEUlJ0McyHLA7QESNsRfyOLyoQwkqlGGMZxGR8jJju6m1+tLBVTobc04du7meNG+SrmIt2tvz+bNDz1WxJWvyzdzNRbrrUYeWTc3cSEB383v47mfM3KnZumtSVhXOVYmJ9rVWSYndpelw16uPQ1esbkepWIf6GWZuSUmuirWrb3e+WbauSMXSk+3zz7I8PWc0aGZ3nPx60jQVm/Gj3QkJVWNd46Qm2h2EC0r1tcjRDezORkW5O1UsL2R3TywJ6O0mGtdIIiJpXr1v3nr1zdzVm9eoWFYVrlXr1rX/tp079d9Wmzl3Vawcv0MHVZ9xbek1rlFERPp3aqVibVP1dYeIiDepjorlBu1zVShfP15aht3hT4xNrM/dbKaOW7xOxYKlDosIxpul2tLtkTt2AAAAAAAAXIqFHQAAAAAAAJdiYQcAAAAAAMClWNgBAAAAAABwKV0Br5bx+/Uu1ktLNnNLjCLHBZtXm7lBo0ZXg5YdzNziUr3d8sIyMzeat1LF8uyap1LqWJQJVpHk6hByqPc5/MWbVaw0vbGZ2yBFF/s7MtUu5La5ix6//mK7yFex6AJxdeo2M3PjfPu3JutUT5VyqCJeow7cgDP7mbkff/eTit3UxS6+t84Y01/kbDNz+2bqAvETZuu5RUTkbz0a6scqt4/kpw6Ph/13683XqdjkiVPM3LxcfU555JNcM7c8qHMTE+0J8u5B+twYGPGqmVtapqsKrnU4V/V/9WMVW7Blo52MqjPmHPsKQ6RJh2NU7Lm7B9nJfn1AG9SvZ6a2a1muc326wKmISGlYb/ftl+4wc486fYi9b5VUHqyhi4FDVIOGzc345jW5KnayXQ9ZCjx6LIzLsovHHtNKzzlZq/RjiYj0aKTPjTs3bzBzG9TXhbutIuMiItmHaCOHA+nL/z1ixs/+y30qdskRduHyDU30NeyHi+xC/y8NvULFbnnyXTP338fpMbakzN6H1zfv39va0nI99t2oKs1N7ELL9jWkJ6A728QF7AuH2wedpWLdMuz5PD2g4+9m2c1jjuuir3lTM9qYueGN+jqlQZy9D23+9paK7Sizi39bT09Xh/mpKsW7qwN37AAAAAAAALgUCzsAAAAAAAAuxcIOAAAAAACAS7GwAwAAAAAA4FIs7AAAAAAAALhUremK1atPNzP+5xNa66BD1XJvue4y9cVCuyL77f1115mNRXYfirp+vd2tDo0a3l+gK2jfc1orM/f75cvtjRxmrOrtdpX2qlZ676xiqyePMHNXleiq+z+/876Z+7Nft5I4Z9A5Zm7dRroDScOGdtek6W/qiuyry3QFehGRkkjIjFeWUxcJ63mvynPuJk5j7KIT2qlYkteujB8f1d0ABh1rbzd/x0IVm7rY3rcOyXqCyfYZrXNE5Mw+uktO/lb9WCIinx2ah/KAcho3j1x7tootmjTKzD3upOtVLGNbgZkbSdRz03q/neuN6LmpZKPdWcK3UZ8bI0302BcRiUYc2mWhWniNDhtlHrtlUWKRPp5Zn9rd16xOoUed1sPerlePs7LoDjP3l3F6fikvsMekL2TPW5UVZ3RhEREpCe3fOfBQYHWJOq5nFzM3wbjcLyyyO8kUB/RYaNYo28xNNroTpW1db+a2NcZ0JN8eH7MS+dx5f2V2sc9V3498TMWOaGgfhxSjZd+fTmhr5iYE9Xuat+1hIxl19VhITba78HXpot9DnZe8ycx9Z4bu9lgV8YE4M14iRfu13drA6drFbx56ezwYDRHl/JO6m7l1ffqcMO6bpWZufEA/3rkX9zRz527WawBpEbtr39Iv5+ncRHvpozBkvLGPOvUK1vED3f3KCTMnAAAAAACAS7GwAwAAAAAA4FIs7AAAAAAAALgUCzsAAAAAAAAuVWuKJzvJLdDF/+qk1zFzS8t14aNrTz3azN0c1IWPIhG7KHNCvC7oFSiyqyffP0gXJly3PdfM9VKP0lG1FOw1an/FeewC2YWRBir26PC3zdyXnvq3im0tsgtHZiTo4slbC+yij9c/87qKffW/l81cx3pe++lQLZRcFQ0D+oVZsHGLmXv92X1U7JQ3fjBz6xqH/aoBdrHa5Dg9F11yWgcz96Yv5qpYwUa7gCBTTs1p37a+iq3eYI+b5WWbVezK6+zzWnJKqoolxdm5UY8+pfuf+4+ZmxjRc1ZRNM3M/WWdLoqZmmAX94Uzp+KVVl10X8gu2P76Q5er2JFnPmzmfvnYrSrWOMkeO3E+PTuEjOskEZGhn3yvYk/fcpWZWx7RuVXh8fD5o5Mko9Zs8baNZm6X1rphSMLx+vwlInJ2ip5HXvpojpl7xun6HLZx6RozN3jyySrWJ6KLL4uIyHi7IDiqwOE6ce06fV7KK08yc996/R4VO/Omx+2Hi+pGM6Ofv8PMTU7Uk96opwabuc+//aOK5eSsNXNz9/Mqx+vdv2LvbjQvW1/3d+tsn6vq1tGF1SO59rmqQeOGKvbnbH0sRUS+vuMyFYv32Nex6cnxKta8jh57IiKDZulrl3H3XmPmhr6wr93N3EpnHnicMQEAAAAAAFyKhR0AAAAAAACXYmEHAAAAAADApVjYAQAAAAAAcCkWdgAAAAAAAFzKk5OTU0P9dZz16tlNxUqy25i5gaOXqNjt53Y2c/PzilQs3muvXZVYBbQ9dlVtT5Gu+O30pCUlJ6hYmUNXh9cnLFMxuhJVn/8+daKKvToyz8zNmTtJxRas3mTmNk7VVeGPzGhk5pYFdYX++DiH9dSgjsfXMdpeiMiRbbqrWDZjx5HVjSb6a1sz19N+qYpdd2xTM7e1LvovDcvs7nqrjenF57cbE/qNDjURh3X4xiFdn39dxM59bILuhsG4qRqnzkaB+DgVG37PeWbuii16jCQ4zAvl0YCKhaJ2TwZ/VHf0CIftLiHJft0hMOLQKPO518aq2OS5dpccOHMaO3H6EEvYbrwp2yY+qWLesL7uEBHxx+ljXGqck0REvMa1UiRiXxOVhHRueoK93bST71OxrJxsM9eSkJBoxktLHbopHUa6d9XXwgG/fXX68lnH6aBPz1kiIptC+rgXRIrN3DZN9JyxbJPdfbSt6A5/W8P2GBu1xDhXLdUdbkQ4hznp2cN+r2S1VX3nhTvN1JSw7kzULM4eY2vK9LwQ5/BuKbwlV8X8Pvv807Sp7oK0vNTuXjXo9v+pWFXeV6WlpZvxvLzcSm/Dbbp1McaJw5vcsNFuuNVRzczcCf++SsXqeuzua+UBfU1TbHRZExHxR6yu1g47XKjfQ4VT7O22+6vR7a3czrW6Locc9uFAv6/njh0AAAAAAACXYmEHAAAAAADApVjYAQAAAAAAcCkWdgAAAAAAAFzKrlRVw2bNnqdiiZ27mrl+ny589J8v7MJ7N56mCzCH7fpaEufTRY48Dk/H2zM32BsxXHm63gfjoXAA3PTPqSr22ki7mFy8Vxdo7HrkEZV+rJJSXWBbRMRnFDktC9oDwuvXhQxDeXbxZIZU1VjFyzzt7UKmlk5HpZnx1StyVWybQwFAiy9kFxx95kddONLJHSc0VrGw08SH/eZUCM8qjLt59Sozt1nj1ioWjdhjwXqtxwXsoqc3PfuJEbXHwsu3na8zHYbNzqBdrBnVo9wolJzitz93KzI6P0Sl0GHDOuQ1CmyLiETMacthQIT1eMgtctjufp6tnMYkROZm6WvhMwf0NHPn71irYiGHwurWrNM+Qxc+FhFZuV5vw75qEZmTp89rXofmIovX6utuiiRXzew59nsl61x1xR0vmLljnr5ZxbaU2a/pBI9R1FbsMXbhvz8y45avXvy7iiU6jJv9dTjON1bRX6frHKvQcnq6PTdEjYlgR9ThXBXST7zfbx+M/K3b9WPZW5XEBvV0rlE8XEQkHK38XDZvfuUbABxo3LEDAAAAAADgUizsAAAAAAAAuBQLOwAAAAAAAC7Fwg4AAAAAAIBLsbADAAAAAADgUgelK5Zl1uwsM96rZ1cV83rt9ajh45erWIMUu6r2xf06VXrfrj1bV5CPGlXEnfz3u4VmPODQ9QI1yKnJh9EdoqTE7nQVn5ikYg5DUo7ueZKK5cz5ycyNGJXaPU47jP1Wle5GTtX5W7bSFfc3b80zc8NlupuNU839v/XVna6SvfY+RI2x16JVAzv3541mHDWj1DzmIiWb9bkqrl4LMzcxOaHSj/fE3wapWIMku4NW1BhPeet+M3O9HqfuOagpTt1ZfIGAim3ZkmvmNqhrdCtx2G6rP92jYmvGPGHmRo15yxtnX07u7xmspKRkP7dweHE6V/XrVFfFSsrsC5f8fKOdmoMXvtVzxlPntTVzj2iUrmJ169r7MGLm+krvA/afx+gIJCJyyV3/VbH3nrvVzE326m55PocJ4J2X7lCx+npq+3/7pq+Nz79tmJ28n3Jzc2tku7WZ07VwZS1ctsaMt25eX8XmzVts5qbVq6NiRvNFERE58a63VWzOqzeauVEpU7EmjfR+iYh9snLhWzBWFgAAAAAAAFyKhR0AAAAAAACXYmEHAAAAAADApVjYAQAAAAAAcKlaUzzZSSisi2aFQ3aRL69RDHJLgV3k+HWjoHGwGupDeo0iX05CUvlcVA+nOlhh47gF4uLN3ILSoIr5HQ7lrKmTVKy02C5MmB4oVLFogX4sEXFlQS93s9fA/QF9IJpkGAVLRWTW6h0qllj5GpVS7jBfpDbVheB2lFRhw6g5HnvchMJ63JRvWWfm+jP08fU6VNZNNx4uVGoXny014gkBu9CycRpGDXOc4o1K/fUb6sK4IiJN0/RctGl7vpm7dszTld016X3ZiyoWn5Zi5lqXVVaBehGHv9nhicjO3r+Cn4eqiMOLNb9EF3IPJNhvATqd2EPFgnn2PPJ558o3Ilm8QRcyLfHb4zEY4SLnQCortwv9x/l0ofTL737JzK2XpOemHbn7fw1bWOZQRbeSnOabqtjfAsNu4/ScWc9Dl95dzdziIt2Apn2bZmbu2o266UjAYZDMeu1vKmaPXpHySJqKrd5kNzix3r6HqtAoqbbgjh0AAAAAAACXYmEHAAAAAADApVjYAQAAAAAAcCkWdgAAAAAAAFyKhR0AAAAAAACXqv1dsYwOWEbzKxER8fn0D8IOHQKsGusXNT/azA1HdHaxQ/erCZuXqZjfaz/NoTLdIQA1zKGbjDeyU8XCHru7UaJfj8l/D7jZfjhj7BR47bHzn+/+o/ehfLu9XdpiHVBF+QVmvGkz3bGooMBur9cyRa+jP/79RjPXml58DsvwD56rO+KkJTI+aoNASj0zHg3q8eQwLZgtqa5/5Tsz1ZrePA7bfXnwqSpWVFxkJzvMm6g5Pr/uRiMiMneRnjO6d2pi5q7YuEXFNvx9lZkbCunrkalRezxMnT1dxSYvWGvm9jgqXcUC8fbfZmny7OVmPN3o2nK4da6xRCN2f5hfN+ruUx2a2Nc429ZtUrGLvvo/M3d7ntHNJtXuhLTy1PEqtniD3aEm4Lc79KGm2BcYaQ0SVaxgh90hbWdQd+O89MguZm4wqsfpmpJiM/eRr0eqWH6+7iIrItL6iOYqFheo/HzT8vFTzLjnMJtvqvK3Oc0573w5T8WuOKezmVs3WXchPmnQY2ZuYkDHNjk0X/vpk4dVbPV6+32V9QqY7/A8dO6s/47s7Gx7Jw4w7tgBAAAAAABwKRZ2AAAAAAAAXIqFHQAAAAAAAJdiYQcAAAAAAMClPDk5OU4lG2uFTKNgVX2HwqC5pfpP8RoFlZ1E7JqnDuynzWNsw7EmphE7lItx1WadM3UhrJyZP5q50YguEOdYh9yoXOpxGBHJRbq4Ya8LLzNzf5gy03487Ddrzrln4BFmbmqKLiwYdZhHdhjF/hICDvOTsY3ysENuch0j10598ZslKsacUz2scfPSbeebueUh/VpPdjhXhSK6UmC803RjdBYIOgzIaLBU/7418ETkb8N+UrHsnPn2TsCRNUac+B0+dov36PGw9LsnzNzCAl2M1O8wjUSNeHGZ1WZC5LjL39CPFdQFdx05XZZV4WqUeatqTj1BX+M8eGZrM7dJq6NUrKzcuu6x7czVc4uISFlKIxW7/y27EPz0aXMq/XioGmse+viVe8zcK4a8oGIeo0iyiEjEOH8EnLrdGFo1TjbjC9fqZgMOlzg1hvmm6i66YKCKzRh2k5lbUqyL9zs1DLFOE6Hw/8fef4dJVlX/3/c6FTv35MAwA0hSoCcjSYKAWRAEAQUEv0hQwZwwkMwJUIxgwICRJBgIioAECTPMTEvOMMPk6dxd+Tx/eF3P73ff67O9u77dPfTpeb/+XCxOnamza+9du+taS2+KNluDi7394xfL3Ov+eJt+wYThFzsAAAAAAAAJxcEOAAAAAABAQnGwAwAAAAAAkFAc7AAAAAAAACQUBzsAAAAAAAAJFeitMb6d+qZXyvjP/uI7vgzqpg5WU2W16+nUEOnkmkgONduiyvr49sL6ARl/65FvdrFV990pc+OaqN2f0h+7nQ7zHXQ6V636L3eIraXHN7QyM7M49l1nmpt0Z4cZU3z3qoGC7h5isZ9HmgITVDrlJ7nzbnhK5jLnbF1RXv/tJG2qk5nvlGVmNlgacrGWJt/pwUx33Ast8j2ii8SHv/M3mcu4eRkENg7FVNnF8oFL7HL8hS728LUX6GTRPa2lyXfgMjOz9BYXivxtBa1axXja2kqia+zAkB5kZ1zq54FvnOQ7ZZmZRZGf4xpTur3ZJ77/Lxe7dzljYTxozPuuRGZmv/jWx1zspA99VeZmUjkfjPV11W7muXW++5WZWS7vZ7ihor4ua9X4sfr59S5Wrul97MEf+5mL3XXpGcN+rWxgo/OOD17mYtfdODG6X4Xwix0AAAAAAICE4mAHAAAAAAAgoTjYAQAAAAAASCgOdgAAAAAAABIqkcWTy6Loo5mucdzeoAs1bR7wReOqut4btgGxGD3pQO7N11/vYnu9+sAR3wNF38avnl49OUyd5GMDg7og8udvedHFMqlQxfbhq4pK8Iyl8aEoCov+h19/snlfUNnM7NzvXe+Dorh2vdT8xrgZ/9SMUSzrLhFP/fUrLrbd6z45ynf0HyOfyTCmxAOqpXRx7Hcd4gsln3rFkyO+BeaX8aslKwofm1nF/Nzym+98XOYe835fVHl0vlb5QsmMpSTw+5w1azfKzD+cf5yLbXeUL/5fr4dWbnsNaPjFDgAAAAAAQEJxsAMAAAAAAJBQHOwAAAAAAAAkFAc7AAAAAAAACcXBDgAAAAAAQEIlsiuWxbpf0SlvXuJiP//LisBFfLXuTKCtQ2WEZd2p3p5Ms6a1y/j6DRtc7JY//lHmvv5tb3MxxkPyNDbrqfLJF/3kMGf28CeMbbFi/7akJdC9qpzzHUhqse5spP76spI5ZMILzSI1v3WxUiC3IfLJL/3Nd64xM5tz+KeHfQ9KKJf1bnwYEs0am5t0brron+aH3ryLzP32X55yMZ558mzs1/EpLf6LUa5Rf9rVV6hVjIVtVlzzIyKV0mOnJvZKy372QZm74JRvuxhzzv/BL3YAAAAAAAASioMdAAAAAACAhOJgBwAAAAAAIKE42AEAAAAAAEioRBZPrpWLw46fcPBOMvfyW550sRWrKL60rVJF3zJZXeRrh1mTxvReMP5EqaqMt7aI4IAughuozY4JrBQFSspGZRdqyTfq1BQjZ6IYjQKPCzs6XCxb0/NTpZYd9nXVSKUg5QQippFSQX8FSKX9eOKvwBNbTVVlN7NNvX7gtNYGZe4I+8xggmmbMt3F2idNlrnd3b0+yID6X2GuBgAAAAAASCgOdgAAAAAAABKKgx0AAAAAAICE4mAHAAAAAAAgoTjYAQAAAAAASKios7OTutMAAAAAAAAJxC92AAAAAAAAEoqDHQAAAAAAgITiYAcAAAAAACChONgBAAAAAABIKA52AAAAAAAAEoqDHQAAAAAAgITiYAcAAAAAACChONgBAAAAAABIKA52AAAAAAAAEoqDHQAAAAAAgITiYAcAAAAAACChONgBAAAAAABIKA52AAAAAAAAEoqDHQAAAAAAgITKvNw3AAATSUdHh4x3dnZutVwAAAAA2w5+sQMAAAAAAJBQHOwAAAAAAAAkFAc7AAAAAAAACcXBDgAAAAAAQEJxsAMAAAAAAJBQUWdnZ/xy3wQAJFGoU9VwNTY2yvjQ0NCIrkunLADAaKlnrWP9AYCXB7/YAQAAAAAASCgOdgAAAAAAABKKgx0AAAAAAICE4mAHAAAAAAAgoTIv9w0AQFKlxNF4OtK55aqPlQoiGJBOB/4D5e8BAKNkwT6LfPDYz8rcHQ/+qouFCi1TVBkAxha/2AEAAAAAAEgoDnYAAAAAAAASioMdAAAAAACAhOJgBwAAAAAAIKE42AEAAAAAAEioqLOzk54q2OZ1LPVdHHLVrMwtVcpjcg+qY0THgkB3iZV0l9iaFszXz0F1pKoFumKp3HSUk6nVuCRyA5dVM3ggd+Uqxg0AwKxj0QL9H477nAvtsO+XZOrzd37axbbf/8syd/XH/WLFXgYARg+/2AEAAAAAAEgoDnYAAAAAAAASioMdAAAAAACAhOJgBwAAAAAAIKEyL/cNAFtTqBhxU7bRxQYrQ2N9O/8PHR3i3jh6HRdCFeZTqqJxdfj16OtIDeZmM/4eyhVq4o9ni5fMd7FyqY5nFoUmhpoPhcZN1o+b5ctXDf8e8LJYunixixXL9RT0r2PshK6Q8mNn5UrGTuKk9FjYfm9fKPn5+31BZTOzOQd80cVW3/d5/XpZXVQZADA6+NoIAAAAAACQUBzsAAAAAAAAJBQHOwAAAAAAAAnFwQ4AAAAAAEBCcbADAAAAAACQUHTFwoSlOmBFDWmZWyr4DliRaHhkZtaYy7pYnK3K3LjW4GKFwUGZq05Zs836HjrmD7+DVueKTv0fINXTnWzNHZe4WH+hJHNP+dZfXKw9o6fgVLnbxS7++HEyNxP7tkeveMOnZK76t3V2Mj7GymsWLZDxyz5ylIvFaT+vmJlF6ZyLNbb7Ln5mZgNFPw+lBvtlbk2Mm9D93vXQShnH2OkQndPMzF665WIX2+Etn5W5T//Rdyza6a2flrmr//QVF5v7Nt3d6MW/+u5G2++tO06ueID5ZTxYIJ7PDoEmVS/8068fOxxwkcx9/p5zXWzHfXXucxU/9jqW6HHTuYxxA0w0HfP1uqa+bsVijxLKDjT4M4tFB8dVE3s/wy92AAAAAAAAEoqDHQAAAAAAgITiYAcAAAAAACChONgBAAAAAABIqAlfPFkWQq1XRpx/VWs6V9R6ojjp2OpYGHjGYnRHg7rIcaWO1xsqll0s1vVyLTJdKFlRZcKKfcP+3ymSPIbKN58n4yuffsrFdlm4r8z90cl+nH7mFytk7pFH7udiLz76iMydMaXFxe747ntk7sHv/5mMY+TUWvPsmtUytzGX98FAtfZ0yk9kcaQnnOmtvgBz94D++0254mec4z/1Y5k7dXK7i7GujR61hm28/Zs6OfZ7j7hclKkNvna/VUt67OSb/dipBAr9p1P+Htb/zRd1NjObRsH2rWp+YM+743d97Nl/6qLbOx7yJRd77raPydx5B37VxZ5frotu73DQF1zshcbPyVwK/Y9fnzvniDqy9boWp3wjk1Ssd+Kqhu4XL7uxjnvAy2HRwoUulor0fiQV+Ye86t8Py9zFi/x1axU9dio1f92Fi3QB5xUPrZLxpOEXOwAAAAAAAAnFwQ4AAAAAAEBCcbADAAAAAACQUBzsAAAAAAAAJBQHOwAAAAAAAAk1obpidcxX3QB0RXYlkn2JzOJKoAOWkMv5zhIdS5bI3M5ly4Z9XYSFukEtEJ1Ggk9SDJOsL9r/n2uIi+y8/VSZu8sO27vYfjs2ydzv/3m5i23o1t1OQk3ZMHJpcdz97KB+DktefYCLbXjaP0czs/a501zsZ+ceKHNfWjfkYpNa/f9vZpau+jlnxiTfxQhb334X+q5pZmaZ2D+zTGDCKRcHfG7gbzLFmo+3xL6Ln5lZnG92saFyoL0fxlQk5vN0rPcus1/3SRdbc5vuoDXroI+6WNedOrcinv2Wf35D5k5/nb/uS3/9lszF1qV3sWbP3u27T21/4Bdl7nP/+ISLzdpHj5s19/rc7fbxXbXMzNY84LtL7rDfl2Xu81fJMLayc8/2HbAKRd1dVnWvSqcC3R7T/hqp0Pc1sSk798PHyNSvXHqNvgbGzIIFusuU+u1IVjx3M7OyaGo1f0/d4e/hh/13viUde8lcsSWymum9Vsf8BS7WuWqlzB3P+MUOAAAAAABAQnGwAwAAAAAAkFAc7AAAAAAAACQUBzsAAAAAAAAJlcjiyR0duqCSLpSsS8nlU754Ui2Q29Lii5am44LM7enrc7FMVl93oSj2vGKVLgSMsPmLA+NB1Oia1NIiU9//tl1d7NF1upDb6UcscrH7O1+UubetetzFZu2kC41d8F5faPnntzwsc+9Z8YiLzV+q34dVDzKm6qGKY2/oDRS2fXqziw3WJsvcxl4/3W62Npk7Z6ovmLsx0mM3K0qC19Q/AlvdV2dfKeOVml8TGkwX6K5URDzXKnPzGf/ci0O6eHIm52ORiaCZncjfgMaUKjo6IApsm5ntNq3BxTYGiuxvuvdiF+sQxZfNzO7/ky9421/Qe5eGyN9bb1UXxcTYkXvhYz4tc+cu+aqL1Yr6c73LAZe5WBSYA1r3+5mLpVOB4v2LfKHkF273xZfNzHb4xldcrGOB3uN0rmSPM1Kf++DbZHxg0H+uo1hUujWzbOT3OFFKzyHTJ81xsUp1UOZ2bfT7rKhBF/o/70NHu9hF375O5mK06P3xnHa/Tqzt1d+d1fySz+jrHvum17tYqlHvpSt9PT430uM3HU+Mfc7E+FcAAAAAAABsgzjYAQAAAAAASCgOdgAAAAAAABKKgx0AAAAAAICE4mAHAAAAAAAgocZ9V6z5oup/c+Cut5vuu8bM3sl3OzIz+8x7DnKxp9frKuvrBnwV71fOmylzKxnfSemyb/xU5j70xHoZH67Jk3T3na7urhFdN2lWLdcdEVTHiHce+kqZO2nyDBe7eF8fMzN7dP0GF9u5XVdvT+2xnYu1DG6SuTs1NrrYV09eInMPEl2x6H41SiL/GX7VLq+SqTd0rnax3iZdnX9exneuiQJV+De2zHWxYmlI5j5S9J0k5urGA5bPjvspP7FSKf8sK9m8zC1mffepmv/4m5lZ1OWfe/+QXqtqA77bQ1zT3f3KNT9nbT9Hr2uW0h2aMHaWvPGjMp5v8c/toLd9Team035u2KSbpNl2B5/rYpGYC83Mpot9zuI3nacvjDGTz/l5ZLvDL5G52eJ0F7ti8skyd8YUPxkVynqPU41Ehz9xX2Zm2azv2nem/UTmPp1qElHdNQn1OfM9b3CxKXqpsp3nNLtYx6t2k7nvfOvhLvbU6l6ZG4s5ZIeZk2RuJLoj/eB7P5a5/3jE788xtjZ9/Q8yvu7FjS6WSesuac27+DlnwzP69Zom+a6gDS2hDo5+wdvwiL8vM7O5O+/sYrrf8fjGL3YAAAAAAAASioMdAAAAAACAhOJgBwAAAAAAIKE42AEAAAAAAEioRFbSrAaOo7bbdXcX++TJr5a55chXF50+dZrM3eMVvnjlJFHMy8yst8cXCvvGJ46VuYe///syPlyFsi6gif9QZR8PWLyTzN1tsi/Ud9fNf9LXFTW65hzsi8aZmTXEfpzVGnWVur6n7nCxLWVdvDLLmeyYUSXY/vq322VuNNnPGQ888YDM/Xfkp9t37euLuJuZTW/zRSaLWzbL3BuX+9fbFOn5KV3R4wkjV/OPzM668Fcyd+q0SS62qUcXVc+LR1Yd0oUC49gXT67EeizEmaqLZQLTSrqmXw9j50+//JyM73PsV1ysfapumJATNa+b+3Qh7CduvNTFpjXp537JL37hYrs36MFz1MX3yzhGrmj+M5x/aKrM/d6Bp7tYuU8XI66Y37ekpvriy2Zmu4tw0XTjiadWrXKxX0x6h8x99QOX+2CkGwigPg0Nfg9aUwuNmTXM9t+rug9/m8z9i/hKMm1AF09uavLzUK3gx7OZ2XXN7S62/wc/LHOvPulDMo7R0fibB13sH/HzMneHvaa42LXrdNOg9k1+znnD/otlbvfgCy7WsNY3JzEz++eAb3DSOn2dzL3n3pdc7PBuXSh88J26sc14wLdDAAAAAACAhOJgBwAAAAAAIKE42AEAAAAAAEgoDnYAAAAAAAASioMdAAAAAACAhBr3XbHUyVPRfAcjM7NMt69+/czfdUeQQsF3A5jxGl2Bu1ZtcbHuyhaZ+/C/nvT//5CuCp+pjqxDTT6bk/EhGxjRdZOmY2GHjN95qe9GtvOcZpn7zKP+PTvtr7oL0cpP+k5r/97sK7qbmS3c0Vfzf2Cj71xjZvaW3/sx1fdN3W2rfPWtMo7h6+jQ4+bP3/mwi+316j1k7hZRyf/Mz+pud0ced4iLTZmsu85MbvBTc7/MNPv1d/7iYicdf0AgGyMVGjdvPmhvF3vdq18hc3vTDS52/td+LnNV35ozjz1U5i7eZbKLTZkyS+a+45NinKb1mlSVveJQr475euxUln/XxQaq+j2fZL77R5duCGLbieVumuhGY2Y2q9k/+4rsLWn2qV8sc7FbvvUefRNGV6yx0prx60RLulHmTurzg2T1nY/K3NU5v67NO3Z/mbvsMd8OsL1Jd6965u9PudjzjXrvNEuM03Ux89CoEB/rgar+PtG3zncKWnbd3/R1860u9IEZ+vcDbzlooYut7++Tub///e0uNnmmX+vMzKJAR1CMjp3n+E6wDz31b5mbF10VH+vrkbntjb4jWvmRZ2Tukmk+N1dcI3Mf6fLf7fLT9RjZRc4vyZtz+MUOAAAAAABAQnGwAwAAAAAAkFAc7AAAAAAAACQUBzsAAAAAAAAJNW6KJ4cKUqrSfemaLj77+fe/1cUOP/tnMveyDx3vYlNSvqClmVmt6ovOVSolmfvFW5a72LmnHSFzi7VVMj5cqdTIii9PdCuf3OBiDbN8MWMzs3W9vmjbzZ95u8x9qOILd81o9QUEzcwy4ui0vaYrXRavPMvFbn/GF67D2Fq65/YuNrBFF/XbdXtfwO9zHzlR5s6ZO8XF2mM/lszM+kSBuaHAdP2ZCz7oYvPm6Nwf/up2GcfI7b3rdBfLN+o1ZbcmUaiyWf+dJVX0uQcumCdza2VfarlY1oVMl3T4cb7q3+tkrpme3zA61q5Z62LFWI+HF+//jovteMCHZe5630/C1tx8vszd0u/Ls0c1fQ//+u4FLlaZpptaYAyl/PPpLuoy+3vOm+NiR931K5l72WknuFhFTyPWnPV74UqsC/F++p/3uNiXP3yqzM08/JB+QQzb2e87Usajmv/uUCro7zRfP+8UF5t12Odk7vkf9d+rFu8xX+YOiAY2/UN6nen63R9c7OgP+NcyM3su4vcKoyH9qwdlvDrX73kbt9skczPNfk90x5V/lLnv/Ygfq2/YTs9l1UF/BpCaPUPm3vblL7vYsZ/y85uZ2ZlH+O/qzz/9uMxV70/1pKUyd2vjEwAAAAAAAJBQHOwAAAAAAAAkFAc7AAAAAAAACcXBDgAAAAAAQEJxsAMAAAAAAJBQ46YrVkgu62Olsq7e3t7gO5Dc84OzZW4U+c5EUaS7TEWptIvFsX7rfvlF3xGnPRPLXH/V+lSrdCoxM8sGmoOd8707Xez2V0yVuTvP8AOtrVV3r2od9E8uG+ln3PfCZhebG+sbfmrjEy7WlNPjjH5oIycaipiZ2czDPu5iz1z/BZn75At+LjrxNa+QucVUo4v1DepWIxXRgiST1k/9kB39vFdO6w41I51ztjWqW+PGf+nnO33fv7jYT859p8xNlXxXh1988l0ytynt56ah4oDMTWf9E66Kro5mZh867lD/WifoD8U7Pqu7S6JOepmwuUd8ycUKf9dzzqDoXnX3TbrT1cysn3NSsb6JmlhVokBu4/Y+d7vAPgcj17FAdxaKxF4iV9XPYcMWvxf5+9c+K3N3bfEdi+7e7LuMmpnNmuz3KGt7/f9vZnb9l851sd1a9Bp4md8O0ZyvTi1Nej7ftMXvWyY15WXu0KAfY1/5kR43r23y19V9Ic3W9fpxmqrpB3zc+R9xsYPEa5mZ3Ti5LfCKGA0vrvMdW3erHSJzn970nItd/r2vyNxZhWddrKdLd+ksl30sl9bj91Pf+YGLzSg/L3O3bNJznDKeVzt+sQMAAAAAAJBQHOwAAAAAAAAkFAc7AAAAAAAACcXBDgAAAAAAQEKN++LJRVEkqSGli4j2D4rkVDVwZX+NVKAaUpwRRQUDb12DKMBcrOiCYCOtAxeo9bzNWf5Qp4yrwqev+8x1MvdfX3yLi3X3B849Y1/4tBw4I33zxff4/11f1f76VX8P6UC1Wx79yK1cOfxx8+Btf5S5r3r9CS7WXwh8suOCC1Vren7a51hdnFB58LqvuVgUmCMrgWKo0Do7/RiZLsZHSBRYVIZK6rnr3H7z61o60vPNyef9Ztj39tPPHu9fK7CoMGpGhxpPZnrO6Y9zMlcVNJ4S6xKl5YLPjSI958x54+dlXFl905ddLEUzhzHTuXKVjHcs8uMmt7suKvtcrdfFolq3zF3f5eeB7We2y9y0KNa8w2SZas9v8UVL7+/Xc86zjZt8cNx/Yxlf+gf1Z7KhQbyRsc5ta/MF2E9r1nOTEqiHbOWy30dbLLrlmNkHdvP3kMmEBgPz0FgaKvv3NxXYbzYXX/SxjbpAcVXsMlTMzGym+L4VDXTL3Gx+iw/G4qzAzPp69DWUBvHdTJeM3/r4xQ4AAAAAAEBCcbADAAAAAACQUBzsAAAAAAAAJBQHOwAAAAAAAAnFwQ4AAAAAAEBCTaga87HoFNLbPSRzJ7U3+f8/cN1DzvyBi93xvbNkbiT6FVVT+m0eaWej7u7uEV5h21Mu6vjhn/2zi033hfjNzOzaL/lOSKHBc8033+Vi7TldtT8S4UM+/lt9YWxVA0O63v0z//yDiy3a91CZuykODChh1W99V6yBSHeMqJT8HPfivbqLF0auns5G6cAkXxPd0EKd9Vryw+9A8vMLT/T3EFxpxFpVE51K8LLIim6cZmaR6PoSanZXraoOSfq6L11/vg8GpqzI/EKaSeV1MraqSkUPhu0ntbjYuh69rs2Z0eyDgUG2xwlfdbGHr/60zJ0nOmtVSoH90Gw/R0a5QJtQjFiT6pRlZoNDfg4ZGuiTufmG4e9xFr/9My628hrfbc/MbGjIj4VMVq9VlUqoEzLGSqChmlUqfkxFKd21ryq6nKX1ltcO+bzv/nnNV8X3sv/cnYvkA0cfaoZLYgdifrEDAAAAAACQUBzsAAAAAAAAJBQHOwAAAAAAAAnFwQ4AAAAAAEBCTaziyaJIcbMoGGdmNrXFF4fb1NMvc/9x2ftcrBYoFnXcJ3xRp2xbg8xVl1AFOM10AadQsedQcU+ElUW9tXUDOvcNn73OxYqVwICoo/JWtVD2wZQ+e63J0YOxEgWqw8Wi2OwD99wiczcM+GvMaBh5abbBtJ/3ciUxlswsmaXgkiuT1cU+azX/HHKRfjbPbux2sbkz24Z9D5XASqGKYjY3BgrgBu4NYyeO9PYsJR5nqaAXqyjt56d0YEya3ipJBVHMNJtnjGx1on5sLhfYGUY+PqvNNxExM5ve4OPru/X+uPOqT7pYrajXy0PPuMLFUk2tMrd0kN/7xIO6MG5o3zxcE3XPXN8nUj+zpkY/XzTmfRFsM7MBUYu7Vfz/ZmZP/vWSYd9Zz5Af6JWy3uO0tw2/2QBGR0rsQc3MGsRX3zjSe4xKwT/jVGDf8ecvHi8uEJj3xHpXTenC2zVRID6Jv35J4j0DAAAAAADAONgBAAAAAABILA52AAAAAAAAEoqDHQAAAAAAgITiYAcAAAAAACChEtkVK5vTt/3E870utvtOk2Tu6s1dLtZ6sb5usVx0sQdMdwi4/9GVLnbHw2tk7v67zXKxbD7QsULY/ktvk/FIdAiYqFX/6xVq7tLU4iu1D/X7525m1l/ynRl+tfdJMrdU9W0CNgdaqn16he+2NWeOHyNmZl1P6TGFsVENVP3PZES8oivuT874cXP8t1fJXFXfP6UbgthPzlnsYrkm3YmP5kZbVzXW83kcq4epuzrsOGuSi534uV8O+x4aA/EffcHPWXFOdxRJB7rzYez0d/fIeLbRdyzKZvXnXXUl2e7tn5G5aTFUxdbHzMw23fAFF+sa0rnpwNyJsRHqUNMousMMBToLPb9hi4uddYqec/Kie9sLNT2XzT/E70133eUVMveBuX7m2rBHYBEU1vUslfGuNb8Y9jUmqibxPaMa2Lc89PB6F5u/+zSZO7ndP7N/HvegzK0V/ISxJa+f72E/2dfFfnfT/TI3xe8VRkX1JP35iX7pn2c2k5W5xYpfq/I5/YyzWf+96McX/UzmZsRaVazqze3/nP9eFxsq6FwVjQKb5sF3LpHx8YBPAAAAAAAAQEJxsAMAAAAAAJBQHOwAAAAAAAAkFAc7AAAAAAAACZXIqnYDRV3w7Zyv/trFbvnR+2VuVdR26/uovq46/1qYapeZe+w631+35As1B4WKm+padBKFksPac/oN3tTrq0Q263pg8hGd9MCvhn0P1aounpyLfbyTIsnjwluPOErG77r9ZherBc7Layk/3f7y/X6+MDNZ5TgOFLAtlX3Rw4GCHrxxHfMIRm6oVJLxhqx4PpGeF0oVUaz9opNlrqrzFyqYXRTjZt2GbplbrQ6/aClGR1OD3p6VxGYgFaisvqXXP+MXf/9lmZtK+4FSq+nxGxd8Yedp7TvI3GpVF2XF8HWIhhhmZvO+4mPVWL/fi5dd6GJ3z/+szI3ELueHP9dzjppgXljfJ1Pf87nfu9gfo7/J3On9okLqIj3ON16loo/I3G1JcL0X8dD+4u0f+rqLPXvLt/R1xVpz0O90kdlY5FYDX4AGB/w8dOlvb5W5e+2pG45gdMRiUFUDVfZnr/EFmLt2/JfMrYlB+d7zTtU3Iasc6/FbFfPTjusPlLlx7M8A4nq+fI8T/GIHAAAAAAAgoTjYAQAAAAAASCgOdgAAAAAAABKKgx0AAAAAAICE4mAHAAAAAAAgoRLZFStUpLpkvqJ1XnQaMjN7/SeudLE/X/qewOuJFwy0GqlFgz5VX1VatYqOVmPptu+8XcYP/sC1LhYFBlpP0XedaM2KDg4BqcDY2SIakITGzio6n21VhVifgR90yOtd7I47bpG5aoSkAp1vdCV+fQ8pcW8nfPs+mUvHvK2rvaVBxnv6hlysuTEncyPRRa8WF2SuWqqCjVFif2/nXvYbmcu42fomN+m9S1dBdD0KdT6r+KefifTYMfFyob/8rRtqcbEdDj9b5jJ2Ri70HqpuWa+4VM8jz35SbDD+qF9vr3d+zcUe+f254Rv8f9lptu4au7Z3kw/epK/R9E0fe/7jOpcxVic1XwQWimzWzwKhL45zDz3HxV74+yUyt1bzE04q0Jlr17d+zMUO2GdHmVsu08FxTL17bx/79UMytVbzzyKu6E6Lbzj3Dy5289eOk7mxaKkW+r722nMud7FHPrpI5qoPxtC7fGev8Y5f7AAAAAAAACQUBzsAAAAAAAAJxcEOAAAAAABAQnGwAwAAAAAAkFCJLJ4cKiirSidVKqLQoJn97funu9hrTv/e//6m/ot6iidjbJVqupipKjrantXXKIjaX73FsSnYFip8iq2rVtRn4I3tRRd7zWvfJHO3P+KL/rqigGC9amKQUExyfIhURVozy6T8QyvX9Fp12kW6oPFIMW7Gt0JZb88yaT+mRI1kMzPb+cgLR/OW/ivGztan3vP99l4sc+X+ONAU4LkbL3Cx7d/iY/WqZ4yowtCMsdExUPD71VxKf1NRvT4yaZ37wt8udrG2Az5c170pbzlsFxcrl/SeO9CbBGOo/C5djHjRIh+/69unytxbP3e0i+131o9GdF9mes7wu/aJhV/sAAAAAAAAJBQHOwAAAAAAAAnFwQ4AAAAAAEBCcbADAAAAAACQUBzsAAAAAAAAJFQiu2IF+8iIsv+FQGqT6Epy94/fL3Nf897vD+elgkK5VPjf+uKyjv/9B//jYkec/VOZG4knmgu8nmigVRfGyPhQa9BPeEvBT6FtLUMyNxbjZuUqnu9EVijoTlfNjb473+BQYLYQC8hK5oUJL1Jty8wsk8672FA1sLAJrCkT270PLJfxfUW3rGo8/E5Iq/98gcxV3bJGY4wxTreuhmxaxnsHxDeulO5IVRLTUO/dvlOWmdncwz/hYgfsv1P4Bv9fsjl9v1+99LphXwNjKyUmklSg23Ac+3F27zdOlbn7f/JKF1vFXvr/j1/sAAAAAAAAJBQHOwAAAAAAAAnFwQ4AAAAAAEBCcbADAAAAAACQUOOmePJoFEqb39HhYg2iIJOZWaU2/H+6KmFIYbdkqpZ0YdtqyZfZvv6iI2TuIZ++wcWWMR4mtpqeR8pidnihv1XmRqoiJSa0dOCZV8q+qHI2ND4YNtukVKQLb6diH89FvqAy8H+L0r7YbC4bmFzEppdpKHm++0O/V63XPfsudbFSVRcuVqNEFVQ2M+sZ8gWYv0bh4wkllfbfs7uG9Lo2JfK/Mwn98iSup3vRNohf7AAAAAAAACQUBzsAAAAAAAAJxcEOAAAAAABAQnGwAwAAAAAAkFAc7AAAAAAAACRU1NnZSX1pAAAAAACABOIXOwAAAAAAAAnFwQ4AAAAAAEBCcbADAAAAAACQUBzsAAAAAAAAJBQHOwAAAAAAAAnFwQ4AAAAAAEBCcbADAAAAAACQUBzsAAAAAAAAJBQHOwAAAAAAAAnFwQ4AAAAAAEBCcbADAAAAAACQUBzsAAAAAAAAJBQHOwAAAAAAAAnFwQ4AAAAAAEBCcbADAAAAAACQUJmX+wYAAP9PHR0dw87t7OwcwzsBsC1gzgEAjHesVf8dv9gBAAAAAABIKA52AAAAAAAAEoqDHQAAAAAAgITiYAcAAAAAACChONgBAAAAAABIKLpiAcDLZMGCBTJ+xZmvcrHTf/ToWN8OgAluyZIlMv7bD+/lYidc+u+xvh0AAJxFixa93LeQSPxiBwAAAAAAIKE42AEAAAAAAEgoDnYAAAAAAAASioMdAAAAAACAhKJ4MmBmHR0dw86NIh+L41G8mf9LZ2fn2FwYW93SfRa72FUfmy9zy6WaizXkma4BDN/ee/vik9d+ShdPrpRLLtbcmB31ewIA4P+2aJFvJFKLQ7898V/CUinxxWwbxS92AAAAAAAAEoqDHQAAAAAAgITiYAcAAAAAACChONgBAAAAAABIKA52AAAAAAAAEoo2K9imdCzUXYjUEWcmpT8elUpl+C9YTwstcQ8d83W3rs5VdMsarxYv1c/sgmPnuVg6o8dCtVR2sVpUx7gDsM1YurfvKGJm9rV3znWxbNp33DMzK5d8V6xazJwDABgdCwPfwapVH4vSw283HJte17ZF/GIHAAAAAAAgoTjYAQAAAAAASCgOdgAAAAAAABKKgx0AAAAAAICEmlDFkxcv8kWZypVA8SVR09bi0DnX8Isy5XL+wsuWrRr2/4/REyo8rLQ05V2sf6A4/BfLpHVcjb9Ij8nGnP84DhV08Ur1b6Og8ta3aKkvWnre0b5gqZnZ9lNaXCyq6bFQi/08UqmoScts0d5+3nvoAeac8Wzx4oUuVikPv1DglGybjKfjQRfbGCj2nsn4+Wb5Q8uGfQ94eSxZutDFvnz89jJ33vRWFytX9X4mFnNOMbB/UgXilz/I+jOeLV64yMXKob/tVsVzz+r1x8qi6mlAJJpJrFr10LD/fwDJsUjsc1SR5JC06fVH7Wjimp6f5otizatWTOz9Mb/YAQAAAAAASCgOdgAAAAAAABKKgx0AAAAAAICE4mAHAAAAAAAgoTjYAQAAAAAASKios7Nz+K04xolFosq1mdml+0x3sXnNugR3U1Z0hmhslrnVIZ+bjnXHpEFRrvvtt22RuQ9N8MrcW0vHgkD3KzGyUw36LLOt5jvEDAQ6FuVy2eG9mJmlIt8tq1DUYycjirqXc7qjTWVg+B9bumWN3ILFes756Btf4YOlksyNzI+bV++uK/kXi2UXW/m8vrco9mPhm3eslrkr6Za1Ve0tOjWamX3xrBNcbPOQvsb6jX79WL+hX+Zm0n5u2W33XWRuQ8bPhZf86i8y9977/qlvDmOmY6keOzdddqaLZQIdPbu6/ThJ9a2QuaUhP3Zm7HaYzI1jv696/Ud/JHNX3sf6szXND8w5LTk/Rob8MmNmZvkGvx8qBdrZ1GK/x6mVA534RKwa6euuXM64AZJgwULfHdbM7KR9X+ViTWIeMjN7YcNGF3vppS6ZW6v5+eU1S/fQuaIL5BV3PSJzVzw0MfbH/GIHAAAAAAAgoTjYAQAAAAAASCgOdgAAAAAAABKKgx0AAAAAAICEGvfFkzs6fGHcS5ZO07ltvvhfJq2Lk8aiYFuU0udcVWtxsZz1ydxKdfhv52tvHXCxzk4KxtUrWDxZPM7mtCrfZ1YVhURLusaxxTVfcTB0QhqJ8VcLjBEV1aPXrKYKOweSKZ5cHzWePv263WVu36CfB6ZPb5e5PV2iOm6sK+buvbsvOnf7qidkblNDzsUKRV288of3+KLKzDmjQ42bb537QZlbiPIu1jRpqsztW7/OxTZv0eMmqvp4y9TJMjeXEnNT2hdCNTO78JtXuNiqh+6Wuahfx0I/dv74rQ/J3Lasf0b5KXrs9GzY4GKpqCBzi2t9buOcHWRuRaw/2bReBQ//wCUuxpwzOtSc0xjY80b5Rhdbu+Iamdu75hkXm/vaD8hc9dxzTQ0y97EbvuFii47/pMzdtI798Xi17z57y3gsGjkMiqLsZmbpBr8GxgWd29Doc++7/8H/dosYIx3z/ZzzzlfvJHPbsn48tEzyTY7MzPq6/frTNSiaHJnZmtUvudiiPXaUueWK3wunA2vVD+541sWSOOfwix0AAAAAAICE4mAHAAAAAAAgoTjYAQAAAAAASCgOdgAAAAAAABKKgx0AAAAAAICE0i2CXgaLA52NTtjZx1JWkrlPiUYhPb26A0Qm2+RiUUZ3K4qqvvNNOd0sc1Nbul0s36bf5vMX+krvSxbMl7nLVq6ScYSJxmdWzuqOEeWij+ciPc7K6awPxoGWVClf1b290XenMDPrGRgUlw1cV3Xm8sMJ/wtTxePtKfkOHWZmU6dM8rk9/TI3zvt5oFYWL2ZmdzzuO2C15vRYqIhwU153N9q+mbP8sdLY2Opiq3v1c8hNneRiLz7pOz2YmaVyfiIbrOg1pa3Nd0d6qVd3GqmIrliT84FWgBhTreJxTm3Rn/eWmXNcbN1zj8rcrHjGlVjPAW3zZrvYQF+PzM3k/bwV6oo1KTBvYeSy4i0vBhqzDj56rYv1dOnPe6nsL/LYbz8nc/d/r+969thVutNVYZLvaPv0nb+Rue17HCnj2Lr2Ex2wTn3jnjJ3S9HvSxftprsyPrvOzyHz5+m98fPrNon7erXMvfe++2Uco2O2eERz2/Tcn2+f4mJ93f5Zmpm15PxeqTmnr7vdpHkullZf+Mwsnxn+MceubXq/ljTs8gEAAAAAABKKgx0AAAAAAICE4mAHAAAAAAAgoTjYAQAAAAAASKhxUzw5JJPyBbYWzcrJ3BUvdrnYQbvMkrkPd/uitlNT62XuC/3tLvaq5l6Zuy7yFWynN+gCzkMl/++IA4WhUb9YFBEsDfnibmZmDWlf4HHHHbaTuZOb/Ji8t/M5mTuntcXFugq6yFe2xRf0LvbocaaIesr4X4hEwep4UH+Gu2t+LKRTugBbrejjadPFkxuKvhJ8tVEXbC9W/FzWECgklwoV48aIVYsVF8uXNsjcpi6/Vg3V/HM0M8v1+QKnU9r8vGJmZrEfN3Oa9HrZP+hzB0p6fMQVXRAco0R8XPv6dcH2gdIaF9syoIuOThFVmdOq+L+ZFUu+eH9Toy9+aWaWFWN1w6DeuzDnjJ2qn3Js9112lbnPLnvAxYaqouOImWUafMHbTMYXhzczO+DwN7nYmn49HrNrnnexx9Z1y1wT/zaMncULF8j4YQcscrEXB/1e1czs+IP82HthrW8+Y2a2v3i5jesadO58vxfvr+g1cEnHQhdb1rlC5qJ+kfn5vF/sg83M+reIxkMFvT/OZvw1KmldCb4aq844+ncq6ntgHKiRnJogP3WZIP8MAAAAAACAbQ8HOwAAAAAAAAnFwQ4AAAAAAEBCcbADAAAAAACQUBzsAAAAAAAAJNS46Yq1fGWnjHd0dLjYT6+7QuZ+6PiPudhHbtioX1CUv27K+I5WZmZXXXy2i5187mUyt6fXl/Kf0aSrtw+Wul1s+cpVMhf/hS6cbru/8pUuVhrwnT/MzNrSbS62RBf+ty29/mMzY9JUndziO9LMa9DtHhbH01xs7aS5Mneg3d/c/f/2XS9Ccnk91ktF34FnW7NZvAW9ke4O0y7exyivu8BERT9QB3QjJItzvkNANqufWaxmcdHlzcxs9cBq/YIYsZLoMPPbX/xO5mYa/PPdWNKfvajoB0lJdF80Mztov4UudvtdD+vrtvs2eg2DuptaTnSR2Ge+X5vNzO5bpddyhPWJJSE/ezeZ+96Pf93FugKdZ+LIzzmVSP8973dfPs3FjrrwpzK3qeC7BNYi3Zaxt0xXrLGilo+rzn+7zJ1R8HufQqt+Nrlcj4uVajr3O+/a0QezuptnNvIDfd72uhNSNtJxjI041hveSXNmu9jhC/eQuY2TfTe1V8/SY2H9c34sLF2gO6/9e42fW5bur/fc1/71XhnH6Hhp0K8pq3t0R8QpU/1330kteu9SEfvjYlV/uesf9GNnSqvu/pkTXRlV51szsyd7AhvyhOEXOwAAAAAAAAnFwQ4AAAAAAEBCcbADAAAAAACQUBzsAAAAAAAAJNS4KZ4ckhN32NpxnMwtiiqip9y5UubONF+M6+uHLJG5H73sGhfr7RuQuafc/m8XmyoKxpmZff/gBTKOOgVqMz7+2GMuNnvuPJn73vmvcLHNT+rrbt/gC3ot27RO5u693Ryfe7+/LzOzjnm+eN3eosi3mdndLZNc7P5AEWmlVNaFLmGmqnE3TtaFHBtFkeKnnn1c5qrJdu7Oe8rcoSFfxLYQ68JuXet8QeRU4EORjilkOlZUScDNZV2M+F+33+Bi3ev1hDMonvubjvuMzO1c4Quo3/a338vcQtczPljTY+yw4z7tYvxVaPSoT+XrTvTvuZlZTWwnLnxWF0WfLgoav+8VO8vc93zlVy5WGfBFdM3MPvXUBhebHOt9zlk7byfjGAV5XzB07lRdRLTU3eVij955i8wdEmWZ9znwWJnbkPaFUwdKeiw8fu+NLrYlMOdEovA3xk4t1uPm+mtvdrEnHl+jr1Hzz+zpx/V+6NVLfHH4ZSuekLm77u4L9WdiPT7Wb9HfzTA6UmKxmj5DF71uS/ln9MxT+vtPRjzOua/UDRqy5ueXclXPOVs2Pu9ioalF3G4isTcDAAAAAABIKA52AAAAAAAAEoqDHQAAAAAAgITiYAcAAAAAACChONgBAAAAAABIqHHTFaujQ1e/fuGuK10s3e87MpiZzX3j+S4Wteqzq7XFdhfL5HxXIjOzq684z8UOet3pMjdu8yXDtwz41zIzy3GuNjoClcyX7rmHi21c+7TMHSqnXWyvvSfJ3PTzvgNJvHaqzH3L6/dysTXPr5e5r9xnuotFa4dk7u010W2njoZHuYz+6JdKvsPFRBWac95/iO8akyv0ydxK5Hsh3fqYfg9P3H+Wiw316A4OLWn/er21Zpl78yM+9z0Hz5W5ZeuWcQxfx3w9br5y4v4uNmXmDJk7UPGf3yee3iRzj3zjQhf78yWB9efJZS7WVNMTwyMv+I5Hhxysu7QpD6zqHHYu/iM0dn7+5dNcbI/pjTL3Daf/wMUGp/i5xcysvzDoYg0Z1b/N7LcXvcfFjvnk5TJ3yxS/p2mu6O5G6XoWJkihcfPM9X5vGge6sM5q9PvN7b7xlL7uFUe4WEOD3jP0dvvXy09tk7mv+5rvxPfEz/xrmZml45dkHCN34AEHuNhbDvD7ZTOzvz3wnIud/NETZO5QbbKLff6UM2Tu/gvmu9iqR0SnRjO78Py3uVi1T8+Pbz/Rr4GoX2h/fPab/TgpFPX+eKCWdbE/PVqUuacd6DsI92zR150s9sebq/r7+/Wr/Bp4zuE7ytyKPSfjScPJAgAAAAAAQEJxsAMAAAAAAJBQHOwAAAAAAAAkFAc7AAAAAAAACTVuiieHzJ01xcWeeVEXlG3L+6JMVy7VBcHSsS/o96rdd5K5Q4WCi02fOU3m/vu0t/rYCl2grmi62CBGx+SMHyeTZs6TuXc+85iLXfrXJ2RuttEXiPvKB14rc7eb7QuCnXmKL1xnZvapn9/mYkP9OZk7bXdflLVz5fCLmUYRZ7ohefOf97iiC452F3td7HUH+uLLZmY9Jf95n266OFxsviBltqrnvRPf6Ave9g9sO0Wwx4sZk/xndeO6zTK3qebXqt0W7ytzN20ou1i12xdwNzNrb/FF4Iu1jTJ3+sKFLhYP6fkmDhSox+hYuPNMF3t2/RaZm2/xe5cfTfHP3cysVxSv3PMVeu8Si+LH01v1FnH5q/1e6SfPr5W5JfY5YybONbjYoFg7zMx60v5D/PjVn5a52+X8eMqaLnpaFEWZc2XR3MHMNvz9yy6W3qKLxhfsRhnHyNVi/5ncYYfZMrd8r98HH7jzEplbXfeci329RRfSPuUov9795Pf6mbe3LnWxnWd2y9wy883oCNS8H+jxe95cgy5c3N/nc48+aFeZ21X2z21q2hc+NjOzjJ/LcmW9Pz7jzb4IdNeg3+NPJHy7AwAAAAAASCgOdgAAAAAAABKKgx0AAAAAAICE4mAHAAAAAAAgoTjYAQAAAAAASKhx3xUr2uVIF9v02M0y99l/+3hfj66qXTFfVXvmdN/tyMysmvYdAlb+8+cyd90z612sN9YdavZ+7YkyjjoFOrbc+ehzLvbM7z8ic0uF7VwsF+hCVIx8J4paVldZz2T82enO0/aSuQ8sXuBiAxn/WmZm2x/zURkfrlpt2+oc0NHhK+PHj+vq/Kndn3Sxc/bXHSNmtPjnO62q55yaqOQfRbr1QCy69jWkdbeTxl7fPSdK6+sGGh2gHoH55vxf/9PFfvDOV8vcO370RRer9XbL3J6aXz/a8nrpLsV+rco99g2Zm2rwnd7WNOruFg0MnNERGDsLjvfdgv588dky9xdfPt3F+ob0fB7Ffl2aEuhSU+zzXY+u+NgJMndt0c9FDWm9zzn63F/KOOoQGDc7v+l8F3v6uk/J3N6aGAslvW9Z2++fZZzSfwdOP9PtYmXdpM1sTo8LDWQDnfgCr4eRi8zvUX589U0y94lrv+Ribz1Bf3dJid8K3PxjveeuDnW72HWXfUzmfuqjH3SxKPChaJVR/Df17I8jsT8+65AdZO60dv/ZjgP72HTOP8+qbq5n1arfkDRmA2tgsd/FGgInHxNlm8PMCQAAAAAAkFAc7AAAAAAAACQUBzsAAAAAAAAJxcEOAAAAAABAQo2b4smdnZ0yroo6/eSbX5O5p3z40y6WzTXK3KwovNXTq4uezl34VhHVZZbWrPizi4WKeQXq4aFO9YydQt9amds6fYqLxaYrAGbMF5m0WH+U5r39EhlXXrjOF4jLiCJ3Zma1EY6eQM3eCUuNkWh3Pz5CoiZ9Bl4r+oJt2czw39zYdMG3S+5YN+xrfPS1vvB3paSvy5wzcvXMN6/aTRfdbliz0cWqs1r0C0Z+bilW9ZM85Wf/drG0KP5vZvbr98xzsUwqUNhwG5svxko9Y+fYc38oc//8VV88eUou9ID8/qdQKsvMoz6jX0/566Xvc7FaJTvs/x/1qWfcvLRxQObOn+k/2/k23TCkRUwv5cDi8faL/upiqcCcc/13fNHdlqE+feEoVIEZI3XXPStdbO8lS2RuVjSIuOkn/rtWyLR23QCkEPsBNT1wjV984ywXSwWKa8899EPDvjf8x0j3x+u69Wd4TnuzDwb2LlWxO00FlrUf3v7SsO/t9IPnDjt3ouAXOwAAAAAAAAnFwQ4AAAAAAEBCcbADAAAAAACQUBzsAAAAAAAAJBQHOwAAAAAAAAk1brpi1aNcqcr4ry713bJOPPUkmVvINg379dY/cI2L9VREZyQzGxrsdrHffufLMpcONVufKMRvZmbVwnqfm99e5jY3DL9bw4YbTnaxWlbX/k+JexvsXj3s16pHqVQak+smSV3d1Eq6W1Bjzk+hA3p6sibRiiw0B5x9iB97oZ4zakzHuhkgtrJCoAPE1Om+W1ZrVn/WX3juCRfLBrpFXHeK70JRjXSHtKjirztn0lSZW9OXwBhKBxaroz99hYul4pzM/e1XfReiUEfPq7/mO89ksvrBF6t+PnyHuC9sfZ/7zh9k/LKPHuFic9v15z0uDflgYM75wdc/4GLTmvS4GRJjevXmHn1hNshbVRzrbnkzJvmdx5Z+vR9qyvm9cej72pyDP+5i6/7xdZnb3uTvIZvRv0ugg+PoqGd/XA3sD9b3+g59UybpPtGNabHDDcwBZxy+i4uF1ks1b720pVvnThD8YgcAAAAAACChONgBAAAAAABIKA52AAAAAAAAEoqDHQAAAAAAgIRKZPHkaqFbxzO+StJVP/2hzJ3apqqLBqqe1qFY9UVpmxp12VNqw219cU0XiCtXxNPI9cnc9X2+8HaqFho7k9SrycxD/ucbLjatZfhVcFVRs3qFCqZt6zIpfQauwpnQWMj70GD/8ItYl0K14Rr8hVM1ZpfxIF98WsZbRFHlOJoncw/d3xc4HSoVRnZjZtaQ9hUP+/t0IdPVP9zXxeYE5psHmENGRTrwZ7dYVLKOI93M4bTzfupim0PV3eshdo4Vvayxz9nK0mm9rU+lfGHbLZu7Ze7UJp9bDTzJyXn/4KuhBgJiOzOpNZBMEdytqqL2wGZmVT8RTW7UY6yrv98Ha/pBPvOXi1xscEiva41TfMHdWqApQODlMIZEX5CgzV29Mq6WpUxoIqlDVWzSxVHBhMIvdgAAAAAAABKKgx0AAAAAAICE4mAHAAAAAAAgoTjYAQAAAAAASCgOdgAAAAAAABIqkV2xokZfId3MLC4Nuli1rLvOdHf72EduvE+/oGiOlG7WZbW/ceR8F8umdbX5dKDTDkaHqtSea9te5s6d6quvr97YLXMzOd8x4rWnfEXfhGhtsr6gK/8/uuJJF5vdqsfvI2t8J4ps3t9XyIxLzpTxmaLTDZ2yzEol/RxyGdEhLVByv7d3wMV+8mCXzFVXEI2UzMzsrP1816SWtnadjBGbH+gG9dSl+7hYKjtF5g4O+bHQktIdqbp6/Od66gX3y9x0xc83cWA8Dnx5oYut2SJTbcYk8VoZ1q+xVEsFuhuJroq1QBe8LYO+c8zRuy+RuZVuf91iu77ubU/5NaG5SbT9M7NNg7pjF8ZG85TpMn7GN253sZ+e91aZ2+O30rbks9+Uudmsn1+GBvSc8+Rlp7vYpi1DMjein9pWFXq3H3lqtYvttuMsmduSz7nYeUf8TuZmCn6+GcjrTldf/supLvb0iy/J3Die4C2PxqFapSLjDaL7dEE8dzOzXOzjj63x48nMLI79ONF3YLbHPP/drq3F79vNrL72XuMYOzMAAAAAAICE4mAHAAAAAAAgoTjYAQAAAAAASCgOdgAAAAAAABIqkcWTP3T2WTJ++eXfc7E4UKipp9+XCrv4SF/80szMRD2vUk2Xaspm/HWnTNWFTGs1XSgMoyMW1eDiSBcYfnFNt4tlW2bI3IZmf42/X/kpmatqcfX160K8+y5Y7GIdu+riYX9btVnGR4pCyVpTgy8CZ2ZWFYMsCnyuh8RjP23pZJmrxm5ouqiJQZbKZXUyxkwq5Z9DrrZG5pYqfg5JNep1Ii2uu/H8vWWuKv2XTeuBE0d+jExp11uCKOULvqsChhhFUYMMD9X8RJKuhEqf+hHxxyeWDfsWiut1PCVero8iyePCxR9/p4xvXu8rozc06THW193vYsu/+gmZq9aqfFb/zbipzY/H7DpdPDmO+Lvz1rRyld77LVm00MW67/q2zE2JJeGiG4+XuWqtqsX6mbdO8w1z3nik/75nZrZq1SoZx9iZNV3vYzdu6XUxsZ0xM7NKzf+HV87V399jMelUAmtgreqv218K3ISazBKImRMAAAAAACChONgBAAAAAABIKA52AAAAAAAAEoqDHQAAAAAAgITiYAcAAAAAACChEtkVq5TKy/h7Tz/Hxa743iUyN9/uq2JXK1WZq+pkq04lZmZ94i095+v/kLl0INr62pp1fCA13cXKZV0hvbTxWR/rmiRzVfX2vGqVZWZ3/uhoF9v93b+QuYydras5o59ZvxojqUBnhzbfWSuOA3OOuGzgFiyb9t2Nvnjt4zKXcTN20uK5r3nazxVmZlPn7uhi2bhP5g4NtLlYJq8769XEuCkFGj2s3+K70Ww3XXd/i1J+jIW6W2B0/O7CY2T8uM9f7WJx7LuPmJlVxFoTaOgppUMdTFRbLD2VMedsZS2pl2S8Msl3rolLAzJ3KNPiYo1VPT+p6aUSaJC29gW/d1902o9kLuNmfFDdhqKs7ro5ed8Pu1jXPy+VuZHq5hnoSpR71ekutvyhFTIXW19Lox4P8RS/d9kiOmWZmWWzomNxHV2qcrrhsVViP85uWLZW5q6aIHMOv9gBAAAAAABIKA52AAAAAAAAEoqDHQAAAAAAgITiYAcAAAAAACChElk82QLFZ3NZX73vvWd8UOZOO+AUF8uPwrtRKtVcjCJw40d/QY+dSBxxxg2+oLKZ2c4n/tzFbvv03BHdl5nZQRcsczHGzvgwWNRn4Olc2cUqVV3F7Qf/8EUtq8OvDRekRjTjZuyECuzt2NHhYvvNyMncq871YyTWqZYW61om0/Bf7nB4prX7MZ0KFP6WFVIxpqpp/SxUMciGdKvMHSr4grd+h4KJpKdPFzLNNvhi6ZMbdbH0w076iott6CmM7MbMrL/g5zLWqvFNfd2qBora9j7kC2Hn9zptxPfAGBnfCgW9502nfZOH6VN9QWUzs5/843kXC9Tjr4vaH0+UIskh/GIHAAAAAAAgoTjYAQAAAAAASCgOdgAAAAAAABKKgx0AAAAAAICE4mAHAAAAAAAgoRLZFSubbZbxvmLFxSY19cpcdaJ1/7KVI7ktJEBzTldvH/LNjSwT6EqiGgIc+tUXZe6iOb6TxANP6zFJ5f/xKzI/t5iZ1Up5FytHYjAF8Mwntm+efYiMv+vrd7rY7Km6LdYfH/HzxdofvUbmdg34PhINGd0JsE28XKGgx/nc99/jYvc+xNgdSw0Zvc+55hvvdLETP3KlzFVPPvjXPJFcq6MbGnPZ+JAxvf6UC/7JDzUHvgJE/sHf+8CKkdwWEiqO/J45FeneeqmUHzfFh6+Qufk9T3cx5pCk0uMhHfkOWCUbGPZVGQ//O/xiBwAAAAAAIKE42AEAAAAAAEgoDnYAAAAAAAASioMdAAAAAACAhEpk8eQoo4tMNmamu9iWUrvMraMmICaQuKaLgzakfeXISqxzI1FY8KEHbpO5HR0dLkZBsOSJAjNG2nxx7KaKztUlbDFRqKfeNzgkcy94994ulqrpAoTXP3y3i8064y6ZW0+x23owZ219lYovhG1mlhLbtt989VSZ+5aP/9DFVvIst0lZK7pYY3/Py3AnSJJcxs83adNNSKpyCWPnM9HFtZKOxz7eGCi0jNHDL3YAAAAAAAASioMdAAAAAACAhOJgBwAAAAAAIKE42AEAAAAAAEgoDnYAAAAAAAASKurs7KRBFAAAAAAAQALxix0AAAAAAICE4mAHAAAAAAAgoTjYAQAAAAAASCgOdgAAAAAAABKKgx0AAAAAAICE4mAHAAAAAAAgoTjYAQAAAAAASCgOdgAAAAAAABKKgx0AAAAAAICE4mAHAAAAAAAgoTjYAQAAAAAASCgOdgAAAAAAABKKgx0AAAAAAICE4mAHAAAAAAAgoTjYAQAAAAAASCgOdgAAAAAAABKKgx0AAAAAAICE4mAHAAAAAAAgoTjYAQAAAAAASCgOdgAAAAAAABKKgx0AAAAAAICE4mAHAAAAAAAgoTjYAQAAAAAASCgOdgAAAAAAABKKgx0AAAAAAICEyrzcNwAkzfQj3+5iG2+4VubOPPoYF1t/3TWjfk8AAAAAgG0Tv9gBAAAAAABIKA52AAAAAAAAEoqDHQAAAAAAgITiYAcAAAAAACChONgBAAAAAABIKLpiYcKacszRLrblmutk7pyjfaerNdfpTldRujbsexiMqsPOVeYc5btqmZmtuZ7OWgAA4P9bR0fHsHOjSMQCubGKqWBAZ2fn8JMBAP8Vv9gBAAAAAABIKA52AAAAAAAAEoqDHQAAAAAAgITiYAcAAAAAACChJlTx5CVLFrpYVZZ2MzNV/zYTOOcq++QoHboL/3oPLVsVSsYYyldC5f48VSh5h2N9QWUzM8v5j03mqLfI1Djtc+ccqwsiy/8/NH6Fqcfo6w7/XTDbdA1FmeuxdO+lLlYpBZLV9BIHno6KR7podz7nJ6P77r8vcBMYr4497k0ynt/NzwFDA7vJ3Iamx1ys1LurzO194mEXu+Xm2//LHWK8mr9woYzHVVG8PzDldK6iiO1EUE+R5FQdm4PgTkRVWq6jenLofimqPD4sXbLYxcqV4TcFaYuyMp5K+f1Md7UicyMxxlasWDnse8DLY+8li1ysFBo7ci4KfCePxV44MJdl0v4/LFs2sccOv9gBAAAAAABIKA52AAAAAAAAEoqDHQAAAAAAgITiYAcAAAAAACChONgBAAAAAABIqKizs3P45evHifmL58v49W+c52K75goyt73JV9UupxplbrXsq2rnavq6Q+Ks7JXXrpW5K5dR9X80zH6b7l619o++09Xso3RuKfbV+FvzeZk7ICqylwPV/GtlXwF+WqMeZzXxSewZKsrcBtFtS/17MToOefXeMv6by77kYlGgLdZArcnFWlt0h4Bq1c8jUWlI5kbpnIud+LGvyNy/3fUPGcfWdfAbXudiuSVTZe6xCw91sT89+FuZ27/pFS6Wntknc4e6d3Kx5qfvkrm33KLjGDvB7kaq+0doF1dPbtavKZ3LHwokYzwYaQesYPOqelppCnU0xaoLnbLGTsfSBTJ+8hFvdrGBclnmFgb8fmbDS2tkbi7t99czXzFT5mYyvrPWdTf/TeY+dO8DMo6xs+/ShTL+18NmudgebXp/nM+KTleN7TK3IoZfQ6Vf5g6J7sjzrt8gc++9f2J0sOYXOwAAAAAAAAnFwQ4AAAAAAEBCcbADAAAAAACQUBzsAAAAAAAAJNS4L57cMd8Xh7vxtTvI3IO388VFSxVdfDbf6AuZlku6IPLkydNdrL9vi8yNU74Aoaz0ZGZtv9zsYhSHq1+oeHKp4gu5bf7zH2Xu5OOPdbFUShe2TaX8eeiWjCj8ZWbFbh+f0SDGiJmJesgWBT6d67t8sebtcmmZG4lKiC/98Rp9YVjHwoUu1r+hW+Z2D/pCcOWS/rynzY+nLQU953TsMcfFNq7ulbnFon+9fIMvqGxmNmfHXV1sxUP/lLkYuYM+fYmMH33yXi527OvOlrnNkx53sRceGpC55533Py72hlO/K3NPfIdf1678zUsy94Zz3uFit91+t8xF/VQR3LSezq2qlprR2MVFdVRaFmH2LmOnniLJobrHY7XRT+d9YdtYrElmZnqXNHKMvfp0LPTj6cx3Hi1zy+rv/9lmnTvo9yj93YGmD1X/3SzX1iJzs1kxxkQTEzOzX119k4t1rnxQ5qJ+6jv531+/vcw9YLp/9pHqEmNmaf+IrRSYzfKNvsh2VFgnc6t1THzZn/vv9UmcW/jFDgAAAAAAQEJxsAMAAAAAAJBQHOwAAAAAAAAkFAc7AAAAAAAACcXBDgAAAAAAQELp9jwvgwULdNX/D7/Kx/KRrrJ+x7O+U0gtlZe51aqv2p/N6PLZ0YvrfW5Tu8wdWN3lYo2t+h5+cbCvLL9osX4fHlqevMrcIzHvxONl/IWrfudiqUAbiBbRraH6Dt/9yszM0r7C/t3HHyRTi6K/RHu6X+ZWa/4j1tesz1Mn37jCxWb26e4D09u6XWzt7+h0NRqiqMHFDvji0zK3OjAoor5jmZlZnPWdqtKB1jdxvMHFsgN6oPeX/XyYS/uuf/+5ru70hrFR6tZz/7SdTnWxm5/7l8wdus/Has3Py9zeSR9wsYqtlrlX/tV3l5y9VHclyU/ynwnUr57uRtU6PqqvWTIvcA1/kXe+Qd/Dkr32cbH999Lj4bxL/TrcsXSpzO18kI40Y0U1Mgt10lQNZhoCuWqH3ZDX609RdIFsCnyzGKxjTMexWhtZv0ZDZH4vsqE/8P0n6+f+YnefzI1Fy75cVq+BlZy/bibWe+NNQ36MpSqBLrD8XGFUhL6Tf2hPH0uZ7j5971r/eR0MdMyLzI+TTD4wQUW+e2etKtpqmVksurLlm/TY+eUhft+cxO/kfAQAAAAAAAASioMdAAAAAACAhOJgBwAAAAAAIKE42AEAAAAAAEiocVM8WdSjNTOzpgZfYGvJTF3EbflG/8/paNMXfmyDz507SRfAfaLHF2Va3Nqr72GqL5y6e4suLDVU9YVxa1VfAHpbpIokm5lNP+JoH8zqYZwSx5b5nB47d7x9oYtNm/cKmVvsXeNihb6CzC1EvkhXKfKF68zMut9xmIs9L4rGmZm9+se3uNh2R71d5kaqamKg4PSa6yjAHNf8e37xXv+UuQt339HFNg1skrn9FT8X7Tprisxd3evHyPR8j8wtmy9YuG6dL+JuZrbkSj0XYWzsuoMqrm32568ucLFaWRcGrfSL4tjtU2VuKuvXlL98a6PMbRCVU5vb9pO5rXvoYoPY+pbsuZOLVWJdLP2b73+9i93/6Asy98//8GvuzNYTZe57j3iTi/VXdaHlhfN98ckVq8Zv4ckkicX2NhXoJlGr+c/wUKDQvyqVXizqOWCXedu72NqN3TI3X/FxvXMyy4gvBfpuUT//3sZl/e7u2OQbOTzfr8fCvKl+L97Vpb9X9ZR9blXskczMsmW/bwmkmonGOPhfCLy/jTlf5PiQOXrOuW91ycUWz9K/J3lws3/B+TN0o6RHt/j17pWT9Th7TlST332aTLW+Pv9vq1X1Hm484xc7AAAAAAAACcXBDgAAAAAAQEJxsAMAAAAAAJBQHOwAAAAAAAAkFAc7AAAAAAAACTVuumKtDHRJWLBgvoudfMYJMnduk6/q/vSg7jTSHPm6/32x7hgzreq7zmwMNAlpif1bWsjq8uKnnvMjF1u5km4R/83GG69zsdlHHStzBwr+eW4s+KrnZmZd4oizuvoRmdvY5rtAtLbrjiBT876jWikwJtd2+wrylZzubqRGapMfpmZmFouC9S9dT/erkJTovXH8xz6vcyPf1ap3SPf5aKr4sVCON8vcUto/zExFj12LW12oIafP7FtGeJTf19cn462t/h5g9obD9JqSfnGhizV2qV40ZnHBv+e1jB9LZmalql9/yjN3kLmZkh/nmxt1t8do2oEyjrHTppsn2rzJ/tm/5c0Hydwu0QXy0N1nytxHN/jPcM9m3Ynv6ZS/h4W7z5W5sVqAMCrUNjSK9Toxd2f/3HeYMlnmHv6aRS62ZoseCwWxrs2eqgdvzxbfsejezhUy98Vnnnexrj7dJQd1Ep0/77v17zL1jrxflxorfq9qZna/aEXbVdWbjoqYFlJ6a2xTMv47VCnQtSnQFA51quc7+Qc+9V6Z+8qs3/909uqHPDnt55GuWO+lZ4nfpPTEuqtbLfLzYU9gf3zyqZe4WBK/k/OLHQAAAAAAgITiYAcAAAAAACChONgBAAAAAABIKA52AAAAAAAAEmrcFE8OaRQ12AptbTK3oeoLq61a/ld94bKvsPXq1xymU0Wtpz5Zts7sX6v+4mLVIV3Nq+Trl42KTMY/1kpFF5aaEGJdNTif9cW4Op7dKHN3/oEvyjw4e0+ZmzVfVLn7kcdl7oGLXuFitz2kizK37+ULFuaqukLcyU+ucbGPbK+LVyqFg14r4w13/mPY15ioarF/zx++60aZu+NevpD7OxdPkrmb0/66Nz2wTuY++PcbXGz+oafI3P9Z7J/75kh/Ju59UI//4apUA9UNYSee/BYXW3rwrjJ3l0FftLQp1gtCRYzHrpouVn3Qbv0utvzOp2TuzpP8utTfo4sVLmvzRcLx33V0dAw7NxJbBF122+zJot8U7TRdb+WGYr8neqyo54ZX7tbkYn19+vM+W8wD5e10Id5aLlDlFCOmdpYV0cDDzGyoxxdhj3aaJ3NvXfmEi91924Myd6fZfi7qK+lxs0uH31O1tk+VuV19j8k4RoGYcH5xxUdk6pv/5zsuVpuk14lGMfRSA/q70rN/+raLTY50UeZv/eYHLrZHg/5dwrHfflTGMToaRN+GYqDqdXfBP6Mn7r1V5qpi2PseqL+TpyJ/E/lso8z999/9GcAKOXOaFfSwThx+sQMAAAAAAJBQHOwAAAAAAAAkFAc7AAAAAAAACcXBDgAAAAAAQEJxsAMAAAAAAJBQ46YrVqiDxJ8u+7CLNQzpDk/VJt/t4aM/eVrm/v1bb/fBQBuKGY2+XPeL/foezv3Rsy5266VH6Qv/0nceqEcqpavN12r+flWnLLPkdcua/Tbx3AJNN6Y875/9/xyuO11d/8AGF/voZ06UuYXMNBf7wlGnytx82ncwKcW6Ivv5nzvWxVJl3QHujHec7WIf0ZeV6H5l1jFfzzlrHrrfxe6/v1PmplN+zjlqL/257It9Jf8bHsjL3OJgj4tl8/q6b97Ldzvpa5sucx9bJloa1CEdmHNg9qaDdnGxuOy7VJmZvaLFzwv3/Mt3MDIzm57Z7GKT926Wuc8+2etiQ5vWy9wnXvRzSy7tx52ZWeOu/A1oLInGZ7bD9n48mZnNSPnPe+ctK2VuIfKbmlfuv4fMzaZ8B8cpDX7smZn97Xr/enFaj99ojLp/TlT1dFOTW59oIJDtu08dcsyhMjOK/Pzy6LIVMvfVu+3oYrd26n33Kf/ju3EO9eoN3N133i3jinrPOjv1mr0tCe1xXvjLN11s9lS912wV3Ya7C/qZtUz169rkqt4zzPZN+Kx3k/4+cp74rnTT194pc1NGV6zREJqHHvndp12sPDgocweiBhc76ye6K/A93znOxVIp/b01nfLjr5LWe5T3/eRhF7vje3rsZGxizBns1gAAAAAAABKKgx0AAAAAAICE4mAHAAAAAAAgoTjYAQAAAAAASKhxUzw5ZGbWF/ssF3VBykK/L6h0+68+LHObSz63NOALT5qZTWppdLHukj4Tu/YHZ7pYQ8oXkDIzK9aqMo6wtX+81sVmHykKKptZVPOFbRfvqQtS/uTWNS72tle8WuYO9jznYl8wXSDutKP3dbHr79aFLpfO2N/FJjVulLlSoIj0SzdcM/xrwNYN+GKBO+02R+beeO0lLvbaE3RhtslFXyj5keW3y9zGoi+A+fA9V8vcRYcd7WK5npdkblfcLePDFUV1VOjexkyO/HK6tsHPQWZmmzd2udhvH9NFBc85eIGLtVZ8AV0zs9YGP3b7dtlJ5n7vumUudtTeu8rcQqA4IsZO2goy/oNP+PllzxP8PGRm9osP+wYAs6bowuqVon+9QkV/3i+560EXu+Bdb5O5cfwvGcfIVcV83NTYInMrVb/f3KVhpswtb/HNJKoVPZcddfh8F/vHv5+UudbvG09Mqfq5EGOrv8u/52tKeo5fedOXXWy/4y6Uub1iu/rQr8+XuS9t8N+3UoECuF8/+Q0uFs1aJHMr8VUyjtHR21dysSnN+jtuturnp3t/64svm5m1lHyV/aFIF9POpf1euhz7wt1mZv/4+UdcrD2l17WhaGJ8J+cXOwAAAAAAAAnFwQ4AAAAAAEBCcbADAAAAAACQUBzsAAAAAAAAJBQHOwAAAAAAAAkVdXZ2BnrpbF0di3znDzMzE5X4b7r0wzJ1B9WBxDe0+g/fdMb6Il31vy3ru530FHX17JntvjJ3oU/nzn/ft11sWecqmYv/2O7tx7hYLTCClw4+7WJr1upnfO0Fp7jYcZf9Tua2DPkXvOTDR8jc1iY/dvoK+oY/9IubXGz6gO62tWHTZhd7Zs9Xydy45P/Na67VHZa2JR0dHTLeLOaMO2/yz8bMrNzjq/bnMnrSyaV97qYh38XIzCwb+ederviuAWZmc6Zv52LpQDeBXQ880MVW1DHn9PbqzoFtbW3DvsZEdfSRh7nYokN115nD+/1zb5s6W+aWRbeSzYP6ObSaHyMDBd0BIpvz3XPy6aLM/dEa3zHpJ5f9WebiP0Lzi6KazcWBde3Bn57jYkODusFpLeefWy7jO4qYmaVE16Sa6CxpZhZXfbfSKKf3Ofu/9zIXW9XZKXNR37hR9I7B7Pfnv8fFzvneb2Vus4id+943y9zWRj8W+sQeyczsvF/8xcW2C3SoeWS1n+N0P1ytkzEWHEttLf5v+o//UnevsiY/oh4Z0OvErjk/t7Q06m5FZTG1ZAM/Nbhv0M9j8zN+3JmZzXnTuS7GWKhfPfPQil+8T8ZbG6a4WF9Bd3tUvzNJ6UdseTFOCiW9523M+o5dlZQeaAuO+5KLLU/g2OEXOwAAAAAAAAnFwQ4AAAAAAEBCcbADAAAAAACQUBzsAAAAAAAAJJSuuPcy6HxopYx3LPFFldPlLTJ3S26WDw6EakP7eFNGF3FbfJYv/he66t8uO9vnxrp4WDV4lZHJZPxjrVR0Yamkeenaa1xs9tG+oLKZ2fKmXVxsWvy4zI2z/ln89mPHD/u+JjfpKl+bRWXn5mY9zn561lEupjPNjvnMlS6miiSbUSg5JFRQTxWN69v0ksxtm+qL48axLg5XFJ/39owv7GZmtvgNR8m48uAt/vlGaX1mP1ZzDsyuu+HvLva1X54pc0vlkott7FsXuLJ/Zm2ter4Z6vWFLtO6Vq5VMr6AcyXwt57+KFTwEKMhVChZGaz4ZxRndGF1q/nxECqInBY3kVZVnc1sKCX2E1X+TjgeBGoRW6rR/4fvfuwEmauGY5sokmxmVmn2Rdh95D++fc6xLpYOFDI95tM/Gd6NIaiePY416aYPKfGe7xUYC8rQkP7usdMRnx32NV7861ddLI5Du2OMhnrGTvdzD8vc2s4LXSwKVcg2X3w/k9ZHFHu96zuBa3gP/PL9/r5U5W4z09HkYSUGAAAAAABIKA52AAAAAAAAEoqDHQAAAAAAgITiYAcAAAAAACChONgBAAAAAABIqHHTFasetcB5VKN1+1jrFJlbrgRahQj3f+/DLpYzXRW+kPP3Vi7obidjVeB/onTAGq611/lOWWZms4/2HRhygWL+zc2ie0hFV93PiXBc1fXUTzr3ly7252+8W+ZGeX8PRZlplhUd3AplX1Ueo6Mpq59vf9dGF8u1TJW5jVnRHc8/cjMzW3mHH9NxVU/Xsbi1Qn+3vvAItbW1jcl1J6p7lz8l428V3R77N66WuWkxL4T6gXz9lqdd7IITXiFzo5ofT/mW6frC63UnSmx9haKf58sVvVJMavVd9+LAzmOfM77rYndd8QGZm8n4fU6hOFF6iry8VDca2cUoQDRFNTOzphbf9agY6FiUF9cQDT7NzOzI0y92sT99+30yt6XBr4GxWhdNL43scMZOOtLfqyo13xExnQpsXERnvWxgPK65/osuVlWb6//8F/FSgXvAVhcHvpN3P7nCxWbtuV/gGn79CH1HfuR357hYqabHTiR2S1ueejBwDxMDv9gBAAAAAABIKA52AAAAAAAAEoqDHQAAAAAAgITiYAcAAAAAACChxn/x5JIvqJTP6qJZ5aovfeTLxf3Hg2u7XGy7bKCyrn41GX1qw4su1pbWRQVDZcJGKiOq521rBZXNzNZed7WLlefrIoTFijrj1KW0eou+mFwUKDz3ywuPd7Etg7rQZTbd5GOmn1ux4u9t843XyVyMXCavZ5J81c9F2VjPDVPSgy7WFevCkapKZGQlmbrgsA+6WNsui/R1xaxTT2HOEFXwE2apSH9+U76mrTVOnSFz160bcrF0Ws83Hz3CF2XuG9D31lUSY6+vV+bmy+N/q7CtyGX9ZziT1vPIwJDPDa1Vt3z3wy4WWKos3zrN31fULXPjsdrobEPqeQtrgQrDNVGOONuk99IVUYy7Erju1Ref6WKFQDOJ5iY/TtMp/a9Tq2gg1VauYv0ZqTgVmOMr/pmVi3pi+P1f73GxPXeZOaL7MjPbbXu/NrbNGPl1MTqyopi+mZlF/gPbt9F/RzYza5/hGzc0RsMvly76FpmZWU/BzyQzZ8+WuROl/D+/2AEAAAAAAEgoDnYAAAAAAAASioMdAAAAAACAhOJgBwAAAAAAIKE42AEAAAAAAEiocd/qQlXBr1le5s6a7c+p1q/bLHMXz57sYvt+6Ov6HkRzpMZAdf5dJu/sYmccs5fMTWcCHXFGaFvsgDV8+sG1iKZHvQO6K1Y+58ffW3+1v8zt6epxsWqbrvR+/0mPuVj/kO5SU9O3hjHS0u67wJiZWcV31+vu9V3TzMz6U20udshBR8vcmuhc0y06lZiZ/f62J11sxrQpMrfribtcLJ0f/vl++y8ukXHVWYtOWWZxoCXQ7271z+z4w/3aYWbW3uY71xx+89tkbt+Ab4FVbdDrwd9ed7+LbSrrtbWpUbTxwpgKdUL6+U1PuNgpb9hV5jbk/VVWnOvXGTOzmphfNgQ6er7tO691sc4n1sncVKALF4ZvVR1z6dKF82V8c5ffS0xqa5a5tZp/Zkf+dB+Z27up28VSU/Scc89ZT7vY31b68Wxmlor8vLdi5QqZi5Eb7NZ7zaHYf01sF93NzMyOe9NSF9vr1C/I3LRoyFYLdOFbfcOXXKwr0LIvEp2YMHrU25tu112mNr70vItNjdbr67b7Pcbu5/xM5qrv5JnAXuvuS092sbUvrZG52Uw9nbHHL1ZcAAAAAACAhOJgBwAAAAAAIKE42AEAAAAAAEgoDnYAAAAAAAASatwXT45EQaSGRl2466HOtS42pVnnxpmSi933nU/pXFGp9qZ7fBE4M7PtSr4g5Y/v26ivWy3LuLJ0gS9OWtR1DUdsIhc9XblqlYyr4q9//tZ79UVS/o3/08n3ylRdzktHm7O+gvMJX7hK5k7kZzQeDRX0Z7Vaa3Wxhib9wRwcHHKxu++6QeZGojjclu4+mXvgkUe42Efff4zM/cbXfRHC0cB41Noy+rO+ZrqvHFkc1AVHVaH0v7/x+mHfQ7UmqlSaWe+AXxt/s/xxfZH08NeqbY1aO8bSz66/2cXe/YbdZK6qsb/wyzpXLUtx4G9/hciPnU9c9geZu3LlSv16GBMPrtB7nMViD3ndpWfL3Dj2I+eG0/417HuIAnucqW2+QOovb9DXpVDy1pXNhb4O+ng6rbt3FEp+DXvkFxfJ3FjMTi2B73a1mm9IEeV1Qws1djF61Ns7abJ+FtmSb16USetxls/4tWbZt94tc1U9/sKQ31+bmeUyfs55YWNgP1+ZGPscfrEDAAAAAACQUBzsAAAAAAAAJBQHOwAAAAAAAAnFwQ4AAAAAAEBCcbADAAAAAACQUOO+K5Y6eqqa70RjZjZltu9GU+nSHal6Nm1ysUmBbjbKAXvkZXzZc0td7Igpt8rcO+uo3h6JJgM/PXXmsP//kP+5cv2IrzERqB4O+YzuJvOWT/zCxa796qnDv3Dgsb/2nO+5GN2Gxolskwynyr4SfxQ4L6/UfHX+cmlA5qrODs3N+roP/PlbLrb44LfIXMbTVhbpNWXdPRtcrOmV82TuN//+kot98I1z9MuJCSfUweSGfz3nYn+6+naZe/RZ+8s4tj7db0g7+Mxvu9hdl58z7P8/tqqMH3jiZ1yMuWV8q4qpqC3QheiwM77rYtdc8r46Xk2P0oNPu9TFHgp08cLW1d6o9xeb+32nq0rgq1I10+5iqezwv1cVKnqtGiw0u9hOb9PzGPPQ1pfPB34jMutVLtS/7jGZuv4lv89J9Q3KXLXPUV3WzMzW93S72EmX3CNzJ8rY4Rc7AAAAAAAACcXBDgAAAAAAQEJxsAMAAAAAAJBQHOwAAAAAAAAk1Lgvnlyt+YJIuUifR8UZX1CpebouSHnYGZe6WDZVqu/mhJSoE1YW/wYzs4uPaHGxvRd2DPu1nl7bK+M7z24bdi7CVMFqM7M/XfpeF3vd+78/4tebKIW7JqKosSjjcckX2K6aLha471ve4f//SmFkNxbAWBoffv71O2T8TYfs7WKDgUL/p+/nmwWc9d17R3ZjZra8jqKl1/1QFxvE1qeWpVxgJ3ffTz/sYvu859IR3wPzy8QQKsR965WfcrFDTvnaiF+PcTN+lUt6Eslm/feiWqz3OLsc4YuqD79FTH0YS+PHxgE9k0xp8OOkabs9ZO6eJ1ziYndesGhkN2Zmh35qmYtN9LHDL3YAAAAAAAASioMdAAAAAACAhOJgBwAAAAAAIKE42AEAAAAAAEgoDnYAAAAAAAASatx3xVJ6S4My3pKd7GINTTpXnWgte2j4XUJGg+qA9f2TZ474uqoD1pduHpK5E706+EhUAt3MMqJd1i3ff7/Mfb3olsV7njyZip4qy21VH+wP9BqJfZyxsG0qiwaMGwu600ix5MfYJe/WnSU++etHXey+B1fWd3Ooy9b+DHd0iM6ZgT/RpSK/ht135Ydk7r6nftvFVjE/TRhqN1Os6TmnIeWz7/j5J2Tuwad8w8VY1xKoJvYyZtaY810Z+ysDw74sY2Hia8tVZHzzUN7FmkSXNTO9hB10wUMyd+lOzS724DN9MndbHH/8YgcAAAAAACChONgBAAAAAABIKA52AAAAAAAAEoqDHQAAAAAAgIRKZPHkWlUX+eqt+qLBWcuO9e38rz2wwhd1koURR8G2WECqHuqEs1EUnjQzG6zo8YeJK9I1Ji0Xp12sWA0ky/KV2BY1NTe6WGujLrpdKPrZqXdQj7HBYmjsYSKLAn+jq8XD/9sds9PElhbTS7pYkLmFTCK/GmAE4pouamvFoo+l9Pcq5pBtU8r03mVy3o+pch2/J+lcReOH/w1+sQMAAAAAAJBQHOwAAAAAAAAkFAc7AAAAAAAACcXBDgAAAAAAQEJxsAMAAAAAAJBQUWdnJ4XMAQAAAAAAEohf7AAAAAAAACQUBzsAAAAAAAAJxcEOAAAAAABAQnGwAwAAAAAAkFAc7AAAAAAAACQUBzsAAAAAAAAJxcEOAAAAAABAQnGwAwAAAAAAkFAc7AAAAAAAACQUBzsAAAAAAAAJxcEOAAAAAABAQnGwAwAAAAAAkFAc7AAAAAAAACQUBzsAAAAAAAAJxcEOAAAAAABAQmVe7htIgo6OjmHndnZ2juGdAAAAAAAA/B/8YgcAAAAAACChONgBAAAAAABIKA52AAAAAAAAEoqDHQAAAAAAgITiYAcAAAAAACCh6Ir1f1m0aJGMr738QBebfcY/x/p2AIwTs449VsbXXX31mLze9GOOcbGN11wzJq8FAAAwHqnOxHQgBjR+sQMAAAAAAJBQHOwAAAAAAAAkFAc7AAAAAAAACcXBDgAAAAAAQEJts8WTF73aF0ruveq1MrdSrblYU0N61O8JwMsvVChZmXv8O1zsxd/9QV/3GH/dWhwP+7V2eOdxMv78b34/7Guof9tYFYAG8PJaIIqOxlEkc2MxF1GgFJh4RlqMWP3/9V5jrK5LoeVkz9XrrgAARdNJREFU0muV/u1JHPvv5Dzj/4Nf7AAAAAAAACQUBzsAAAAAAAAJxcEOAAAAAABAQnGwAwAAAAAAkFAc7AAAAAAAACTUhO+KtXCprrL+zwv2crF8XneLqAyUXaxmvio3gOSLzXeHyWV1F7wo8vPAjifo7lWVjOiAVdNzTkYcuT8X6H41712+M1etqrttVWQUW9v+iw90MdHowczMGnN+MKRSob/J+PE0WPDr138u4sfIPcvvClwX48WChX5Pk470Vu69Z5zhYuE+fP6/hLrURGI6XLWCriTAeFJPl6m6OlLpbUtdHak65s/XFxnmdcfKWHX82hYtWKCesR485190kYupvbiZWSTC8zsC40nsc1atnNjPkl/sAAAAAAAAJBQHOwAAAAAAAAnFwQ4AAAAAAEBCcbADAAAAAACQUFFnZ2e4ll7CLFi6wMX+8dlX6dwdp7pYS1ujzO3vG3Kxaaf9U+amM74w1IP3rZS5GN/my8JfZnFNfGQCxeT+S6XKYaFg2+iYeeyxw85VBdvyaf2AI1F/vlrTJYpjMRbSKmi6OG41MJhqYjyms/rMvlRRFXr1v2391VfLOIZv34WvkfHWljYXW7LXDjI3SvnnU4v1862pMaIqDZrZ449vcLHurkGZe+fyv8g4xk6oiOf73/8+FytXqjI3FvNLFBgPFvtxFkV6bkiJ+A9/9COZyxo2Puy9ZJGLlcqBiu1iepmaapCp6bQfexvKeg3MinX0wWUP6XuANBoFkesipoAo0utPXBPjKbQ3VoMs1EFghIIFnOso9oyw0Di7SBREVl+fzExvkAPrj8pNiX1S6PUuOP88mTtRnj2/2AEAAAAAAEgoDnYAAAAAAAASioMdAAAAAACAhOJgBwAAAAAAIKE42AEAAAAAAEioRHbFWrREdyu6+v2LXSyulGRuoZR2sRMOzMrcnkHfKeSOh/WZWLnkOwSc8PPHZO5D99Mtq16y+nrgeLJz5fArnC9cKMZU4JNRFWXWM5lAlwDR3cgCHUyG+1pm9VVvr6czQpKqws8Sna7W1dHJacaxx8j4evF8GvJ+vjAzizK+i0NblJO5fQMD/roteZlbEM+9NdLzU7FadLFyoGvSoE+1mYGOX/+lnYVDBy2zfRb4DlhN7a0y9w0H+rVqi1g7zMw2D/oOM015343NzKxS9bnNGZ2by/sxsvKBx2Xuuo3rXGzZirtlLuo3X8zRZ77vTJmbqvkPcbU2/LaM6byec2rVso+VQ9tDP++lc7pr0g+/77tlrUrQOpM0e4vusGZmnznzZBfrk10Szfq6Cy62Yd1Gmas6JO2w2xyZmxGbte/9+o8y91936c6z0EbaASs0g6TF3rYaGDeptMit6ty0yK2FcsU+uhbooBXsujRMSdoDvxwWdfjvShdeeKHMzVf7XawS6730UMl/V29qmyRzqxX/nTzSjfjMYr+virN6X/b58z/vYisSOB74xQ4AAAAAAEBCcbADAAAAAACQUBzsAAAAAAAAJBQHOwAAAAAAAAk17osnd8z3BcFuOHNfmds92O1is7ebInPXrel1scasqCxqZm/cez8X++0dD8jcXMYXhhoq6KpOZ17tiypTuOs/goXgVIW3QNW3SBRne/SWHWTunoc9N+zrqqLKoYJt+SZfULJS8IUJzcxicQ1Rl9DMzB7+6zwX2/31z+tk9e/Qdeek8Tom5x7/DhcrVUPTmY+HMrNZ/4ZlqnowpMX7WLAhmVvytUltWosu4lYWBd8as7oI7rouP5e1NzfK3IKoz1uuDX8wbLj6mmHnbmv2X3KYix2wYK7MXTvkB0NoPHZv7HOxvpJeU9qmtbhYakiva1VRGDdUBL57g7/fQrVH5t638i4ZR3hdO+PM030wUBA5jsRcFiiWHqncwEhLicUmVotSQHi59Ne44vIrZO54XWvGq46Ffjx94SPvk7mD5tePlkkzZe5Aly+WvmWDL/5vZpaK/X6mcdIkmZsXTQhKgaLx3/rBVS626iEKto+0SHKIKlBsZvKDXQ3sGTLiGpVAQeRso28GUSmITVLg3iJdg9fKpTo2t3XY1uamDlEk2czsogsvcLFMYPZPi710LfBlqSKuEQVyM1k/dmJR/D90Xb2TNusXG+QvffECmTuexwO/2AEAAAAAAEgoDnYAAAAAAAASioMdAAAAAACAhOJgBwAAAAAAIKE42AEAAAAAAEioUHHocWN70dxlU1F345gxfbqLbdncJXPzU/2Fi0O6Avdv7vcdsLJZXcm/tblZRAdl7p6TA2XdtzF1VflXjyjQuCMWlftfeehzw75uq6jab2bWJ7qcpQMtQQoDvmPEtDbdsah7sORilVhf+JWvf8EHQw1MVKebOjohhZ7Py10V/sXf/WHYufNO9B20LPDepsUbmRUd1szMClX/zEpF/SCeueAYF3ugR3dI2/+7f3axm070XZfMzA784e0udt/Zh8rcpd/+u4utodPVqEiLDkSpJj3GZjf4uX/9i3pdmzPXd7pSc5uZyc91fqr//83Mhnr92G1u0HNe+2Qf37Raj/PXLn2di/3jwVtl7kS2UHQset/7zpS5GdFer19PDXbllT/1/39o8s/4LV4l0DVGdcCa0ZiXuRvK/uZOO+00mZsWHQXfH3gfFi7y79mKh8Zv95GXWzbrP9vPdOmx0D59qottfHG9zE2l/ee92qjnkXTkOztWA38z3jjgx16om1qoI+i2LrTvGnG3rMCDUB2wJov1y8yse8jnTmnRc0iuwXeMnTNVP/SHN/mObOXADUeRX9eC3f3EJTpXbXvzzcIFvgPWF79wkcxVa1XZv+VmZnbhRRe6WC3QuTYWe+xYdO4MaQ6sgQMZ/5A/+5nPytyGnB/XX7jwCzJXre8rVoyPscPUCQAAAAAAkFAc7AAAAAAAACQUBzsAAAAAAAAJxcEOAAAAAABAQo374smplC98VOkbkrlPiaK22Ywv0GVmNq3sz7QqUZPMnTTkCzD3NrbL3E1Ff90pgYKUoYKssPpGpn/sZqaLzC2YrwvMzZ7uCwCu3dQncx/+uS+8tb5Xj8mpLf7Zdw2UZW5jkx8PB57+LZmr6o+tGKuiehOAmEasFiiot91jj7nYD88/TuYetqbfxe7f1RdxNzNLDfjiuFFGzw3/+vgJLlboeknm3nP2wS7WtUGP3WOeedLF7pCZqNfMV/jCey91dcvc8sBGF+sb0gX5G5731x2o6kkv3zrTxdavXy1zUxk//ic35mRuepKfHzcPbpK5cW34BQ8nskjW9tTvTbXoY3++Thc1X/bjc/xVM5P1dUWN03KvnhvU8Mtl9HiIxN7lYz/4k8zdZdc9XKy9zY8nMzNRfxz/RVz1hUxba77QrJnZ9IFHXWxqk36+laK/bjHWc04p9sVxa2I8m5nlKv4/pEPFVKt+bcV/2c+p+aaOz1NGFFo3M9t9pi+6vXlIP+CO7f3nuld8LzMzW7K9/w7VY/o72CvyG1xsY5+ex7o2iiYkgcLQ22KhZCVUwFyplX32xV//osz9wol+b1rp182EaiU/Thom63XtNQtmu1jnKr0/ztT8ePjMdy6WuSef6ov6t01qk7n1fLa2Nk4WAAAAAAAAEoqDHQAAAAAAgITiYAcAAAAAACChONgBAAAAAABIKA52AAAAAAAAEmrcd8VaM+grcG+O58ncougw09ymq/6v6fWdibprvhOAmVljutm/lugaYGZWNt+GYqhVd8n5dxcV2UNCVdpVYwbV/SqkIXCUOXPKFBd77rovydzHn/dV3Xfa1XejMTN79t4nXGyvg3aVuX3rCy724o2Xytw5b/qIjCvq/ekIdAcbz5Xeh2Pmce+Q8SHReSMO/GPF1GAzt5srcx9o8J2BGgIdQdLm54zBiu4QkGvwLWoa0vpTMUN0s8g16E4UvYF7w8gNii4dy6/8oMztSvtujb0DvnuDmdlOaf98B0x3jBkU3UomTfZda8zMNvX5tbGpQW8J9nnPp1zsvmWrZK7S0NAo44WC7iY4EVTER7CqG5/Z5Vdc4WItuq2Wve6s77pYPtYL24DoUDZQ1vPe7nN9R5unXtLjbJK4xGCk7+H+B/w4OfzwQ2VuJfD+QKtW/efnc8fvJXOzTX5/HEW6g1Zj1edWAmOsGIs5I/Qg034NbGnQ4/wHv9Zd4bYldXU0rWPvpt7xUlGvP0Ox/05z9mELZe5+Cxe42DWPrZW5zw36teqEDr3PahTdhn913c0y99YNvvtoqN2een/v+9d9MrepWXfsmggq4utsNdDd8nPnn+9iswLv7yW/+7u/ruiq9Z+4v0aX/pptC1/hv6898twWmdssRnsx8G/7+rd8t6zjjjtW5oqGhOMGv9gBAAAAAABIKA52AAAAAAAAEoqDHQAAAAAAgITiYAcAAAAAACChxn3x5Cjlixx9+ca7Ze4r5852sX+/sE7mtomCSpVAAahq7KsklVW1KTMrmS+K2RA4P8sESwRDFUkeDVHOFwU0M7vpG2e52IUv6Y/HAa2TXWzWJl841cys0N7mYvc/vlHm/n3yHBfbt+gL15mZTU7rouDDlvAiyUGiSPJ/+PjMp56UmbKwYF+vzM1m/XNYs/KfMlcN6Znz95W5A0VfSLtU0AUpH37QF/vrDzxgZpyx09jki+wPRvqZFTdsdrHl//ibzFUlig9+nS4+O3P77Vysv0cX6L7z5r+6WD6wBpYHRjbflMqiIvkEESpwesYZZ7hY/4AuVqsMZSbJ+IuP+IKUjzz8gL6IqPB4yDs+LlO7uv04WfbgPTK3sOkpFysV9Vg/8KhTXaxfFBo30+9Z6P2tp2nCtmTKJF3kNV3xxXH/dN3VMrcqVorD36SLiEZlf91cg98Hm5nd+pffulgtsCqlxnFx0q2lnjFeV6FloVE/MrvlQr83fiKjuzC8UmyZP7i9LuZdSftxM2W2bkLy0FpfGPdHC94lc/d+11dcbL0oMm5mZrFf7zZt0UV4502A4skdHfNl/KILL3Sx7h5RhNrM1F66O+2/55iZPXKHn1+6u9fI3JroLHDAEefI3K4uvx//1z13ytxM0efGgb30wiP9HNfT3S1zL7zwIhcbL2sVv9gBAAAAAABIKA52AAAAAAAAEoqDHQAAAAAAgITiYAcAAAAAACChONgBAAAAAABIqHHTFStUTXqfHae72FGL58ncvqjVxR58erXMLYtmQ+9+9W4y99i9/XWf7WmXuR/4+W0u1qIbG1l/jR41Zrpi+GhUF18grrHxrktk7kvPbnKxa27y3YbMzK7N+wrwX9nDj1Mzszfsvb2LrR7U7R5+cLOv6v7cFD3ONtZ816R6hN5H9b4nqfvI+mt0l48Zxx4joroD0C0/eI+LdfX6Dg5mZvmaPxv/9K8ek7l/vuitLvZSYA5on+w7r22qdsncT1/9hIv96ctHydz075+RcQxfx3w9N22562IXe/bJDTJ3+lT/fM/52aMy974fvtfFGppaZG73Ot/RIy/GkpnZh360wr/WFR+Quc1X3S/jw5XN6q1GsTpG7Q/HqV9fdZWM3335J1xsuzl67h8Q3UNu/JefA8zMTj/+dS52x08/InP7h7pdrJzTz+0Ptz/oYmcd/waZq3rx/es+vbbOX7AgcI1tW2jOKdzxLRcbGtJ7g7LoXvWOyx6RuS/8+t0uVhNrnZnJPw9nUnrTe8Kl/3axp/7wP/qy31qpX28bN9LuV2ZmafGZXLjXDJlbK/o15dbblsnc2yJ/3TOPPETmRqJL2zPP6y7Gd9zmu/4ta9TjcUtVjP/a8NvATp0yZdi5yaPfBxW9+GI/t5iZfenEQ1xs0lz/PcfMbLDi16oHntRdgd/xpiUudst3fJdEM7PBZ/3ckE/rvfTtj/g559g36W606pvZzbfcInP3P+A1Mj4e8IsdAAAAAACAhOJgBwAAAAAAIKE42AEAAAAAAEgoDnYAAAAAAAASatwUT06ldOGj9y71hR9LQzp3r519Cagor8+uUuJM61376QK4Tamii4mazmZmtt/8OS726MNrdHKgkBVGqWCvGFP9PboI7nMbB1zs0auul7kfOftYF5s2RY/JQsEXB1WF68zM7vzRH1zsim/owoLXjdHQSVKh5HpEdbxfWwp+WsxM0rmZAV9u7fpLz5S5XZWyi7W2NchcVetv5nR9E3+95HQX29zbLXML5ovZoU6BsdSa9mvKTnN0QcruLd0u9u+/fUHmTir4FyxWBwO35ueWfFWvgVd9+2QXm7fzDjK3JxqS8eFKiaKa+D+mz2h0sb6hPpmbHvLz00nHvkNfOPLrTyaTlamz2vxeK1XRz/2rnzzXxTZ1r9f3UEfhUtSnW8wN+awuXJyOffzZ274sc1uH/DoxJIp2m+k5p1zVXy2evOVCF5sW52RuIWatqkc9TUgqYjou9Ol5YYPIveI6X8zYzOwrnzrRxWrFXpkbi4L6UzJ6zvvBNf90sa9+9hSZW67p5iTDFQW+i04M+t9Wz7/4kKU7udg9y3Tx/ikNzS62y+57ytynnut3sRlZfWfpGbNcLFvT4+ysU/x3qPUvPC9zU6KXQ2gWGs+jhF/sAAAAAAAAJBQHOwAAAAAAAAnFwQ4AAAAAAEBCcbADAAAAAACQUBzsAAAAAAAAJFTU2dk5LloWLFgwf9i5Pz5aV9We0eqrrNeq+p9XTfua1gMVXU29qdmffw3q5krWJjp2VTK6fvaxv37IxVauXKUvjLp990uvcbGf/E5XTr//F75bww9Wb5C5b83757n7XN8NzcysXPO5mViPyVuHfHeI1zboriQL3/lZF1sxQTta1WPmsb5jmZnZ+quvdrFQx4iMaCpy7bd1pyt1Mp4v++5XZma9ostHa953wzEzq3T5DgEZMWeZmaUa/bw3EGgDdtSHrnSxVYybuoTGzXTfVMg23KS7zjwvuvD1Deln1p7246apIdBJRgy9hrzuULOh5Ne7WY26o870153vYis6h79W5fO6+1uxWBj2NcYD9ezPOOMMmXv55Ze7WKg5mAo//SfdJe0F0VFth5z+G91q39DTrCpaf5hZJNq9xYH7ndHkX29zrO9h/+O/6a+rLyuddNJJMv6rX/3KxSZqV8fgnDPFf14f+b2ec9qz/vmURNdOM7PY/NyQzuuuSWnRhaga2HdHaX+/ob8uNx72KRdbuYr9cUhojCiiIZVFgSex8nd+Hnoi0LFvd7FHaWzIy9xSzb9eoKGb3fbSOhfbKzAe9zntOy4W1zHj3HbbP2R8+vRpw77GeKDGw4UXXSRzzz/Pr++iyaeZmVVFl8Nr33eAzO0rbXKxeWW9qDxT8/ucSqCjZ1Z0y1Kd3szM5jaKtUrMb2ZmJ/3wMX2RYfr4xz8u49/8pl8Dx3Kt4hc7AAAAAAAACcXBDgAAAAAAQEJxsAMAAAAAAJBQHOwAAAAAAAAklK6q+DIIFQ1WRZX322eqzL1/2RYXCxXjMl+nyVoadPWld1y+InAR7+cn+vutqAKGGHNnf/YuF7vit7rA3KwZrS722XZd8FMJ1Aq0JlHfLZalMs2ObPKFDDOZwD0ECoVt61SR5JBQ8TJVdO7tH/2pzL3+m6e6WCGlJ52c+Xh/SUxEZvbuz/vCoKFn/ptLTnexQJ1ljIJ6xs2WTRtlbnNmios1tYYKPPqHOVTR1ft3POYbgWt4a//kC7BXdC1Vq9ZV7tYLFQ3e1gTq5st39+b7npK5hyye52J9JT0e2hvE3+7SupjpPu/8uotFgUnnX7/2RSInpXTuuOjOkXD1zDkNKT0WBoui4Hrwg+nXqlj3BLApb/ycuK7OXfeXLwZez6sxckasnnGTCRSUbUj5RWF+U9Ow72FQFOk3MxuMRTwwxl47a5YPBsZYPYWS1fszMOAbG0wU9SzDVf3YpEyDfs/bar6jxMaqbwxiZtaa8utSWhQ+NjM77grfeCjkN+9Z6GIteb0GThT8YgcAAAAAACChONgBAAAAAABIKA52AAAAAAAAEoqDHQAAAAAAgITiYAcAAAAAACChxk1XrHpEKV2u+/ADprnYfcvWyNy45tsVVQMV2X9+4h4ulg/UF48i3+Vm7/19BxQzM7tGhzF2Ao07rFLzzy0d6XFWrvnz0FC1+Z3f8kkXe/xG333EzGT7kGBhehpGbFWquYyZ2Ts+/jMXy+dFKzQz++lFJw779X75nbNcLK7qDlrlmh8Mx3/sx8N+LYydbFp3SOsu97hYxnSnkVTWd8bLZhplbs+t57tYv26SYzXRoqkWaksyQoVCYUyuO5FVy3qSv+ne51zsgD189xEzs5SJlpyBxepv3zvFxRpyeuIrD2zy93X/M/rCI9RURwcemJUCXYjS5j+DcVq/t5n08L8arLnlWy6WD+yd1IjO2KC+MJ306hLqgDVcwbdbPMsX1/bJ1JnTfXfZVGDvtN87v+Binb85T+aWxN4nl9X7LKmOsdTc3Dz85AljZF8osoE2rIWM3/+sXtMlc2e1+NxA80/7/tHbudikvJ6zKgXfLTvKjs2a0tbWNibXrRe/2AEAAAAAAEgoDnYAAAAAAAASioMdAAAAAACAhOJgBwAAAAAAIKESWTw5FajzVK1VXGzJXrqo4G+W+eJ/swPFCpVQicloJ1/U6elNQzKX+rfjh6o3GAcqrhVKvpBbPqOf5sPXftnFKmU/Ts3MsqJUcrms70HUb8YYqom5xcysWPLPvRjIPemC37nYUEEUN62Tmg8zgarbzDlbV75RF2LMRr7w4+Bgv8z95Hf+6WL7vMI3CggJ1Y385I9vcbGdtxv+dTs6OoZ/D5G+i1WrVg37GtuaoZ7VMh5HfvK/u1MXM01nci5WKARL8g9bX9U/z9ZUoCClevR1TEQDA4HiupCygaKy2ci/6alIr1Vru32B01nt+vlm6yhMW6n69S7bPD4Kjk5EoTlaFVpePF/n1mr+a+Ls6fqZ7TLNF/pf263npuf+cK6I6m9WR5zzExeLJk2XuVJgvlHvT2CpslWrRlacenyrp1K5aLowtEFm5mK/Vu2yg95jNE2f5GIvPbNZ5jb6Gt2qTYCZmXWJ+WVKVX8nH6ne3t4xuW69+HoIAAAAAACQUBzsAAAAAAAAJBQHOwAAAAAAAAnFwQ4AAAAAAEBCcbADAAAAAACQUOO+K1Ysqpm/9MILMnfJwl1crLtPV/t+9VR/4UO/94zMVVfIBYqI3/iBdhfbYad5gesu0xfB2AmUvG9rSLtYz4DvfmVmlsv6riK7fkZX6O/t6vHBdt2JYv0X/XXb2/14MjNLcSa7VWUn6ecQ9fgq+INF3XWmLCazk+a9UubWYj9Geqv6uv/oXuNiqZQeu8WCjmNsFIr6/S6JbmgNDS0y99Pv3MvFjnr/j/QLpvy8sLZUkKlPPrHexaa26Y46Tz//vIvlcn7ODNn+4hNkfIroSqI6tmyL8i16TamWfZeZSrGkr9E4ycV+9subZG6t7OeXXKAF6QfOPtbFeresk7mZTN7F0unhd2FpzPrOXgiL0vpzWSr4MZLL6uc7Z6pf79re+CmZmxLPMhtoG7v6T593sd4+3Q0wm9ZzEYavnrk0k9Hjpjnvn0N/QY+bfz/vuxh96qwrZW5evNyDgbXqhn/8ycXixqky97nnnnKxbB1r1fSf6XGuOmhNnLVKPc/hz9GF2M/xZmatjX4/MiTmITOzrrX+u9J7r/23zI3E/JIKnGb85n0H+2BNj7N01v87snWsVc3j5ESFb4cAAAAAAAAJxcEOAAAAAABAQnGwAwAAAAAAkFAc7AAAAAAAACTUOCn1U58XunS81rnaxZoyugBboeKLRf3j7J30dUX9y74hfSbWk/aF/q66+2mZi63voZWrZHyWKIz25I1fl7mqhO2TX9k07Huo6bpz1hj7Am+7H/VJmbti5cphvx5GrjKgC17HkX9mDaJgnJlZqX/IxX5d8YX+zMzSGX8NURfXzMwyNV/cbc4sXViw97kN+iIYE7H4TJuZNYpClYWafsC5rB97f7r8A6EXdKFq3CBTF+2xh4vtv9/uMvfm2+/Rryeo+vSqCYJZ8opPqvtVRTXNzM444wwXu/zyy4f9Wgct3kHG71nh54xK1RfjNjPLZ/3D+MApr5O56rlVAgXbhwZ88ckX1ug1sFL291YJFNc98aSTXOzHV/5U5iZt7IwJ8czKsd7WN6rKnhW9rg0O+QKnvTd/Q9+D+GxXq/oBR+bjQ6YLr5ZDgwRj4v7lK2R87vxFLvboNefJ3Grs17CvX36qzI1jP3j7S7rZwPFHH+NiT2wc/p57NCRtvqlnrbroootc7Lzz9DNWevr1+pPONLlYX68untzU2uxivxSNI8zMYrEs9Rf0fLGl6CeofErPOVWxVgWmMvv4xz/uYhd+9Zsyd2uPHX6xAwAAAAAAkFAc7AAAAAAAACQUBzsAAAAAAAAJxcEOAAAAAABAQnGwAwAAAAAAkFCJ7IqVT7fI+Or1vS6248w2mdvS6qt1Vyu+a42ZmYnGJu153eZjoOBbdn3+N0/I3FWrklVlfSJTT3PdhgGZe+BpF7rY4zfqauiqG0w6cJy6wxG+ynrSKvFPVL/72jtk/PhP/d7F0qar/kcNvgtErRboHiLCoc5CormEPfpcn8xlPG1d6axfZ8zM0rGfW7JyFjLbcdZ2LramW08iNTFI8qrdkZk9/Jv3u9i8t39B5jJutr4ZbbrTyAGLdnGxOx7Ue4yujb4LXjrnu4/UKx0Nuthlv/vnsP9/1THMTHcNY+z9F2LKyGd9Z1Yzs74hP55asnoeiUV310qlX+bWRIeaUAfHSuT349MP/5jM5bmPD+XYd06LAg94yWm+c9qqqz4rc+OqH7xtzXqter7Hf7djfIwfe8xtlPEn1vh1ormlVeZ2bd7oYk2tunuV0qRvwRqtx8WO/vbwuwpfKDqGmZmdL7qGjZcxyS92AAAAAAAAEoqDHQAAAAAAgITiYAcAAAAAACChONgBAAAAAABIqHFfPFnVfSz26gJbDZN9Ma4XN+pCpu++6kkXS6X1deuhCslRJDmZcoECcXf97AIX21UUPq7XeCm8BS+ORAV1M4urPhZl9LRaGPDF2cV0gQkkE1hi44wopF3Ro2Ham77kYuVKYWQ3FsAcVL/Qe9bR0eFi9RQNfnGtfsYzt2twsQMX7yxzDz392y62pd8XQx1L//Pe011M/XvNGH+joVzR+5aMCBcres87/fWfcbGaWuzqVBPFnnnmyVMs6bXq4Wt8Y5FXHv35Eb8eY2R01LNW1VM0+PaVvkiymdmiV/lJZ/VLOvfcv652sY29I59z6vG58/z4Vf9es/E9JvnFDgAAAAAAQEJxsAMAAAAAAJBQHOwAAAAAAAAkFAc7AAAAAAAACcXBDgAAAAAAQEKN+65YStSo4wNb2l1s2rQefQ3RDGD5ilUjuS0kmBoPs2a1ytzn1nW72N1Xni9zX3Oqr7K+ahxXU0dAyneiMTO7+tKTXezYc34ic1X/kdDJelp06CtXRUuRgPFcsX9bMlDUnY1am2e6WBT1ytwKnWS2SZNnzJXxDet895BcS5PM7e73XUVSciYyq5kfaKe9V3fxGv5MZPbTH/sOWIzfsVSW0Uy+zcWq5X59CTFEVq7kmW2LcqKdWpQKzABi3Dx+ve6u9MqjfLch9sbJtOfOc2R8+WPrXKypXXfF2iQ6YIX6VKvR9/nz/Xeten3hQv89LolrFb/YAQAAAAAASCgOdgAAAAAAABKKgx0AAAAAAICE4mAHAAAAAAAgocZ98eRabfhl+jKifmCxMEnmRrbmf3lHmIhSonpyaOzNneGLdIfUU2QS41et6gu7mZnVYj9urvr6KTL3mI/82MVWJrAwG4avWh6S8e4uX1S5JApmm4ULCGKCE3OLmdmkKfNcrGJ6nKmmAKE16YzTfaHkyy/3hY/rlcTik4lWC6xVJV+cPQqsa3HMzgX/RbUmw7XU8L9SMsLGt7r2HSmdvdfOs10sU9FrldmLw365iy7yBbnPO88X467XRFmr+MUOAAAAAABAQnGwAwAAAAAAkFAc7AAAAAAAACQUBzsAAAAAAAAJxcEOAAAAAABAQkWdnZ0UJwcAAAAAAEggfrEDAAAAAACQUBzsAAAAAAAAJBQHOwAAAAAAAAnFwQ4AAAAAAEBCcbADAAAAAACQUBzsAAAAAAAAJBQHOwAAAAAAAAnFwQ4AAAAAAEBCcbADAAAAAACQUBzsAAAAAAAAJBQHOwAAAAAAAAnFwQ4AAAAAAEBCcbADAAAAAACQUBzsAAAAAAAAJBQHOwAAAAAAAAnFwQ4AAAAAAEBCcbADAAAAAACQUBzsAAAAAAAAJBQHOwAAAAAAAAnFwQ4AAAAAAEBCcbADAAAAAACQUBzsAAAAAAAAJBQHOwAAAAAAAAnFwQ4AAAAAAEBCcbADAAAAAACQUBzsAAAAAAAAJFTm5b4BAACgdXR0uFgUyI1FrLOzc1TvB8DEtnDRAhdLRfrvwLVqzcVWrFw56vcEAPj/xi92AAAAAAAAEoqDHQAAAAAAgITiYAcAAAAAACChONgBAAAAAABIKA52AAAAAAAAEoquWAAAbEUdC32nq3Ss/85yxJFHuFik2l+Z7oqlumr95wV9qHMFHbTGu/0XH+iDse6T1pjzYyqd1uMsrvnuRgOFqr4JcYl7lv9T52LMBD/bQkZ1tQr8aXfnjte7WDqrvy7UShUXW7TQd9X6T7IPVWIRDKDDHwD8d/xiBwAAAAAAIKE42AEAAAAAAEgoDnYAAAAAAAASioMdAAAAAACAhIo6OzsDZRiTZ8nihS5WrgQKs6lag4HilbLim65VaBlRkHL58lWB6wJIsr2XLnaxUrksc6O0mDSirL5w1Rctrca6kGlOFEhd9sBKfV1sVR3zdXHTo992lItVxDM303VxQ8WTlSiwVqn/cMMfb5CpFC3d+vZd+BoZb2lpd7F9Fuwoc1Mp/4yrgULLNVHENg4MnocfWedifT1DMveOZX+WcQxfqEjyzvN9keMo9HzFPjafC6w/Yn7p/OVtMnXBuw8Tr6UnqFLZz3Gh6SkW9/v0qltlLvPT1tXUfK2MV0v++U4W+xMzs5qo3j9YLcnc/sJxddwdxotFi+a7WKUW6NmkvqpnA7ODmEdCslk//pYvXz7s/z+J+MUOAAAAAABAQnGwAwAAAAAAkFAc7AAAAAAAACQUBzsAAAAAAAAJxcEOAAAAAABAQgXKU49vSxYvkPHfHzjdxeY2V2Ruc4Oo2t/ou02YmVVKvlx3utgvc4tVX8V76VJfGdzM7MEH6ZY1noU6UciGaqPweuqUdSXdHsaFBUsXyfi7DzvUxboC3Y3yjQ0utmG97y5jZpZt8N1KmnLNOld0rln4aj3nrLifOWesqPniyKPfJnNLDVNdLFMrytzWljYX69/8ksxNRX6MxHndWaIqOrId9fYjZa76t9GJZvTss8B3wGpob5W5h752qYt1F3Qnvs1Dfu/SmNWrVbnqc1vyumtSx/5TXGzFfY/I3CWiu9eyFXfJXNQnUruRWD/fatl3LRsq6y5Eg0M+d+djDpC55bjPxfKhVnyR2Eun9brGn53Hh4bG37lYrayf75SUGHuB3Gzaz1liCjIzs1z61y5Wqr5LJ2OrC3X/bMr5WDUKdLTKiq6MsWgzbWbWlvexwYJMrcX+DKBjgb7fzpUTY0/D1AkAAAAAAJBQHOwAAAAAAAAkFAc7AAAAAAAACcXBDgAAAAAAQEJFnZ2do1H3dcyookxXHzxL5i6cIopPBgrJWeTjtZQu8pXO+kKBqfJmmauLf+l72OXaXhejIOXLY/HChS5WjfV4iEQBwEcffVTm7rXnni4W13SFOFVSLAqMnRUrKII7VjoW+jnnlKPfLHP7Kn6MNDXroqfFwS4X27DFF540M+vessnF5m2/ncxtaPCF5IaGdCG5P910h4sx59QnVCjwyCOPcLFSVRefTYmCfnHgs55S8UBt0krVXzeV0j0S1F91aoF7UEVa//KXP8nczlWMp3rtv/RwF3vNwrkyd3Wf3+dksvpvdJvX+/mlv6wbSrRNbnGxqKALelcrfpxkMvoeutf7IqnFarfM/ddKiirXY0GHbySyuduvHWZmM2fO8Lmb9D52Urvf8w709cjctvZJ/rpdWwLXnexi3T1+XTQza2/1113ZuVLmYuRmTv+DjPcP+DUsLQofm5ltWe2LcU/P6gLdXUMD/rVyoiiumTVWm1ysFul5LNt+ioxjdKhGCrlAG6ZMY6OLPXPvb2Ru75pnXWy3N35EXzft15pck29OYma24g9fcrH9Tv6czN28wY/JJO6P+cUOAAAAAABAQnGwAwAAAAAAkFAc7AAAAAAAACQUBzsAAAAAAAAJxcEOAAAAAABAQo2brlgLF+hOI6fu6mNvmOkr65uZRaKv0OCgrsgeR75adyan3wrVxSid0dXby1v6XSzXqEuGb8j4qu4fXzYkc5cvT15l7vFowYL5Mh5HaRfLpHTVfdF4xizWZ6RPPOG7ZXXs/iqZW0qL8RfozFWt+tzOTjpljYb5our/wYe8XuY2T2p3sfJgoGNeqs3FsvmczO3v911F2lqnytzSgH+92HyHGzOzv996vYslser/1qI6pB15xJEyN675z2Rc03P/X/58vYtlokCrq7S/hgiZmVmh6NfAWS3NMndj2XdlfNOhbw/cg+iCktb3e+ONN7hY50OMsf/mwKWHudj+++8oc7ORf8arn9WdhfJT/T6nKsapmVkkOoi2NOr5qa/Hd91radR7oq6i76qz4cX1Mrcw5BfXfzx4q8yF7orV0KD3IlHKx2fveqjOrfnnEBo3aXHdYkl3TWoWXXLKVZ2byvqx9+yKm2Xu8pUrZBzD19B4tYynM/77T7TZ72XMzKI23zmtx/ze+j/J/rtZrqhzB7v9GMtP0eM8E/u5qVw9Ud8D6jZfdAVN5fReYMsjf3Sx7s26Y2vvxjUuFvfodeLQD3zPxe7/qe6gld9xDxdLBfYusxcd72KdK5K3d+EXOwAAAP+/9u40Su6yyuP4ra2ru6u7053OblYCsmhCSFiEgyxGiCBkDoI6gCLgcGBQBvcVVBgFmXFhH8RR4MwIHIwIARMICaIQCEvWHpIJIIYQCNnTS3XtVfPCM6/u75nptjux/8338/JyqarU/9bzf+rpOvcCAABEFAc7AAAAAAAAEcXBDgAAAAAAQERxsAMAAAAAABBRgRaM+5/o22dmZumkb6B21Fh9HtWxrdfFZk/Uzf/W7/XNkyY0dcvcTd2+EemkRt940sxsi2ise0CLbuDcW6h3sWpFN0/G4FANTs3MRjb4hpRd+rKZiYeoC3ySTjj2KBeL1euarOR8U7G4ejIzi1mg0SoGTL3jXTtfk7lrX/TN3Wo1X0tmZmP8x93eyunrOPeDc1xs+WMPydxkUjQ9bdPNDZUZgcb1HWuj1zRusPXnLx/qHrZ+o28IaGa2c/m9LvbGTr32j2z3TWmTFV1jK17Z62KzputG2lUxFODrdyySud17/dpUn/GNUM1Mf4Dwfxo33VfaO3v1HqPc49ecbOBeVbfND3PI5v0+ycws3TjKxdbufFvnioaqrfW+SbKZWbzVr0W7RcN3M7NaaCMIKSb2Hff+4CKZmy/6e80F37pT5raIHrbFpL5X5Us+Hq/5+jAzU9uvWKCRaVkNjqA+BkU156/7m2/7xsdmZuPaxrpYYyEwPKbkNzmT6vX1TZpfbzoL+jVY3N/vYpsD36tG+S9hog83/krqIzht4oEyd8OKF12smtS7qnRdo4vVpfTe5egTTnGxHTk9JCLx5hafu327zBXzlyKJX+wAAAAAAABEFAc7AAAAAAAAEcXBDgAAAAAAQERxsAMAAAAAABBRHOwAAAAAAABE1JCZirV2nZ7AMnOmn9hy223flrntVT9VZEdBd2Q/Ou7b/qfNT/4wMzug6qc9pGIF/Rpqviv8+MC7fOKZV7nYGibR7FPVO5+Q8fUr1/tgRdfD7jbfOr2h13f4NzN7z6R2F+sp6GkndXFfvzs37JG5M4473sU2ykz01+QpU1yse7f+vI9rneVih2R0a/3unX6Kw67E6zL36RdedrH2Jt31f3r1ABerlPXEotHTd7vYitf9cwXFAtPYhum0kqq4lIGBL/boI4+4WKP5SQ9mZgfM/ScXS1ZK+oFT/jG6S3oiSLXqJx4lEroWWuP+muUqerJRb9FPkZh5pJ/c9pcXocMI6+32EzlX3flVmdtV9n+PKxX1+tSS8ONgylV9XyuKmmobKUb5mdmeHr8OJGv674RzLvyaiz2/ap3MRf+oKZ/3PfR7mVso+Bo795iJMjfTOtLF8mJCrZlZKu330vGyXp8yMV8jm956R+Y+uNJPFAx9T0D/JOv9fnXK5DEyd0zZ3xOWPan3pZkmv16sD0y6KhX8xL0Tzz5U5v73474W9pb1jeZ9J/v1bZgMOxqybv3qfBnf+l/+e9WB0/zaYmY2asokF0sk9f1nwVUnuVg2MEWyNeWnpHVs0fWbiulpb1HDL3YAAAAAAAAiioMdAAAAAACAiOJgBwAAAAAAIKI42AEAAAAAAIioIdM8OaRe9HLsLvTI3GrSJ69c5htamulen3PnnS5z0xnfvLKQ1+24Xnj8URHVDUdLec7V9qXM/atc7MbNz8rco2f7xl3XrN4ic1u3+kaVl50yVua+sPFpF2vfqZukPrHHN5NrFk1LzcwOfSLrYqe8fbDM7Tl3toxD27z5DRdrHztd5l50mG8+WdmoG5km4v66b6hslrnXX+ub637jaz+Succ0T/DP1alrbEO7X/JXWN+bJ5fKvhGdmVkq4RtoRsmMGb5Jv5nZmfN9U8Bc3jc5D3lowY9lfN4533GxpjZ9n8ik/fOlenRz0u6XFrhYLZB73V0/d7EjGvU96ayfPuZi+aKusfln+vds5syZMnfdOprompk1Zpr6nJso+s/g8kW/lbnVmq+puafpRpdNTf419GZ1PTzzu9+4WKh9eiHwGOi70PqUSPj39qFndUN+tUYXVHd4M0vYVhcrBZrVWkxc+UAxpOp8PYYa26qHDb0PHR00Ve6PbTt3uVhLXDfHfuXlFhfLxkfI3ErWNy6uqxsvc8/+hP++tvqB5TJ3rNh2jKv5ZuBmZrs7D3GxEX6GCf4foc+a1fk6OfuKm3Sq+AzvqemBEvG42P+IYRBmZlPG+Pr781bdELm5xe95s6KJu5lZXEzGiOKawx0XAAAAAAAgojjYAQAAAAAAiCgOdgAAAAAAACKKgx0AAAAAAICI4mAHAAAAAAAgoobMVKxQ5+k9S3/gYpWynjpTrNS72Gdu8ZORzMxW/vtFLpZQXbnNrFgRffurekLAZ29+0T/Xzy+WuQl7XsYxOMY1+67772zSU4g6Wne42Gt7xEg2M5s4Ou1i1z6wTObObvcTbTbv2SZzX8z6bvGt40fK3AN7RP3p8kXAjJl6zXlqwf0udsmlV8vcQtZPZjjxOD8ZwsysvMlPnfnNen22fswEXwujEnrdO+6ETT64WU9I2xxYO/sqlQjdMkIzcYafpU88IeOrli52sQnpwKSruK+RnqKeXtXQ5NeA+rSeYLIl7++BycD0qu/c7f8dv73xSzI3aUtc7OWOtTJ3+tQpLlZTYyjfhUJrTnX17S72yiY95aO92V/ji/9NX4s1d17gYnUpXTvZbl8nTSP09JsLb/HPt+aXep+Tupt9zr7yqRMOdLFKWX/WHn7OT8sKTbqqE1ufxqSefHj5mQe52MZtenrir599zcVaA7eUTh3GIJhzgL+nrHrCTwM1M0vEfI1s+KPewzbF/Jp1yIeOk7lLn/F7kXoxVcvMbNXzfp/V1KTnqc06KTRnDYPhsZsuc7GZB7bJ3H+40u+lH9ug60wdRxw02e8lzMw6fv05F1v20iaZe8Zld7jY2Ljed+8WX6L0Sja08YsdAAAAAACAiOJgBwAAAAAAIKI42AEAAAAAAIgoDnYAAAAAAAAiasg0Tw7p6fGNsDKZBplbH/PN/1554nqZO6Lic0NNmfMl39QyU9csczcuvc7Fmkr6cbtNN7VE/6R+pRtkl0f48m6fvEvmvror42L5Fzpk7rhPHOtih7XvlblvbfG1M27qWJnb/YffudiUcz8kcy89+UwXe/PPvjGhmVmdeH+K58+WuTBL7H7Txe7+8ddl7ne//VUXu/MF3fYxIzpSPn7rN2VuodDrYnfc+AWZe9ZVd7lYIqtrITN5oot1rNN1rsRiuhkwzXHNpo7yTW3f2qKbTK5YdreLnX7Gp2Xu7l3+/rFy8W9lbjbrYy0NLTL35isvd7G2qUfL3Hw1ii0Eh6DAx2R3zv+NLVXn68nMzIq+mem6RdfK1JaKf9xsWX+G1fCI3rx+weuXfNvFmiv+HmpmVoxRO/tKW9rXQldBN0Q+5/jpLnbXM6/K3N6Sv+6fmjtV5mZzfh87oc03/zczm3v4eBd7Zt1WmauqdF1H3+9VCNv4yjsu1tOr/86fLPubyh3PPCJzb/n0x1ysMeMHiJiZJdJ+P1SYfIjMvf1nN7rYdz71GZlbzvn9l24Xj7/GnPdPcrFCzu9Xzcy+9Pl5Lrb86v/UD1z0a87iH58jU7fu9M93zPRRMvf6z5/sYjfc44ccmZkVun2td0RwzeEXOwAAAAAAABHFwQ4AAAAAAEBEcbADAAAAAAAQURzsAAAAAAAARBQHOwAAAAAAABEV6+joGBLjTGbMmNHn3HcW6wkQ9Rnf+7xa8VO1zMxqMX+mVZdIyNxKwU91SASmwxSrfiJBSafapA/7yRKrItiB+28tNBWrPunf+EIxL3O/tuJ2Fxs7Q0+kas/5SRKbXtFTiIpigkm6ZYTMTU46yj9XXk+tuOLAC1wsVtW1XhDhElOxbNbhes1JirpZcc8tMjed8hOLCiW9jqRqvvbqUzq3KNaMVFLndmf9El6r6El8cy74lov1p+t/aPhVYDkcktS9Zv78+TJ34cKFA3qu15c/JeOdSX9PeXW7nh4yrcG/6c2ZJplbFBciVacvzrqsn9h3RIueH/Lew0+S8b469dRTZXzJkiUuFsUpFH0V2ue0iMvZ+Ud/TzIz69zhp76UKvqDGRcf2FJC10NaxIplPWEpKSb8NaT13wmbTvSTA9cO42s8UKpGahsPkrmJQ/3+4HMnTZO5tZq/7rXAYNZS3F/3ROD+k0j7eCWw724s+bopJ3Tt3rR0o4sN57VhX5gzZ5aMn/d3frLwmWfpCURj9vjFqbfor6OZWaLS7WKljFpZzFoSfr3oKuqCbDU/hXja4XoK34Hzfuhizz2vpyDhL/qz5sQO3uRiGxd9T+eKyc/Vkr7G5Zpfc1ob9DWuiqlY6Tq9PvWKcwFL6nvVtNO+42Ida9bI3KGMX+wAAAAAAABEFAc7AAAAAAAAEcXBDgAAAAAAQERxsAMAAAAAABBRyb/1C/hfoaZoqqnT8iW6oeUJp50ton0/u8qJRk9mZuPnXdXnx3jn8etcLNAbznRbQgyWXNm/8THTjSOba10ull39sMzNmn/cQjHQLLAgGhb2bpe5ld7FLrYjUL6xafr5FNHbMFDp7y5r1vZ9zUnb6zK3WhjnYqlYqB+9vxDdRd9E18zsmPO/GXgMb9V9/+piNdPNDQcqSk2Sh4LSyEkyPqLHrwFHjPMNIv/C11O5rD//H5h7hovFAxdt9e8X+dzikJilMGz1Z5+zY6u+T5Rlm+MQf+2TNX1TGXPG1X36/83M3lj4PRcrlPSOhn1O/6gaiR3c9+EiqaR+x3sL4roHNqdxcd0Tormpmdmti//U59d22YmisTMFss+sXLlGxuccOcvFHn5ygcy975rzfFA0/zczK4sG200pvd7kc755f11gvemM+f35mtV7ZW6prF8bwga65uR3bJXx9vZRLhav8427Q8qBe8qRl9zmg2IgkpnZmgVfdrFKIfANKKYbMEcNv9gBAAAAAACIKA52AAAAAAAAIoqDHQAAAAAAgIjiYAcAAAAAACCiONgBAAAAAACIqCEzFas/KoHBHU8vetDFPnjKPJlbtro+P987i7/v//+KnkpSLvlu288t+Y3MZf7IvqX661cCDfNLFZ+dtoLMLYjO6anAoJL7Vm5ysXOOm6KTzddUMtDpXdUOA4v2nVw+J+PFip+WlUy0y9xUOuNiscDEog0P3+5i3T2dMrdc82tOb9erMhf7VzKur29PeqSLxXvekLnlnK49ZcWCX/j/P6UnPfR0bXOxUsN7+vxc/VFfX79PHnc4qwX+7har+vtSLTVC5tYn+/63u7ce/4mLJQOTkNTNJl7L9/m50D/9maYW2ldmGvxFKwWmeZb8wCILDOKzSz7o9zPJWuBViH1zXX3fJ3xicKx8aY2LHfOBY2Rug9jcVgIb6aS419Sqeg057Sv3uNjSWz4rc9WMz2rgi2CNb1aDoj9rzndv9d+9zcy+cuFHXeyAqXpSaDbf91m9i3/xjy7WmtaTYLO9/n65desW/cDDpHT4xQ4AAAAAAEBEcbADAAAAAAAQURzsAAAAAAAARBQHOwAAAAAAABEVyebJ8apusqT6Hv3h8UdlbiHpmyePSA68c1Ix7s/Kkgl9fhZoS4h+6s9VSwaaSSYS/mqUqrrpaFPKNyEs5HRNnnu0aEZa1o3n4uI1lGu6IZhqyRp8H4ZJQ7C/pVRMNwYtVXw9defflLnX3bDYxcY3NQ7shZnZkvW+Ce7ECW19/v9VM7z+CjXae7fLZ/fKeCHnP5Q1a5W5N99yl4uNnjxhIC/LzMwOGz/GxSa8v1kn92vB8XI5Guv2Vzodajjt3/iYaKBuZrZ9r2+4PratSebKzWCgI3+l5Bt6pzKtOpmu/vtVLbCzVA1vQ721syn/H+oDj6t3SZpaBTJ1eo+D/asW+F6VjKnrrhf/rm6/iiQCn/+Hf3ipi2WzOreabvCvoNolc2uBgRTYd2pV/Z1GrTlvbd0uc8eNbnGxVFovUM0ZdbfSNTmi0TdnT+UDm5dhUjr8YgcAAAAAACCiONgBAAAAAACIKA52AAAAAAAAIoqDHQAAAAAAgIjiYAcAAAAAACCiIjkVq5LwE63MzFJV3/06VvMxM7PmmI9//I6VMjcuGmiXA021771ktoslE/o1xOnePijK5/v33Mys7lerXKwWOMsc09bqYtv37JW52VzBxfIb3pa5NXGJE4HaSR06zsWmjhqhk9VklEBmz7lzAv8Finofszn97mbq1cXUy+pZx010sR/c/7LMrYlRErvyvu7MzFb/4RkXO+ygUTJ32Tpfp6lk3+eaTLztXBmfLiZrMSnLrLezR8a7Yn4yUUtDRuaed97pLvbJL1wkcxPiUsaKunYfvft+F2to03UTi/kHToTGnQjpuJ6agbBYQq8jcTGBpFLTE4smjPLT8UZ/9CsyVw3vDF22TQ9f42J7uvRIm1ScqUf7U1JtWM2sJIYeVQN/2s3E/IW/+cmtfX4NoZXhix/x0/xqYt9uZpZMUjf7UzKw3nRnfS00N+nvYE1Vvw5d+MVbZW6juLw7Srpy7r/1yy5WyAe+Vw2X0UYR0jR6rIx//balLvajKz8ic3vE9vbQ868PPKO/xhldDrb1octcbOeOXYFHHR4jhPnFDgAAAAAAQERxsAMAAAAAABBRHOwAAAAAAABEFAc7AAAAAAAAERXJ5slnnO6bSZqZPbnsMRerlvTZVTbvY/dfcqTMrdV8Q6VKVTdZiosmhvEG3QBXPS4GkeihFuoTe/n7rnSxa572DSLNzNSlbzjsPTK3Jppx1ULN3Sq+Sd3Fh3xRpsbivq6pp8Gh3sXRrdNk7t7uN1ysNyu6VJqZJfz1vfp833Q49CqSyRaZOfeUeS520MG+UbOZ2dOrNgaeb2Ci1ChZvdYZovmzmdn8+fNdbOHChX1+rvY63VDWKmIhKutOtcWif4wHb79PP64o3nSdbkJayPnGzs1jdQdC1eC0rPv12imnnupijz6+ROZGqW72t2xRxxtTftsmelubmVku5zc62xf9RCerhU80ajYzq1ZFp8tAk+RSJbAeYp/oLeliUM1qYzG9P+4V1+yKk33jYzO97xDbEzMzyxd9PWUyuml8uUzd7E/PPveCjM863N8bn7r9czI3Lhaiu396eZ9fQznwvaog1pbzr7lH5r70kh+agn3rh1++QMazO7e7WCFw7NCZ9XuMDb/8hn5CUSbNTfr+k0j6/VNjXYN+2MB6GDXD418BAAAAAADwLsTBDgAAAAAAQERxsAMAAAAAABBRHOwAAAAAAABEFAc7AAAAAAAAERXJqVi1ZJ2Mnzz3NBdbtmSRzK1L+5EeCTFtwkwOVzLdf9usKEaFfOSfn5a5TATZt4rnzXax1H+8KHMT4ohTDIIxM7MHX3rbxT5x7GSdLLq3xwNDsRaIx71hXmDcidDz9/7fi8HRmxwl422t/mJms6/K3BOOPdHFXnzhT/oJ1YSzmi6ch274pIt94PO/lLmsOftXQ52e7NKW73SxTmuVuWMmz3Sx7N4dfX4NxcA61truJ73NnH1Enx9XTQwz01PDqLv+y9TrXUZXzo/Laknr+0Q14fdKlbKfhmZmVhUTaeKBm1U53uxiE0/TExy59vtXOfB5z4lYfUpf3wYRL1R0bkzskEPzOZvq0i72L4/o+yV1MzTExMUsBjbH877wMxd78qZLZa7a4qSSusY+fMl1LkZ9DB3Z3rdkPN080sVynXpSaHO93yuVKoHFTNTO7i4x6trMynl/bzzs8gdk7nCpKX6xAwAAAAAAEFEc7AAAAAAAAEQUBzsAAAAAAAARxcEOAAAAAABAREWyeXKxpBsFtqQLLnbih31DZTOztnnXulg8Hmr51ncx3zt52DRkGg5Knz5KxmfOmuFiH58zVeZ+fKZvOnrv8j8P6HWZ6TrpHvCjYjBs79JN3N7b5pv9tY+cJHNnfeb7Lval+VMG9sLM7OI7FrsYa07/hN6vGTP8utCfpsHbdpVl7vjx9S5WznbJ3BNP/5iL9fT0ytx95aNnnOli6t9rRu0NlnJNN09OxHyTyVxJNx2ddNo3XaxS1Q29+0P0Wea6DxE50SzUzCzd7NeiQlFsWM3stiffdLGB74416mZoUzufVKCp+lM/vdDFjr/8tgG/BmpkaOvs0r8RmTjK71NamzIyd9rHfIPsptTA71U9eV/Bw72e+MUOAAAAAABARHGwAwAAAAAAEFEc7AAAAAAAAEQUBzsAAAAAAAARxcEOAAAAAABAREVyKpYFplftLTS5WGN9p34IEVuzdnh3ykZYRbT+r6V15/9qzk+SOHeWn5RlZvbAOj8tizqLntFNekLNa3tHutiUxo0yV61aP1n4hsydONpPTdq0Iy9zh3uH/ygb0eTrw8xsy9u7XSzd0iBze8R6YwlfH2ZmVvE1oiZa9dfvHn3Exai7fazip3yamdVnfE2Vinp+YlksOuvWcd2Gs8ZGfa9Sk2samvVeWkX5vL87Nab8lLWE6b1xjxiXt/yWz8rc46/4hYuto8YiKVNfJ+Obt+VcbPRIvc9Ri85zL64ZwKt69+IXOwAAAAAAABHFwQ4AAAAAAEBEcbADAAAAAAAQURzsAAAAAAAARFQkmyfHYrpxVyLhm0z2FBoDDzKYrwhRF4v7gigURNNSM0vHxHmoTrVKII6IqYnu2mbWnvGxrvJYmauWnNU0Cxzm9AIwsqXVxYqJ9ICfbf78+S62cOHCAT8ujVP3v0qlqP9D73YfU12SjW3Ou1Gs0ivjjfW+RpIV3fQU+F/FmP+aWE7olSWZ8Ll65INu0I1oSqR0w/bWVl8PiVrgSxE3q0HDL3YAAAAAAAAiioMdAAAAAACAiOJgBwAAAAAAIKI42AEAAAAAAIgoDnYAAAAAAAAiKtbR0UFzcgAAAAAAgAjiFzsAAAAAAAARxcEOAAAAAABARHGwAwAAAAAAEFEc7AAAAAAAAEQUBzsAAAAAAAARxcEOAAAAAABARP0PQtUIaPXR+isAAAAASUVORK5CYII=\n"},"metadata":{"image/png":{"width":1142,"height":1213}},"output_type":"display_data"},{"data":{"text/plain":"<Figure size 1152x1152 with 64 Axes>","image/png":"iVBORw0KGgoAAAANSUhEUgAABHYAAAS9CAYAAAAiHt73AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd3hU1fb/8c+09NAFxAIqSlGaoqKo2LGhXHu5dq+9i+XasKFiwY7X3huKBSwoRURRlE4sIKAi0ltIT6b9/uDL/IJ7HUhMAjnwfj2PzyMrK2dO5uzZ58yeM2sF8vLykgIAAAAAAIDvBDf1DgAAAAAAAOCfYWEHAAAAAADAp1jYAQAAAAAA8CkWdgAAAAAAAHyKhR0AAAAAAACfYmEHAAAAAADAp1jYAQBgC7NgwQJ16tRJnTp10rnnnrupd2eT+PDDD1PPweDBgzf17gDYjDC/ANjYwpt6B4B/qnfv3lq4cKETDwQCyszMVE5OjnJyctSmTRu1b99enTt31t57761weNMM+9dee02FhYWSpEsvvXST7EN9MnPmTI0ZM0aStOeee2rPPffcJPvhNY4kKRQKKTs7W82bN1eHDh10yCGHqFevXptsDMHbggUL9NFHH0mS2rVrp0MOOWQT79HGNXr0aM2aNUuSdNxxx2mbbbbZxHsEbBqrVq3Szz//nPrvp59+0qJFi1I/f/HFF2vtfNOvXz99/vnnqX8fe+yxGjBgwD/e3jvvvKN77rkn9e9WrVqts32gPolGo/r111/1008/pV5vs2fPViwWk1Tz10NlX3/9tXPtnJeX94+3t2zZMvXt21cFBQWpWG3ODcCmwLsTbHaSyaRKSkpUUlKipUuX6rfffkstIDRr1kx9+/bV+eefr5ycnI26X6+//npqAYGFnTULO08//XTq3/XxZBqPx1VQUKCCggLNmTNHw4cP1y677KKBAweqbdu2m3r3UMnChQtT4+nYY4/d4hZ2xowZo2HDhkla81piYQdboiFDhujuu+/eKI81atSoWl10WbhwoQYNGlRr2wPqUlFRkQ444ABFo9E6f6zCwkLdeeedtbrNu+66a51FHWBzwMIONgsnn3yytttuu9S/KyoqVFhYqOXLl+unn37SH3/8oWQyqeXLl+v555/XJ598onvuuUd77bXXJtxr1Dd/H0exWEwrVqzQxIkTU3dD/Prrr7rgggv09ttvq2XLlptqVwEAf1NeXu7EsrOzVV5enrqLoDbk5+enFpAikUitvLm9/fbbVVJSUmvbA+pSIpFwxmkoFFJWVlbq7vTa8uCDD2rJkiW19toYPny4xo4dK0kKh8O1OjcAmxILO9gsHHHEEeu942PRokV6++239frrr6uiokKLFi3SpZdequeee07dunXbiHuK+mx94+iTTz7RrbfemlrsefLJJ9e5ZR7wk2222aZGt7FvDvr27au+fftu6t1ALcrKylL37t3VsWPH1H9t2rTREUcc4fmV23/i3nvv1cqVK9WkSRP17t1bb731Vo22N2TIEH3//fcKBAL6z3/+Q00W1HvBYFBt27ZNvc523XVXtWvXTi+99NI6d2PX1Pjx4/XBBx9IUq28NpYvX677779f0ppzwA8//FCrcwOwKVE8GVuErbfeWtdcc41ef/11NW/eXNKaT/auvPJK5efnb9qdgy8cffTROuOMM1L/HjVqFJ+qAkA9csIJJ+ill17S9ddfr6OPPlo77LCDAoFArT7G6NGj9dlnn0mSbrzxRjVq1KhG21u0aFHqK1gnnHCCunfvXtNdBOpcTk6OPvjgAw0YMEBnnHGGunbtqszMzFp9jKKiIt1xxx2SpJ49e+rYY4+t8TbXfgWrWbNm6tevX423B9Qn3LGDLUqHDh306KOP6uyzz1Y0GlV+fr5efvllXX311WZ+SUmJxo0bp++//16//PKL/vrrLxUXFysjI0PNmjVT586ddfTRR2vffff1fMxOnTpVKWYVSayNx69s3rx5Gjp0qCZNmqR58+appKREoVBIDRo00Lbbbqtu3bppn3320R577KFIJLLebX377bf64osvNGXKFC1fvlzl5eVq1KiROnbsqEMOOUTHHHOMWWR48ODBzqc5Tz/9tPkJz913312vPlE/5JBD9Morr0iSiouLNX/+fO24447r/Z1/+jxZYrGYRowYoXHjxunHH3/UypUrVV5ergYNGqhNmzbafffddeihh2rXXXdd73bGjRunzz77TNOnT9fy5cslSU2aNFGXLl10xBFH6KCDDlrv73/44Ye67bbbJEmXXHKJLr30UhUVFWno0KEaMWKE5s+fr9LSUm211Vbq0aOHzj77bO2www4b/Pt++eUXvf/++5o2bZoWLFiQ+lpCw4YNtf3222vPPffUPvvso06dOikUCjn7stawYcNS9WYqW7uva1UunL327pVvv/1Ww4YN04wZM7R8+XKVlpauMw7PPfdcTZo0SZI0YsSIDdayWftar0oR1GQyqbFjx2rMmDGaNm2aVqxYodLSUmVnZ2v77bdXly5ddPDBB69zV1nl/VnrvPPOM7dfeX8XLFigI444QpLUvXt3vfTSS+vdtxUrVujdd9/V+PHj9eeff6qgoCA1b/Ts2VMnn3yymjVrtt5tWM/3lClTNGTIEE2bNk3Lli1TZmam2rZtq6OOOkrHH398nRYqt8bx391yyy2psbS2sObcuXP19ttva8KECVqyZIkyMzO1ww476NRTT9Xhhx+uYPD/f2ZWVlamTz75RMOGDUs9b82bN1evXr10wQUXbPA5q6io0LfffqsJEybop59+Sm0jEomoSZMm2m233XTYYYfpsMMOW+dx16e0tFTvvPOORo4cqT/++EPRaFTNmzfX3nvvrVNOOUW77LKLJk6cmBpHVSmAWlJSog8//FBff/215syZo1WrVikSiWirrbZS9+7ddcIJJ2xwXpKkpUuXaujQoZowYYJ+//13FRYWKhgMKicnR61atVKXLl207777qnv37srKyqrS31ubVq9enfoKVq9evXTUUUfV+A6C/v37q7i4WM2bN9d1112nX375pTZ21fH3uSiRSOjTTz/V8OHDU8escePG6tKli0488cQNXldYc+GsWbP0zjvv6Pvvv9fSpUsViUTUunVrHX744TrttNOUkZFRpX395ptvNHToUM2YMSO1XzvvvLOOO+44HXHEEQoEAuZ8srEUFBTojTfe0JgxY/TXX38pmUyqRYsW2n///XXKKaes85Vu/HMPPfSQFi9erMzMTN1+++1KJpM12t7HH3+sL7/8UpJ08803q2HDhrWxm0C9wcIOtjidOnVSnz599P7770uS3nrrLV166aVKS0tbJ2/27Nk6/fTTVVZW5myjqKhIRUVF+uOPPzRs2DD17NlTDzzwgBo0aFBr+1nbj//aa69p0KBBzneJY7GYli1bpmXLlmnq1Kl68cUX9eSTT6pXr17mdpYsWaKbbrrJeTMprbkoX7p0qcaOHauXXnpJjz32mNq0aVO9P3w9Kr8Zlar2xro2NWnSZJ1/r6/wXm0/T5MnT9att96qv/76y/nZypUrtXLlSk2ZMkXPP/+8Xn75Ze2xxx5O3ooVK3T99ddr4sSJzs8WLFigBQsW6NNPP9Xuu++uhx9+eINvOteaNWuWrrnmGs2fP9/Z5tChQzVs2DANHDhQhx12mPn7yWRSgwYN0iuvvOJcuMXjcZWVlWnJkiWaOHGiBg8erPfff18777xzlfatqqLRqPr376/hw4fX6naras6cObrppptStZwqW716tfLy8pSXl6fXX39d9957r/r06bPR9u2DDz7QwIEDVVxcvE587bibMWOGXn75ZV1//fU66aSTqrRNr2NeUVGhyZMna/Lkyfrss8/01FNPbZI38F6GDh2qe++9VxUVFalYaWmpVq5cqcmTJ+vLL7/Ufffdp2AwqN9//11XXHGF5s2bt842/vrrL73xxhv67LPP9MILL3gWYl+9erWOPPJIs15FLBZLvWY///xz7brrrnr00Uc3WPfrt99+06WXXqoFCxasE583b57mzZunDz74QDfeeOMGF6wrGzVqlO6++26tXLlynXh5ebmKior0+++/67333tOJJ56o//73v54fGowYMUL9+/dXSUmJ87O1Y+3HH3/UG2+8of/+9786/fTTq7yPteW+++7TihUrlJOTo1tvvbXG2xs6dKi+++47SdKtt9660Zo6FBYWql+/fvr222/XiS9dulQjR47UyJEjddxxx+nOO+9MLaJvyKuvvqpHHnlknWuMsrIy/fjjj/rxxx81bNgwPffcc+s9r8RiMd1+++3OPLz2nDl+/HgNHz5cDzzwQDX+2to1ffp0XXPNNVq2bNk68d9++02//fab3n33Xb6mXQu+/fZbDR06VJJ01VVXqVWrVs68VR3Lly/XwIEDJa35kM7regTwMxZ2sEU69dRTUws7JSUlmjFjhnP7c0lJicrKyhQIBNShQwe1b99ezZs3V0ZGhgoLCzVz5kx9//33isViGj9+vK699lo9++yzzqem1113nSTpueeeSy0ErI1V9vcLutp6fEn68ssv17kQat++vXbffffUBdaqVas0d+5cTZs2zbyoXmv+/Pk655xztHTpUklSgwYN1LNnT7Vp00aRSEQLFy7UuHHjUt3IzjrrLL3zzjvaeuutU9vYd999lZWVpZ9++kkjRoyQJO2zzz7mp4O77bab575sCitWrFjn3163HdfG81TZyJEjdcMNN6QumDMyMtSjRw/tvPPOysrK0urVq/Xrr79qypQpKisrUyKRcLaxevVqnXXWWfrzzz8lrSlyuO+++6pjx44KBoP6+eefNX78eMViMU2ZMkVnnnmm3n777Q1+orVkyRJdfPHFWr58udq2bat99tlHTZo00ZIlSzR69GgtW7ZM0WhUN998s9q3b29+kvnmm2/q5ZdfTv27W7du6tSpkxo3bqxYLKZVq1Zp9uzZmj59+jpvqKU1Y+S6667T/PnzNWTIEEnSrrvuus4C4Fpdu3b1/Dvuv/9+DR8+XOnp6dp///3Vtm1bBQIBzZ4921n0rW1Tp07VJZdcklo4CYfDqTohubm5Kioq0pw5czR58mQVFRUpHo+nfveUU05Rr169NGLECP3000+S3CLga/2TTyfffPNN3Xfffal/t2zZUgceeKCaN2+u5cuX66uvvtKCBQtUWlqqu+66S2VlZTrzzDM3uN0nn3xSL7/8sjIzM1PPt7TmTdP48eMlSZMmTdIDDzyQuhV/Uxs3bpxeeeUVBYNB7b///tp1110VCoU0Y8YMff3115KkTz/9VDvttJOOP/54/ec//9GSJUu0ww47aL/99lOTJk20aNEijRgxQgUFBVq5cqX69eund99911zsiEajqUWdtm3bqkOHDtp6662VlZWlkpISzZ49W999953Kysr0008/6eKLL9Zbb73lOS8tXrxY559/fuouvfT0dB1wwAHaeeedFYvFNH36dP3www8aMGCAzjnnnCo9J0OGDNE999yTWpxr27atunfvrubNmysajeqXX37RN998o1gspnfffVerV6/Www8/7Gzn559/1k033ZQa223atNFee+2lFi1aKBgMqqCgQL///rumTJmyyTrZjB07Vp988okk6Zprrqlx8fzFixfroYcekqQq3SlZm/r3769vv/1W2dnZOvjgg9W6dWuVlJTou+++S90x9NFHHymZTFapXfX777+vZ599VuFwWL169VKHDh0UDoc1a9YsjRkzRvF4XHPmzNEtt9yiZ555xnM7t912mz7++OPUvzt27KgePXooKytLf/75p7788kt9/fXXm2xOmDNnji6++GIVFRVJWlPT6aCDDtIOO+ywzvN34403VnmRG67i4uJUF6wuXbrotNNOq/E2BwwYoPz8fOXm5uqWW26p8faA+oiFHWyR2rdvr9zc3NRF8+TJk52FndzcXF111VX617/+paZNm5rbmT9/furW6e+//16ffPKJ80n62gvkt956K3VBWpWL5tp6fEnrvGkeMGCA5/eUo9Goxo4day4wRKNRXXfddanFirPPPluXX365c2t1NBrVoEGD9Prrr2vVqlW6+eab1/maR9euXdW1a1d9+OGHqYWdrl27VvmNxKY0cuTI1P+np6ebd9nU1vO01m+//aZbbrkltahz0EEH6fbbbzc/9SwpKdEnn3xi1nwYMGBAalGnWbNmevLJJ52vRsycOVOXXXaZli5dqr/++kt33nnnBtvvvv/++wqHw+rfv79OPPHEdX529dVX6+KLL9a0adNUVlamF198Uf3793e2sXZ8hsNhDR48WPvss4/5WCUlJfriiy/WuTOtbdu2atu2rSZOnJha2Nlpp52qPZ6GDBmiDh066LHHHvNcYKsLK1as0LXXXpta1Onatavuvfdec2EmGo1q1KhR6xz7tQtYs2fPTi3sbKiYfFX9+uuvqTeeknTaaafp+uuvX2cRol+/fqlxLEmDBg1S9+7d1aFDh/Vu+9lnn1WXLl00aNCgVN2ztb744gv169dPyWRSH3zwgS655BK1aNGixn9PTb388stq3ry5nnzySefv+/TTT3XjjTdKkl555RVNmzZNS5cuVb9+/XTWWWetU+flwgsv1JlnnqlFixZp7ty5GjVqlI488kjn8SKRiC644AKddNJJatWqlblPK1as0M0336xvv/1Wc+fO1SuvvKKLL77YzB0wYEBqUad169YaPHiwtt9++3VyvvvuO1199dXrnDO8TJ8+Xffdd5+SyaSaNGmiu+++WwcccICTN3/+fF111VWaPXu2vvjiC33wwQf617/+tU7O66+/nlrUueyyy3TRRReZtXHi8bi+//57paenb3D/atPq1at11113SZL22GOPWnnTfscdd6ioqEiNGjXSTTfdVOPtVdWiRYu0cOFCde7cWY888sg6r79rrrlGQ4cO1V133aVEIqFhw4bp4IMP1iGHHLLebT777LNq06aNHnvsMedur6lTp+rCCy9UWVmZvv32W02bNs1cZB81alRqUScUCql///7OOFk7X37++ee1XjtpQxKJhG677bbUok7Hjh31+OOPrzM3XXPNNanFzpoW1K7s73cr11RVvhq8KT388MNauHChIpGI7rrrrip/zdTLZ599plGjRklac87aaqutamM3gXqH4snYIgUCgXW+yrFo0SInZ8cdd9QFF1zguagiSdttt52efPLJ1Jv29957r9b2sTYff+bMmZLWvAleX/G5SCSiww47TLvssovzs+HDh6c+yfv3v/+tfv36md+Xj0QiuvHGG3XwwQdLWvOp+5QpUzwf0y+GDx++zoVa7969zTcXtf08PfHEEyotLZUk7bfffnr00Uc9b2XPysrSSSed5HxN6bfffkstogWDQT3xxBNmvYv27dvriSeeSN16P3LkSP3666/mY1V21VVXOYs60po2w2s/dZPWFB39u/z8fC1evFjSmuKIXos6a/++vn371smb/IYNG+rpp5/eqIs60pq6LWvfbLdr107PP/+8Z32GSCSiI488slYWbari+eefTxUIP/DAA3XzzTc7d5asHcdr3/jFYjE9++yzG9x2ixYtNHjwYGdRR5IOP/xw9e7dW9KaN1Njxoyp6Z9SK0KhkJ544glz0eqoo45Sjx49JK35iubXX3+ts88+W2effbbzBrRFixa64oorUv9e+4bj7xo2bJj6CoKXpk2brvPm3Osc8Ouvv6ba+0YiET355JPOoo605u7JO+64o0q1LNZ+tXftgqy1qCOtOU89/fTTqa/UPf/8807O2jkzNzdX//nPfzzftK+909D6qmldGjhwoJYtW6b09HTdcccdNV5U+OCDD1J3pt1www3rPc/XtmQyqcaNG+vJJ580X38nnHCCLrrootS/13eHzVpZWVl6+umnza/wdevWbZ2vzVnnAUnrzBsXXXSRs6gjrRnvTz75pJo2bVrjeivV9c033+jHH3+UtGacPvXUU+a56OSTT9YFF1yw0fdvc/H999+n5rELL7ywWl8LtaxYsSJ11+nee++t448/vsb7CNRX3LGDLVblryWsXr36H2+nefPm2mOPPTR+/Hjl5eWpoqKizr+6Ud3HX/vVnPLy8n/8OGsXNTIyMswio3937rnnpt6QjR07Vrvvvvs/fuy16rpFc+Wvs0hKtTb/4Ycf1lng2GGHHXTNNdeY26jN52nZsmWpi+BQKKRbb731H31yNXz48NRF5uGHH77er7h17NhRRxxxROorB8OGDVtv54gmTZqs0y3s73bccUe1bds2VZxz8eLF63yFofLXiqx6UhvLySefvFHfXElr7sBZW0NAWlPMcWPfieClpKRknTvUvMZ75Z+vHatffvllqriyl7PPPnu9Pz/ssMNSi5FrF6Y3tYMOOkgdO3b0/HmvXr00YcIESWsWT84///z15q5V078vKytLvXr10rvvvqslS5bor7/+0rbbbrtOTuWvtxxzzDHrrel15JFH6n//+59+++03z5xZs2alFqIPP/zwDRZGbtGihY488kgNHTpUf/75p+bOnauddtop9fO156hoNKpEIlHlui4bw1dffZWq+XLxxRfXuG7ckiVL9OCDD0pas5i9MetlrXXmmWeqcePGnj8/99xz9dprr6moqEi//PKLfv31V/MDn7WOP/54Z8xVdvjhh+vFF1+UJLM49G+//ZaKZ2dnr/eOy9zcXJ111ll65JFHPHPqQuXX0Omnn77eWkEXXHCB3nzzTacu2T/VsGFD8yv8/9TGquVUXSUlJerfv7+SyaR23nnn9c6hVTVgwACtWrVKmZmZ5h3DwOaEhR1ssSoX5Fx7a62XeDyuuXPn6rffflNBQYFKS0vX+TRm1apVktZclP711181/oShth9/l1120YwZMzR//nwNGjRIl1xySbXaUubn56eKunbu3Fm5ubkb/J127dql/n/tp1z13dqv8ngJhUI69NBDddNNN5kXdbX9PP3www+p49y9e/d/XCh66tSpqf+vSsHA3r17pxZ2Kv+uZe+9995gB7XWrVtrzpw5ktYUQa28sNOkSRM1a9ZMy5cv1w8//KDXX39dp5xyyga3Wdu87jaoSz/99FPqwn+77barlcXP2vLjjz+mvv7Xtm3bDc5prVu3VocOHfTLL78oHo9rxowZ2m+//Tzz1/eztdtb6+9FeTeVDXUJqvzGtmPHjuttg92gQQM1bNhQq1evTt2xtT7JZFJ//PGH5syZo/z8fJWUlKxzDqhcVP2PP/5w3mRPnz499f9VqeVy0EEHrXdhZ+0ClrRmcaIq2rdvn/r/H3/8cZ2FnXbt2um3335TWVmZbr/9dt100031omNNQUFB6itYHTp0qJWvDN95550qLCxUVlbWJnujuaGvVmVmZqpnz56pr+tMmzZtvQs7NX09Vx6fPXr02OD1yUEHHbTRF3amTZuW+v8NPX9ZWVnq2bOnvvjii1p57JycHF98Xb2mBg0apAULFigUCumuu+6q8XXAiBEjUh9QXHbZZXQrw2aPhR1ssSp/kuL16UVhYaGee+45ffTRR1V+c2F1MPmnauvxzzvvvFRL95deeklDhgxJ3c7eqVMndejQYb0n0F9//TX1JuKHH34w27Wvz9qFJ7/r3r27+vXr5/lJXW0/T3Pnzk39f3W3Vdna2jqSNlj75O85f+/o83dV+epSdnZ26v//Xpw7EAjovPPO0wMPPKBkMqmBAwfqmWeeUc+ePbX77rurc+fO2mWXXWr8HfsNqUo79tpW+fjWt0LhlY975Tfk67N2YWft76/vzd76vl4krX/MbCobGuuVPyyoyutibeHztV+1tJSXl+vVV1/Vu+++a35l2GKdAyrPAVXpKLehnMp3MN5yyy3VLkb697nurLPO0siRIxWLxfTxxx9r5MiR2muvvdS9e3d17txZu+22W5VbZdemBx54QEuXLlU4HNadd96pcLhml80fffRRqtD2lVdeudG/+il514f7u1122SW1sPPHH3+sN3dDf8eGXs+V55uqjM/WrVsrLS3NKaZfVyoqKlKvv1Ao5NnJrrJ27drV2sLOlqBynbwzzjijxufEVatWpb6Ctdtuu+nf//53jfcRqO9Y2MEWq3JnDeuTwQULFuj888+vdnvF2rrQqM3HP+SQQ3TnnXfqoYceUmFhoYqLi1MtTaX//+nc8ccfr/3339/5/fz8/H/0N6y1vjcu9cmLL76Yql+STCa1YsUKzZkzR6+++qq+/vprff/99zrzzDP14osvmp/81PbzVPkrgn9vtV4dlcf6+u4iWKvyLfqFhYVKJpOeNSWq+9Uhq+7AmWeeqZKSEj333HMqLy9Xfn6+Pvnkk9RdQ7m5uTrwwAN18sknr7ezVU1U5e6q2lZ5vGzsr4FtSHXHzN/zNtS5aEPjpvJ4s7q8bQrV2eeqfB13bb5XLY7Vq1frwgsv1M8//1yNvbS/clvd47mhnNqe63bbbTc9+uijuuOOO7R8+XKVl5fr66+/Ti2CpKWlac8991Tfvn11+OGH1/lCryR9/fXX+uijjySt+epgVRbF12fZsmWp7pRdu3atlU4//0SDBg2q9PzV1evZGu/VHZ/BYFANGjSo0t1utaHy/mVnZ1fpTpKqzptYs9h3++23K5lMatttt9Xll19e420OGDBAK1euTC3K1qevdwJ1hYUdbJESicQ6nzhanx7ffPPNqUWVVq1a6dRTT9Xuu++ubbbZRjk5OUpPT09drNxyyy0aNmxYre5jbT/+8ccfr0MPPVQjRozQN998o2nTpqU+NS0tLdWoUaM0atQo9ezZU4MGDVrn0+fKdVB23nnn9RZgttTX73OvTyAQULNmzdSsWTP16NFD9913n958800tXrxY/fr10+uvv+5c3G2Jz1Ntueiii3TCCSfok08+0YQJEzRt2rTUVyQLCws1fPhwDR8+XMcdd5zuuOOOGn9y/ncb440iUB333XdfalGnSZMmOuWUU7TXXntp2223VaNGjdY5Bzz11FP63//+t9H2rfJc17dv33W+VlUV1gJtr1699Nlnn2nkyJEaN26cpkyZkuouWFFRofHjx2v8+PF65ZVX9Pjjj9d5Z5u1hd9bt26tSy65pMbbGzRokAoKChSJRHTnnXcy56DKioqKarU5R05OjtnwYFN54YUXUl8n7d+/f7VKBVgmTJiQutvs/PPPX+/XCIHNCQs72CLNnDlznbo6f291/vPPP6cKQ26zzTYaMmTIegt91ubXr+ry8Rs0aKCTTz5ZJ598spLJpH7//XdNnDhRI0eO1Pfffy9JGj9+vO68804NHDgw9XuV72hq2rTpFvFd77/r16+fJk6cqNmzZ+vnn3/WK6+8ogsuuGCdnNp+nipvryZ1Rho0aKBly5ZJWvNJ+4buTqn8NYnc3NyN1la2WbNmqU5CiURCs2bN0g8//KDPP/88VTT7o48+UvPmzXXllVdulH36uw198lzZhu5Uq/yJ7ooVK2q0X7Wt8nxT1eLyle/iWN98hQ1btWqVPvvsM0lrXoNvvfXWer++tqE6cbm5uakxlp+fv8FF5A3dkVN5btp77711zDHHrDe/qjIyMtSnT59UQeG//vpLEydO1JgxY/T1118rHo/rxx9/1HXXXadXX321Vh7Ty5IlSySt+ZrQ368RvAwbNmydD1kqF/tf2/0vGo3quOOOq9L2Fi5cuM7XcCvfVfpPFRQUKJFIbHBhaWO+niufk6pyN1gikdjgXUS1qfLfX1xcrGg0usG7dmp6V1tlq1ev1sMPP1xr22vVqlW9WthZ+9qQpP/85z9V/r3Kr427775bffv2dbb3zDPPVKmzm7SmbMFaxx57rAYMGFDlfQHqAz4uwBbpnXfeSf1/Tk6OU79kxowZqf/v27fvBi9q1haGrS0b4/EDgYB23HFHnXLKKXr++ef10EMPpd60jhgxYp03c5ULp1al/fXmKBKJrNMd6oUXXnAWW2r7ear8Pf6adAOr3Na4Kh14KudULnq5MQWDQXXo0EFnn3223nzzzXU6ggwZMmSTfT2n8p1sG6r9sqGaKJXvcqhvBcYrH3eri42lcl5NOwdt6fLy8lJj/NBDD91gTaLZs2ev9+eVj+eGcquSs7HOCdtuu63+9a9/6YknntBLL72U+orb1KlT6023NL8pLy/fYM0cad3jWtev5+qOz3nz5m20+jrSmq8Crq0jtLaZxYasbaQAABsLd+xgi5OXl5dqXSpJp512mvPJy4bq71Q2c+ZMzZ8/f4OPW/mrI/F4fL3f962Lx9+Q3r1766mnntLvv/+uRCKhefPmqXPnzpKkli1baocddtDvv/+ulStXasKECerRo0eNHu/vz4cf7Lvvvtp99901ZcoUFRUV6YUXXtD111+f+nltP0977bWXgsGgEomEJk2apIULF27wDZ6lW7dumjx5siRp5MiRG+yMVbngY7du3ar9eHXhrLPO0uDBg1VaWqrVq1dr5cqV6xSxrjye6nLRp3ItnHnz5q33Fu9vv/12vdvabbfdlJOTo6KiIs2fP19Tpkz5x52xKs9htfF62m233RQOhxWLxTRnzhz9/vvv6y0wPX/+/NQb7VAoVKNi36jeOWD58uUb7F7XpUuX1F2gX3755QY7Y40dO3a9P99nn3305JNPSlozX1x55ZW1/vXIv+vWrZv23HNPjR8/XtKagr5VLez9T1T1q7SzZs1KvYnfbrvtPOfMnj17Vmn+XrFiRepvzMzMXGe+rq1aXGPGjFlvp7uysrLUPkj2V+dqU+XtT5gwQaWlpev9Os6XX35Zp/tj6dq1a2qxfvTo0esde6Wlpes8fzW1zTbb1OjDnfquque90tLSVG1Iad3XaOUPsLbffvsqv35HjhyZuru2Z8+eqddYfepSCVQVCzvYosycOVNXX321otGopDVFYs8++2wnr/JXJNZXuDKRSOihhx6q0mNXvvV99erV6y2GWxePX11/L4Z4+umnp25LHThwoN5444117l5YH6v4buVbr6v6VY/64OKLL9aFF14oac2dI+ecc846tR5q83lq1qyZDjnkEI0cOVLxeFx33323nnrqqWrXZujTp49eeOEFJZNJffHFFzrnnHPUsWNHM3fWrFmpr4BIqvJXBupaPB5f5+/+e4ecv7++6krlAqqjRo3yXCQrLCzUK6+8st5thcNhnXDCCam8++67T6+//nq1C1JLtf/3Z2Vl6bDDDkuNhccee0yPPvqoZ/4jjzyS+mrawQcfzFexaqiq5wBpzXO/obsXjj76aL300kuSpE8++UTnnXee510YI0aM2OAdCWs7Vf34449asGCBnnvuuSrXoVlfMfbq+Cevk+qo6tcwBg8enFrY6datm+fv/f2ru14mTpyYWhRo3LhxnXwd5LXXXtNJJ53kuWj40ksvpb7e1759+zqvUbLjjjumuuoVFxfr5Zdf9hxPhYWFeu211+p0fyzHHHNMaj588803deqpp3outL344ovrdF7F+p1wwgk64YQTNpi3YMGCdRZ2vF4bu+++e5UXZiZNmpRa2Dn//PNr/FVHYFPiq1jYIixatEiPPvqozjjjjFQxxvT0dD3++OPmhU3lE8Lw4cP11VdfOTkFBQW64YYb9P3331fpIrXyRfQPP/yw3tzafPyFCxfqrLPO0ogRIzy/OpJMJvXGG2/o999/l7TmYvLvn+adcMIJqU+o5syZo3POOWe9t+CXlZVp5MiROuecc8w3JpWfj8mTJ1fpLosFCxaoU6dOqf+q2zGsNuyzzz6pTxfLysr0/PPPr/Pz2n6eLr/88tQnl998842uueYaz04gJSUlGjJkiHMr+4477qgjjjhC0poFkiuuuML8es2sWbN02WWXKRaLSZIOO+ywKrWerYlJkybpkksu0bhx41ILrn8Xi8X0+OOPpy6U27Vr59QI2X777VN3weXl5dVZJ7aDDjoo9TgjRozQ6NGjnZxly5bp8ssvX+d7/l7OPffc1J1HM2fO1H/+8x/PO/AqKir02WefaeLEic7PKr+erJ//ExdccEHqTqDRo0dr4MCBzjGKRqN68MEHUxfb4XA4tfCJf65z586pO2B++OGHdb4+vFZ5ebnuv/9+DRs2bIPnoHbt2umAAw6QtGYcXXHFFeu0QF9rwoQJ6t+/f5XOaTfccENqHwcPHqwHH3xwvbV+Fi1apOeff14XXXSR87Pjjz9eQ4cOXe+i5MiRIzVhwgRJa8ZZly5dNriPW4JbbrkldU6sStv5QCCglStX6rLLLjPPJR988ME6NUms41UXKi98PfPMM/rggw+cnJUrV+qKK67Q8uXLqzRGP/zww9Rz07t37xrt33777Zf6QKSgoECXX3556nqysqFDh+rZZ5/daLXpAGAt7tjBZmHEiBH66aefUv+ORqMqLCzUihUr9OOPP+r3339fp9Bpq1atdM8993jeXty2bVsdeOCBGjt2rOLxuC6//HLtvffe6tixo7Kzs/Xnn39q7NixKigoUNu2bbXDDjus8ymC5YADDtCnn34qSbrjjjs0adIkbb/99qkL45ycnNSto7X5+MlkUlOnTtXUqVOVkZGhTp06aeedd1aTJk2USCS0fPlyjR8/fp1Fkssvv9z5elokEtHjjz+uc845RwsXLtQvv/yiE044QZ07d1bnzp3VtGlTRaNR5efna/bs2frxxx/X++a6devWat26tebNm6c5c+bo7LPP1n777bfOnTw9evRY7+3im8oll1ySuth97733dO6556ply5aSav952nHHHXXXXXfpv//9r2KxmMaMGaNvv/1WPXr00M4776ysrCytXr1av/76qyZPnqzy8nK9+OKLznZuueUW/fTTT/rzzz+1dOlSnXbaaerZs6c6duyoQCCgX375Rd98801qUWfbbbdV//796+DZW1cymdQ333yjb775Rrm5uerUqZN22mknNW7cWBUVFVq6dKnGjRuXegMSCATMwsnp6enaa6+99N133yk/P19nnHGGDjnkEDVq1Ch1gb32Ar8mWrRooeOPP17vvvuuEomErr76au23336pry3OnTtX48aNU2lpqS688EI9++yz691e06ZN9dBDD+mSSy5RaWmppk6dqmOPPVZ77rmnOnbsmPqq1ty5czVp0iQVFRXp7rvvdj5V3G+//VJf2xsyZIhWrVqlXXfddZ07m4477jhlZ2dX+W/dZZdd1K9fP913332SpNdff11jxoxRr169tNVWW2nFihUaO3bsOnPHtddeW6dfj9lSrC10/+abb0qS7rnnHn300Ufq2rWrGjVqpIULF+qrr77S8uXL1axZMx144IEb7Jpz22236ZRTTtHKlSv1xx9/6Pjjj1evXr208847KxaLadq0aakPHc4555zUHT5eb1C7deum22+/XXfeeafi8bheffVVvf/++9p777214447Kjs7W8XFxVqyZIl+/vnnVC24yrXD1po9e7buuOMO3XPPPdptt93Url07NW3aVMFgUCtWrNDEiRPXqSV31llned71eu211zqxygXhn3rqKed3Dz/88NTi9+Zu6623VseOHTVq1Cj16dNHBx98sFq3bq2SkhJNmDBhnWupY445RoceeuhG2a/DDz9cRx55pD777DPF43Hdfvvteuedd9SjRw9lZWXpzz//1JgxY1RYWKjevXsrLy9PCxcu3Cj7Jq2p+3b33XfrrLPOUnFxsX788Uf16dNHhxxyiNq0aaOSkhJ99913+vnnnxWJRHTiiSfqrbfe2mj7tym89dZbzgcJle/2mzRpkvN6bNKkiW699daNsn/AloaFHWwWhgwZUqW8rbbaSn379tX555+/wTc499xzjy666KLURc7333+f6hy1VocOHTRo0CA9/fTTG3zs3r17691339XkyZNVXFzsfALbqlWrdb4TXFuPHwqFUm/4ysrKNHHiRM9P9NPT03XllVfq5JNPNn++9dZb65133tEdd9yRulNhxowZ6xR7/rvmzZt7fi3jhhtu0FVXXZV6UzFt2rR1fn733XfXy4WdfffdV507d9aMGTNUUVGh5557Trfddlvq57X9PB1xxBFq1KiRbrvtNi1evFhlZWUaO3asZx0Mq9ZFw4YN9eqrr6pfv36aNGmS4vG4xo0bp3Hjxjm5u+++ux5++OEN1vaoDZX3tbCwUN9++61nbZrc3FzddtttqTsP/u6aa67R9OnTVVJSotmzZzt3Ll1yySW1UvulX79++vPPP1Ovx7ULU5WdeeaZuvzyyze4sCNJe+yxh1599VXddNNNmjt3rmKxmL777jt99913Zr51fFu2bKnzzz9fzz33XOord5VrJUlr2klXZ2FHWvPVwoyMDA0cOFAlJSVauHCh+WYlMzNT119/vU466aRqbR/errvuOs2fP19ff/21pDV3ov29zsa2226rQYMGVanmSMuWLfX888/riiuu0IIFC1ReXu6Mk3A4rBtuuEE77LBDamHn7197rOxf//qXWrVqpf79+2vBggUqKirS6NGjzTvZ1rIWdtbWc/I6F6wVCoV01lln6aqrrvLc/oY+ZFlbb2xD+7Q5u+uuu1RUVKQJEyas08Wrsj59+uiuu+7aqPu19qs1a7/y9NNPP62z0CStqYNyxx13pDogrW98Vv5Arzbay++yyy56+umndc0112jFihUqKSlZp2ajtGYuvOeeezZYXH9z8OOPP6739bZw4UJn8e2f1AkEUDUs7GCzlJmZqZycHOXm5qp169bq0KGDunTpor333nu9RYsra9iwoV577TW99957+uyzzzRnzhyVlZWlvqbUu3dvHXfccRtseblWOBzWc889pyFDhmj06NGaO3euCgoKUndI1NXjt2zZUmPGjNH48eM1ZcoUzZo1SwsXLlRBQYECgYByc3O1ww47aO+999a//vWv1J0nXho1aqRHH31Us2bN0scff6zJkydrwYIFKigoUDgcVsOGDdW6dWvttttu6tmzp7p37+55QXXAAQforbfe0ptvvqlp06alFi021Ea6PrjkkktSNQDef/99nXfeedpmm21SP6/N50lac/fSp59+qo8//lhjx47VL7/8olWrVikWi6lhw4Zq06aN9thjD/Xu3duzHkLTpk310ksv6auvvtJnn32madOmpTp7NWnSRJ07d9YRRxyhgw8+uBafqfXr1q2bvvjiC33zzTeaNm2afv31Vy1atEjFxcUKBoNq1KiRdtppJ/Xs2VPHHXfcOrVH/q5Dhw5677339Prrr2vixIlauHChSkpKan08ZWVl6ZlnntGHH36ojz/+WL/++qtKS0vVrFkzdenSRSeffHK1v6ffvn17vf/++/riiy80ZswY5eXlacWKFYpGo8rNzU0VZT300EM97zS88sortdtuu+mjjz7Szz//rFWrVqm8vLzGf+/aOzuGDBmi8ePHa/78+SooKEjtV8+ePXXyySevU8waNZeWlqannnpKH3/8sYYNG5aqP9KoUSNtv/32OuSQQ3T88ccrJyenysVkd955Z33wwQd66623NHLkSM2bN0/RaFTNmzfXnnvuqdNOO03t2rXTqFGjUr+zodboe++9tz7++GONHDlS48aNU15enlauXKmSkhJlZmaqefPm2mmnnbTHHnvogAMO0HbbbedsY9y4cfr22281adIk/fLLL1qwYIFWr16tZDKpnJwcbb/99urevbuOO+64ernY7ze5ubl65plnNHz4cH388ceaO3eu8vPz1bhxY3Xu3FknnniievbsudH3KxKJ6IEHHlCfPn00dOhQzZgxQ/n5+WrUqJHatm2rPn366Oijj1YwGEx97W9947Py3SOHH354rexjt27dNGzYML3xxhsaPXp06quzLVq0UM+ePXXaaadp++2314cfflgrjwcAVRXIy8ur/++gAAAAsFE8++yzeuKJJySt+QqX112c8I+1dyu2atVKn3/++Sbem5pZsmRJ6itinTt31htvvGHmnXrqqfrpp5+UmZmpESNGrLdpBQD4HcWTAQAAkFL5K5q77rrrJtwTwFV5fHp1eCwuLtbMmTMlrWlqwKIOgM0dCzsAAACQtOZN8/Tp0yWtqRfWoUOHTbxHwP9XXFysF154IfVvr68OT5kyRfF4XGlpaTr33HM31u4BwCbDwg4AAMAW4IEHHlhvEffRo0frxhtvTP37tNNOq5Wis0BVfPLJJ/rggw88a4MtXLhQl1xySaoTX9u2bdWjRw8zd9KkSZLWFPhu3rx53ewwANQj1NgBAADYAvTp00d//PGHWrdurW7duqlVq1YKh8NatmyZ01K8c+fOeuWVV8wubPAfP9TYef755/XYY48pJydH3bt3V9u2bZWdnZ36WtWECRNSDSfS09P1yiuv8FVBAPg/nK0BAIAvjBgxQosXL/7Hv5+Tk6MTTzyxFvfIn+bNm6d58+Z5/vyAAw7QwIEDWdTBJlFUVKSxY8dq7Nix5s+32morPfTQQyzqAEAlnLEBAIAvvPPOO6mvWPwTrVq12qIXdh577DGNGTNGU6dO1cKFC7Vy5UoVFBQoMzNTW221lbp166ajjz5ae+6556beVWyBTjnlFLVo0UITJkzQ3LlztXLlSq1atUqS1KhRI7Vr10777bef+vbtq4yMjE28twBQv7CwAwAAsAXYcccdteOOO27q3cAmkJeXt6l3YYNyc3PVp08f9enTZ1PvCgD4DjV2AAAAAAAAfIpWBwAAAAAAAD7Fwg4AAAAAAIBPsbADAAAAAADgUyzsAAAAAAAA+BQLOwAAAAAAAD7Fwg4AAAAAAIBPsbADAAAAAADgUyzsAAAAAAAA+BQLOwAAAAAAAD7Fwg4AAAAAAIBPsbADAAAAAADgUyzsAAAAAAAA+BQLOwAAAAAAAD7Fwg4AAAAAAIBPsbADAAAAAADgUyzsAAAAAAAA+BQLOwAAAAAAAD7Fwg4AAAAAAIBPsbADAAAAAADgUyzsAAAAAAAA+BQLOwAAAAAAAD7Fwg4AAAAAAIBPsbADAAAAAADgUyzsAAAAAAAA+BQLOwAAAAAAAD7Fwg4AAAAAAIBPsbADAAAAAADgUyzsAAAAAAAA+BQLOwAAAAAAAD7Fwg4AAAAAAIBPsbADAAAAAADgUyzsAAAAAAAA+BQLOwAAAAAAAD7Fwg4AAAAAAIBPsbADAAAAAADgUyzsAAAAAAAA+BQLOwAAAAAAAD7Fwg4AAAAAAIBPsbADAAAAAADgUyzsAAAAAAAA+FR4U+8AAAAAAACAl06dOlU5Ny8vrw73pH7ijh0AAAAAAACfYmEHAAAAAADAp1jYAQAAAAAA8CkWdgAAAAAAAHyKhR0AAAAAAACfoisWAAAAAADY5Lp06WLG5w/ez4ltd+k3db07vsEdOwAAAAAAAD7Fwg4AAAAAAIBPsbADAAAAAADgUyzsAAAAAAAA+BTFkwEAqKfOKr3ZiSWSdm4g4MZey7y3lvcIAIB1derUqUa/n5eXV0t7Ar/pbIydPwf3NHOD3JKyXjw9AAAAAAAAPsXCDgAAAAAAgE+xsAMAAAAAAOBTLOwAAAAAAAD4FAs7AAAAAAAAPkVXLEB2Nf9QKGTmxuPxKm83YJRvTyYSZq7VEcCrywDdA4D679Rl/cx4ICvixjw6XXmE7Vxjvvl3idtVS5Jixe6Wk+n23PROg4HV2AvUpfd7L3SDSa/BU/XRkzDOS0GPc2DAaL/2r89bVfmxAPhDdTpdHXvssVXOTRpzU3Uei2tgf+rSpYsZ/+SGDk4s4XX+qvpbsC0Sd+wAAAAAAAD4FAs7AAAAAAAAPsXCDgAAAAAAgE+xsAMAAAAAAOBTgby8vOrUZqzXDjx3shMLBe3if5a4XTdSaWlujel4LFbl7VpFwiRpzIvdqrwN1A6v4mxWoWSrmKTkfTwt1SmeXB0UjqsfDrtssRNLJu3jG5BbcDQYtHPjcTfXKljqJRC0c794smWVt4HqObXoRieWLLGr/AWzjHOKxwnIOu5eM1Ao7M5jAc95zIjF7C0no+7f8U7zhzz2ArVh6GF/VSPbPm7WLJA0o1Iy4R7jPY5qZ+ZOHTG7insgnTByO4+fAKgvvK6N+/TpUyePZ11HV+caZ/jw4Waca+P6o1s39z3uR1fvZOZ22rGZE0t4XBNZl7etr5hg5lrnpbwZM8zczQV37AAAAAAAAPgUCzsAAAAAAAA+xcIOAAAAAACAT7GwAwAAAAAA4FMs7AAAAAAAAPiUL7tiHXzBNDMeynC7L4Q8lq5icruHhMNpdnIw4saihXZu0uiCFMowU6MFvzixMS/QKau2eFX5t1jV+IMe3a/sPje2oDF2AomomWs9Ws37Z9EloDYcdtkiMx7Oae/EvDo7JOPuyAmE3O5I/5dd5X2zHi7uNXaLZjmxkXTKqpZTC93uV5KkUuP4phvnDknlxmEPJe1Oi6GgcV5K2LlBYzzFPeYbBdzcYLlHB62wO56Sxt8r0S3rn3jP6oDl0SDGmjKSHielmDGPeM44RlcsBe3sPY5o68Qmfep2ypKkE+mKVS8c/J8fnZjXJ7sBo5tsLOo1jxhbCdjnn5AxnpIec9no56t+/Ybqsa6NvbpflcXd45sWtucFazwl4hX2TljzTSTTTLW6EEdC9rnK6pbFNXDd6tSpsxkv+Ox2Jxb16FSdk+HGF88aYeaG5I6HzO2PNHMTcsffVkcMMHPz8jaPblncsQMAAAAAAOBTLOwAAAAAAAD4FAs7AAAAAAAAPsXCDgAAAAAAgE/V++LJB58/1YmFGrkFSyUpmHSrDSZjdlXBeNDNjQTtYlyBQLoTK4+W27lWteaEx1Nc/LsTGv38bnYuPFWnSHJ1eNTAlUddWlvQGg+1UBLZqD+WN40CcbXh8MvdQsmJTLdYqCQFjYLIjbPtgrkVxjxQUGIXpIxE3IK54aA98CLGWIgm7MFbXmAUT36qlZkL6ZSl/ZxYINMu/mfZKsM+DstLjWDUPr5RYzjleBQnLTc+qwkl7TFWbpTRDXnMbblp7t9RFPeaCN3ct3Lu98iFJA21iicn7fNEMGRc53h8RBc06tJ6XY4EAu5cFk/YGw4b108Jj/1VwHi9eJxbLcd/sW3Vk6GDL/zZjKfn7GxE7WMWM84fHq1FFLWKJ3vMOUGjcKpXs4HyfKu5iF2kFTava+Njjz3WicW8JgbrnBKyz4EJq0GEx4s9aYyRYMh9ryVJCaPQctLjQjzDGKjvfzDMzKWocvVZY6p4xH1mbkW6e9watrLfv6+c516bJj26H62cM9KJNd3xIDM3YL1Z8pj3mh52qxPz4xjhjh0AAAAAAACfYmEHAAAAAADAp1jYAQAAAAAA8CkWdgAAAAAAAHyKhR0AAAAAAACfctti/EOHX1XoxGJFc83cSK7bYcYrN1nymxNLNGhn5kaL5zixtLhdnT8Ud6tilyXsSu/ZLTu4v5+0c0Mx9/GKi9z9kqSiaf8xopPNXHjzqlpenW5ZVmOGcNB+ecStyv9GpxJJShrj7KMnrjJzj73iSff3ZXd18wpvSY7+byMnFi10O2lIUjjHfQ175SaKpjuxtIwdzNy0iplOrEwZZq6MsdBIRtsaSQVxd44LenSBSIbdThLhUrfDgCQt+O4IIzrDzIUUMOYAqwmMl1VROzmZdLsqGg1jJEmhWIUTK0tvZOdG3DESjdnjMaOi2ImVe4zH0mS2GyyzO0Oa3UpyzFT8n6DRZcpo8ilJShgDMFFud/mIG91rgh4d1WJGB9GspvY5sHiVu420NHu7CWNIeXXKsU7EZscwSSeMpFvWIRe41z5Zjd1znSQp6R7fioD9wgyH3PEUjbrzhSQp4OaGjPEsSRVGN8CMTDvXqyspbNb17rF93O5Xkt3ZNc3qXifps89HuL+fsN9XWR3wksa4k6SIccJLi9jny1KjY+SRR1jXMlI05o7HPn36mLnWc+bHLkgbk/XSLg/bx7jxNu7zu2Kee30tSYGw2/4zUOFe+0hSy516u/vl0emqLOyOnUDUnlxCHu/j/IY7dgAAAAAAAHyKhR0AAAAAAACfYmEHAAAAAADAp1jYAQAAAAAA8KlaK578xWO5Tqz3Ne3N3LhRKDlRYhcYXv7TPU7smtZvm7mJYIkTS494VG00CpkGw3bhpI9nneY+VsAuHlYRK3Jip7f/3Mx9yCiKieqrTpFkL58/fKkT633tYDv3uf5OLJm0C3edetl9TiwjzX2tSNJXz97ixA688C4zN2gUn/R6HjbXYnCf3JfvxI66yZ5zogU/O7FEkV00eOnU653Y/JFuYTdJyspp5MTyVyw2cxPG9FJSZFSTlHTla+4YSc+wx1ggw923gWd8Y+bu/pVd4HRLd+qy/5rxULZ70BIeRaxlvCYTHp+dNG+4lROLJe1zyos/7+TEghH71N04J8uJRWWP3Wt2cV8Tf+QXmLklFUYF3Ex7H6y/+PTim83cN7PvNeNbmnuWHOnE3rz3QjO3otQo3p9mX7tkphvHPpjmsd18N+hRwTZpjPWM9Ewz96R+TzuxydPtApqbq97XuPN8rNC+5g3nWM1F7NxEsdsAINHQPgdWFLgF9RNGcW1JSi9356Jo0OP803B3J5YM2UXY08JlTiy+xC70vzLvHCO6eV7L1BmvWrDGKWzSxIlm6uQxbzmx5rnueUaSCouM45uwC+uuLndfE+khew5JBtw567/3PGjmRo3czAx7u6gd6UaxdUlaPs9tLhL3aC6SnWYUbA8aTRsklRuNH5Kyz2txo8dDJOzV1GLzuD7mjh0AAAAAAACfYmEHAAAAAADAp1jYAQAAAAAA8CkWdgAAAAAAAHyKhR0AAAAAAACfqrWuWNURNyr5f/nmiWZup053OLGisN1VSMVul6l4wK7WXV7hVmpPMzplSdKeLV9yYo0a2N228ovcfVhVYnc7CbCuViuq0/Vpn727m/EjrnU7dwx7wu7kUlGxyomVJe0uAfHcxk6suMLtHCBJSnM7mAx90t6HU65+wInlTZ1qb9eQk2lXmy8qdavNbw4SRe4YGf3qEWZup05uV6yWWXZnh6KyFU6sSXO7A0NmzN1GeXa6mfv5rW7XmDKPeSTUwB03WckmZq4SzDmWZNLuUBgrdLskBLLsLlMqM45vxD6nDM3v4MQaN2th5hZu57Z1CHl0VIzF3LklJ8c+X76wZG8nFkzYc9Oe0S+cWNJuQmFa9ssC+wd7Vn0bm7OKuDvOSu2ho7PueMGJJT26VwXldj1KyO5YNHTgRU7shBuftbcbcOcRr86QXvEtyeePuOeE3le73a8kKVY024klit3uMpL05VsnO7FOnbqauQ+d3dmJhTy6u5aXut3xMrLcaxlJGjjh304sUWh3ewxluPPW1Xu/b+beYDetRHV4NPkZPnyYGwzY57Xd9nfHWDjo1VXImoeMtkSSwmH37WcyZs8VcRldjAP229fMHPe9WccOdqc4VF/CGFNR+xArYlzexhP2tUtpiXteyozY57VQ0j2vhdI8tht3cwMe3a/S0+33cX7DVT4AAAAAAIBPsbADAAAAAADgUyzsAAAAAAAA+BQLOwAAAAAAAD61SYonexVKrqrnPppsxrNCbpGkioBdKDBs1GQKetT4CwbcQkseNckUM4oYhuz6T2YRKtSt4lK7ytfo5692YpFgkZlbUeYW6Qol7aKjn9x/vPv7CbtAcVqG+3IMJezihkrYxXyrqrDULm7oMVR9b/SrvWv0+9Go/WK1aruN/+AVextGAcCDjzrTzE0Yj5cWso/5N0Nfd2IxdyqUJAUCHj/Y0iW9PuMwnnPjfLAm7oZmH/i5mZrznTseS4yCpZKkoHHMjMKTkhSJuBWNvYoVBuLunBXz2G7CKO7rxapL2LqFXRgaa7mD58z/PuOR6ubePtstuCtJwag7fu/osIuZe8IN/1vP/q3rll9/dR/LKA4vSXd1aFfl7cIulGwVSfYSsOYsSbPnG8VJg/b1ULDcLaQbDdrXDCc2dxtPZDS39yFuzC9LF9i5aVwfmzp16mTGjz32WCdWVmYfM2u+mTXmXTOz3aFnu7+dYV/vJmIN3JhRvFaS5n7pzm9hjwLOn494zYmF4naTigsGvOXEKirscW49Z17Pb3WatGzejAsdo5i+JCXj7vuX7z99w8xNxN356bATLrD3IOhe01TE7WuX7z51x451fS1JZUYDDD/ijh0AAAAAAACfYmEHAAAAAADAp1jYAQAAAAAA8CkWdgAAAAAAAHyKhR0AAAAAAACfqtOuWJ8/klHlXK9K5A2Nguon7LOjmRtp2MiJPfPJJDPXKqB91oG7mbkZcaNbSbr7WJL0zOcz3N/3fJY31x5E9UOnTp2d2CfP3GDmlpcVOrFffvjIzI2mu7G9ex5n5hYXudXXgzn2cZ/6xRAnVpLm8RpK1GxNtknjhmZ81apVNdrupvbp/aurnOs15xSPf96JVSTt7nrZRqeQIx/+ycxd/s55TiySZgwmSdGo+3jBoH3Mj3louvtYb55v5sblzk+Q3mnxoBk/tfDGKm9j5iFfOLHyrwaYuSXlbreIiV+43c0kKSG3U8j+R55u5oZC2U4smrA7mHxvPF5pwP19SYofkOXEgrLHrtG0SS9sbz+/WxqvOee9ge7cEE/aFw6n/Nedn4JJu+tLKFT1S7yPHnbnjOP6veqRbXSGNLqSSt4dRGE/M9XpgGVd45zby41JUrrcMbJo2V9mbizhnn9aZW5j5jZu5M4NZaX5Zu5fyxY4sYbGNZIkY29RXV98MdKML/5usBMr9+gKrLjbaTFaYp9TGjd1O76uKmxi5hYm3PNaRoXdwfGCAUOd2PjnbjJzY8b7qilTppi52267rRMLWCewLZDXuWrJZ+65PBmwu/cGjZf2aYPtOWfua6e5QY/xEDDmJ0XsjmqnD57vxGa/epaZm3zqRTPuN9yxAwAAAAAA4FMs7AAAAAAAAPgUCzsAAAAAAAA+xcIOAAAAAACAT9Vp8eTacMYBbd1gxC3mJUll5SVV3m5GzF3TyvQoQBhIxJ1YPG4XdbLKN4U9C91SVrAu5RrP7/KV9hjZrombe+tbi8zcF/of4cSKSj3GQ7Zb/Li0xB5ndwxZ5sRe6X+UmZsIuAXBqoMCcd6ly+NRd4zEvV7CGe4rfuXXA+3UcrfgW9R4LEkKBtztJj0KOC//yn28zLjXX8ecUy3G0+X12gka4bJy+7WenusWHu5zb56ZO3+IW9Q2KfecJEmJgDFGAvYxP3KAW+R73ntuEV9Jmnn4s06s4zdHm7nJBGOsupLGZ2xpHl0XgsbMdU8Hu9Bl0jgUkTS7yGS5MVbTPQq239++ixNLyKv6KiyfP+oWHa4uayZq3sQeN8nlbmOE9360i+Bet1cL9/c9zh1FRW5zkZBHIdOhP7nz1g2dGpm5kr8bOdRnLZrlOLHf/rSvd+eNdwuo77hfXzN31Ypc9/e/e8nMLZY7/rOy7fH4x+cvOLFoqKmZqxrOQ0lr0kRKdsi9xigrdZuISJIy3IL6cz681UxNjxizWdy+Pk4E3fdVkaj9Hmzu8DudWNjzlpbN49hzxw4AAAAAAIBPsbADAAAAAADgUyzsAAAAAAAA+BQLOwAAAAAAAD7Fwg4AAAAAAIBPBfLy8jZ6GehOndwODsmZO5u5gfazndgVvVqZufGE2w0g5NEcJmCVxY7bnUaSaW5l70DQo6FYiVHVPc3u4vX46N+cWF6e3RkF1WeNs3DQPZaS9NkzFzuxkMcxjlUYldo9uocEjSrrCY8uacEMt6NAsrzQzD3qErdLzZQZ081cS4MGDcx4QYHb4WJzZY0PLyXfPebxE/f4Bjw6FlnTSzJgj8dwsVvhP+HRrSGQ7XYgiYfsMdbggGud2IwpVR83W5pTC250Yl4N5X7u+Zmba7XKklQw4VEnFq6ImrlRa24JeM03bkeQhEeTkIjxh0Q9/racnle7u+Cx3Y7fuJ383m5gd4rbnNX0OuejB861N5x0D1LA40InUI0OL0ljggp6jDOrS2DQ46H63OB2xeE6p3q8zlXJ2R2cWHCXmWbu5T23cWLZYfv8kwy51z7BuD0/xWPuuAlF7O1WWNdDHuPmkbFu588tbdxYx/3YY481c4cNG1ajx/rlm0/NuNWBKJDrMd/EM91gud2tSMb7qqTH9Xks6l4HB+PufknSbnvvbz9eFfXu3duMf/75505scx6P1bk+XjX6LjMeNbq7RkJ2p9Ckca4JhOz3zjK6Widi9nZD6W5ueYU96bQ47DYnljdthr0P9Rh37AAAAAAAAPgUCzsAAAAAAAA+xcIOAAAAAACAT7GwAwAAAAAA4FMeFYDrllVwKtC+6oWa0sJ2EbeYUZQ26VHgUXH3BwGP5KdGukXcvFzWyy1Qp7hH8TDUKWucdenU2cwNR9xjn1TMzs1Md2IBYzxJUrLcKCwY8CpoaRRlTrOL1MW8KpdWUShkF6nbkngVvrOKxn034n0zd4/DjndiQdnPbcAoHOlVcLTB4TfYPzCsGP+oE4sZxeUkKRmt2bjZ0lhFf08tsI9Nh2+OdGI/728XpCyrcOeFgNfnLEbR7UjYHjheBbYtxVaNb69mA8ZmrSLJ0pZZKNlS0+scqzC7JCWs65QKjwNnHNCkx6Rz8s1vGHtg57434Mwq56LmvM5VgZ2rPp6sQsnJmH0tnUy41z5lHue1jJhRxNa+dFIw4hY4jXh1OMFG1TDHfp+SX5zlxJJFHo1mZDSPidqDoetBR1R536aNHunEvJpU1FTQoxHKlqY618cK2IWL08Nu8eOKCo+C7UYsGLTHTotD3SLHXhaOdAs7Z4Tdos6SpPjmcQ5jBAMAAAAAAPgUCzsAAAAAAAA+xcIOAAAAAACAT7GwAwAAAAAA4FMs7AAAAAAAAPjUJumKZalOBe6AV0efpFuZO2F0ypKkSMSt5J8M2LmXHdzaiQU9Oxu5QkG78wA2Ps8maeVuZ4b8EqPCv6Stco2x49FO5tBLn3FiY164zMy1mp1EPRqqeXZ7q6JVq1bVbANbmIDH8f3+E7db1n7H/MveSNKYtzwagiz8/F4nlpmT7bl3fzdtlN3FCzX3doMHzPipBTc6Ma9xEzG6V035dZGZ23WXlk4sHrO326JXPye2cNxDZm7Q6KwXTNjbtZptBQJ0s6mu6nUasSf5QqOzXTiYaeZmGB1EvY7ae/eeZeyDfZ2TNAZEBd1kNjprPJljSVLMuGgIGV1rJClqXCl5zWUPTJjrxK7da3szN25cuycYN/VDhd3ZKDdc6MTefMzuDBmOuPOQ13xzzUE7O7EWzexrnM8Hu+e13Oy6eV8ViXh0TIKnUNw+yqGw2+m3wKMrVmbY6Grt0eVz0Qi301UwZp8vE0bztGTAo23fZoIZFQAAAAAAwKdY2AEAAAAAAPApFnYAAAAAAAB8ioUdAAAAAAAAn6o3xZOrI5awCyoFA0Zhtgy7qGAs7BZ7Ki/zKsZlPJ5H7eRwyH1KwwmPCrjYBOwDF4+78QZGkWRJKo261biCQXu7nz1zoRMrj9mFu4666Flju2aqyatoYnV4Fffc0nnUlFWaUXty2Z8zzdzW27RwYrH0ZvZ2GzVwgx6FTMvibtG4org9tVPutu683WCgE+sSGGHmhoLukdirw9ZmbizqzheZGfbxLfruwfXt4t92wi0SWRHzuCQwht5bufdX/bFQbeGgXWQyI8O4zokbFSJlH89IxM71ml8skZC7jXjF5l2Q0u+SQXcsJBL2MYsYhf4jETv3v4ds6z6Wx3VWkXGNHpZ9nYWN6/t3HzXji1e5BXAzQ/bxzW3svtcpXmEXZd6+iRFMrDZzi5Lu9VBM6WZujjE/FpXZc17QuMAuLbWbpsBbWnauGS83zgmZsueRxpnu815UZBeyNkefx8Vtfon7g6wd7GutzQV37AAAAAAAAPgUCzsAAAAAAAA+xcIOAAAAAACAT7GwAwAAAAAA4FMs7AAAAAAAAPiUL7tilYcamvG0CreieihZauYWV7jVtp/7ar79gEa1bY8mSLrokDZOzK7rjU0h4NFmKmgc5HiFR/c1o1lJ6eWHmrnRgFvpfUTFX2buzN9/dWKNGzQyc5ctW+XEIhG7i4plx/sOM+MBo7MWnbKkZrv0NOPLZ411YvNn/2zmbrWD+9w26HGZmZud6U7NhSV2Z4f88Y84sWDC7kRR9b43qA2hsP2atBo7Bjw+Z8nJdrvG3HFIfzM3HDY6TsTsfbh82C1OrFHDLDM3EOAzoI0tKbfbnSSFjXFSEbRzczPczjFH93vFfsCY2xU0GDHa/kn66N7TnFjE6LokScEAvfg2Jq+nuzDhHp/sgH1OyTTmkQdH29ct2dZjeezbJQe0cWJlEXvsou5YnaMWL1hu5kay3DkkmGl3G85fUuDErntrrpkbqsb7qoHn7e3E4lF7oAeNC/RQ1S+NlRm03zPCW7FHI7G0kPvaDhnXtpK0YJk757Q54U4zN2R0tVbUHjx/fvqAEysr9pqhNg9crQEAAAAAAPgUCzsAAAAAAAA+xcIOAAAAAACAT7GwAwAAAAAA4FO+LJ4cLnULdElS0iiMG7OqVEpKT3eLAv7n4O3N3EDSLdTkUYNXgaCbW5KwCxBi45sxfboZ79zZLWw7YvBFZm4w7hb5Sn9slJmbZVSIO8OqGiep0y7tnFhpdOMWFqRQsm2X7ZuZ8RU/u0UEkxH7+JZG3YLGS7980Mw1phElEx4V6oxqmSsSW9m52KimTJpixht27ezECr9+2N5I3J0DbvvCLp4cMMZC3h8rzdw0o6BkZHd7zpsxw543UXdKjQYPkhQOVrjBpH1BUlzkFon86L6zq7wP5RUec07CLbqbTBqFuyUlkpRs35hmzLDP4Z2MxgjX7G9f84bT3bcG1x3S2n5A4/AuzbfHQsAoevrU6FlmLtci9nNgHUdJOvbYY53YsGHDqvxYK6L2+5TsIne+ScqYgyTt0t4dI4PO9Hj/Y1zaNmngNgqQpIUF7nwTSNpzU8KYm+Jxu0j44b17O7Fhn39u5jIevQU9miuUl7njpDxmH4szb37fif01YoCZGzDe10dj9nkmaVxMl3k0lNhccMcOAAAAAACAT7GwAwAAAAAA4FMs7AAAAAAAAPgUCzsAAAAAAAA+xcIOAAAAAACAT/myK1ZGlh0vL3VjQY/2VbGKYne7YbtSttWhxqPZlqw+FoNGLzBzqbJevwWtAy/p0ItecGIjB19gb8ToVhKrsDtdRePuoGKM1A/BkF3J/4BjjnFiI4d/bOaO+eg9J7Z1tj0/JeQ+XlD2/JRIy3FiZ98/wsxlPNUTxhSQ9OgeFO5xvRMrn/CQmRuNuuNmt9aNzNzI3tc4sTyPjjrY+NJkd30pT7id+IIhuwtRZo7bZSbu0T3EOtulpafb+2B0hjzxv6+bucw59VfA4y3AXZ//5sRuOmQ7eyPGddJWjezz2v1jfndijI/6IZJjj4Wi1e45pWGWfW08aZLb4Wyr5g3MXOv6urDcnvNyjfPajcPmmrkWq2OYZHcNYzxWX0bYPqdUBHKdWDyx2sx94S73GIUjjcxca/SFPJqvZUWWObGcA/qZuZvLseeOHQAAAAAAAJ9iYQcAAAAAAMCnWNgBAAAAAADwKRZ2AAAAAAAAfMqXxZOjUbtKUjhc4uZW2H/i818vdmLnHrKN/YAehZItT4xyCyVvLgWZNmchoy5tMGSve3790uVObP9zn6zxPjBO6q94wi5cnAxWOLF9Dj/KzG3S6zon9vFNXWq2Y5KOvvMbJ8ZYqt+s8unJgD3flI1zCyVH9rq2xvvAGKnfyuP2eAhG3EKi0bg9P/W5+kUjahfvrynGkw8F7CK4V+7b1ondP3pOjR+OMVJzXs9hp06dnFh1igYP/WqVmXvCng2dWJnH3PTW9Hwn9tfSRWZudQQ8xqnlmD7u3/z2ux+YuYzH2hFN2OeUZMA9LwXT3ILKkrTLyf91YonqvPmuhs39uHPHDgAAAAAAgE+xsAMAAAAAAOBTLOwAAAAAAAD4FAs7AAAAAAAAPsXCDgAAAAAAgE/5sitWMuZ2hZCkWCjdiUXSS6u83ZdGux2tJKlpI7cL1+J8txuOtPlX295cxWJuLBqPmrnpYXc8fPPyZWbuAec+5cSmz2CM+E0g7M4tkqSYO4UmI2UeW3Er/B9z/zQzc7/2jZzY1zPzzVzmHP8JGU0+AkljEpKUlNtZovybQWZu5v5utyzmG39Kz8gx49G4e+2RlWl3xbK6HuUxHvB/Amken+3G3S43V/bcyUx9fPxcJ8Y5yX8evv8mM37l9Xc7sazgajP3z6XuNXNOht3FuLTcze1jdLSqrreMDliMx7pVWmq/VwqF3HNVtMyr05Ub57j9M9yxAwAAAAAA4FMs7AAAAAAAAPgUCzsAAAAAAAA+xcIOAAAAAACAT/myeHIg4FF8ya33pkQi00xNGsUrp1JUcIsVMopMpkciZm683C3enTQKf0lSwqtOGPzFo5C2gu4BDiXtQsuBoDvGpk+fUaPdgk9ZJ6CQfTo2ayobvy4x32xOEjG78YNVJjleahfeDvLRHf5PwJg0kjGPQv9pdsFbbL6yG2xjxl945n9OLD2ngZm7x0GHObGCEntu6n3k0U7MKnxcXRTc3fjSwsabbw85jTPsHxjvwfDPcNoHAAAAAADwKRZ2AAAAAAAAfIqFHQAAAAAAAJ9iYQcAAAAAAMCnWNgBAAAAAADwqUBeXh59NAAAAAAAAHyIO3YAAAAAAAB8ioUdAAAAAAAAn2JhBwAAAAAAwKdY2AEAAAAAAPApFnYAAAAAAAB8ioUdAAAAAAAAn2JhBwAAAAAAwKdY2AEAAAAAAPApFnYAAAAAAAB8ioUdAAAAAAAAn2JhBwAAAAAAwKdY2AEAAAAAAPApFnYAAAAAAAB8ioUdAAAAAAAAn2JhBwAAAAAAwKfCm3oH/KBTp05Vzs3Ly6vDPQEAAPhnvK5nuHYBANQXnKv+Ge7YAQAAAAAA8CkWdgAAAAAAAHyKhR0AAAAAAACfYmEHAAAAAADAp1jYAQAAAAAA8Cm6YlVSne5XAAAA9ZV1TdO3b98q59J9BABQ16zzzwknnFDlXM5V/x937AAAAAAAAPgUCzsAAAAAAAA+xcIOAAAAAACAT7GwAwAAAAAA4FNbbPHkrl06O7FgIFDl30/U5s4AAADUolDQvabxus6pzvUPAAC1JS0ccmKhoH3vSSTMPSnrw7MDAAAAAADgUyzsAAAAAAAA+BQLOwAAAAAAAD7Fwg4AAAAAAIBPsbADAAAAAADgU5t9V6zOnd3uV5KUTCarvI1AwFj/qsbvAwAAbExxo32n55WLRwcSAADqUkXMPVnFk3b/6WiM99/rw5kcAAAAAADAp1jYAQAAAAAA8CkWdgAAAAAAAHyKhR0AAAAAAACf2qyKJ3sVSq6qQMDrB0bMo3hyp06dnFheXt4/3ylsFN27d3diFeXlZq45HDy2m56d5cTKi0vMXGsbjB3/6WrMAV7iHvG09HQ312M8WuXlZjBu6jXrPFEfMN/Uf506udc5wWoUPg4Fq1540nosL3l5M6qci/qtefPmTiwQsMdNecyNxayq3ZKK8le4j9XCfSxJWrpk6Xr2EJvSe4f9acaDRqMZr7dViZg7cALhkEe2sRWP92DHj9zOYxvY2Lp07erEEnGPq17zEHuMHmMu8j5Xubmb+3UOd+wAAAAAAAD4FAs7AAAAAAAAPsXCDgAAAAAAgE+xsAMAAAAAAOBTLOwAAAAAAAD4lC+7YnlVv/7l/TucWNjjL0wY1ba7/sv9fUkKhNKc2NQP/mvmBo1q3Tt7dEDZ3Ctz10d7eXRO+8+BO7rBmL3uWWpU408m7IGWnp3pxMJlRWZuZsjdbneP/Z00gw4k9cFpfY5yYpNO2cHMbdTSHQu//bHazM3Ocbup5cSN9iOSlhS4XQa8ui4x52xc3t2v3O4f6R490qJGrDqfyHj1GUkYbSgYN/VHp85dzPh1h7Z2YuXldheiF7/9y4klPJpiZRqD6tx97Q4zoZAxdjzOVXmcqzaqFi1amvElSxY7sWZb7WbmhtIrnFgyZl+3pIXLnFggae9D863c89rSJfPNXNQP7x82z4mFPFoIB5LuPOTVsS9g9PNMeJzZuvXe2YlN/Xy2mTv0MHc8nUCnrDrldd0w/J7TnVjco/PZv+/50IkFPTo4ZhrnnzfvPsPMDSa2vOtj7tgBAAAAAADwKRZ2AAAAAAAAfIqFHQAAAAAAAJ9iYQcAAAAAAMCnAnl5eR6l9OoHq8jRzA/6m7mBsLtOlbNtezO3+K9fnFiZXX9Qex1/nxOb9tFNZm7YKCqWMIrtStIux9zpxDaX4k31gTV2LjrILcImSTllbrHA9AZbmbnx0pVOrCBmFwSzinRHElY5VCk73c2Nxe1B+fK3boG4sTOmmbmoueN77WnGh+3pFoNsHLILaRfLLX7coqE9bgpL3Xiywi5YWBgvd2IlZXbueeOLndirUyeauage70LJLnfUSNcev6+Zu2LVMif28pd24UjrkxqPOpc680B3Lnz1K3u70YS7kcl5FMWtLdbYuaKHff4JZmQ4sexMa0RJRUXu3NCoiT3nrCpPd2KB4qVmrpTjRBIexb+f/No9V3GdU3caNWthxnOMTiJGrVtJUjzh/mBFiX0d2zQ34sSMyylJUm6aew6ssIeNlixf5MRatLD/tiVLltgbQZW9f5hbaF2SAkZDGHkURE4aldm9ivdHy42i22luoxpJChiP1+3wnczciZ+457CTx2zvsReoLutcNeqRS83c4opCJ5bb3GhUI2nFAve4lZba19INMtzrWGU0M3Ojxj5kRNxznST1ueElJ+bHcxV37AAAAAAAAPgUCzsAAAAAAAA+xcIOAAAAAACAT7GwAwAAAAAA4FMs7AAAAAAAAPiUXXK6XjG6THnsdbPW7ZzYqnl2ReuQ0a0o06NFQN7w/zqxeJnbbUKSgpluh4B4zG5LEmBZrU41S3ef4IwK+7hlNHY7kCSidkeQQJq73VCa3TEiI+a2h8j36G7UJOH2DygP29ttkO7RSgI19sBxuzuxh7fLNHN/XuZ2dohnNzFzl1cUOLH0mN3lI32JW8m/pKm9Dw1WuvsQjduTy4V7NXRiXt2c/NgNYFOyXtVu/6I1rjquhxNbtmKumRsKueeU/560q5l7z7s/ObHLj7Fzi1csdmJndt/WzH1xkt0xBbUjYrQuy8i0X++5DXKdWH6p0SVEkpJuB8ZVRR7nqoR7rioNuY8lSSGjE18kZHe0SQt5tGVDlXl1g0om3euA3IjHBbIRXpZvXw+lp7tjb7uGdm6ZMRbCCTs3HnOvs9LTiszc1q1aObF5Cxeauc1bNHdiS5d4dXSDJRC05wWrI1U0Zh/fZNzdRixkd+wLBIy5xaPbliKlTmj6F/b5Mi3izjdDD3c780mSjD/Zq4vk8V9sZ/9gCxMMuk/Q0qLVZm5mkx2c2LyfZ5q50ZDbaTE3x+2iJ0nxQCMnlmacvyRpYb478eVmlJi59lWc/7C0AAAAAAAA4FMs7AAAAAAAAPgUCzsAAAAAAAA+xcIOAAAAAACAT/mgeLJb3Spabhf5KvrTLaaViKXbWzWKCkaT9tPRIO7mlofsspghY62ssNQu6pS0/wzUoXyjuJskqXCFE2qUY+fGA26RyHC5XUwuO9MtiJy0KrZJKgi48UCFneuWkkNdSndrPkqSmqS7RRvzA3Yhue7Z7kb+XLbS3m7rpk6sOGZvt2X7Zk5sZb5bfFmSlth1KlFHIm7dY0lSoXFOadTILpC6fJV73JeUu4UGJSlkVH4slV0AN5jj7kPDLPu8FtMCM446lGYfi8IC49olbheZLIm71zSNPOruR+We14Kyz2vhDHdgF5V7bJgLnRpbsmSJGW/e3D3/LFycb+ZGG23jxDIS9riZ8toVTqzrSYPN3FjIvb6NpNnX0rEs9/q4dLH9t221lVvI3SqSjFri8TKNyS2kXRq17wnIzsp2YmVldlOanIDbTKIwaheMz5S73XAT+xwYX2EUzfaagoxauV7TlVWA+YQtsKCy9fxsnWMfi5VL5jix7Vra57VI2D2vlXi8fy8qcK+J4h7LGS1z3R3O9WhMYBUK96PN468AAAAAAADYArGwAwAAAAAA4FMs7AAAAAAAAPgUCzsAAAAAAAA+xcIOAAAAAACAT/mgK5YrN2SUMpcUMzoeBYJ2RXYZDRyy0uxy6GVRt1tEWsjuAFEWdeOZ6fb6WWZGlr1vqBXLy91jn9HMbm+0ctHvTmx+eQMzd8csd7uRsN1dYmWhm+s1HpZE3cryTWS3MVpcZoZRC274aIoTO/zAA83cGUMvd2IZmfb8VBJ14909clctdrtlNdra7ZQlSStK3DlnN6M7hSSdedhtTiwvL8/MRfVYRzI9w+2KJ0kvf+6OsZKEff5JGp2uAvE/zdzcDHduefaTH8zchNEqxOPUqoDHvqF2RI1WI/EKjxZ2xngIRuxriayEu42kOVKlZMi9HAzFPK5z4m5XkbSE3YmvwuMSDFXXvLl93RI0urikpbU0c1tmuJ1kPn3e7X4lST1OutmJffn8xWbusTc85MQ+e/haMzeQdDto7XnqADN3dbE7dgNp7rW45N01DFV339JTzfjKuV87scJi+61jYaCJE2uakW/mxo1tJLPc35ekeMyY34L2fNNyl6Oc2IwZXOPUlqRxrlpYYZ8nzhowxPh9+1wVULGb67EP7w1056Ljb/yfnRxw31clk5t3e1ju2AEAAAAAAPApFnYAAAAAAAB8ioUdAAAAAAAAn2JhBwAAAAAAwKd8WTw5Gber8SUTpU5s4tgP7Vy5xW73PfR0MzdsVFqOJuwChBPHDDUeyy4sVV5GVcGN7ZmP3aKlkpRhxGJpq8zchFF8Mr3CLvMVNGr9JaP2vsXSrcdCfbB4lVvMWJLSMtyRsyzhFoiUpMbp7tHML7DnkcyGbvHjwiJ7Hiky6vOG4nZhwVX5y8w4as56rZ5+3EFm7pNvjnJiJ+5rTACSsgNuodo3vnMLoUrSsQd3dWLvjrTnvKO7u4+XE7RmQumVb/LNOOpOIGEX5E8YZ6uFi/4wc5MZ7nmpRa5dXDdN7vWTAhEzd+lf7uMlMzwqb6NaWhiFkpcsteftFi1aOLEGTQvM3B137+vE8v/63syNDHjXiQUDuWZuj3/f48TOHvC2mRszJsnIfR+YuTu27+TExowaaeZazwMFlaunLFluxpOr3WuJ5UF7LDTLcovSZiTtt5mJNPe8lr/a7gqSH3H3rUmuXYQ3wu0Kdcyd58+66QUzM26cEu6YOd3MTRqTw50ddzZzj7/+6fXs37r6z57mBo0mR5J01667VHm79RkvAQAAAAAAAJ9iYQcAAAAAAMCnWNgBAAAAAADwKRZ2AAAAAAAAfIqFHQAAAAAAAJ+qN12xOnVyK+BL0qxPnnJi0Qq7Q0BmyO3y8Z9n5pi5k54+xYl5rnIZZdYDCbtf0XnPzHRiU575t5mb0O9ej4hq8Bo76cYBPfdgu8p6MKOBExv88WT7AUNup5HTDu9spqaVuGM1lNXczH3qC7dafLrbOECSjJ5uqC1du7jjqfSbW8zckmixE7t3XImZm1vhdit58Ng2Zm68zB1jiYTdteKOUW7XioZxd78kz2YAqAav+eadIaOd2IjnLjNzQ5luZ6P799nNzF1Q8psTGzrd7giyVdDtKhKJ2N22HuzpPt6sFX+Yua98Y4ZRTV5j5+oeWzuxdI+eiNGQ22rkvbl2q8Ur923qxAJBo42epJJy96ySYTfF0lDj8S7p0cxO1nKPOCxWByyr65MkxeNu282ttu5q5oaD7nG46auJZm4i7h7fe3vtZ+Z27tnbiaVF3OspSbp25DAnVhK156dHDuxhxi1WB6xAwO7SlkzaHUy3JF06uderiVmfmLnxkHuu6v/qGDO3RdC9YL3t1CPM3PSg2/kznGa0kZV02xC3c9o26fbxreAap1Z4XucMvNqJBWR3gj35Jrd7VTBpdz4LRexjb3nvwfOd2Ek32J25Agn38cJh+7E2l6mBO3YAAAAAAAB8ioUdAAAAAAAAn2JhBwAAAAAAwKdY2AEAAAAAAPCpelM82Uug2C0kVxayi/9lBtyCb1PfvtXMtUonxZN2AcJI2C3uFistNXNnvHW7+1hBj/WzgF0cEbXj9IPaOrGkx1pmdNViN+hRuDjTqBMWKl1l5gaNQpWxYruYZNCtUaeQPSSxkUXL7Yp8YeO1/fLtD5m5zz0/wIkVl9gFAEPpbtXSSMyu7PbmgMed2KAH3XlIkmQ/HKrB69OQvPfc495v0Agzt/Qqt6BkhwcnmbnNctxH7Lv3jmZuSaFbNPv4/e2C8e0ech/PGHbYCMri7gszGLdf70nj+ufKQ9uYudFCt5B7JGxPAjkZ7najsq+1Lj1oezdYZhfQRPW0bNHSiS1eYlyfSGrQcBsn9sIt+5q5Z9/nFqDd9o+VZm5su8ZOLJG0r1fvOdstwv7gULu4+3YL3fkpv6lx4SNV61xVnecM9lNb4XENm5/VwYm9O+BmM/f+h9xmNxUe76sSxok0mrDfVw29x3282+92r3skKcDtCnWqrMSdM1YYzT4kKWK8/xnQaW8zN55w54aMiH1BUl7kntfSPNYF7uu0pxNLGAWVNye8BAAAAAAAAHyKhR0AAAAAAACfYmEHAAAAAADAp1jYAQAAAAAA8CkWdgAAAAAAAHwqkJeXZ5ezrkOdOnVyYsmZdueOQPvZTmzOB7eYuYmwW10/ESu3dyJp1IX36F4VjLjVthMJu9J70GieE0mzOwTscIxb6T1v+gwzF2vUdOxcfthOZq7b90wqS3qseybcgxwJeLyMjA0nEna7h1jUjaeH7Urvj3z+qxPLy8uz9wHVYo2xoEfF/ZJvHnBi+TH79d7YaHEWTdqdZAJGe6K4x1xWFnXbtzUJx8zccM9rnFjedMZNdVjjw8utR+9uxo/57yAn9vFD/zFzIwm3h2MsZo+bkDG1JDw6G0VCbmeIXlc8Y+YecFhvJ8Z8s341PVfd2MvoPCUpYXT/jJbbx1hB97wU9OjGmUxzB4/XaS1a6P4gu6F1FpXuH/2HE2PsSC1bup2cJCmZdJ/bhEcD1aBxgLbZpoWZ+78bT3Fil9/3sZkblTs3PH3DSfY+GOMmkbS72Vxx71AnFg7a57VS429btMCj05XxnC1ZssTOhTobc1MoaDdJXj7rFydW7nHMskM5Tqyi3D5XJcLueS3kMeGUlrqdmHKNx5Kk3I7tnBjXOOtX03PV0HvPNnODEXdMJY3zlyRZM0Ysak98iUw3O+DRDm3ZCrfbViOP9p+n3PqaE8ub4b+xwx07AAAAAAAAPsXCDgAAAAAAgE+xsAMAAAAAAOBTLOwAAAAAAAD4lF0tq45ZhfMC7atekHLS6M/NeLeDj3RiQY+CYAljSSssu6ht+z63OzGvitM/v3+HEysvc4s3rdmJjV632vdqOnZe/Oo3M37+fq2dWCTkcXyMOpVBj0LLj306t8r7dsVhOzqxaNSj+DfqjDXGunTpauaWJ93iblmhEjO3wpg1gla1W0mZq914Um5xeEkKZrpjpNij2KZXMVRUnVfh1y5GAcJ4kVvkXJK+eOwKJ9b3ltfN3IAxt3gV0v59qVv0tE0bd26TpEh0lRP7+L4LzdygPUyxHjU9V2Xm2EXYS4rc45bu1iH9vwd0Qx5TgwZ9VfVis9fu39wNRkur/PuQFi/2KARsaN7CLrScMA5w1K6br3CGWzD0f/2Pq/I+JIymEZJUUWLEPQqkPnu78XgeRU/Put2YDz3OX4GAUfjbiEl2ceotzQxjburatZuZWxZ3j28wbhefLY25c0Asbh/fjDRr3JipioSy3cfyOI5c41RfTc9VAa/zj9FkKGA0iZGkmHWuCngUOb7m1arumt6+70wnFvI8C24euGMHAAAAAADAp1jYAQAAAAAA8CkWdgAAAAAAAHyKhR0AAAAAAACfYmEHAAAAAADApzZJVyyLV6eRTkankWjcrmj9/cgvnNgeh7mdsiQpzehGk/Qoyf7bp/c5sfJSt/uIJCWNSvzfjfzUzEXtqM7YKbObNeiFr+c5sYjHsucFB+7kBj1K8V98qNvpKsPoqrVmG+7YefGrvzySsVF5dFqIxtxBkl9od8Fr2bRBVTerzMOucmKrxj5s71rIncbjFfYcSUOQjeu73+wOaR1L5juxjLTGZm486U5aaWl2x6QWzdwDnJZhj4VwwNhGyTIzl6ZYtaM656pYrMLMDea480i3HdLN3OIKt0WS17F8tm2O+1gBj5OVsZGARwcTjat6ty3YPBo8VWs+DxidYMqtVjSSQgGrA5ade/GD7zmxF2490cxNJNx9iFWrO6ydu3gxY6ymEh7HIRF0r3GKSgrM3NzMXCcW9Gip2LLtLk5s3sxfzNyAMfaSYY9xwzVOrajOuSrk0d21uMw9/6xYXmTmtmzujp2ARye+jx48y4mVl9vny3jc3YeyzfyKhjt2AAAAAAAAfIqFHQAAAAAAAJ9iYQcAAAAAAMCnWNgBAAAAAADwqXpTPLk6gh71/OIxt8jk9LFuQWVJ6nroMU4sLWAXuqyocIsyBTwKd0WL3J3LaugWJcSmYRVh84rHjWKDkjToizk13QlT0n441AcB++AEjaqWzRpk2NsodwvBJTzmkaVfP+jEYh7jMT3uznuJRKa9D9ioImn2cWjSwD0nzJ451czt3qmbE1tZsdrebo4xnsrsCefPhSudWH7MLsIbpyDlRrd1S/tYZKa7l21lHgeoUa5baLmgNN/MDZknJnvOCYXT3H0od4tUStKbV+zqxKwCnJJ3wc4tScuWLZ3Y4sWLa7zdMqOgftCj6UMw5H7mG/MYY8/dfooT86qHnEy418fpSXvcuCNMWrLELpIcNt7JxOzNwpP9Wg8k3euWrEy7eH8i6Y6bgMcY++Nnt1By0mPghK3rJKMQt0Tt5E0h6XEswmnuC3O77ZqaufFCt6hyMNceZxVG1fhAhl28PxbPdmIrV9nzqcdQ9R3u2AEAAAAAAPApFnYAAAAAAAB8ioUdAAAAAAAAn2JhBwAAAAAAwKdY2AEAAAAAAPApX3bF6nbYCWZ86pcfOrFEtMzMtTpg7dLnHjM3GDI6JrmF4iVJs96704lVlNDuqL5IeNTMTxodHwIe654BuQf/4v2bm7n5K/KdWLhRYzP31fFux4d0jxZw5QmPAYg6kZVmj4Wg0UgmnvBYLzfCu+x/g5maaVT9L7IeTNKf4+5zYg0asWZfH5xz+/NmfJedOzqxiqjbFUKSlhYtc2IFe7idcyQpEXDPd7kBuyvjtiG3W8Q5D48zcwd12daMo3q8ukG9eaXbOSoRs+f4gNxuWfGAnVtmdE8755lfPbbrsjtlSW9euZsTS1itidb8xCMOS407YBmdGiWpSbbRHaaowMy1GmA1eO9rM7e01N1Gs/RcM3fpyQe7jxV0uzpKUtLj77DQAavmwh7XF42C7nul/LhH50/j2viOYw8zMytWubnJhvZYeHjEN04sJ+7R2aga4wa1IxSyethJqih1QuVx+3yQlu12wPrXja+buYG48YIP2V2x3rjzDCfWOMedC9ds2A77DVf/AAAAAAAAPsXCDgAAAAAAgE+xsAMAAAAAAOBTLOwAAAAAAAD4lC+LJ2d6FFvbp9chTqwiYRefzcl0iyfN+vC/Zq5Rx1ShoF08LFruVl86qOfuZq4edwuCoW5lBO3iyRVG7cmwR9HHoFFh639fuwVOJcmq1ZzUUs/9c/aLIsn1wncTp5nxpl27OLEV4x42czON2fbXrwaauQFj0glF7OJwwViFG+tyuZmbl5dnxlE3vnv2bjM+PcctLnp8/8Fmbtud3dw/Z7pFcSUpaRTczcy09221O2z0wSB73GwmNQV9JRmzr3MiGW4x01DYnhviFW78rcs62I9nnawC9iViwEgNhzyKJNunXNSRvBkzzLhVuPulO041c+Mx9xVfdMqBZm4w5H4+XJBmj8dAcbkTO+eu981czlUb15Rp0814djv3GmfJ7Fn2Rozr1TuHjzJTkwl3YgiG7fdrSrrbTe/ovt+TpBke4x+1xLgYyF9tN37IzXaPZ0XMPk8kk27uhw+cU9VdUNLj/VpRgTt20qyLcdnv9f2IO3YAAAAAAAB8ioUdAAAAAAAAn2JhBwAAAAAAwKdY2AEAAAAAAPApFnYAAAAAAAB8ypddsUpL7R4dkbQ0NxayO0usLsx3Ysmkvc4VCLjxWLzMzM1Od2PbHPe4mUvV/43vrAO2M+OvjpvvxOJG1X7JqyK7h0DVs8NGOOaxWcZO/ZA0yugnEva0mrXvVU5sxbhBZm4g6I6bmMd4bNDrJic2g/FRL0Qy7WNWXOB2tfronv+Yufk3vOLEmjUwTjSS2dahotBOffPm853YY19MMHMZTxtfwKOjZ0mxe+2RlWNfE6VH3G3EAvbYScTdriIho+ORJAWC7j4EjC5ra37gEccmZ13bStIF97zlxF6+42QzNxl1r1Iq4vZ19zl3vePEuJap36xrnJIS+8p0p65u57W/Zs60Nxxyt+v1HqxZu3ZOjO5Xm4hxSZOTYZ+rliwvdWItmmWZuekht3tVfpH9Pruswh1/GWn2dXdDozNXn+vdaypp85mLuGMHAAAAAADAp1jYAQAAAAAA8CkWdgAAAAAAAHyKhR0AAAAAAACf8mXx5Cy79pIqou46VTCUaeZ2OLa/E0t4l8Ctkc2lINPmoCxur2Um3LqRMupOSpKKvSoam6o+pqq1WdQLVm3skMesumS0W0S9Uc/La7wPzC/1V3mF/fpPhN15qLjELTQoSacf3cWJrSw2JqxqsmraUiS5bnm9Vjt1couO7tw4w8y947RtnVi0vNzMjaUZhZKTbpFKL0Y9ZUlSojoFkevmsgq1wePYvHbH6U7szDveqPHDca7yH6N2sgIeA2fRjOlObKud29Z4Hxg39VvUo3B+o5yIEysusU8qfW9/24jW/DrHsrmPJ+7YAQAAAAAA8CkWdgAAAAAAAHyKhR0AAAAAAACfYmEHAAAAAADAp1jYAQAAAAAA8ClfdsWKFdrdQyJGE4lERbaZmwy6Vd3zpm/elbIhZUbsIX/6gbs4sTe+mu2xlY3X5mNzr97ue0bLiLSA3SIgEXQ7BKz6yu2UJUlNel3pxOhY5D9Nt2poxgsK3bZCwQy7A4TVlYR5YfN3Wo82Zvz21+c6sUTA/ozuz9Vut6xXrtjVzA1aLf5q4Vx3+hM/OTHGb31htzdLGsf9VaNTliSdfeebTmzGDI7v5iJkzAsNcuyOffGiMie2PO9nM3erTh2dGNc4/pSWkWPGY1a74YBHV0ZjKspjHvlHuGMHAAAAAADAp1jYAQAAAAAA8CkWdgAAAAAAAHyKhR0AAAAAAACf8mXx5GS6W4RUkmJWnb+IXagpxJrWFikRtwuURuTGLzqwjZn7xJjfnRjFILdMgWTIicU8ClIGwsYEZRYs3ZjluVFbzJml3C1eK0kN0t1YQG7hSUmKecxZ2LzF4/Z4OLXHNk6srMweZ499s9iJnfOUXcw0lqibWYdzY/1gnWkSsq+P00LGWwP7VGUWd8fmI2AUZi8ptcdNdtM09/c9tsuw2XzEo8Vm3Dr26RH3mlnyKt6Pf4LVDQAAAAAAAJ9iYQcAAAAAAMCnWNgBAAAAAADwKRZ2AAAAAAAAfIqFHQAAAAAAAJ8K5OXlUZwcAAAAAADAh7hjBwAAAAAAwKdY2AEAAAAAAPApFnYAAAAAAAB8ioUdAAAAAAAAn2JhBwAAAAAAwKdY2AEAAAAAAPApFnYAAAAAAAB8ioUdAAAAAAAAn2JhBwAAAAAAwKdY2AEAAAAAAPApFnYAAAAAAAB8ioUdAAAAAAAAn2JhBwAAAAAAwKdY2AEAAAAAAPApFnYAAAAAAAB8KrypdwAAsK5OnTpVOTcvL68O9wQAAABAfccdOwAAAAAAAD7Fwg4AAAAAAIBPsbADAAAAAADgUyzsAAAAAAAA+BQLOwAAAAAAAD5FVywA2ESq0/0KAAAAwIZZ19ibeydZ7tgBAAAAAADwKRZ2AAAAAAAAfIqFHQAAAAAAAJ9iYQcAAAAAAMCnNvviyef13d+M/76qwonlZKTbGwnGnFDT9ICZ+vKH46u+cwC2GN26dnFiwYA9j1jhRLK29wgAAADYsJoWI/ZqGFLTgsa1sd3NpdAyd+wAAAAAAAD4FAs7AAAAAAAAPsXCDgAAAAAAgE+xsAMAAAAAAOBTLOwAAAAAAAD4VCAvL2+z6bVyrtEBK5JmN/6KGOFQMGHmJgNucklZ1MxNRONO7CU6ZQFbDK/q/FarK7snli3pMVPn5c2oxlYAAAA2zLqeCYXs91XxuNtB2Esg4N5XkEza78GszkR11V0Ja1Tn+a1ObpcubndYSUok3GPvdSy7Go/nvvOuHfWh41d1cccOAAAAAACAT7GwAwAAAAAA4FMs7AAAAAAAAPgUCzsAAAAAAAA+ZVfA8qmMzHQnlh62K46GIu6aVixur3NFIm6sIuZR9tSjADP8x7MIbnUYBXM9q+AaKARXv3Xu7BaCC1jH3EPEY36KGvOL12Y7d+7sxGbMoKByfda1a1cnlkjY5f+qMV0oGKx6QUpru8w3ALDl8breDYZCTqw6RZK9VKdrT61ci6NWivt2qcaxsAolp6WlmbnlZWVOzGt/rYULd5SuUVdFla19qy/XT9yxAwAAAAAA4FMs7AAAAAAAAPgUCzsAAAAAAAA+xcIOAAAAAACAT7GwAwAAAAAA4FOBvLy86hQnrxcuO/FAMx6T274q5DbKkiRVVLhrWplZ9lMRT7g1uJOJqL3dqFubO9ujLvfjQ0baOwdP1amOX50K5XVWdb9aXbGstkd2bl39bfWlqnt9Y3W/kqRLe7d3gx4d8/JjbneiMd/NNHMTxmE/8YCOZm4o5CY//sUvZm4e3bI2qs4er72vjmvqxLKTdqeRWLTCiUWMro6SlEwaLRyD9hwSCbrjtMsH+WbuDOYFANgsVOeaMBBw3/8EAllmbjJZZMQyPDbsnte8thtUsROLe3SRrA6ud9ewxkPQfD8iJYz3JF59YDMz3GOfGXe7X0lS1NhIeshu3B033kMF4vZ4MC6PtbTmTd1M9WU8cccOAAAAAACAT7GwAwAAAAAA4FMs7AAAAAAAAPgUCzsAAAAAAAA+Ve+LJx+6b1cnVpbMsZPT3OpLwaBdfKm4xC3yFYq4hY8lKWIUdYq6dVAlSfGYW8ApEPDYrlGA+bsfJtsb3sLUVTHj2Mx2ZjzcfladPF5dSf6ysxMLdJhdJ49VXwqCbSzW2Luo17ZmbkbQrc7eoGFjM7e8ON+JzVtZYOb+8ONSJ3bsvm3sfQi7BXPL4/a0/vSYuU5sUh4FlWuDNW6+62uPhbSgewKJeRTdDoXdY+lZ2NA47MmkXVQwaWzDqwjinh+643RLmxfqs86d7fOlZ51+S9D4nC/hcaFjYDz4j+d1lvWRr8dQSMtyr28rSj0e0JiLGDd1p1pFkqu1ZY/i/dYgCWR7bMMYJEmvew1qVu2WMbZGdcaD15GwpoFgoIGZu83WJU5sj65GgwdJkbA7N0wea793jlnvs9PtEbznAe5JMN3jj/tghPuevKS05kskG3v8cccOAAAAAACAT7GwAwAAAAAA4FMs7AAAAAAAAPgUCzsAAAAAAAA+xcIOAAAAAACAT22Srljn9d3fiXntRMyokp6R43aikaSg0RUrWVFm5qaH3G5ZiYRdeT1udNYKGR2tJCkRSHNiZVarEkmKun9bKF5u70PcrQL+0ofj7e36jFWp3atC/8YdrF57YcQ9UgPGDzKa7GDmlq6Yb0Tt8VBTAY/9rU4Xlc2108C+u3dxYufs38bMbdaoiRNbUuR2tJKkcMydMwLhDDO3tMydi9LDdoeAcNKYi4z5TZJeG/enE/tyMl2xqsOrs8SAbu55Kcs+vAoljQ6OHpNIKOD2oYjHPbqSGB20QnZTLCWMHyST9rlVCbe7xRXf221yNtd5ob7obI6/qn9GZ3aukX0K8zodBALuOEkm7XMV46F+sOat607a08x94eNJTuzif+1l5j79oZF7vL3dwW9PdGJFRocbSZrBuKkz1es663Yxss5JkkenxYD9vipgnANHDuxr5h50w3AjWvVOWcxB61ed92Bpxqlm623t682undzkA19bZeYmAu41xoQz2pq5c39054wOnexuW13fXOTEVlWsNHOnXdTBiX3y/moz11Jfxhl37AAAAAAAAPgUCzsAAAAAAAA+xcIOAAAAAACAT7GwAwAAAAAA4FN2xaNact6/DrR/EHCLgHqWqTWqucajdnaWUQwy5FGcNBHMcWLhhF0kqdAoVBmN2/sQMSpLJSvMVAWMYoNWkWQv5/btacY3h6LKtVEk2Spk1aWzWxhXkrbbdncnVl7xl5k7/oMnnFg4YK+Rhkvdwl3JzJZmblGZWwR3n5OvNXNXL3O3O92jcJdVGK06RZK3NAFj9BUl7cLFyVL3mFVU2EXcKhLuGAlHsux9iLhzQ4VHQeRY0i3YHq2wi7vHOPB1xnpm98q154W81e546rqVPcamL3O3sUcL+zhOXek2C+jSzN6Hacvcc9gezc1U5a30OkOjrngVOA0ZhyKRtIuZZhhXVuUen+dFjHNY3HowSYq7hUutwqmStEdn9++YPKN+FJncHHmNm6uOd4sfP/PhD2buxUbu4KF27jnHuNdOz777vZl7fl+3qPLg9+ztWn9HfSlO6hfVKZLcoNE2Zvzze45xYodc+6aZO2bAwU4sFsw0cw/s974Ta9bQvh6a8uSJTmz3m8eauSpwm1d06tzZTM2bsWU1jqjOeKjOGb+8wG66sFXIvRZeVmY3NGrZrJkTq4jY74eLEu417+oMe4+LKtxzY06wgZm7otgMm+rzXMQdOwAAAAAAAD7Fwg4AAAAAAIBPsbADAAAAAADgUyzsAAAAAAAA+BQLOwAAAAAAAD4VyMvLq9dtUrp06urErj60lZlbUlTixBKRxmZuo4DRqirodnqQpNWlblXtzIi9JlaR1tCJZScKzdxHxrudjaZOmWbmbs6qU6ndUp3q5Af27GXGy7O3dWJ/jXnezM0vdrvXNMq0y6nPmjPPiXXs0MHMLShxt5sRzDdzm3c7xIlNmzbdzLV07mJ3CUgmqj4d1Oeq8DVhjcc0u2GRYkbR/mTArs5vdfjzyg0b00ss7nFsjE14rdgnjc4306dXfdzA2zbbuF1Fgul2V8ak0f0w6NHZKGEc4EDQHgsho+NkPGF3SLM2kQjYndeCRs+vefPcuQ3/TFdjzql6f0ypYbrbJUSSln3/uBNbXmhv2Wqkl210+ZQkJdxrpW0PvsZMjRtjZ+rUafZ2DQ0buNdUkrS6wO5iuqXzup5qZDSuOeOIvc3cIaOmOrHzj7I7ij43bJITO7dPdzt3+DQndkGfrmbuw+9NdGKb6zXHxmaNEevcIUnxpDtfpGXYna7SjNziCvt9VdCaWgL2eS0Ycs+jmUF7Hisodd/bVWfcNG3a1IyvWLGiytuoD2r6vqo6XbEaNcg146Vyj/0hB9jXRDu03MmJvT3kZzu3fRsntnCu+35akjru6Z4b0+V2nZWkb751x19+Nc4z9WV+4o4dAAAAAAAAn2JhBwAAAAAAwKdY2AEAAAAAAPApFnYAAAAAAAB8yq6UWK+4xYyCHkVEm2a7BZx++/0PM3d5xC0NtUOLrc3cSHqpE0sLR8zc+XN+dWJRu1aUYlblVdSplUV2keNVXw52Yvmr7WKmFenZTqwsalQmlNRia3ecLF1pF7qMJdzi38UZLczcgEeh1aryKoxWryupb0KnHr2/GX9z2Ndubo8mZm4gWebE3pvozi2SdOqhuzux90e7BS0lqc8eRuG6gF0w940J7hhD7WjSxD3uBYVFZm7CKDJ54PM5Zm5E7ms94VHocuS5bqG/3EMPNXNDxiyQNB5Lkgo++8qMo+6YxUUltQy5548/RrhFkiVJhe7rPa3MLmbayCjXnL/Snkca5WzlPtTYB8zczAOvtfetikorjEYXqLZio17oUx9975Htzg2PDZ9iZl59+HZO7D6j8LHXdh9+zy2+LElBo7GAV0HY+lK01M8+f+lmM370f+52Yqfs7vHWMeAWVX5z/Eoz9aOnrnNiJ1z6sJl76t7u4yUD9hurV7+p2XyRSNTs2rq+qM5rwnpdeb0XsMpml0ftYsQfP3WhE2tc4vGGOOy+Nzu6k12EPRIyrl08jlvzdLeBUihivw/cZ/wz9r5VkVdTmhnTZ9Rou9XFHTsAAAAAAAA+xcIOAAAAAACAT7GwAwAAAAAA4FMs7AAAAAAAAPgUCzsAAAAAAAA+VW+6YnlVu7/kQLfifrFHT5/SYrfrzFu/2R0grtvH7WBSGrVzMzPcjkclxXYF7qF/up0lrjAeS5I0264Wv6WxqrfXRveD7ru7nYWWTP7EzF1Z4h77Lz4baeYG0twuRL0O723mRkJuV6xG6XZHtREj3ceLha0a9FKshoX7p3tUabee982144TXGDvvwF2cWKjE7TYkScGIeyyv33tHM3dR4VwnNnSS3U0gWLTUicU8Ohbd2KOtE/tzlftYkvT6BLsLF6rOa9y8/8BFTuzLwZeYuQdd+pQTCyXsz1mSCfd8F0+ze1aEIu65KuHR3yJgDaeAfUkQsJv+oZbEjc/Ytsq0zxPZGW5XrO+utq8lCiJuV6tej9rnlPKoe+zTGpip+ul6dz6cV2F3+Yzbl1VVlp1pd1GpKGMu6767OxfZo0a6u9kZTmxhiX0tnVXudhYaWDbEzL1/+J9OLOTRte+2pHudlBm2j29W3N23KzTUzIXN61z1yTNGp7qifDM3nnSPwwMHudfWkvTnSrdz51vf2mMsw+hMnPBoxXTfge7jLSz72cx95Rt7G/AeD9aVh9dbDPddtrRVrn3dUGEkj5lhv4ZzjGuPdt2OMHNXG+/XcoJ2B8fPvnvNiTX36KiWqGGj6o3d/coLd+wAAAAAAAD4FAs7AAAAAAAAPsXCDgAAAAAAgE+xsAMAAAAAAOBT9aZ4spdyo0psIm4XSWoYdHNvOKqVmZssdosvpQc81rnCbrHCcIZbXE6Srj9qGycWK7T3F95qp2CvW4mtotguMhlL7+jELr13oJn7/qPPO7GE7AqR4ZBbIK48aBfM/fdNA5zY2LdeNHO9hmpNba6FkqvFmHMyM+yqamcc3N6JdXt8opmbGXILSp7S0y0OL0mhCnfO+Nfe25u53R6f5MQyjKLOa3hUJ0SNhQNFTiyWtKsOJ4wqkWMuLDRzY0azgFDQngCs4smlY8aaucGAuw+JoF30tMbV2iFJ6uZRvNISCNuXZxPfu8mJbX3kPWbumLOedmKhwBL78dLdx8tI2vPegXl3O7HRpz9ub7eGp5RAwC6+Csk4TeioHruaudvObOHEojvb54Od/jDml9X2cXj60n2c2KWDvzVzd+i8kxNr9dsqM7e4uKkZR81FjcLjWblZZu6wx292Yi2vcK9VJSnTOE28/+g1Zm4i6SZ/+ISdu/VVjzqxiFHUuTZsifPNdOO6v7vHuSppvKfJDNvXm2kxd4K69/V5Zu5j/Q9xYkGPyvtN0tzzUkbjrczcgUMWObFHbz7czE0m3ULwfsQdOwAAAAAAAD7Fwg4AAAAAAIBPsbADAAAAAADgUyzsAAAAAAAA+BQLOwAAAAAAAD61SbpidenWzYklf+1g5gZ2+cWJ9Tu8jZmbiLtV1pNldrXuWNjNDXl0oVC5W9k7LLt7SKLYeDzPDjWoS/GEW1G9zYFnmrm//jDejY0dbm84y62+nu7RTCYu99jHjS43krTgq4+dWCKnsZlLb6Pq6WRU+E/O3NnMDbSf7cSu2H8HM7dJhhu74bBdzNxY0u2kl4jZXWfSIu4RbpC0u+tde+iOTqzCo5vAo2M2j6r/9dFxN7zlxD5/5hwzd+xzVzmxhEfjqWTSHQsBjxkgGTHOYV5dPqLu2ItYvy/ppJtfdmKTfphqbxeeqtNbbEVBiRlPprmTzh/DHzFz0zPcjiClSbfLpyQFw0YHx4R97fLXx24HrETmcjM38LIZrrJ43J4jYV8HfDLhJzP3zl2OdGI9yovN3LJt3OuOUIHH58Bl7rnGq2tn5yK3G1NpqIGZ29joRisazNaKvle53fI+f/J8Mzc9raET++yRS83cYJrblTFidL+SpFhWphMLZ9jnqhGPXujmptldvA69yJ4Lq8o6324uvLreWtfHnuLu87NwudsRVJLSs903Ru8/dLW93YTbFTQUscdO1Jj5oiV2x+MP77vIiRXF7HNrmfFevzq8nseN3W2YO3YAAAAAAAB8ioUdAAAAAAAAn2JhBwAAAAAAwKdY2AEAAAAAAPCpTVI8efpUt+hiuKNbUFmSAkZBv0dG/2HmXnmgW+A0FrSLiMooYBuN2YWTHv/KfjzL1Qe3dh/Jq3ilRxi1Y+o0t2BV586dzdxwwC3UF01rZOYGjHGSCNlFJhts7a6depVmW13mFqkLeQ1fVItVvCzQvuoF43bv6B4bSZo2xy3YFk3YxT4DRunUQNKuuv3A1/OrvG9XHLy9u12W7OtMdQoQLpw2ycxt2MY933nUXzfPE0mPA3zyTS+7uR4zznsDznJisQq3wPeaOBNRbfB6WVrxoEeydSRC2Xbxypjc85pHLVOlF7rnNa8i3aVZ+U4snrBHcKiG1zlBrycC5lzU2aOA5xHLn3Vi3ofG/cmgc3Y1MyuiC5zYI6e3MnN7f/quE0t6vAtZFl3txDZ2EVK/q8656sgrXzRzRz93pRPLyLKvd5MB99on7FH8/ODT7zfjVd2HUGjzLXJcH3iNnT2MsRP2mKMTCXceCYbLzdxAwD1/VETt7WZW2A0ALPEs94SXE8g1c60h5dXwoD7PRZwxAQAAAAAAfIqFHQAAAAAAAJ9iYQcAAAAAAMCnWNgBAAAAAADwKRZ2AAAAAAAAfGqTdMWyTDM6ZUlS525uFyOv1ajHv/zdiTXLtOv+/3v/Xaq83RuPaO/EKjy6RQSN8KAvfjVzaYq1KdjPejLpdgRZvjrfzG3erKkTS8Tt2ukttu3qxGZP+sHes5DRVSRodxTwLNWOKqtOx4iARxeiLjs1drc7a5mZG4+7k0MyYHcbuma/rd3fL7dzE0Ynoz06tjRzNepPO4464dUQseD3H51YgzZeXdqsc41Hp6t7L3BiiUSpvVVjE0V//Wzmhq25CXXKOj6SlCx3z1Wry+xOI40bZjuxgMc5sEnvG5zYsi8fMHMDxs4Fo/ZJyaNJYJWtWrWqZhvY0njMOf89yj2nFJbYxywn041VVNjzSL83jK5YZ+1s5t54pDse4wl7oN/wltsVC3Un4XFNefzVTzixt++50MxNy3BjcY/xOPrZS51YyGMnknKvcY694gV7wzW0Jc43Ne3wVOH1NsXoIJz0eL3HA0anNY+T4EHXPeXEPnn8EnsfKoxutB5voAKbSaM17tgBAAAAAADwKRZ2AAAAAAAAfIqFHQAAAAAAAJ9iYQcAAAAAAMCn6k3xZC/JmFvNyKuOY8JYp1pWaldDeuSLWe52q7PM5VFkKVrDQoGoW161sTIy3JdCy5ZNzNxIyK0GV1ZmF7ad+d13TizuMUgCkTQnFo0zoOqDZMItAidJwYA7Ge3a1i2oLEk/zC1zYlkJtyigJMWtKm7GGJWkNKPS5eJSqmvXB8GgUU1SUjDkHp/8v34xczO3292NBT0KIssdp4GgfcJMJNx43KPac7lXdUTUHY+io6GgOw80a2TPDVGjeGU4YOcuGusWSvY66tvtf6OxXY9koxBvp85ehcJdXpudMaNmBT+3NPG4e42Sk20/u0GjiG15zD6n3HdKGzfXKPAtScUF7kV2zKtBBPXaNzL76ri8wj1mp9/+nJlbVuIey0TC4xVshL0Kxsu45g4Y115erIYY1VXTAsN+s7vHczbFeB66dutm5saT7nFLTzdOCJJkzE8Bj8vYEU+5hZK9CiJbgyoSsvchZpwaAz689OGOHQAAAAAAAJ9iYQcAAAAAAMCnWNgBAAAAAADwKRZ2AAAAAAAAfIqFHQAAAAAAAJ+q912xLOlhjy4fRtV+qyq3JAWN8AX7NDNzV67Id2JpDe2OSW98t8SJhYL2+lnU6DyAuhXwOhalhU4sPT3HzC0udau339v7KDM3GXe7Q2SH7JfdNWNGObG0eJGZi41r3u8LzXi7dtu6wUTEzG0UKHBiD4z7y35AoytWyGMuu/aIHZxYywbp9naxUeW27mjGixfMdGJuT7w1ckJuN7VjbnzNzG1ojBGjEY0kaei95zmxoMcYQ+3wavpiCXh0KAunueePRNTuyphunGsmH2hfuwTC7pzxctlcM3fWn7Od2KSZS83c3do3dWLBWNU72uxwX28zHjC6tmxpnWtMHoNsYX6JE9uuid0dJhpzx9Mlo/PN3AaNjW42q+zje9+BzZ3YjGWNzFxpnkccG1NGuns9U1Jmd/MMGq3MLjhgGzO3IOZ2dlxVaL8nuuedcU7sr6XLzdxtGrrzTVqk6vNN+wd6mfEtbb6xul95CXm0r8ovcc9hW4Xsc1XS6F51/KWDzVzrWqnYY9+GP36RE5v85wqPbJdX90Wr01p9GQ/csQMAAAAAAOBTLOwAAAAAAAD4FAs7AAAAAAAAPsXCDgAAAAAAgE8F8vLyqlPPb6Pr1MUtUNQy0y4qWJBwi/8lPIpBVpS7BSk9ahWaEgn7abOiAdnFVJNyC+vWl+JLW5rOXbo4sQXTp5i5FUbhuKTX4DEGRHkibqZmZGQ4sTZdupq5jJO6YxVFu/GAVmZuWtgqBGevly8wqrs1y7bnBmt+iRsFLSUplOsW+S72GGNPf/67E2Ms1Q5r3Ax7yC1QLEmBpFs40qtwcYXc81og5p47JClgdAVIBOzxGAi4JQjTk26Bb0k68sZ3nBjjpvq6GmPESyDkUTzZiC8ePdDeSNKdBwJBu5BoyDiHFUXt65ydDrnJiZWE7TnHOjV6XXQm3csyT4y/6rHmp0Fn7mTmVpS584s1t0h2ke/MoN0gYlmBW2T1rk9/M3PzpnN864o1Fkb87zIz94iLn3JiaR61iLMj7lgojdnjJmk0iGjd0C7mvdC45i4qsq+H6grzTfV16+qOs88edYsZS1Ii6c4ZkYyqzznBuH1WqYi6c9nR179o5k6eaL/n8xvu2AEAAAAAAPApFnYAAAAAAAB8ioUdAAAAAAAAn2JhBwAAAAAAwKdY2AEAAAAAAPApu3R9feIW0ddFR9iV/J/+eK4Tyzc6ikhSg0y3+nphWbmZa9XaDgbtCtyRsNtppKzCbvVAlfX6xF3jXLTC7hCz58EHObHfJv1g5sbjbuX+jIjdCWmHrrs7McZI/VAWcLsySFIg7r7eM9KMSUtS6ybudJtf4tHZIenOL15dcrLK3XH60JilZi7jaeMqKfc4ZulG94+AfZ4IJ9wOWorY57Wk3McLe/QgCiQLnZjV/Upi3GwSHq2jokb3j0jYblOz1YE3OrFFIweYuRXG43k0IFU04M5xIXuKlNH8RlMYT/XCigL7mvfej/5yYg+c2sbMjUXdbmhl9iWO7v74DyfG3FI/ZITs65ZPB1/ixI697GkzN7/cfbGne9w+YM0L8/KNc52kmEfHIwvjqf6wmkenh+1lh0OvGOzERj17lZkbNE6OSY9uj0de9qQTmzpt8x4j3LEDAAAAAADgUyzsAAAAAAAA+BQLOwAAAAAAAD7Fwg4AAAAAAIBP1f/iyYb8Ynu3A2G3oFKjhF0cblmJUXypZrslSYp7FEqGD3kMiJ+//NyJtdl9jxo/HEXf6q/8QruwYGZDd5AUR92CypL02Kg/nZhVsLQ2MJbqhyyP6rMVpUaRyfQMM/e4G150YvZorDnGTf3hUbdYAeMHcY/P6BaPedCJNeh5XQ32ag3r0ezSlVLS6w/BpudxbG4/bmsndv3bf9T44Zhf6q+sNI9XsFHl+POnLzdTD7nYLVRbVo3Cx9XBWKr/rJr+gZA9zkY8foUTO+C8R2u8D1viOOGOHQAAAAAAAJ9iYQcAAAAAAMCnWNgBAAAAAADwKRZ2AAAAAAAAfIqFHQAAAAAAAJ/yZVesiEdLkNN77erEXhv3i8dW3ErtXs0balrTfUusyu03AeMob9eymZm7cvEiJzbzy9FmboeDD3FiM2YwHvymYVN7LCwpKnViTRtVfcZgbti8xaNRM56W4Z5t4jGPjRgnpjzmkM1eLGFfkQST7gVQLOrOQ5KUFnYv8Yq+dTtlSVKDntc7MaMhjiT7mihup2o6Y7Xe+n/s/XecJVXV9/2vqjqhu6d7IjNkJAiKMoGgSAYFBDErA4o5XCqgJCUYEAUFREDAhCiXCREQRRQUQTIqIDAzLSI5M4SJHU+qqucP7t/vvu9nfTdPn6u7h66ez/vPNavr1HTts/c+u89rrRkdnTLeN9znYie+Y12Z+/XfP+dirGvF8/wLK2R85lTfrbGjqzri6zIW1l7Nll/Dnh3Ua9XsDj/ObviB75RlZrbXZ85zMcbZ/8Y3dgAAAAAAAAqKgx0AAAAAAICC4mAHAAAAAACgoDjYAQAAAAAAKKhCFk/Oc11lMm76+CGv31TmnnvDIy5GUdu1Vxz5Il+Nhh5nG2w60wdzXWUyEEbB5LWajHeX/LhpNgIXCVVnx6SV5/pvJy1RUzlK9GTBsJk8Fo1Bgcd5c+e5WBZVZG6z7gstR7keUZkYfhSknNySqi9YamY2I6+7mKjZjUmkVNVzSF/dTwxZkshcsY3GWkyNh1kdepzVG2KC4fPT/wjf2AEAAAAAACgoDnYAAAAAAAAKioMdAAAAAACAguJgBwAAAAAAoKA42AEAAAAAACioqLe3l7rTAAAAAAAABcQ3dgAAAAAAAAqKgx0AAAAAAICC4mAHAAAAAACgoDjYAQAAAAAAKCgOdgAAAAAAAAqKgx0AAAAAAICC4mAHAAAAAACgoDjYAQAAAAAAKCgOdgAAAAAAAAqKgx0AAAAAAICC4mAHAAAAAACgoDjYAQAAAAAAKCgOdgAAAAAAAAqKgx0AAAAAAICCKr3cNwAAk8ncuXNlvLe3d43lAgAAAFh78I0dAAAAAACAguJgBwAAAAAAoKA42AEAAAAAACgoDnYAAAAAAAAKioMdAAAAAACAgop6e3vzl/smAKCIQp2qXm50ygIAjJV21jrWHwB4efCNHQAAAAAAgILiYAcAAAAAAKCgONgBAAAAAAAoKA52AAAAAAAACqr0ct8AABRVFPlYvobL0at7AADgf0IWSj74GzJ3i92+NLKfN4oqA8B44xs7AAAAAAAABcXBDgAAAAAAQEFxsAMAAAAAAFBQHOwAAAAAAAAUFAc7AAAAAAAABRX19vau4R4uwMSjujhMnzFD5q5auXJc7kF1jKC7xMQwL/Ac1OQZBdpU5W20y6p0dblYY2hoxD8fapS1hHEDADCz+fPnyXi28BQX22J33/3KzOyR205zsc13Ol7mPny4j7GXAYCxwzd2AAAAAAAACoqDHQAAAAAAgILiYAcAAAAAAKCgONgBAAAAAAAoqNLLfQPAmhQqRjxDFEpeOU5FkkNC94aJK4r82XilUpa59Xp9xNeNAwWYMTlsu+22LtZqtUb886Hhkauy2W0U7aaQ6cQ3UdcJxk4R6Ylk8119oeSHb/IFlc3MNpO5Xw+83okjvjMAQPv4xg4AAAAAAEBBcbADAAAAAABQUBzsAAAAAAAAFBQHOwAAAAAAAAXFwQ4AAAAAAEBB0RULk1Y73UOGRAes0Kmnio+8n02oD4V+MzYDue383+hW0p52freDt5zlYivqnTJ3i7ce42JJQz/hzoofZff//nyZW476XWyDN31e5qr/G+Nj/CyYN0/GLzv5wy7WjPVyLBqvWStLZG7aylysUtJdsbLcz1oL5ur7XdS7RMYxfkLz0PIbT3exjff+is4V3Yk6dzlB5tZuP8PFZuz8RZm74lZx3cD9Mr9MDPPnz3exzb7r5wszs4dv8R2wNt/1yzL30du+4WJb7Ok7ZZmZPVzy1w2Nc8YNMPmE3u9J7Dc6aabnp3Z6xqpOob2TfD/DN3YAAAAAAAAKioMdAAAAAACAguJgBwAAAAAAoKA42AEAAAAAACioSV88ed48Xagp1/UkNVHUyQJFnRSKwI2vdordVgPxhoiFhsjIn7wWum6oUPJIMc7GhirMtuwvJ8ncgWbqYututoXMXfonf431A0VPe6/2hUxtaEjmdog6us9cd5rM3WDv42Uco6fmoWbdF7Y2M0uTiotlpgsil0Rp9mZgEuos+/FYa/nXMjMrRT73Xcf+UOZ2lDtcjPlm7KixM/iPb8vcWDy3WkuvHmk88o1OlPjxF0W6LUAqVrH6nXrOqVKwfY0K7Yc2/4GPPXzTyTp3N18o+VFRiNvM7BW7nyiuq3O32NNf92HzBZXNKPQ/kX358LfJeCammyjWpW6TxH/8TJt6HlOz2De/94fg/WFimDffN2Nop/DxAw/cL+Ovfs1rfDD162Lo9SZ7wXa+sQMAAAAAAFBQHOwAAAAAAAAUFAc7AAAAAAAABcXBDgAAAAAAQEFxsAMAAAAAAFBQk6or1jxZ6VqfXalK2Xmg31EkOmCFek1EUdnFJnsF7pdb6Peofu+6x4fW3am7yQwM+x5a07p0v63+obqL3XXee2Tutp+9vI27w7gRk0O91CNT1998BxdrPHSrzE1E0f6lf/ZdQszM8sEV4rb0XJbU/A3HJT1DxbrxEsaEfw6bfv4RmVkXD6La8nOFmVlLXDcK9ZaIxBgJtIDMYr+u+dULL5c40JGqe8cvutjqm78pc3t29vPL8C26e1U67DvSLL9B53bt7LvrDf5D3wMmhkdu8t2nthDdr8zMHr/lGy622Zu+JHOf+KvvgLXpnr5TlpnZE9d9zcU231vfwyMXyzDWsC+pDlgt3YEoER2E88Cnpbw56GKVit5H11b5uemEzxwgc0/9wVUyjvGz7YIFMp6IvYfaz5iZpeLj91av2kbm3v+f+1zsNa/Sn7Mz8amvUtL3MFk68fGNHQAAAAAAgILiYAcAAAAAAKCgONgBAAAAAAAoKA52AAAAAAAACqqQxZNDxYhjUQ8pz3VB5Erkk5u5PueKRW6uXszMTBVaFj9vZrbdPP//uHtJ8Qo1vdxC40HpCMTvumChi+34X5fJ3FU/freL9T7wH5m7/3cfdrHmwHMy957Td3KxbY/7u8xVhVop0j1+aokuALjqwcUu1kz0+73R8AUHO6ZMk7nVoVX+53Nd+Tie0u1iSSNQsDAPzFsYA/53fvqsM2RmR4coU5zpZ1MV46nW1IV1m2L9iQPFCtW6VgoUFfQzHsbbkChmbGZmiR879VgXHe0ThZJ79vDFl83MVv7VF7YdbAXGZNmvpMN9vqkAxpdc899/sszdZHtfpDiwNbXXvNkXRB5u6OQt9z/PxYZqs2Xuhrv7MfbUX3Wh5c3P9ffAHmf8HH+YKJJsZqXGsItFoTYk4jNUFFjXWi2/n8lT/1pmZpWK3zv1Deg9zpcOf7uLfeO7V8pcjI1Wqotpq2YMor62mZl1iWHSyPR1d5y/nYtlgWYDnZHfE9VaeuxMlt4ifGMHAAAAAACgoDjYAQAAAAAAKCgOdgAAAAAAAAqKgx0AAAAAAICC4mAHAAAAAACgoCZ8V6z5bXQ8ykSh656Oisy99iefd7EX+nVV7YaooN1V1mdiee6reL/rs9+RuWmuK3OP1LSpuqPO6r7Vo7pu0YQ6IqgOCgP/rfu7HHbOFS7252P3k7lL71/uYoPLdfe1j77Wj7+VDz8vc2fNfrWL9R61g8yde/Y/fS6dIcaEelsO57Nkbrk05GKHP6Yr+Z+67nouVg80vumcMtXF+gb9a5mZHfpv32XtvA3nyNyuSqgvHMZDpRzosyAWqzzW608tFd1DAn+SKZkfe1Gsl/lYdMBqBbpFlMt6HcX4WXdv3xXIzCzP/DhZZ7fjZG4kxkMuureZmU3f23cnylI9JnPR72T2vifJXMbO+FHTwKa7665YceSf2S/jz8ncDTf2a1XfUKi7nl/EGoGmSXOq/hp7TvOd28zMGoNqrarpC6Mtn/u07xzVU9HPN0n83raZ6jXlwi9/3MWqnb5rp5lZrLbMme6s10j9SP/kN74rc2vxZOltVBy9X/ipjFcb/j08pUOvP8v6/bPvmqE/VzVE19dSSW+K1qn48TcwqDfeUzr9/S6VmRMb39gBAAAAAAAoKA52AAAAAAAACoqDHQAAAAAAgILiYAcAAAAAAKCgJnzxZCXSNb5sRuKLZv3xvM/K3P6+lS5W1XWarNt8Jbg81QUBuzq7XOzP3/0vmfumQ7+vX3CEhuv1Uf382ug/T+pSWKd8dH8Xu/2aq2XuY5F/22y3/c4y9+D1fBHcDcQYMTP7101/dLFVFQrBTQSVUqCwbW3YxZ58eB2Ze8QLT7nYGVv7gpZmZsl0P79MndYjc4eeWdfFju57XObWa4GqlhgXC798mYxH5ufuqBRYgMQUkNcDi6AQKpZrYgmLAn/qyZv8DWhNe/rmH8n4Rrt/wsU6Y12wPU/9s2+JmJnZ49ec5a/bVZW51/7Br1VRoPDpQaf9VcYxeupdWX1opsy95oCjXSwa0utBs9bvYokoYGtmlpT9fqijoueyLPfr3V9mHyFz33X/hS72qD0pc9GeTrGmDOR6TVn2gh8jrV1/K3P707tdrNqlx9iwKIAbJ7q5wz4XvM7Ffnuczv3k2T+WcYyNykX+Ga/YSn+uqj/qP+ss3uIJmTtT9JSZPmVDmRt3+Pll9Qt6znlo5r9cbEafzk2bfu6cfVGfzG0esp2MTwTs1gAAAAAAAAqKgx0AAAAAAICC4mAHAAAAAACgoDjYAQAAAAAAKCgOdgAAAAAAAApqwnfFysxXap/WoW+7s8NX3F9886Uyd6U40nrDzvvJ3FrN30M50EKr96Zfu9jzpqu3Z7qRxYhN6eqU8Ua9NroLF8zcuXNlvPeMN7pYVtcVzh9Z6kuy7//npsx9+suvdrFH+wZk7oJN/Nh55JEhmfu2G/yYeuJr28hcu3qJjmPEQuPmkWtPdbGk5rvomZlN6fQdsO45xXcfMTPbYr93utj0+VvJ3PXElPFCTc85t3/tSy62w3sPkrkYvdC4mVL1HSAu/Op7ZW6c+DXsoON8Fxgzs1z8/eWikw6WuaWyn2+SWK+X7zn+Z/61xM+/aORduBAWGjvL/+E7ZOZ1vaZEojtRM9WbiRnr+fY3q5bqLjUzpvh9Q3+m//b3/m9d5WL3XXSszE2NrljjJRXvy85YdydbPbjMxf51ne78mYmuVrvudaDMbYm2fa3Ud4s0M/vnX/z+uBXo/NksB7r5YdQGh/0YmV7Sv+/Nt32Viz3Y/6jM/dBFs13sssNekLm5+fmtNqTHQvcK3w3tHRd0y9zZo/xchZeWlPzn7CTQNbbxitUuduHim2XubPFx9l1l3w3NzOxVU/1nsBXr6nF22h1/crEtZuv9zCHJu12siDsfvrEDAAAAAABQUBzsAAAAAAAAFBQHOwAAAAAAAAXFwQ4AAAAAAEBBTZjiyQsCRQUVVSTZzOxn3/ygi73jyPNl7oVfOcDFkkiXSZoypeJiebMuc4+6+CkX++WJb5e5UfygjI9UFLhfvKi/zxdKbqS6IPJry75w5MPfeIPMHWz63/vc9fUZaVquutjWGw/K3PtP2t7FBpq6mBzGT3enL4IbR7oiX1Rf4WJ7/uxQmXve1Bku1pX6nzcza9am+/vKdHHDXS/4hIv9ZL31ZO5Wv6Gy4Hj56Ym+UHJS0u/fRi7mbj9VmJlZ3vBzS1LRS3dLFNHNIz1uyqJQcqulr5ubLtyNsTE45PcT60zvkbkrbzvLxWbt+XmZO7DMP/vnbzpd5jabPrea6X3O0ht8oe841wU0zSiCO16mdfu9cBT7/aqZWVfkJ5jPfP8+mXvbDz/gYpkokmxmFkV+T1UVBVbNzD4lXu/68/36ZWZWf+j3Mo6RO+LT+rNHnvr5PO3SC9DXPvUOF3v1Wz8nc7fZ9ZPixTaQua26H6eVRO9P7r72cBebt90hMjdNmG/GQuWiu2W8JT539q9+XObWO2a52LXfvVPmnnTG/i42M1BY/bHV97tYpaH3Ln//8b0uts2x+rPd3tv4+AOLdVFm9ftpHLKdzF3T+MYOAAAAAABAQXGwAwAAAAAAUFAc7AAAAAAAABQUBzsAAAAAAAAFxcEOAAAAAABAQU2Yrljt9Nx4YfWQvoaoxH/VeUfJ3FY64GO5ruQfZeLuEt154I/nHeNiQ81VMne0UtEBZW0U6g2288n/dLGnvu+7oZmZLXvWVz5Pqp369cR4eK6uR3C8armL5Wo8mdlQt++aZK1QpxGMlzm7HuFiy24OdJJp+OdzyfTNZG5p6ioXa+XimZvZ8IDv0maxHgu/32hLH+zwr/Uiuhu1Y67o1ljvfaXMrc79uYtd8o2PyFzVZe2yr+lc1dUqT3Xnj7gsukgEmoT84iTf+SbUafGgL/r/G8bOJm/0+5RVt31H5lYyPzcs/+vJ+sKZ71hUKgcGxFDDhaLIx8zMOrv9PFJr6Fwz9imjNS/QNVY9yWeHdKfFLPL7mX9eode1yPz+eKiux02H+BTRn+q/GS/67Zku1iz3y9yhf+tuNBi5jg49n7ci/1mnphvGWi46OG75kUtl7iXvXuyDqd63VNQ+uKHnitd/8mcudtG7HpW5H/nqX2Qc7YljPXZUc9YtV+8pc++r+M5Rl16u16qOF3wHxlZtmb65xM9l0SzfzdbM7Be/+pKLzXrOz29mZncv8V2tu0PtSicwvrEDAAAAAABQUBzsAAAAAAAAFBQHOwAAAAAAAAXFwQ4AAAAAAEBBTZjiye2cMCWBAo+xKAzaDBT/i5KRF0SK66GigF7a4WNlUdTZzEyUuWxLHHMuZ2a2pLdXxlXh062OvVHm3n3C61ysOaCryamiYmmun8V2p4licgFLTt7NxaIuPXYwer1tjJtbL/+FzN39nR92sbSii1emmR83Sa6LGW/w1q+6WB4oE/70Nae6WMSZ/ZhQY6QaKGSqxCU9y+eiqG0WKgMvhkgUmPsXnqDHqXLJKb54solCzRg77cw5pViPnaylCoyGnpu/Rq2lc2fue1LgGl7f9d9wsVATA4xeaI+zQIyb6ta6WG0j9fvYUqzXn8z8vqOjpMdNVh92Md1axGy4w89bYio0M7O4ylw0WrXayOeFvBkociwWoKves0hfVhX6Fw0mzMxmDYkGEYFZ5KK33+9ioRrwMcNmTGSqSnJAvaaLXpda/hlPf3KpzFVNIpqpXgO7y35M5jVdEHlOv2gKEBhnPZE/F8gLOJ7Y/QMAAAAAABQUBzsAAAAAAAAFxcEOAAAAAABAQXGwAwAAAAAAUFAc7AAAAAAAABTUhOmK1Y5Qse604StzD9R0yf3p3Z0uFurqsO+RP3axv3z30zI3Uk0GdMFwCzTEGbGVK1eO7gJroVZDj4cdTv+bi3UExs5fTtzLxVSnLDOzf5/xZhdbVdfXrYmuSa//2g0yF2tWlOjq/P+69hIX226/98ncWuongjxwtv7otae5WBK4hyj1E8k///BTmYvRa6ezUZzoJbaW+jmgI9jOQ8X1fPOrr/uxV070GMvFdVt5YLHCyyDQhSjucrGeku9MZGY2JC4R2vStuP6bLhb5bdKL8dRfOMoLuZ2cdELbyimx7/hyz/1PydwFr9rQxUJdGV/zXt8h7cE/+rFkFt67Kx2bjTwXoxeXQ+9f0dUq091aIzH6Qh0cZy083cUevdqPJTOzOPf3kLX0SG8GunBh/ITe1o3IP/so0c8nFh2wopKec/Y97DwX+/13PiNz5fgr6TGpumWpfdKL8YmLb+wAAAAAAAAUFAc7AAAAAAAABcXBDgAAAAAAQEFxsAMAAAAAAFBQk6raXbVUcbHydF3kq9X0xSvjwDnXn77nCyWHynO99dAfulioKLOJwoRz5/kCnCGh6y5Zoot7wixuNGS8KZ594msNmpnZDide768b6aehC2/p3FQVpAwOHqxJjaYeNwOZj//96t/K3NVD/S7WXdVTcDtF3Orm57ikpOc9rFmNxqCMlyL/LJtN/XxF/UGLyh0yNxb1tUPlkFvDQy5WrQYmPaxxidV1PPHjZEVfTebGnT0u1lnWRUcTNaQClXj7Bv2gnFIaZTcIjIk88NASUUR9683myNy05Xe4lbKenx6+6iRxE7pBxFZv9blJoPFETfUKCOyHVOH60N4pF/+NUEH8tYlaZ8zMksjvUeqZHmOpGHudFb1WPXKtL54cKq7dWRtwsZ4ufQ+lYBFojJvA4InFo0ib+o1ZEc+tJT4TmZn9/tzDxT3o3Fh0NEoivT9OW+IagfdFriaSCYJv7AAAAAAAABQUBzsAAAAAAAAFxcEOAAAAAABAQXGwAwAAAAAAUFAc7AAAAAAAABTUhCkf3k596VCjoJaozF1Kdf+qsjjTqh3+BpmbJ76C9m/qj8jcfz1yv4vd+8gLMve1W63jYnFLtQLQNvvmvjIeiQ4BVP1/UTkweIZF9fW6bkpiZXGRO7+wQOYufeRh//MbbCZz33z2EhebPUO/RZ9ZprtOYHyUp60v48nw8y5WH14hcztFJ6P9z75H51b8PFAf1l0grjzKv99LoXY2WKPiWP/tJE19r6pAqsWiXdFBX7hQ5qpuaqHV9bLTP+hiDf7WM2G0hnwnGDOzWMwj1U7fEdTMrCw6YHXsdJzMjcTWI0n1gtl361kuVm/o+8WalQV2yIPDwy7W1Slas5pZq+lzP//hc2RuIvZJd5T1/mThBw9xsVpgjFVEN5tQ91HlV0/9QsbzG2k1GotOZKFfbYeYW1qZHx9mZploJfv80WfL3MawHzgrq7qD1oLTP+xiC7/wU5lrgWugPY1DtpPxykV3u1g51vvNaVU/dvpMd5jNRJepX55xicwdHvBdILMpuqPnZ45b6GKtpu8IamYWqTdB4H3RDPx+JgJ2cQAAAAAAAAXFwQ4AAAAAAEBBcbADAAAAAABQUBzsAAAAAAAAFNSEKZ7cjjxQzOiAw851sT9/91MyN2v54pVdP7g98II+9NFEn4m9dstXuVij5F/LzMJVoNUt+FpRQRRKDhN1J83MrNnwDzkNFPUT9cBsh1MXjfge0swXSTYzs8Tfw1KKJE8Iu7zxzTL+9z/92sUqgeJ9w00f/+MRC2SuKiRXyfQkMCxyG6UumYs1KzTFlyu+IH8eqHfdqvvnfrEoJvniRUZeFNPMNxZIWm0sNBhXiVpozCwr+W1bRTR4MDPr6/dFToduOlnmRmJPE2V6n6NyS/HIGz+gPQtEQwwzs82+52Nq7TAze8vzJ7nYn2Z8VeZWO/xkdOqPPidz45KfYBqBgu1z3/Z1F8tm69x0lQxLudwm/XLkF4CVRUFlM7ON9vmii91/xZf1NcT6M+uMo/QLipd7ZVnPN/Ggb0jx1Cq9Vk1fl+LJa1qjpcfOjAcXuNjqje+UuR1V/+w/dIIvfGym91VZaK3K/efvDZ/cSebmat4KfHyfyPjGDgAAAAAAQEFxsAMAAAAAAFBQHOwAAAAAAAAUFAc7AAAAAAAABcXBDgAAAAAAQEEVsiuWBar+N0X16ijQEuRtR//Exa76zidkriqKHaf6Hizy2UlDp6oC3PfQ0Wpc3fSlPWR891NucrHBpn7GsagAHxgNphrdxKL7lZmpJjXBgux0Pluz8sh3lzEz2/kt73Ox26+6ROZ2VPw1RHM+MzOLIt9hphnrTlel2J/Pv/UM3eGPcbNmpYFuEUnk54Ao0n9n6ezyXT6GW7pbnlrvQl1yctFd6aDjdCcZxs2alyeBsZOJZx/oitVd7XSxKNXdZCLR0SYPrEDN1qB/rT199xwzxs5YWBT4HapuWa+6QI+bf3/SzwPV3+u5YbO3+85pD1+hO2hlLX+NcqATXy7mvXyZzt3sHB97RDfmYoyNgSQOfK5q+Dlgeqdeq2bv/SUXe+APJ8ncWMw3taZuDfnq937bxXZcsL7MzdMCtjEqkMYh27lY9aLFgWz/PPNMTw67f/w7Lnbd+UfK3Ejun3RXxjd+yk8k95/wM5mruoo2DtlW505gfGMHAAAAAACgoDjYAQAAAAAAKCgOdgAAAAAAAAqKgx0AAAAAAICCKmTxZFE3yczMYlFsMAsUpLzqe59ysb0++YNR3ZeZmSoLpUs6BZIxrlbnugBtLmq2Tavoa7wwHCqVPDKUdiueVqqnynLJD5yd918oc2e/6Th/3dHdVhDFJCcK/W7PWn5VKJV14ch3fv4X6gqjuakgxs3EEaiPbV1lP2ukosCpmdmcN53oYn210a1fIYydNU8VVd5+ni+obGYmauxbFCjQ/cw1J7nY+m/2sXa1M0YWiP8HY2xsZJmYA3L9SaUk9jiNQJHjp//0ZRebupcvqNyut+yxuYu1moHdU6BhDsZP/ZD5Mj5v7jwX+9N3j5C5f/6ej7/xU98Z1X2Z6Tkj1M9osuAbOwAAAAAAAAXFwQ4AAAAAAEBBcbADAAAAAABQUBzsAAAAAAAAFBQHOwAAAAAAAAVVyK5Yaa6rnkepr/Se5Lpyeh77a9z440/L3Dd+8ofiAvreVDjUBWnJEir8r2lzujtk/Jqvv9vF9v3qFYGrjE9HGoUuEBNDtXOajDdaNReLQm37BJ7v5JaUqjKeZ35damVlfRGx3PWydkx6WaLXqlrudxRxS/f5qNV9jDlncrsrMDfMF12moky3XstiPxc9fe1XZe6G+3zNxcZijC1ijluj6g29b0mb4nNVtFzn5t0uNnCj75RlZjbtjd9wsT123uylbvH/Uirrj6+nnvf7EV8D46ta9a2F45Luvhalfi76y/c+J3P3O/xcF1vMfPH/xzd2AAAAAAAACoqDHQAAAAAAgILiYAcAAAAAAKCgONgBAAAAAAAoqAlTPHnxGBRbmzd3noulpgs1xS1dgFnJRE0xChAWU1MU6DIz60n8Q/77V/aSuduceL2LLV68ZHQ3hgktz0UVUjMriyLssZowzMwiztHXNlkaKN4vYmXTc1MkxhjWBrrtQksMniQwtzB28L/5vXDTfHFTM7PAcoeCOeeHV476Gq9fMN/FVjdmytyWGDdRYApqimY3Z3+fwseTSd4STSKGdKH/zm4/HkKrV2iLjRfxSQMAAAAAAKCgONgBAAAAAAAoKA52AAAAAAAACoqDHQAAAAAAgILiYAcAAAAAAKCgot7eXupLAwAAAAAAFBDf2AEAAAAAACgoDnYAAAAAAAAKioMdAAAAAACAguJgBwAAAAAAoKA42AEAAAAAACgoDnYAAAAAAAAKioMdAAAAAACAguJgBwAAAAAAoKA42AEAAAAAACgoDnYAAAAAAAAKioMdAAAAAACAguJgBwAAAAAAoKA42AEAAAAAACgoDnYAAAAAAAAKioMdAAAAAACAgiq93DcAAPi/zZ07d8S5vb2943gnANYGzDkAgImOteql8Y0dAAAAAACAguJgBwAAAAAAoKA42AEAAAAAACgoDnYAAAAAAAAKioMdAAAAAACAgqIrFgC8TLbbbjsZ//lhr3WxD33v3vG+HQCTXKijyJ9OWOBi+5+6aHxvBgAAoZ3uV/jf+MYOAAAAAABAQXGwAwAAAAAAUFAc7AAAAAAAABQUBzsAAAAAAAAFRfFkwCZuka7e3t6X+xYwRradP8/Ffvk5Pe6yLPPBKBrrWwIwiW23YL6L/el4Pw+ZmZUT/3e+iDkHADDOFoj9cRwH1p/ch8SOea3FN3YAAAAAAAAKioMdAAAAAACAguJgBwAAAAAAoKA42AEAAAAAACgoDnYAAAAAAAAKiq5YWKu00/2qs7NTxoeHh0f+gpE4O81HXr89dL90y5q45s3TXWe+/t6NXSwNDIVcnbmLTgAAsO2228r4OR/a3MXk3GJmzVbqc5lzAABjJLQ/lmtNoClWHCc+mPr1a23FN3YAAAAAAAAKioMdAAAAAACAguJgBwAAAAAAoKA42AEAAAAAACioSVU8ed78+S6WZyMvVDteKHT78minUHJX1xQXGxoaHMvbGVPq/8Y4W/Pmz1/gYl97jy+SbGa26ZweF4sjPT+1Ml81Lop0Jbl58/y8t2TJYpmLiWGuKiDYRqHaOFBUUBUgbKf+bW/vkjay8XLYdrvtXeys9+s5Z4v11ZzTlLnNhh9Ucaz/9qfmvcWLF8lcTAxqzxBaU/I2qmYniS9kmrZRyJR9CzA5zRefyUPUTJTEeh7KRXJgS2Rz5/q91mTf5/CNHQAAAAAAgILiYAcAAAAAAKCgONgBAAAAAAAoKA52AAAAAAAACoqDHQAAAAAAgIKKent722maMSGEuh3d+NZ1XKwSKJWd1us+t6xzWy0fiypVmRub73Lzhj+skLl0AxgbofGgWr5lgdrpUeQffp7r7iE9HR0utro2LHPLkb+LPNcdI1rijhMTgy8gDfS/YZyNnuq4Z2Z2xBs3c7FmUz+HuKPiYjtvFcg1P0ZuWaI7aKnOAefe+LjMpVvWmhWamw777GEuNq20SuYONHzHvp6Knpvy3M9NUdSnr9ua6WLnfu98mbtk8V0yjvHzhgXbyvj1Z3/SxQZyvR/prvo5o++p22VuOWq4WGvWHjK3mvj9035HXiBz/7HoHhnH+Ajuh0QrvTzT649oyig77pmZxaIrVhToiqW62QRugX0LUBDzVJdPMzts361dLE/190lWt/ycce3f/qNfMPZzznt2fbVMLcd+DTznL/fJ3MnSLYtv7AAAAAAAABQUBzsAAAAAAAAFxcEOAAAAAABAQXGwAwAAAAAAUFATvnjyvHm+ENz1B8yQueVAUVolE7mJKKD7Yq4vFJgkvkilmVkr8wUIE1Hoycxslz/4opYUjGtfqFigiULJcaDAcFL1xSdLLf8szcyyyD/PuqqwbWbVqVP9zw/qYqZJ7Isn1wOFeHNRXDeEMdUeNZ4+u+smMlfUjbSpPdNk7tDgoIv1N/3cYma219wuF/vbv/zPm5lVSn4uarb0uPnBLY+52F2TpGDcy02Nm0OP+pLMTVpDLrbRBrNl7qNP+OL76/ToYu19A/5vNV2dutDyqsFuF6tWdXH5c887x8UoqDx21Nj52/cOl7mDmV9rNttyG5m7/OkHXGxlTRdhH3j6bhebseH2Mrenw4+TIT3MbM9Pn+tirEljQ42bJNJ/r80S/9yf/fvFMveFx31x0W3e+3WZm6hFMNP7kyWXnehiO3xYX3fYT5HWu4RxMxHMm6ebSQQrbKtUsRePAmNXXXcJ+5aXhZpz/mu3jWRul9ibdnTr/XFr2H8uenpVv8y9494XXOyAHTeWudWS/1zfaOk18IIbH3Gx2ws4zvjGDgAAAAAAQEFxsAMAAAAAAFBQHOwAAAAAAAAUFAc7AAAAAAAABcXBDgAAAAAAQEH5Njwvk1Bno2/u4KtqL35OlMs3s5YoxJ/EutNVlPj/epzqiu5pLOJN3ZUkSyouVop0x6Szd/Cx0O+BLhIvRXdyMVF1f3q37wRjZtZq+DHVn/pOWaHrmvkuRmZmzb6ai1VtXZnbyH2l9/Wm9sjcpX2rA/eG0eou+fHUVdGd7Xqm+Qr/q/t9FyMzs1x0synHeoz94z++xUwa6bEb5wMu1lnR8153JfRewWiVSn7unxHrrmfTNpjuYk89rbvlTenw11g9rOcb1QGrr9kpc7u7/BoWpTo31KwEYyMRv99WrDsLbbq574C19PF7ZW7a9PucWWJ+MzOzdbd1oWqqc/v9smazAt3XyoG5COMji3XHl2du+5WP3ac7vpQS/9xv+5nvaGVmtufHfFerf/z6dH1vTb9vueNC3Tlw+498Q8axZm27YIGL9d94isydtteXXWz4hlNlbueeJ7jY8r/o687az193wfx5MnfR4uJ1MSoStT/uKOl9bM/06S62evB5mVsSnX5nz9T7kX133NDFGoGOx9WW3+fkgU7VnZNkqWK7BgAAAAAAUFAc7AAAAAAAABQUBzsAAAAAAAAFxcEOAAAAAABAQU2Y4skhWeYLIr1hPV+w1Mzszmd8kaR5s3SRpAdX+dgrZ+p7eGTIX2PBBrqw4d0v+MJ1W3Tpok4P9KlzNZ2LlzLy31nfsC563UpVwUFRIdLM5kyf6mLPr9KFT+ds9Gqfu/QBmZuJ4t0USZ4YBjP9fq+tHPRBOZbMclF0Lhbzm5nZsBgL1Youwj7Y8vNIVte5rVzfG8ZA7p9ZfWiVTO177hkX64p1ocBSNsXFuvNHZG6rtLmLzbSVMjfJfFHmF4bFeDazXA9/jJE893PDwJAuRvzow0+6WCXzTSbMzKaIgsZPD/jxZGY2Nel3sXKPLoqZN/2AWLpcF40PTJ0YJ10lvefte+A2F6sG/ra7ss/PA+vO8PseM7NpU308Hn5W5malhovlNX2/sXhPYPwsmKuLEQ/d5gth9+x6vMxddYsvlFzZ1RdJNjOr3XKyi3Xu7oskm5kN3nKai83Y61iZO080oFlC85lxNZDpeaQ06D9D5U39fu9PfbyjqtefpOzXtUbgHoZE86P6sN4fNyfJ52++sQMAAAAAAFBQHOwAAAAAAAAUFAc7AAAAAAAABcXBDgAAAAAAQEFxsAMAAAAAAFBQE6YrVm+gavlcUeH8S49fJnPf8Io9XCyJdAeIKPFVtVstX7HfzGzwvt+62JSt3y1zK0mPizVT3V0pFxW4Q78HjA3d/crs8K59XCxr6Vz1OM+3G2Tus8/c72JRoDHRZ6p7+dxIn71WKhUXO6f/an1hoRqoNl+v+045a5uBln9fJqmuop+IeSSLdIcaa/nciugS8uLr+Vgsfv7F65b9dWOdO5jpjgQYvVbqf+fnnP9jmRtFvuNL3q2X43xAPMtA84bZszZwsWdfeE4nT/VzSGVIv/9z0U1Nrc1mrGH/E5noqFYb1gvF+487w8XSRI+dRDy3ZlPPZX84/RMuts+R39fXrfj1Q72WmVmW6dfD6JUSP5//6Uz/HM3MhsVeOC3p/cWM6b5DX1+q9wyXn/YRHyzrDn+pWBsDW3RrNvm785oU6pdZ3eU4F+u//kyZu9W7v+ligzf5jlZmZtP2+aqLDd2oc7v3OMXF+q7/tszt2fMLMo6xofbHU6MhmZvVB1wsify+w8ysy/ymNwl8Jm+JbrJTAk308szvj8ti325mNpBOjjlncvwvAAAAAAAA1kIc7AAAAAAAABQUBzsAAAAAAAAFxcEOAAAAAABAQU2Y4slhviJS9Iq3jDTVjv/X32VqnPtCTSdvs53MnbL1+8K39//yhd7b/WuluiDlKXO3HfF1ERapB2+6OLWZLh67lfmio/Vu/XpxKl6vpkvPbd7j32KPrtbFJF85ZUMXKzX1/ZYydSYbqB6GUcsDxUkzMRaeevZpmRtFfs7ZYI5/5mZmSSTmjNwXgTMze/oZ/3pRoqvrpmmg6i7GgCiIHMh89C5fbP2Jhx+WuYNVP27e8db/krnDK5e62H9uuUrmrlz2jIsNVPQ8ts8B/vUYSWPJj533fPmKQKp/Rt/pXy1TVcH1I3qmytwDjrvY/3zgIZ++wncQSFJdQPOInkB1XIxamvq5YfY6XTq5w+8Z/nnVFTI1Sfz684a3HyJzBxt+7JYrwzL33mv862WmC5mmgUYXGB9dnbrpQzbsx8K0N58oc/Omnxc2e8/XZO79vznHX3fPw/Q9xL7gbvcevqizWWjfj5dDJPasTz/zlE4WH2nWW8d/LjMzS0TTkTjXe/QnnnjSxfKS/qyUiaLMRcQ3dgAAAAAAAAqKgx0AAAAAAICC4mAHAAAAAACgoDjYAQAAAAAAKCgOdgAAAAAAAApqwnTFmjt3rozXHrjGxfJMdxXqes0BPjf2XQPMzMqZ+K8HOsk8t+QmF1t3m51lbi662ZQiXW1+ctTffvmFquB3xL6jVKWzU+ZuNttXSW81p8ncWt13cah2VGXu9Rd80cW2+fgZMndu1xwX6zc9fquJ7zqRD4x8RKluGmub0Jxz9J4bu1gc+H1lka/6f/mjusvH4bvMdrEkUIW/LCr8N2UnNLPfPeHv7fCd/GuZmdmDy3QcIxYaN996704uVunQnV2GBgdd7LrlvqOImdnBr9/Cxf585idk7tJnfGetUlmPm78+71/v/a/fXOaqUdrb2ytzERYaO5d/9+suVi3rLnjv+NQJLlZPBmRuRy46FgWaJ175nU+72FuOPEvmNksvuFiU67WVfc7ohcbNkou+4mJxquf4pcv8k/jwRQ/J3L+fuJ+LPfPsSpk7pds/9+awn9/MzD508aMu9o+T95e5Zrq7JEZv7tx5LhYF3qnlaIaL/ei5FTK31eE//xzapT//7H7wES6WdPfI3DPu82MhLev7PXrdQFc4tCU05xz1Rt/JNQ92W/WLzaWP6r3053ac6WLlJLBYiW5buVjrzMx+84Tfg31WvJaZmT2g57ii4Rs7AAAAAAAABcXBDgAAAAAAQEFxsAMAAAAAAFBQHOwAAAAAAAAU1IQpnhwyPOyL0g43dKGmpOyL3Z669Q4yN4/8NWbM3lLfQ+SL8E7vniVzT9v6DS6WBYoyY3z19KzjYo3+1TL35Jm3udg9dz8YuLI/D739p0fKzAeW+UKGV33rgzL3zZ850wfLuihzrekLiLdTzDSOOdMNiVNfbK3Z0gXb45Iv2PbZ3TbRuU1fNE5MQ2Zmllf8c48avjChmdmhu/piz0kzNOcwF42XgcyvExtWdPHklctWudhuO/mClmZmmSiqPLxaFxYt1XwR3f5lz8vct+7tiz1ngQKpGF9Tq34rtrKvX+dOW8/Fju1aX+YmqZ+3Zs/xxbjNzGav44ukzpqur3tsp5/jElEoE2Mj9JvNGv75Nrv8+DAzm5b6Qsm3fd8X4jYz6+r2c04c6bto1Pyeap1Zetzc9MOvulha1oW/zXzjFIyNqtgH/PvKk2Xu1u893cV2f/YSmfvElv7zll8VX/SPi453sde+148PM7M3r/qtiz288a76wmxtx1WutjSR3udY6huJHLnHRjq34a8RavESi8Y4Wa73tp/dbQP/88H98eTAWwAAAAAAAKCgONgBAAAAAAAoKA52AAAAAAAACoqDHQAAAAAAgILiYAcAAAAAAKCgot7e3glRHnru3Lkjzn3y/iX6H/JhF6qWdOOvNPP/7VYr8KuIGz4W6et2liriurqjznqvep2LtdPZCC9qZ+wsuejzMj5t2hQXSxI/nszMKmmni9UD46yZ+04SlWpZ5uZ5nw+u1mNn43f7TgXtjJ1yWd9Ds+mr2E8Gaozk/9Fd8KJX+25oR+ysu3zEZfHc9SOzXLSHiER1///1D+ICgc4DLd87QAw7MzP7zi1PuhhzTnvamW8uO3Q3GS81fCeZwVX6vdcSQywX65eZWS6a6IU6r80ULSeq60yVufudd4eLMW7a187Yue4HX5LxLPPd8XLrkLll892Nmmlg7KjhF5hH0sQPtEpZT3z7HPotF2PstKedcXPXz/Uep9X03adagXkkE3vW7i69Z+j5479drNKh17Wn9t/KxTqG9LjZ7hM/cTHGzdhQ46nqP7qYmdmTV53hYhsfcK7MjdJnXOzR3+tOV6UZ3S5WD3T+3PqA77tYd6y7PS4d8Ndg3Ly00e6Pj9xdd7pKxPqRBj9niz1v4KsnkZgyVKdrM7NYdMuKSnp+OvOmJ1ysiGOHb+wAAAAAAAAUFAc7AAAAAAAABcXBDgAAAAAAQEFxsAMAAAAAAFBQuuLryyBUoEgVdbr2tINk7n5f/JWLpaKwqJmZiYJKSaCg0gav2kVfQ1h6/90uFlmgQCrGRDtjZ2qPPsssV3xB5KypC1K2REXJwWFdaPnV7/2GjCvP/P7rLlbq0QULRysX438yU2MkevXIC1JGHaHCxargm55zIjFu8kznnnvLYyO9NTtit439LYSqnmLU2plvXjlLL7EPPO5jXdNE5WMzM/Pv1UpJz2Nv+9GiwDW8yz8+38VWrtLFKzE22hk7Bx3niw6bmV10yudcLBaNI8zMWmIaiEt6TXnz506TceVP533Bv1YjsNfCqIXGzTwxblpDgzJ39hy/D62p9cvMIvNjJMv0mvLMnb6weuhvxnPeto2Ldc6cMB9D1hpqPM1f4NcDM7Mo9wXYn7zq0/rCkd8nlSI936TDfjx1xH4fbmb20O/96yXitczM1tn7K/reEDTa/fGjq4ZkfLOpvilNrCoqm8lC/YHa7nbu358a6a3ZEbv5ws5pFtjPTxJ8YwcAAAAAAKCgONgBAAAAAAAoKA52AAAAAAAACoqDHQAAAAAAgILiYAcAAAAAAKCgClmOPinrLlM3n/txF9v3yAtk7kBdlOBOdaXspx/+l4u1Wrp7SDP317jp2x+UuVjzpnboIf/U6lUuNqWiq/nXcnUeqs9I7/r5sS7WMUV3v1mZNV1sYNmAzB2tVqs1LtctknY61GS5nnOqVf97HBzWY6EkKvGHepMdvecmLtYc1s+sJa5bqnBmPxG0Uv+eNjMrd/jx9Kad1pW59brvShIFuto9ds6uLjalU89jWeq7GCWthsy1X+gwxk//sH7G7zn2XBeb1jND5v74Kx91sailr3vVd07wwUDnmVRc4l2fP0vmYs1a+LU/yPjvv/ZGF4tnbCZzs4bfd0S57mbT+ZVjXGyjmt4fP++nMqu19B6Hvo5rWGAzUq747rClQFfGZs3PF4EpxNZ9i59vXrjyq/oeyhUXywLdRzE22tkfp4G54bE+3y1r4xldMjdR7/jAJHDYrr4TbBTIVc38Hl05Pp+rJgp2/wAAAAAAAAXFwQ4AAAAAAEBBcbADAAAAAABQUBzsAAAAAAAAFFQhiyenokCxmVmz4Qu2/fV7h8vcZcP+Gt1Z3+huzMyqojBuVNZFTykOt+YNNnSFuM4OX5wtTqbI3NdMHXSxJUt1scCSv6y1mrpA6VuP+aWLNWq6QFwsBo8qatauUMG0tV2pIh6kmeWicHEl0fNTVPVFbNOGnhsaqjhuhz6Hr+V+Gp8SyMWatfFGuuj2Vhv3uNiUin6vV0u+UOBQ7QmZ25OIiSHX1+3u8fHly/R4HPrFni7WFZhvmEPGRhZo5qCWsNU1X6TSzOwgUdC4kenxoFbG0B4lK/u5LA5Vr8QaVQ409khjXwS3PtwvcztEzfdWoouexmLOeWaKzp2RL3Oxii2VuaHGAlizGmK/mrZ0Qf5SyY+FNDCPPfvnr/ncwD1EogFAJvY9Zma6NQnGUxx4t6pt7OPLdeHiNPbPuGSjb/LSEt9fSSb59niS//cAAAAAAAAmLw52AAAAAAAACoqDHQAAAAAAgILiYAcAAAAAAKCgONgBAAAAAAAoqEJ2xYp71pXxZv9zLpYPrJa508v+TOuD//2IzK2ILgND5U6Z+9NDNnCxjkBHHdpijS/VOao8ZZbM7chqLtZfH5a5i5f6lhFvOugMmZuJTiErU9Fywszu/c+DLjY0qLudNOs+XirpDjzKBud8UMY3Ep1u6HJjNjisq/NXK/75hp5Dbchf4/u3Pi1zo8i3E4hyPWF8eq/NfLA1+m4C0ELd51TnKNE0zczMoppferPAM6s3fAes2Z+8OXB3ftzkgb/f1H65u7/uOnqtaoX+Ixg3SUV3nmk1/ThpBLpitUSbmePfvJHMXfrUUy7WsZ7vyGZm9qPr/JicPr1b5i5bqTsvYfRUL5qBuu4t9KGv/dnFfvzld8jcWjLVxXY8/DSZW4r9fiZO9Zxzz3mfdLHhWO/JsGZVxWciM7MZ3b7D2fI+vTeulPycddLHvytz04a/RrnsO7eZmX3l50e7WCnT3ZWw5qnuV2ZmJjrmxYF9bCw6YD20XHf4Gxj2n9c6q/oz+ZZzRJ+0wD1MFnxjBwAAAAAAoKA42AEAAAAAACgoDnYAAAAAAAAKioMdAAAAAACAgipk8eS3HXaWjF95xkddLA4cXQ3XGy72809tI3NVYahWXRcEjFJfZDLvXGfE18X4ygdXyXh/wxfTysr67RFnPv7XS3xxNzNdHzsNFBbcfbfdfLClC/GuXOWL7mZjMJ4olKx1JqFCpn4eqaW6eOVtvc+72KF76OKkeeofZlLSBd9aItwoiYJxWOOeX60LIs8o9blY1tDPrKfHrx8rLthD5mZiUak1/Bg1MyuXRW5dF3a3aOSF2TE2pnf5oqVmZqtXrXIxMV2YmVm14sfUGdf7eehFvnB2q/dxnSrmnBcokjwhXHHmp2Q8bflitZ2dei9Syf0+9p/fO0HmZmLj0Uz1WlWKnnWxrkwX4sWadcc/75HxsmgWsPyGb8ncRu73SSf/6hiZm7X8GFNjycysKfY+6+32NZm7iD3sGveKmVNk/PEVvqh/qG5xan6PsflM3cwhz/w4i0WhZrPA2pgU8uhjxPjGDgAAAAAAQEFxsAMAAAAAAFBQHOwAAAAAAAAUFAc7AAAAAAAABcXBDgAAAAAAQEEVsjT0o8/qDjVv/8J/u9jvT/+YzM0Tf6bVrNdlbioqtSexrtY90PSVuQ876xaZSweiNW/ZkO40sl73oIv1N3WF/o4O3/Xo4d77ZG4uuktEgQ4zd/3kky62+TtPlrmLlzB21qSusu50NdwUnWRy3YVop7mzXSzPA1OwOHIXDffMzKyn4jsvnXH1IzKXOWfNigPPbHXW42IzW34OMjOri05+Sblb5pbFulaq6Jt4oW+Zi3V36OsGGllgHH3v8x+X8cPP+LGLLe9bLXPTht/T5NHIn2Yp0Fa0nPkxVQtcdglr1RoVZc/JeKm6gYtVynrO6RMPM4l1x7ws8vukSkUPhhX9fv/1qsN+JHNZqyYG+SQjPS+st89xLrbsum/IXNXFKAq0Cp69y1EuxviYOKbqbYO9wvz7/Ynles7JxWYp1Ok3EuuS+pxuZlYS4+yKe3RnyMkypvjGDgAAAAAAQEFxsAMAAAAAAFBQHOwAAAAAAAAUFAc7AAAAAAAABVXI4snrrKuLJD33gi9K+/ZjL5C5s1+5g4sF6jSN2mQpyFQ0qpZWtUcXth1qVH1uSRcdfc07v+ViFx/xmvZuTtj8HVe6GEWSJ4bhli4GmYk62EmmC6tfcOujLlYb1V2FMeeMn9DvtmvuXBfbctYUmXv9N7Zzsf6sU+bOrvhBlmbDMlfUtLVQrdzuDn9vodxATUuMo8oU/TBqYi6aOXWGzH1u5QoRHf3D9OXax+SyaJMaIfXWVJlbqfixkEXTZe5/ff6bLrZkeTt3NnKsVRObelvHgYVi+U1nuNjUnT836ntgjExsqwb1d0SqotHMRjP0nujHtz7pYvrT2uhN9vHEN3YAAAAAAAAKioMdAAAAAACAguJgBwAAAAAAoKA42AEAAAAAACgoDnYAAAAAAAAKqpBdsSpRWcbj9XxLkOXLR15Xe7JXyoZZd9Ih441uf8Y51NK5qtvW+865T+bO3cR3urnrkT6ZSwesiatVa8p4nvjBkLfRHoY5Z3I76yNvkPE9j7vVxdJctFgzs+f7hlxsxc/3lLm56FbSznjMA+2vuj54o4sxdsdXT1lvz3520kdd7AMn6u6f7VB9btppdMV4mBimz+mR8f4+P55eu6Hsb2axGAw837WVHwxZrrtilWPfBWng72fL3Kk7H+Vi7IGLqWK6g3BNtH0td+hchTnnf4Zv7AAAAAAAABQUBzsAAAAAAAAFxcEOAAAAAABAQXGwAwAAAAAAUFCFLJ5smS6+VBLhnh5dkFJWCsSkl6fDMl4WYydvDOpriIqSd95zt8ydO3eui1EQrHhKSWjCEPFIT6sZc85ap9XSxfvP/MjrXSzt10XVD/npYheb/pEbZW5t5HUJ28KcteZFJd0kYmqPj//mW4fK3DcfdrqL8SwnD1Xcuj6s9zhVMZweWqr3ON1d/M0X/z9+lMUtXXRbbXLyht74qCYkKKjA3rYqmjlkwzo5UI8b/wPM3gAAAAAAAAXFwQ4AAAAAAEBBcbADAAAAAABQUBzsAAAAAAAAFBQHOwAAAAAAAAUV9fb2UpscAAAAAACggPjGDgAAAAAAQEFxsAMAAAAAAFBQHOwAAAAAAAAUFAc7AAAAAAAABcXBDgAAAAAAQEFxsAMAAAAAAFBQHOwAAAAAAAAUFAc7AAAAAAAABcXBDgAAAAAAQEFxsAMAAAAAAFBQHOwAAAAAAAAUFAc7AAAAAAAABcXBDgAAAAAAQEFxsAMAAAAAAFBQHOwAAAAAAAAUFAc7AAAAAAAABcXBDgAAAAAAQEFxsAMAAAAAAFBQHOwAAAAAAAAUFAc7AAAAAAAABcXBDgAAAAAAQEFxsAMAAAAAAFBQHOwAAAAAAAAUFAc7AAAAAAAABcXBDgAAAAAAQEGVXu4bAIpmq4MWutgDl1wqc1+50Oc+dKnOBQAAAACgXXxjBwAAAAAAoKA42AEAAAAAACgoDnYAAAAAAAAKioMdAAAAAACAguJgBwAAAAAAoKDoioVJayvRkeqBQEeqdnLzfOT3EDVbI08W1H2Zhe8NAADg/zR37tyX+xak3t7el/sWAGDS4Bs7AAAAAAAABcXBDgAAAAAAQEFxsAMAAAAAAFBQHOwAAAAAAAAU1KQqnrztggUu1krTUV83Tvz5V5ZmI/55isO9TKJoxKmqGPErDzxwxD//6kCR41bux0moILKS28grNbdz3RCKMrdn7rx5LjbyUWdWLunn20zF1JyPfC5bsmRJG3eBieBDF10g43Es/v4SGGR5JsZTYB5U0Z++7+OBu8NENhaFcdmnTA7hseDf8XPmzJaZLyx7wQdDWxE1kbTRYCJ0v4zHiWHeXL/HaWdfOl4YHxPf/PnzXSwPdJ8JxZUo9pOO3PsETPaxwzd2AAAAAAAACoqDHQAAAAAAgILiYAcAAAAAAKCgONgBAAAAAAAoKA52AAAAAAAACirq7e19+cubtylURX/gQzNdrCNQvT1vNV2s1JHo3LzqYlnqf97MTDUwiX+6UuZO9srca8pWCw+S8QcuvcTFtgx0jkoz33GoEulzz1ych5bzlsxt1Pw4iTv9eDIzi0R7iUY08rfnw5deNuJctEd1vzIzW/zPW11sajYsc6f1dLlYs75c5rZyPxc1W3rcVKu+g9b68/aSub1LFss41qx2uhipNSUbeVPGMcFateaNRaer0eK5T2xqjESBLngbrjvHxZ55/nmZKxvUBNs9+n+IAvvuWNxbGuhmo7rkMB7HT2i+edeB73axKSW93+0b9PvoaR369fLcL2xRWQ+yWur3PpddcrnM7e1lj7OmhcZO38f8nDMlb8jctOnf76XAeMiysotFceAzeeT30tGFet89WeYXvrEDAAAAAABQUBzsAAAAAAAAFBQHOwAAAAAAAAXFwQ4AAAAAAEBBTfjiyaoo08DHfUEmM7Oq+eJJae6LLJmZJZEv/tVq6YqU5bL/FWWZrggWRaJYbqAIb/LjZS42WYo3rUmh4skmCvg9cOmlMvNVBx/sfzpQuDhv+oJepQ5d5KslinSrYl5mZnlLFCH0dXHNzGyg7q87paSvq4R+D9BzTt/KVTK3nooxkumxUKn4h1nOdPHKctkXWn5B34J1TOl2saa6LzNbd3aPizHnjJ9QUcHvpr7IZB4sOOrXj88G3uuZKER6rpiDzMyS2F8jy/Ua+NnEj13GzdiZCIWSR4vxMH7aGR+Vkt5vyqUqULhY7Z0C01N7xNIYqskcvDWBsdceNZ7e+74PytxWY9DFNtxgA5n7/HMvuFiU6/WnJNaaVKxJZmZp7tefVFb4Nvvdb3wTkd7eJTIX7ZsnP5OvJ3Mr4jN5aJ+Tmx8PeRr47Bz7/ZPF+sNSnvvcOJBbumByfCbnGzsAAAAAAAAFxcEOAAAAAABAQXGwAwAAAAAAUFAc7AAAAAAAABQUBzsAAAAAAAAFFei5s+aFqv7/YrdOF7v+8T6Zm4kWQuVMV2SPREX1JHDM1ch9B62yNXSuaCpSCnQpuOpNPh76PRSxMvdobLVwoYzrbk66ynoi2i28+hDf/crMLEr8g7vxE7vL3Hq97mLrzpgmc/v7fUeBUkdF5i646Hqf26ffoh1TfdekB376C5mL0Xvd1x+T8dj8WBhu+C5VZmZZbaWL9cUzZe7saf0utnpAj5uO+CEX6+7w3a9eFOpBgvGgOk+ZmUWxfw5xoA3MobFfJ6JIP0cVPbKkx815qR+7MX/rGVfj1f0q9K7Oxb+svPk8mZvEfvylgQ5/cezXy2nsXSaEVmAe0U2EQq2nRIfOwCDL1T8EOhbpnx/pHWDsiPWnNSwz11/XdyF+4ennZG655D8r5SXdQbgm9tEN0RnWzKyn6nOrE+fj66TU1mfyp/Rn8kR0PstT/dySRIydVqDDX0nMT00/RszMItEYO8v1nugPb/TXLeJncnZxAAAAAAAABcXBDgAAAAAAQEFxsAMAAAAAAFBQHOwAAAAAAAAU1MSvPiVqsO27XlWm3vqsj+25sS7G9ZfHfWyvDfQ5123L/a9ppxm+0JOZ2U1Ppi72xg19oVszs78v1cXKECqSHC6qPFIDsS7k1vvZXVysVF1f5kb9T7pYX1MX054+fZaLvTCgC43d/ZE3u1guCpyamS348e0utmUbv5tQYcLQ731td83H9LhZp9MXkms1feFjM7PlqS+wXS3pcTMwtNzFnu2bKnPLokBd1Z6RuTucJcMYJ2nm1wMzsyNEUeVWoN5ot/j7y1bHf06/nrjGktPP0feQ+AKCHVU/ns3MdAlovCwisU8Rc4CZ2Qs3nOl/3PSYzMRYjQIrRSaKKg/+TRdlVkWV75nAhSeLLgoUT1aPMgmkNsXGO1QOuTPy/1IL5KprVAJ/Xm6KLfbISzKjXXGg4PXzzz7lYmXTxWerHb5xxFD/aplbKk9xsTxwD42Gn5uyNPT5iVEyntQjevOc0Gdy/ybeeUM9dq5/0l9jn431WnXzC/66u6wnqiSb2S1P+9gem+jcv/uhXkh8YwcAAAAAAKCgONgBAAAAAAAoKA52AAAAAAAACoqDHQAAAAAAgILiYAcAAAAAAKCgJkxXrN5Al4S5oqPCdkd8Qeaulw652EMl/V98RctX234w1x0gNuz01dsfaehuNpvGvmT4E4Eq7Xsd/C0XC/0e8CLVtSnUKUs1h1hZ0/0a0kw8z+FHZG4U+/PQkvp5MyvFfpx1VnSl98Fh302pu9t3UjIzGxhqupju26Q7YNH9qj1bv2F7GW8M+TknFePDzCySjWv03NBd9dcYrOncTIwxMQ2ZmVm1GholIxRqp0YjCmn7Lx2t/0F0NspS3dmo0vDdP6KSHmN1cY3tv3SEzI3FQ2tler3Mcz1nYWy003VMNcV67nrf/crMLBYdiyzT4yxr+QvHuoGJHA/1pp4EdP9QjAU1HQffqeLxJCXdzeaMz7zdxU760VUyN676OaMrMBayyHfdS+vL9HXFmyINzJFol38+l/3uSpkZifd6GljwI/EZKg/klmOf21RtHc1MfTRLApuRWA0ctK2dz+SvO/JYmTsn9Z+3Hinr57ZF6sfZQ4HJbJMO/5n8sfqgzN247Ne1RzO9f9rn/X4d7e29S9/EBMY3dgAAAAAAAAqKgx0AAAAAAICC4mAHAAAAAACgoDjYAQAAAAAAKKgJUzy5HaVcF0lqJb5o1l03Xy5z66Ky7q5ver/MbTZ9gdRQFdE7b/udfy1dV9dUXcOx0NXV5WJDosjrZKfK7L3++Wdk7opP/sj/fI//PZqZxeJ3GQXOSC8+1RcV++AXvy1z6xVfqTKu6+d2cnePix2zwQYyV1nv4ANl/NlfXzbia0xe/r299Jbfysx1dn6ni+3/2kCxwHyOi125aJXMfeiWi11sg50Pkblv39a/XpLPlLlX3vmUjI9UFJj3QgUS1yYfufgnLjYQKFT7niV/cbG86guim5mVh/zcEpXKMjdLRVH1WJev7S/5e6s29Dz21+3fIeMIU0Um2xGX9fZsSu4LR/Z06rHTP+Dfl9WuqTJ3uL7av1bXOjK3lfvcWp++h1hVe8aYaG/W9c+hKcaSmdkXzhv5PqBa97F6qMh+py+ebBREnhCW/u18Gd9g54+72JSSfsBZ6uOtln6+z9z4XRerlPW6ds1Vfv8VZ3pdO+gb18s4xk/S8g0ezMws9mvY3Tf8RqZGia+UvO3O+nOK1cWkE+uxc494vSjWY7LVmhz7WFZcAAAAAACAguJgBwAAAAAAoKA42AEAAAAAACgoDnYAAAAAAAAKioMdAAAAAACAgpowXbFCHSTu/d0XXCw33a2okq1ysQ/84HGZe89ZvstHI9Ptq4Za/vyrEjgS+9j3Hnaxu89/j8xt2YP6IiPUqToMBKhOWWbF65a11cKDRpzb8Z8HXGx2R7fMjWPfRei8h5+WueUOX43/09P1dY88+Twf7PIdrczMzv63H6tRoqu3H7m+72zSTlcsul+F55xlt//JxQZNV9xvNX0nvq8s2FTmLo2fdLE//adD5q4uz3KxKDBdHzd3XRdbNWOFzP3dnTI8Yo2GniPLgW4Wa5Mo8h1BpgY6giSRjz/7qO7Yl7X8fLPR7M1kbs90vzAN9+lOD8884ee3KanOzXaQYYwROUrE3GJm1rmOX/evu+QSmdts+e4hO7xTd9eb3jHbxfpWr5K5vTf59WNFoypzs5yuR+0YbTe1kPnb+Dfxf91yu8zNBp5zseM3WV/niql/7saby9wP3fwvFyvlfTL3qI38uhaifme9vb0j/vnJKjSW8jvPdbG+ftFpyMxi0emqlukPQDPn+NzVz/luR2ZmPWUf72/q6x5y6nUu9q9f+M+GZmYtoyvWWAiNnQcuPc7F0kivVRb78fCh8/1nZDOzu898u//xsh4PDbWvCnTi+/D5/nP2XWfrLp+Z6fOCouEbOwAAAAAAAAXFwQ4AAAAAAEBBcbADAAAAAABQUBzsAAAAAAAAFNSEKZ5sovCkmZnFvrhoFPlikmZm6ZCP3/PzY2TutKp/vTRwzJU1fZGv7lm6AO69v/i8iyUVXTxstFSxzsnugUt9kcitFi6UuWXzhUAvPOVdMve9X7rcxfZY8ReZ+/gGrxevpZ/FhV8/2MUWHv8TmfumPl8g7uF13yBz2zmSfeDSS0eeDEtKvtB4LVBE9IG//dHFttplT33d2F/3gb9fK3NTMec8fNdVMvcV2+4mXixUWF0Xxx2pOOZvASGJKBTYFyqenPpClRcuHpa539/JF0V/tqLXwKGaf76hAuw/v9df45xdpsvcv+WjGzd4UWjDpXYISUmvKXdddJiLbb7/iTL37vM/4GKdJV3ovNHod7FqoEHDfqfc5WL//MWnZW4U3yrjGD31JDfcyDdWMDN74OGHXGyvZ34lc5995b4u1tmhx8J/n/RBF/vsqRfJ3Les+I2Lrdhyb5kr9zjU4R4Tz4ueKV2Vmszt/5tvANK9xxEyd3C5XyeevVU0EDGzNG26WJzr/cVzN/9AXECm2mj3OHhpUeb3DXGiV7ZY7D2W/NIXXzYzi2NfgDlP9Z4oTkSh/lQ39lh00Qn+uqFiz+b380XELh0AAAAAAKCgONgBAAAAAAAoKA52AAAAAAAACoqDHQAAAAAAgILiYAcAAAAAAKCgJk5XrEAh89e+42QXe+SSr8vcgZLvBlDpFNWzzWyw5St7583ATcQ+Ptw3qHMr/vXSuq/+bmYWjfJYbWhIlLaf5EIdsJRUtFB493E/lblXn+Or/M9d4LuPmJmVm0td7DenfkTfRHe3C/3i9P+SqQvm+3uomn8tM2urO4T6ndEpK2zG9nu42OP3LJG5Ud7nYg//7WaZmyS+En8WKM6fqA4BgWf+0O03+PtKdfIWO4oOWhgTrcyvE11dFZmbicdz3AGbytznMt8dKRevZWammpZlgb/ffOWtr3Cx1anuxCSWQPwPhKZt9ettZbrLR0eH32MM3fUtmbt8ueg8E+kxmYs2M1lT710GFp3lY6v0/46hM3qh/qfq6TzznF+TzMz++D3fIXabHb8pc6fUP+liv//2h2Xu0LAfN/990sdk7o57neRi0wZ1Lh2wxs+6e3zOxfpv8+9pM7Phpv+ss+qWb8vcXOw78lzPY6kY1eVE58axj6uuWv/rFQNxjIUtDz7Txe67zHeeMtP7hjgPPTc/j+SBmS9u+fGQq02VmeWRf72oFBgj0fh0sF7T+MYOAAAAAABAQXGwAwAAAAAAUFAc7AAAAAAAABQUBzsAAAAAAAAFNWGKJ/f26uKkc+fNc7G89YLMrcZTfHCoLnNVzdI80edc23zIF4sKuffiY12sFCjqFKXjU+Srq6vLxSZLoWVV9DdUUHno1Vu7WNf9/5G5kfnfz3Vnv1XfhKjnFSouOizGX0UU0TUzu+7cA3ww18W83nTY+foFBQola729vTI+d+5cF8vquiBlVPaFSLNYPzNfrt0sDRQn3XrHXWRceeD2v7lYXO0Y8c+3IwvMZaow9Nrmpwf7IqAf+fVPdLKonB8Hagqqmv4dZV1UMEt9UcHQk0nrZf9agSqtcbB8K9oR+i2qjVgr8F5Tf49bsVLNLmaRGGeJ6QKlw91qAOqFLV3m7zi0m6Hw9ui18yuMYv++NjPrGu53sVtP1etMlO/uYitqwzJ3asU3iAhV+r/uq3u7WCuwD971qB+J68pUBLSzx6mIxi9mZi0xa4UK1SpRpB/a1F18Me/Q41WFneNYF4HH2Ghn7Aw9dL3M7dxqLxeLS+3sFXXu1gedPuIr/Pu3x7tYFmguYuP0mXxN4xs7AAAAAAAABcXBDgAAAAAAQEFxsAMAAAAAAFBQHOwAAAAAAAAUFAc7AAAAAAAABTVhumK1o1XXXR2STt+NZjhbV+aWSqJzTaBQ9rOXfsXFVjZ1siq23REHOupE49NpZLJ0wBqpUNenLVW3rEDR81iccSaRrsiepn7sRLl+lm872nd2uO7sT8hcdY08cF26Q6xZjcBzaA6vdLEZU2foa5jvVpIEnmPvrbe7WFdPp07O/HisRIEWS6NULuuOK9CywPMti1ZBWaADRBL555vn+sJfv+YpF/vqAZvK3Kq4RqjZSRzTFWsshH6L7UznqiPaUysGZe5G604b8XXX3+HLLrby9jNkbqnD34NowPVinLWqLaobjepEExL6da9o+O3+tKrOrtX8nBOb7kK01zHfd7Grzv6MzB2q+QkmjfXHEDVuGErjp9UK7Bky8caO9WewOBZrWOBzTv/ffbfhOJCbiyffSunEOVGUA11Rhx+4wcWmv9p33DMza+YjP45YfPHRLlaqBH5e7GnqD9844tcqIr6xAwAAAAAAUFAc7AAAAAAAABQUBzsAAAAAAAAFxcEOAAAAAABAQRWyeHIl0UXcGqIecldnS+Y+NeyLf20xRV+3JqovdQbqdv37ocddbPY6uphqlo5PKbiuri4XW9sKKpuZPSiKKufz5sncSskXhQ3UTrZ604+pqioaZ2bXnfsxf91ACcBW4ovj5rm+bkXUsFX/X4yNSrlDxru6/BTaN6QLC756XV+c8D+P9MtcVUSwJgo1m5ltd8BB/uenbSBzlXYKc4aogp8IU8UgTRRJNjPLRD3JXFXpN7Mv77eJi6UtPd9kiZ9Empkeu1moCjTGRDulqbPcj5P15/TI3LrYFOWBtWrZTb5Qcqum76Eq9kS1rC5zUwpvr1GBuupWKYlnpt/uVu3yzywp6Y8LN/7AF0oO7XHqU6e7WFMPG6uI7Xgr02N30T2L9EUwYkngmTXFRrge+Dix7bvPcrF7/nBk4BXV6+m5orPTf4YaXqn3Q1jzQrsDVQt7ePkTMrcya2N/3ZZu1lFJqj4Y+Dxdy/y8NRQHGpFMEnxjBwAAAAAAoKA42AEAAAAAACgoDnYAAAAAAAAKioMdAAAAAACAguJgBwAAAAAAoKAmfFcsWSM9UNG6M/HdioYGV8vcTab4LhKbLDxV5vaoQvyB1gObbDjHxa789sdlruyMMgbWxg5YIxXqGFHt8GOqVtO/xy7RHWL9o74tc2sl3/KhP31a5g6fdYGLDfY/L3PpUbNmDa58VsZL0323hg7VzsPMnnzed8Xa9a1vlblTun1nuyde6JO5V11zvb+vsu7E1xr2/49SaeTn+xv++DAZ30Z01qJTllmoy0er5MdIqaVb1OSZ72bz4eX6ma0eXO5iXZ2zZO7F6/tZpHPGOjIXY6OdeTsRnRrNzBYsPN3FFl16rL5I5MfJM5/6lkxNW35+qsT6Hjb80RdcbKglOpWYGavV6LUzl26/re782TVliosNDQ7K3Fbmx80mnz5N5jYS3zptVWCPUz//ly627BndJUeh+9X4qa9eIeNRl18TOrt0l9B7rz7Cxabu9XmZW674fXQ6pDtDrrzthy42bZa+B6x5pTmvkfH82cUulq54ROZWZr/SxbZ4v1/rzMzK5sdJM9LHGf+6yK+NlTzQDnCS4Bs7AAAAAAAABcXBDgAAAAAAQEFxsAMAAAAAAFBQHOwAAAAAAAAU1MQvnixqTw6bLuiX9S/zsVgX9Ft/ui9E+sDPfeEvM11w9y2fv0zmfu0AX8B5p8MulrlxoLCmMlcUJx0vk7noaW/vEhlXv99bzj9U5jZa/hk/d97xMjdPfeHTUlmP32bTn7O+/UsXydzFd0/eZzQRzZiznow3Gn5yqA0MyNxN5vjnfs+tf5O5Wctft1r2xU3NzDZ+3V4u1jV7U5nb9+yDMj5ak3nOGI04UDj2G1f553DSfpvK3ET8/eVns/y8YmYWzRJFs4OrvL+3L15yj8zc9vjdQxdZ643X2pxlupDow0/7AtlxpDo8mCVlv8fY6Hxf+NhMlzguRXqcxWJTtMG+x8nc3sXMDWvSXffoPc6CBb6o8rVnf0pfRMwZj56ji+Cq/XFnpx6PDfNNAT515m9l7l13MW7WpE7RCMLMrGFiDxv4SkA27Pc4fX89U+bG4sOdamJiZtbIfG6zNfLPTxhfHVOmy3gj8s9Tr2pmA4O+CPsDv9KfyaPED8BQs5s49rmt0szAXUwOfGMHAAAAAACgoDjYAQAAAAAAKCgOdgAAAAAAAAqKgx0AAAAAAICC4mAHAAAAAACgoCZ8VyzVqaGrS59H9bV855oo9Z2yzMxW9Vd8brRC5maZv4s/n/kmmXvQ131XkeN2flTmHnW57pgyUr/65Pqj+nkzs/dfsHTU15i0Wrp++95H/reL3XjeJ2SuesKtur7uvof+wMXoNjQx1LMpMl7t8JX863U9rT70hO9qtd4mugtEqeQ7PrRS3U3tyXtud7EN5m8ncxlPE0MmOiKWE91J5oQ/PuxiJ+27sczNVYuapu5sdNJfHnexJUv0+PjYJRfKOMaRfmxmosvHYEMnz97zWBdbdcsZgdfz18givdfq2d131mJumdhysY+tVPRatceh33exG84/SuYmsZ/LxFAyM7P9P/ltF2PcTAzDdR0vJb4LbFbW4yYq+zWsI27I3KboGGu5fy0zszz1n9d6djtS5jKe1rxa1iHj07fa0cVWPuD3q2Zmqx66zcUaJb0nMtWtMddrVSqusdOxN8vcyTJ2+MYOAAAAAABAQXGwAwAAAAAAUFAc7AAAAAAAABQUBzsAAAAAAAAFNeGLJ6vqs40BXXx2WrdP7qvPlrmbfuA0/1K5vm47YlFI7p/36SLJ575nmovNnTt3xK/10DOrZfyVG/jrhnLxEgLFTG/57n+52C6f+d6oX26yFO6ajDoquqhf32r/3u7s0tPqNnvs7mItVUBwDDCWJoafvu/jMj7v1HNcLPRXlm++ZXMXO+GqR0ZzW2bW3hi58KCPjfr10J4o0vuGPPd7DBPFuM3Mnr/ZF0qevpsvfNwu5pfiUaMpNMau//5nXWz3T5456ntg3ExcnVU9h9TrfmWqlvS4We+Nn3Ox1b6/xJhgLE0cUUl/dq6Lgtw9W75B5m7/br9W3fHN1+kXlMNP38PrjvVFmSf72OEbOwAAAAAAAAXFwQ4AAAAAAEBBcbADAAAAAABQUBzsAAAAAAAAFBQHOwAAAAAAAAU18btiCXk+JOP1Vb5U9sxZ1dBVXGRNV8pWHbB+9cn1R31d1QHrxKv072yyVwcfOd8RINaF/2VF9tu+f5hM3eVQ3y2L33nxDDV0V7mqGCSrV/YFrvLyzzmYIHI/FhqBDmmJ6Fxz2gGbytzjr3rMxRhj42tN/37nzZvnYlM7yjJ3ZcO3JXnuZt8R1Mxso71OcLG7Fy1p8+4wUUWR/zvucE13QqpW/Vx0yw99pywzs90+fZ6LMecUz1CzKeMd1YqL1Yb1WjUsOmAxFia/UqzXn6zDdxYeHBp5m7TXf/FOGX/dK3tc7I6H9L57bRx/fGMHAAAAAACgoDjYAQAAAAAAKCgOdgAAAAAAAAqKgx0AAAAAAICCmvDFk3NRZDKNfeEkM7O86nP7GqnMjeOX/0xLFXVSBZXH67XwfxLjLNcF4ioVVShMFyHE5FCN9JxjHT7UGSgkJ6YyrKWiWMwXgSlk9VBrfG8GBeMHSq3RkJnrdvotXq6q/5tZM2WCmsxysZ+pDeumGuVq93jfDiaYWK1JZtZMxdxSDnx0fPk/VuFlkKkxYnqtqVT12FHjb9HixaO7sbUUb0MAAAAAAICC4mAHAAAAAACgoDjYAQAAAAAAKCgOdgAAAAAAAAqKgx0AAAAAAICCinp7e2mFAAAAAAAAUEB8YwcAAAAAAKCgONgBAAAAAAAoKA52AAAAAAAACoqDHQAAAAAAgILiYAcAAAAAAKCgONgBAAAAAAAoKA52AAAAAAAACoqDHQAAAAAAgILiYAcAAAAAAKCgONgBAAAAAAAoKA52AAAAAAAACoqDHQAAAAAAgILiYAcAAAAAAKCgONgBAAAAAAAoKA52AAAAAAAACqr0ct9AEcydO3fEub29veN4JwAAAAAAAP8b39gBAAAAAAAoKA52AAAAAAAACoqDHQAAAAAAgILiYAcAAAAAAKCgONgBAAAAAAAoKLpi/R922GEHGe/76Z4uNvUjN47vzQCYMLZYuFDGH7700nF5vS0P8q/34CXj81oAAAATkepMTAdiQOMbOwAAAAAAAAXFwQ4AAAAAAEBBcbADAAAAAABQUBzsAAAAAAAAFNRaWzx5nijGNXTR3jI3bbXG+3YATBChQskjzQ0VVN78QJ+bZ3puyRI/NY9FAed27hdAsc2fN8/FsjyXuVHkY0uWUKAUmGxGW4xY/Xy71xiv61JouZjUWpUH1ipjrXpJfGMHAAAAAACgoDjYAQAAAAAAKCgOdgAAAAAAAAqKgx0AAAAAAICC4mAHAAAAAACgoCZ9V6xtt91Wxm/+qq/AHTrnKnV0jeEdAZgs8jxzsa3e/z6Zm8W+wn+aifL+ZlaqVlzs/l/8UuZufuCBLhapFjeYMFTnjjjW60+W+TEWFIlriDEaQveQiU+NnaSkt3JHHX30iK+r5rJQlxqFsQNMLO10mWonN7S/aKcj1YIFC2R8pNcdL+PV8WttpH6XkdqjmNlpp5024uuqPRFr1f/GN3YAAAAAAAAKioMdAAAAAACAguJgBwAAAAAAoKA42AEAAAAAACioqLe311f0LKjtt9/Bxa499pUyd9tXznaxalWfc+VR1cW63v+XEd/X4sWLRpyLiWNNFmwLmexFvtaULRYubCNbFQbU02RSSlys1WwGruqvm+UNmVvu6HaxZq2mrysKGQaLJ8viuvr/9vCll+prYMRCc8jOO+/sYhtvssmIrxssjd3G81V+/euLZZx5aM0LjZ3Pf/7zLtZWge2AXFwjChT0Vs466ywZZ+xMDPPnz3exPDA35GK9U+vXi7nt8Nm9Sxgf7RiLgsgj3+HovURo3LQjjv3eKcvSUV9XCc1B7RR7RlhonH3j1FNdLA7vXnxuYPlJW22sVeLlTjj+eJk6WZ4939gBAAAAAAAoKA52AAAAAAAACoqDHQAAAAAAgILiYAcAAAAAAKCgONgBAAAAAAAoqEJ2xdp2/gIZ/9knfNX/ei1wdtXlO119wDcqMTOzctnH/vtPdZmblPyv82M/XSRzF9Etq23tdKpqp8L5ROiA1Y7x+r8VqSq86nTVTienUKesDtUFItAzImv6eMt8twczs1bLd8AqBe6tMqXDxep13fkmNh8vl/X9xuIsf3gMOlzQQUu/z1T3KzOzzTd5hYu1At0iIvF8Qj2QItFpxHKdHYkxnQcaVvz6Yt8tq0hzxUSnxs7RRx8tczsS/9zqmX5wqstMqVTRN5H63NA4S8Q9tFJ9D6pbFmNn/ITW+yM+d6iLRZGe+4dr/snP7NR73izzc04z1mOsmfrN9HnnfVfm9vYulnFo6rmHmmOOdsn3n55epEeIVhJrVSnQFUvNQ7qf6OgxN700Nc5OPfU0mRtby8WSYKcrH4vKgU7VIjdJQquVv0Yz09c94QTfLauI44Fv7AAAAAAAABQUBzsAAAAAAAAFxcEOAAAAAABAQXGwAwAAAAAAUFATvniyKtT0sw/o4nCJKBS23pz1ZO7qlStcbFltSOZ+bN8ZLnbJtf7nzcw6K1NcbFgUWDUz++RF97jYHUuWyNy1zXgVM279ZysZL736gXF5vfGS37eli0VbPzgurzVRi4eFih+PVi6KzaZ5oIhb5t/bHSVdsbAhrttM9dwwZUqPDzZ1acJm2nSxOBEV382s3vAlByulkZ/vP3LpZSPOXduoOev9Bx8kc1MxbkIuu8z/zrNQ9ctYPMvAa6lUNZ7NLFA6XJuo88VEEFrXjjnmGBdTRbP/1z+4UCswj8TyIQcuK6atUNF4E4W+k1jPe3Wx/zn3HF9Q2Yyx0y41no46QhfdHqz7uX+TTTeRuc8+tVRE/TpjZpa0/L45LXXL3Eyso2mg5un5PzjXxSio3N7eeLyKJwcL4Ibq1wqRmJvyrI0LhHSK2PDoL7u2zU2hcXbaab5Qchoo3l+O/fNUTRvMzLLIj4fYAsW0RaH+JLDvTkVHiCQwgIeH/et95SsnyNyJPB74xg4AAAAAAEBBcbADAAAAAABQUBzsAAAAAAAAFBQHOwAAAAAAAAXFwQ4AAAAAAEBBlV7uG/j/MqPiK1p3V/Vtr7uu74C14oXHZW6p1fKxxHe0MjO76m++6v9wNk3mzslXu1jSoTvUTO/gXM1s/DpgKePV/SpR3UdMNyCpdM+RuY2B510sC3QJGK8OWEro+bzcVeEfvvTSEeduceCBLhbs9yKK66uOe2ZmpdhfJerSlfzvO+ztLraspu9ir5/+ycVu+vRbZO4bz77Cxf55vH8tM7NtT/2jiz10ych/jwiTXYVERwYzs0QkX3rp5TJ3x5129tcNjMdEdLUKNKxQzZWCXZCiUHsVYe7ceS7W27v2dXtU86bqfmWm55em6bn/nDPPc7GorJ+baJhnlshUK4u5bNN1psrch5b2udhnjzpS5pbEf+7oo/XvQf3OXu51ZkITnWSaLd29auNXbOhizz/xlMwtl/0aluZ6H9uIfQfHLDDpdFX9vjtuBQbkyKectUro/aDeO6PtfmWmO2CF1rWymscCN1EWe1vft+1FUeQ/8+W5H0tmNuoOWGvjfKPGjup+ZabXqizXe94vn/Alnxvowpo2xXoX6LRYFR2wXrGO6CRrZg8u9Z/JTzrlFJlbKfm56NRT9e9hIq9VnCwAAAAAAAAUFAc7AAAAAAAABcXBDgAAAAAAQEFxsAMAAAAAAFBQE754sipx+sxwXWYOPLrUxeJI507rrrpYpa5Ldw3V/T3M1DUFbWXNF/Sq9ekiiM1MF5zC2FCFrEKFgKdU1nGxWmu5zL3jV192sTTVz7IS+fGQmi5C2BKFT3f5sC7claZ+TC1po6gewmbcf7+L/fz0j8rcfW+9z8X+tbf+fSdD/S6WDdZk7qJP+ULJ1YEVMvfvh+7qYqufXiimDwAAOHNJREFU07nrPPwfF/uHzES7VI3IP//5Kpk7NOArPFZEowAzs6WP+ff10uV63GSpv4lYVUk2Pd9E5YrOramKlKHqpmNQsRP2kx/8RMYfufpMF2vU9Xiodoiio+b3PmZmw0MDLtZR1eMhzf3fBD/yzV/L3NfO3cHFuns6ZC7aJCadLlEE28xs2VMPuVhPWT+Hpqi6XUr1XrqW+/FULeu/Gbdq/rqVit4fWx6Ir+Xa2c+NxQwttpoWBa5QEY1imjW9N77zWt8sIIl07jZ7L3yJO/y/qaGn6vKaTZxit8XiR9XXT/SficzMLvjMHi7WN6w/Z3eKZ59FurD61Kqfc/JYXzcSTQiOPvNbMvcjn/qcf61puqnSRMY3dgAAAAAAAAqKgx0AAAAAAICC4mAHAAAAAACgoDjYAQAAAAAAKCgOdgAAAAAAAApqwnfFWikKXUczN5G56cCTLtaIp8ncPPVnWkmHrvrfEF2xclFp28ysP5/uYtOm+c5IZmbL66Ga9WhHO5XtKyV9lpnFq13s7ou/KHPjxHc3ihP9LPMB/+y79JC0LPNvx9t/fqzM3f4Q3S1LUb+fefPnydxcdMopki0WHqj/QTyeKNAzopH7+HoV3Unmb3sucLGs3ilzZ3b6qv+zpnbL3Oef93PRtG5dnb+VdbnYep26S06tyZyzJj32h5NkPIn9+jGc6mcTt4ZcrFzS4zHu9GMkG/I/b2ZWj/xcWAl0kZyz99dd7J93/VPmKjNmzJDxlStXjvgak9m3vu07XSXi+ZiZbfoWvyZ0VPVWLsv982wGWsTEYvjlge435ZKfcyzX+5zb/nGni+23334yF+3yz+eUd+v9cavkO5zFpUGZm+QiNzAeh+v+uXdUAuNRda5JdWeuc7+vu4euTdZkR9NETQCmm5M9c91lMnf5wMMutt1BJ8nc17/tfS72wNU/lrkrb/qZi2365o/J3AHZhUvPeer3e+dtd8jcjql6XzdpBT4KfOH441ysK3CS8LEf3iqieh6JTMwNgXvorPhuWbWm7qiWyblMd9A69bRvuNjCA9+rb2IC4xs7AAAAAAAABcXBDgAAAAAAQEFxsAMAAAAAAFBQHOwAAAAAAAAU1IQvnqx89rvXyLgqQ9oI1ApNxJFWKVA4tlPUdmvo2kvWUgVZQ4V1Q5WhMG4auf6dX/+DI13s4D/sIHN/vO9iF+vuCRTinSYKlHbrt92BF77SxS7Yz7+WmVnJ1w5rS6iE7uQdkf5/3HXffSP+6TzRxWqnlnyR4v/ceYXMfSj3Y2G3PQ6QuZ0zfLG/KNWTzoN3/MnFBjNdSC4PPnmMh7ipi1i3El8Y9I6//Fzmpql/s79hvw/K3M4hP24aqS5CeudfLvD3lfpCg2ZmWaCw80hFk3jYhQqcHnPMMS7W3+cL77/I/4LS6iyZmT3ni1Y/9e+7ZG5D7Gl22O8QmTs87Nel1c/+W+Y+98ADLtbMdPHkV++2v4v19/XJXPU7C/1+22maMHn5cZNX9Pu9lPv149Y/XSRzE3HdXd/8EZlbKftx00r1vHfbn3/l7yvSm5k0nby7kZFqZ4yr90k7v8FQ7sp/fN/FVmVLZe7G0/36sfSvJwVecKoL1RqPydR+84WLn/jryTJ3nd1905NUb4ekX1xxtYx/8kPvGflFJqjQXHraqb4Zy6pVvqHMi/zc0KrMlpmt//jP6vc/dL/MHW42XWzvwD6nnPrx8OTdf5W5zz/v/x9D0bDM3Xafd7lY6Pdw2mn+dzZR1iq+sQMAAAAAAFBQHOwAAAAAAAAUFAc7AAAAAAAABcXBDgAAAAAAQEFxsAMAAAAAAFBQE6YrVqia9FZTfAXurx+0vcxdUZnpYof+8C8yN/bNQ+xbH9lL5lb7n3ax0qxNZO5nzr/OxaZFVPd/Kapi+FhUF58/b56L3X7piTJ39ozpLtZa/aTM/cRlvpr/hQeukrmzZvhOFI1VuntIUnvWxQ79re5w0Wqjyr+yePESGVe/9yJ1H3n40stkfIuFC0d8jT//8HAXa7Z0W5++oSEXO/znz8jc33/Nd4dZ3q+7h3R0+TP3KNDd6JhfPuZil5/8Tpmb2RMyjpELzU2NG05ysVrsuzeYmUW5nwPeffpjMvfpSz7kYtUO3aWtUau7WB7oyrjw2/71HrxYd6Fo2cg7yCnNpp7z1jY/uuBHMv7kH89wsVKH7lCWR/53ef4i3aXmmLf5zo6PX6HXwOG670rSKumxc8Ei39nkyLfvLHNbub/GrbfdKnN3fMOOMr62C805tZv8uIlNbw6i2O9D33zqQzJ3+UV+zrHAPjZv+j1OUtEfLfY71Y+bp37xMZmbme7ItrYLjQX1Tg1/8hDZnfqZDQ36Tn5f7fWdOM3M1in59eerO7xV5sa1QRerT9X38JVbr3SxztjvvczMcvHZrh1HfkaMfTMbHPT3O2mI4XDa6afK1O9+dB8Xiyu6s93y1b774R8Dv8aPvm4zF7vp3E/J3Mee8F0ZLTDnXFVf7mKf3mELmaveL9f8RXfh3uuN+rxgIuAbOwAAAAAAAAXFwQ4AAAAAAEBBcbADAAAAAABQUBzsAAAAAAAAFNSEKZ4ccvQ7fAHczs4OnVz3hbss1sX/ekSVpKmtAZkbZb4aV1zXFaBKsf+VVoIlzEZZAXcSG6+CvUmsf+crnn/exR758zkyd70FH3axSmm2zB0a9K9XTvR4WHLV8S627R4Hy9zxUqRCyeMlU+fdgcKR3aJo3NVn6+J73VN87lCgKHOz6eecaqIL1F39XV9grlTyhVDNTFdYxJiIE18oudXvC/eZmZWm+UL/j//ZF0I1M+vqFEVt67pwZNz0800e6XHz0NWn+9eq6HGT2+gqUsYxf0N6KdNm+MLo/X2BZ1ya5mJffP+7ZG5HPuxiK02Ph5J49pXA2Pn8B3zB207zhTJfRPOI8RJX/fs9C2zrmy3/HAavOUXmZp2+cHeeBAqgR35uaGZ6nzV0g59zoqouEs64ac+SNpqQqN9td+C9Pl18WLr4yBtl7o8u8sX3s4bedLSqPl7p1+vMJUfd7GLf/IHeG6fRnT7IUBoz683sdrFVw3qtGljtC6vvv8U2Mjd5ZrWL1fqWydxOsZHtW7FC5r53O9+0JF6hG5xMloHCbgsAAAAAAKCgONgBAAAAAAAoKA52AAAAAAAACoqDHQAAAAAAgILiYAcAAAAAAKCgot7e3glRBjpcvd27+MOvk/FIHFOVU12RPav4eN4QXbXMLKuK10p0Jf/WqpqLVad0ydz3/uQfLkZXorGz7QI/prJcj4d/XHSMi33sWj3OLtz7Xy5WDXQhyjL/ekmgw8xh123tYue++VGZu+1BX3Ox3sWMnS0WLpTxhy+91MXamXNuvPAIGU8bvup/JdBBq5H7eBToRJH3+3kkCly33OO7MQ23dFeSfT97gYv1Llosc6G1M25W33y2jOeZ71ZU7RQLjZmpv7/Uh/ValWS+I05quptNS3SMjALdbNbZ98sutuSekY+bqVOnynhfX6iT0sSknv0xx/i1w8zszDPPHNVrvXDDyTKetvz6kYvOnWZmuZxz9OtFouteaHMYiw5LWaDz2fr7nhi4ysh85jOfkfEf/OAHLjZZ90/BOUc8y9pt35apiXo8gT/txuLBZ2LchW4iz3VuTVy3s6K7eFV2/oKLLWGtCmpnXVJTQBLrvcjy285ysVrLd/EzM+sp+W7BtcBnMDUe00DuqprvhLzRDD3Gqq/7rIuJaTBo0aJFMp4EupJOVGo8nHbaaTL3+ON9R952XP6pHWW8mvvxEAU6wbYSv/eI1Id6M4sCn+OUqWKS64v0PudtP/Kf7drx5S/7fZKZ2Smn+O6D47lW8Y0dAAAAAACAguJgBwAAAAAAoKA42AEAAAAAACgoDnYAAAAAAAAKSlctexmECgmpAlBv3WMdmXvlX59wMVG71szM4poo+BYo1PTBnyzRFxF+ccg2LlYb6h/xz2Ps3LPIj6lQgbmeqn8rXPTmf8pcVcQ2z/TYaUz1hW1D1Su/t8+9LhZ6g4q6pzBdJDmkrTnn0O/J3N+d9V8uNixLE5quRBoYC/t/4cKR/byZ/el7h/rLBgohWhoqgImRamfcRLEvgm1mFiW+UHJtSBdgV3UCS7meb6a96fMyrrxww+n+uhVfpNLMLA8WTh2ZUDFVhF1+jS7k+N59/B5Ddo4ICRRhX29fX5A/VGh56TUnuVjSRkFLtKedOadUChTvF9NLHJhHMlFtNgusKT27+CLHIQO3fUvcV6Dwd6AgOEaunXGTBt6/9dQ3iLBIF+QfSP14Ksuq3WZRn79uObB36pni19HVemlti/r9TJkyReYODvpCwIUzTlN0kuqHkaa+yVBuunCx6vFQDnzQOeAnYlwH/m9XfNiP9TgKNaoYnSi0YK5hfGMHAAAAAACgoDjYAQAAAAAAKCgOdgAAAAAAAAqKgx0AAAAAAICC4mAHAAAAAACgoCZMV6y2xLqi9f57buxif77+EZmbicYBqtuRmdklH9zaxRpDolK8mVmr7kJv2/MVOvdi3wUJL49IdBWplnWHmHoqyrcHjkh3OeDrLnbHlSfJ3Cz2FeSjRFdZzwOF5TE+mk09N7zzyB+6WFTRg+E33/rMiF/v2guOcrFaoKNV1vL39u7PnTfi18L4KQW6OiTm14lmXpa5LfPxPNAirf/aM8R1A5OTiCe5v6+x0N8/MC7XncyiTE/y//3H213skLdsL3M740ArPeGZP3/RxUqBoROJFiZX3Do++5murq5xue5k1RTrgZlZFvnxFOW601UW+XgUmHOGbvGdrtJQY0jRealS1R2W0J5QB6zRylM/Fv71wIMyd+5Wm7tYM9BRcb39jnexZ/5yauAexIAKrGuioVtbJkX3q5BR/m5CSmX9LPqH+lxsSlXndpX95/rM9Nj57cd9p6spZZ0bqQ/78fh0qg51VFvT+MYOAAAAAABAQXGwAwAAAAAAUFAc7AAAAAAAABQUBzsAAAAAAAAFVcjiycPDuhCjqjP7pp3WkbnXLPEFskrNpsytq4pTnbqAc+fMaS72n5X6uphIfIG4eqoLZMu6gIEj0nt+4wtSWj1QoFRUfWulvqCy2bjVQENAHOnCbKl4EGmgsvU7vnC+izUCc44sABgoSGmiQCr1KCeGZkOPm7qYb2oDy2Tup0++0sXesL0vUmmmiypHkR44J/3kGhebPWOqzFXmzvUFDNs1XgU/J4Nyl35us6NOF7t50aMyt1nzW7woHg684sgnHTWqm2lP4LqjQ+Ht9sSBJiBx4jcpUR5Y10Q4Duw6crH+RIFxk4u5KA9sngL/DbQhNEereXfuvPkyt5z4tWrB1lvK3CT3+5k803ucpTee7GKqKLuZ2ew9v+SvKzPb084axloVVurUz3h25NefLNJNIp5PZ7tYT7ZKv56o+V5XRZLNrCYKO0f10GZ6dFavXj0u120X39gBAAAAAAAoKA52AAAAAAAACoqDHQAAAAAAgILiYAcAAAAAAKCgONgBAAAAAAAoqEJ2xfrXvx6R8d2238LFVqcdMndK2udi7/3Zf2RuKRFV/1NdVfvSo17vYq+crquAY82LYn2WWY59J6NGqA1R7OOtA98lUxtlXy1+ZetZmbvexbe7WJ7prhXBDkkYF3lZ/8Ij0fUoDlTcb5V9x4ejd1lX5g6tWuFije5ZMvendy51sXJZT+31Bu2y1qSBFf0y3rPODBer9PiOimZmpx59gIvtfsh39AuKzjfLmrq739InH3OxwSHdMWmo7ufHclm0pgjY9Fv+/2Bm1im6ktB95EVTuvV4aNR8541WQ3fiyyK//vzo51fL3L7hIRfrLPkOXGZmR39moYuVqrpTaFLyc1Ec6NSm9CT+vvASRCcaM7M09WOhJPY9ZmaJ6NrXufOxMrcius60GrpDTd8/ThP3pe9BddBCe9qZS0O/7bwp/qWk99Fx7PdDJ77r2zpXdDH675rvVmxm9q/7/P/jFVtsLXMf/te9/rUqIx9LG5z1cRmfyVoVNDSg9w2dnX6cVDPd6be7sdzF3nbBv/QLinkrzvSYvPrIXVys0q0vm5T9Z/WkjXloWqL3e2sa39gBAAAAAAAoKA52AAAAAAAACoqDHQAAAAAAgILiYAcAAAAAAKCgClk8edkqXXzpln887GKtVBdxWz7sC/1d+tHXyNxMXKOvVpO5sShe+cd7fSFUvDyWLF4s41uIwmiLL/mizC2JWlr5r38nc7tEbmemiwVGonzd/INPkbm9SyjatiYlgRrWsSgimAWKrTVSf5Gzb3lOX1cW+9NFt1XVw3qTIskTwZSpvkiymVlD1DNOc/13lldsvLmL3XHl1/QLioKU681eR6ZuumC+v6+mXi9X9flmA2OhaMUn1f3OFWuHmdkxxxzjYmeeeeaIX2vn+ZvJ+C13POhimQXe75kvmPtf79tPpsZiYYsjPSaHh/3+p3+wLnPTlr83vQKafepTn3KxM39wvswt2thZYwL7i7JYl9JcF0DPzc8Dg7d+S+aqNTCN9DxiuV8Ds9DHkDxwDYyLJUv03nid+QtcbOUteixkYt/xtSuOl7mqKO3Jid479Wy9jX8tMZbGU9Hmm3bWqtNO80XNjz9ePzellfXIeKPmn9HwkP7sXO6Z7mJXfGxLmZuLKa6kPpiZWX/NF3YuR7qhUdr062VorTrhhBNc7PhTTpW5a3rs8I0dAAAAAACAguJgBwAAAAAAoKA42AEAAAAAACgoDnYAAAAAAAAKioMdAAAAAACAgipkV6y4Q1fVXjHY4WIzp4j2I2a21Qxfvf3Zhu+UZWaWiwr/3d3dMre07CkX+/DPnpC5RauyvrZpNnWXjwUH+c4m91wSqiDvu06ojhNmZvMX+orqjJGJ4crzfLcWM7N3HKE6tujq/LMqfiz013Q3m8gX57c80CWkKjrx9ZvuGMF4WrMy2d3MLK77XgtRrDvUpI0BF+vqWVfmqrmlv6Hv4bk/ftXfw85Hy1zGzZq37iz93PZ8w1YuduPt98vcVub3REms55FITBmiyZqZmfVM8df96Ik/1sliPjzmGD3OVNcwxl57ymXd8aVW9/sZ1QnNzCwW60ck1hkzszT1c1kSBzpDtvx1u3fz3WXMeO4Thdp3ZIEOjrPe6NeUgdu+IXMHRKfF7h7dXSkW42nxIsbHRPHKzfR4eOxxf8TQ1aHnhuHGkIuVE70nKol9VaulF6vpHT6+z9l/l7mK6hhmpruGTZQ5i2/sAAAAAAAAFBQHOwAAAAAAAAXFwQ4AAAAAAEBBcbADAAAAAABQUIUsntzfp8+jpnf6gkrPDVRk7kd/9R8X06Vy26PKN02Ugkp4CaKeV65rfNldv/qCiy04SBfYagfjZOJqpHoeSVVB41gXLl42oONaoGqpUBcFKTExDA/q+NROv/RGgb+z9Ox5jM8VBf3bpQrjMge1L/Q7mzt3rosdc4x/lma6aPDSZ3WTiJmzO11sjx19QWUzs9e+7UQXWzXki92OiUgvmEcc6Qslq/+vGeNvLDRaeh7pFAVH66l+Zp07+YLGWaAg/2jxzCe2WKw1UeArAX1//46LTdnxc6O+B8bI2GhnrTrt9NNl7vHHHedid9/rCx+bmW25uW9I1L9UD54jfu3v7YnBcdrbBtaqk0/xDWxUkWSziT0m+cYOAAAAAABAQXGwAwAAAAAAUFAc7AAAAAAAABQUBzsAAAAAAAAFxcEOAAAAAABAQRWyK1bnrPVkfHV/n4t1d+vOEsqSCVzlGuNLnXDOmqrPPVf3+64i9/xKdzvZ7v2++wfjrHiqZd0V64pz/XN/2+Fnjfr1kthX7U9VG6OAiVyxf20ybdYUGR8c9EtvtbMVuIp/7ouX8Hwnu46q7tyxcnnTxSLRZc3MrG/YdxWJAx1BMtHh76ij9brWjrPP8msg89P4yVI/PszMhrPExeIk0AtWDJFe5py1kpot8lyPsST2e+bBO8+Rud2vO8LF2BtPIG003pw9a7aMP/SMbwva3aHnnFWiA9bUwOv5T/pm3zh19J2Jv3SC74BVxLWKb+wAAAAAAAAUFAc7AAAAAAAABcXBDgAAAAAAQEFxsAMAAAAAAFBQhSyebLVhGa6WfIHToSF9iZwjLfxffIm44bovNmhmNq1bF0RV2qg/hgkszRoyHosHfNU5n5G5+3zmey5WxMJsGLlsUC9AnSIWpXpRikQhbUx+ken1p6PsY0mqC2+XSyPf6Bz+uSNd7MwzfeHjdjHHrVl5oDi2irbSqsyNEzbIeFGUi6LbkZiEzMzqvgCuHnnsjSe+kT+hrKkLIs+s+COGLl1329I2tjmniULJxx/vCx+3a7KsVczeAAAAAAAABcXBDgAAAAAAQEFxsAMAAAAAAFBQHOwAAAAAAAAUFAc7AAAAAAAABRX19vZSnBwAAAAAAKCA+MYOAAAAAABAQXGwAwAAAAAAUFAc7AAAAAAAABQUBzsAAAAAAAAFxcEOAAAAAABAQXGwAwAAAAAAUFAc7AAAAAAAABQUBzsAAAAAAAAFxcEOAAAAAABAQXGwAwAAAAAAUFAc7AAAAAAAABQUBzsAAAAAAAAFxcEOAAAAAABAQXGwAwAAAAAAUFAc7AAAAAAAABQUBzsAAAAAAAAFxcEOAAAAAABAQXGwAwAAAAAAUFAc7AAAAAAAABQUBzsAAAAAAAAFxcEOAAAAAABAQXGwAwAAAAAAUFAc7AAAAAAAABQUBzsAAAAAAAAFxcEOAAAAAABAQXGwAwAAAAAAUFCll/sGAACANnfu3FH9fG9v7xjdCYC1wYL581wsz/NAduQii5csGeM7AgCMBN/YAQAAAAAAKCgOdgAAAAAAAAqKgx0AAAAAAICC4mAHAAAAAACgoDjYAQAAAAAAKCi6YgEAsAa10+lq4cKFI85VnWvaeS06aE186nn6vkQvCvUxGg+MnTWvvY55apToEbLVtm8Z+VVj//fh4H1F4h6C3bY8xhgAvDS+sQMAAAAAAFBQHOwAAAAAAAAUFAc7AAAAAAAABcXBDgAAAAAAQEFNquLJ8+fPdzFVTPKl4kokCr618/MUfAMmpx1f/wYXqzVrI/750CwSReLMPc9GfN3F9ywacS7GT6iI6MIDD3Sx0FjQS00gWyQfuNC/lplZJIqphu6XNWzNCz2LnXfe2cU233wLmZuJ8RC1VVI5UJZZhBk74yf0u22nyLF66sGi22Lc3H/xn2Tuqw85wMW2XLD/iO9LFlQ2fW+MsYlhRtflMp5lftyUYj3ftFL/hKNI566q6TUME1t7xd3XnMk+X/CNHQAAAAAAgILiYAcAAAAAAKCgONgBAAAAAAAoKA52AAAAAAAACoqDHQAAAAAAgIIqZFesUKXtRw6e7WKVvCVz81bqYuWKPufKUh/PAtXbE1HKf30q+RdSaJzFoouD6j5ipjs7tNOThDEyMSyYO0/G3/QW3/1jRldD5jZX112sVNVzThJVXCzq0COnlFZdbMFc3yHQzGxR72IZx+ip+WLhgQtlbhaJpTfyz9HMLM8GRTCwdKd+jEXJNJkamc89UHTrMtP/N+amsaN+v7vuuqvM3XzzTV0sTXXHvEQMk6wV7IU0wphuZHTIBz4gcxk746ed/UVLDJGK+X2wmVlfkrjYpgfvK3PjyF+jGuoaK7o9hjrMqm60WPOmd/3WxeLAKCv5YWOpHmJWUh+WAmaJLlzLh94z4p/H+Ap/VhKxXD/3lvpMHchVs1wp0ONPfVaf7N31+MYOAAAAAABAQXGwAwAAAAAAUFAc7AAAAAAAABQUBzsAAAAAAAAFFfX29rZTy3WNmyeKHD12yByZG2dNF4sCBZVyE0WV83LgLkQx1CiQG/nrxiYqipnZhr9a6WKTpXhT0cyd54vjRqGifrE/D128eJHMnTffF7ENXTcXYzVUWJBxMn7mikLJ716oi+D2r37OxTbc6DUyd+WKx1ys0tCFluNmn//50noyt1r1c07W1OPm+quucbE7llBQuR2hwnsLxRhppqEi+/69HqlKt2Zmua8+mYeKJ2eqeLIvxP0iUdUyMN9kovDq5ZdfKnOZm9qnxtQhh7xf5qpHFNrEXfrrX7tYGipsK+N6/5SIqpiZGiQvcW8KY6c9atwMN/w+2Mysu3uKi7WGBmRu0uVz6wN+TTIzm7XOOi62fNkqmVvp7nKx5lBN5pZEJV7Gx/iZM/U3Mt5s+HUiifVnmjzz7/ZgDexEfIYSn+HM9PoTuu7yYd0AAGNDzTmxKIpuZpbH/sGtWHSFzF32+L9dbMu3fknmRmJVUYWazczu/8M3XWzewV+UuUOiT0XvkuLNOXxjBwAAAAAAoKA42AEAAAAAACgoDnYAAAAAAAAKioMdAAAAAACAguJgBwAAAAAAoKAmTFesUKeR7+7Y4WI91UCnBhXM9dlVEvlK73HgnKtuvrJ30hIdRcwsF5X881xXkI/yIRf7wK10QRpP80X3KzPd+0MU+A/KY92lZsk9//T3MH+HwFV8R4Ak0WOylfoxyRgZG2ou2muvnWXuzPU3c7Hh1brLR110U5tS0p1kBlY+72Jz1llf5q4Qc9HUDj0ef//rS1zsbsZNkBoLqvuVmW4qFOrU8Nvf/sEHI90hzfJOEdRjLBdr1bRO9fNmq4f9uDnwve+WuWkqukgGXHqZ75bF3PTS1Dj7wAcPkbm5mDJ+ffHFMnennXf1Px+NvCtWaAmMxYoZ6lIT6uyo3HrrrS7G2AlTHRytrOf+WOxRXr3NPjI3z/1epJnqvUgp8c+30dLPvFr2g6QZ2KPHYi574O6rZS5jZPRmdeguh2p3nFSqMlPtZpp1va6Vy/4aWUt3xVINtPKmzm3lfq1aVddzKdon5xwxB5iZLb/nChdb+vD9Mrdc8uOsv6H3x7uIrlb3XnGWzG3lfvyVAl9pee2Bx7rYP/9RvLmFb+wAAAAAAAAUFAc7AAAAAAAABcXBDgAAAAAAQEFxsAMAAAAAAFBQusraBPem9XQxyL8/44tm7bKRL75sZvb3p33hyDdsoF/vb8/XXWyH2aKal5nd8ayP7bapvt87nvLFkzG+skAhR1X3MQpUg0xEOBXFBs3MdtjOF0rORZHk0D1kokhyKBfj594lD8n48r/d4WJZU88N60zrcbFl/atk7tv33t3FLr3yKplbif0YiZOKzFUjL1S4noKUo3ftdbfI+LNLrnWxTj1srC7aAkS6VYC16sMulpoudNkUf9c57Isny9xMVJLv7OySuRgbV/7udzJeH/bFIKslvZV77H5fvP+F1boQtuoHEVmgSYRYRqOKnnNaNT8mMVb8gzhmp6kys2eKj337uitlbkfFzy+DNT0WEtEwRDV3MDOLRTX5ZqBA6sh3SWjXzM7LfDDSa0o9FcWxh3Tx/nWn+s9braaem9KGf8JxJTDGxJSVi+LLL1535IX+8T/hx0M10Dxm1SO3u1jW0uMsa/p1YmZZb4pmruc/rDdqK2VuVPbzy4pl/TI3zSbH/MI3dgAAAAAAAAqKgx0AAAAAAICC4mAHAAAAAACgoDjYAQAAAAAAKCgOdgAAAAAAAApqwnTFCnVgUR1bPvGds2TuWyNfZT3PdcX9A8zHs1RXxH5rRXTWauiq8G9XLZMC93Dg7se7WG/v3TIXY+Ouo34k41HuO3p0lXQHrWWrnnexmXOm6euqjg8lPc66El8BftWwriCvulb4XikYKy+sWiXjh3ft7WKpauFgZlndn6P/ML9O5l711xv8z+tpxD6avNHFokD3kNJUP27O7fuTvrDQ2ak7/A0P0/nmsssudbGkpLsyznqNf2ZJojuCWC66f8S+U+OLueK5B7r75aK1URwYN63Uj+k999xD3wPGxIprdYeyPPZrVT3TPYSqoqtVLH7ezKwR+fmplOkxqUZfKLdH7HPuvod9znh5vmtTGX+h6Z/aB3fbUObWxSeDVqbXtaTpdx6tsh5jnaLrTGDWs59cf6+L9fYuCWSjHaqrXSmwL501bYaLLbrsPpn7XMdsFxsaWCFzs9Q/+f0/vZ3Mvflni1wszUWbNzPb+s3dPhhYLjE27vzlkTIexf4zTU9XoGtZ5J9bq643vVed8jYX66zqXNWsMZ4pxoiZtYb1Z76i4Rs7AAAAAAAABcXBDgAAAAAAQEFxsAMAAAAAAFBQHOwAAAAAAAAU1IQpntyOJNWFOtPEn1Pd8uefy9w88kWSdt3nwzI3bvjChFmki9r+7c8/87mmCzKFiqFibGQ/u93Flm7wiMxdeu8yFzvjn+vL3L1mXetiCzfbU+bO3HyWiz19/zMy98Q/9LjY7nOukbkH7LePi835ma4QF3/4DTIOLSr593Yc68KCW+a+WGAjD5yXR6IIbqBy5L1Xf9vFXnvAMfoezI/TtCVey8y64lCpypEJ1OEtPFWk38xs4cKFLjY8PBS4in/uKxdfLjOnzvdrTbkyKHObqS/MnqZ6jA3fe4mLdaji/2b2h9/82MUiVajZzN553Ln+tQIFs9XvLPT7DTVNgJllej5vxf4Z/e3PFwWu4fceu7/lIzK1nPoNSS3W4+z2a37qYlFg3mOfM3qh949yybWL9T+I4sd5YF0zsWeNAs8xEQ1DMjHuzMxMvF5of6wwj4wN9RtvNHRR28eufMrFOrv9vtbMrL56lYtNUfseM9v0XdNd7LafPyhzu7pnulhtZZ/M7emc42LLBmQqXkLovaZmjO0PPlPmttQ8Etgeq+klEsXWzczyeLrIXSlzy+Kjum41oBVxzuEbOwAAAAAAAAXFwQ4AAAAAAEBBcbADAAAAAABQUBzsAAAAAAAAFBQHOwAAAAAAAAU1YbpihSpPD99yqos1Yt2RStXP3u+b98rcFy7+iIsl5UBXB9WBJNAiYP9TfUeCF379CZmb2sStqj0ZRKKFz6zZvouRmdm/Zz7gYt1d68jce7r2d7HGdRfL3A/u/TYXu+2Zu2Vufzrfxa7P95S5u9UaLjZHvgMQEppznrvy8z73vT+QuRvP8LFqNF3mDrZ8Lf5INxayzqbv+JCl+vluvZ7vGDGc6O5XlVh02unX96A0m7pzxtrkD3/4o4zXH77PxVrN5foimX8++bB+ZnM2qbnY0ud8pywzs2bJD8i0pluCvOuEC13siau+I3PVnd1+u+86aGb2ile8QsYRnnPqt5/lYqmVZW6e+73HAd/Ue4nnL/uYi0WBTkhq+CXitczM9v/mEv9al39c5qa2SMYxeoe+aRMX6ynpfey51z3hYsOiE5qZWaXkx0gU6F716T39PazMp8rcn/7Vj9POit7PN0MtIzFqs6Z3udi9v39Y5qZxxcXuvl53e8xiP2ftsNs7ZO4zt4nukpHeX9x+7ZUuFnfqj69b7P9+GcfYWPTrr7nY1M7VMneLd53tYnmq55FIdGAMfNS3By/5nIu1Yj2XbfWuk12sHDj5aKdb1kTGN3YAAAAAAAAKioMdAAAAAACAguJgBwAAAAAAoKA42AEAAAAAACioCVM8OSQpdbpY8DRK1ARcfcOZMrWS+AJOecsXpH3xJnzxsKSlC7utvuEcf1uxLhZlgWJ0aE/2M13EsyUKA/70t5fJ3DT1RWXv+efVMneb17/XxaoVUZTWzC64/OcuVon02+6hB/z/Y9PSPjL33Vt/2sWW3LFU5qrfT/zhHWUuzFpRj4vd+atPydzXfPA8F6u3dAHAipig7v7Vl2RuWht0sQev/JbMffW7v+BiSaTnllrL30Nv78iLuMeiwB1etKLPP7NyUpW5/ffd4GKzttlB5j77tH+Wq/+lCzg3G/75lMu+UKaZWWPJ71ysHnfLXIwvVTgyCxSZTESJx4EbffFlM7NUNISoxLpEZK3h4x2JLrS8Suyroqou9sw+Z/yURXHr+pB+vh/afWsXu/CWf8vcWIy9j+z+KplbH/SF/ruqen98yJsWuNhvb/ANR0LaWasQ9thjy1xMbA3MzKyz0xfk//LFj8ncS795sIvVm3pvPEVUsB0Uc5CZ2Vd//aCLXfTN98ncWlMUZUbbQq1Y1p3qPw+vGPINPMzMFv334S427yN+z2xmVhJ71kevPEPmtkRDiEppisx94IoTXWzrd39d5ipFnHPYpQMAAAAAABQUBzsAAAAAAAAFxcEOAAAAAABAQXGwAwAAAAAAUFAc7AAAAAAAABRU1NvbOyFaFsydO3fEucN3fFfGs5avqB4n+uwqz308CpQBT2q+W1aW6ar/zQ5fMTwPdLeYuscxLta7aOQdAvCi/Oe6K5b6rVf94zEzs5Nv9h2H7mz6Cv9mZjvN+IOLZcuelrlx3OGDZX0T1/Xv72K7T71K5n52p6NdbEomXiuArljhOScqJS62TIwPM7P6gO/A0Crpzg5Jyz/3ONAxJqv5a6j7MjNb1Rx2sc5Ed17b/J2nutiSexbJXKVa1V2e6nXd+WIiUs994cKFMvfSSy8d1Ws9/8DjMp6lftzUcr0AVUR3P4v0upZNEZ2JAgtbJLrnlAO9MOa8ZisZH6l3vOMdMv773//exYrYhWKk2tnnDP7Nd9g0MyuLR5QFxkMsuiZZYO+Sl8TYyXSHv0yMkyTQMa+685EutoR9TpAaI61/bylzS6/x3YKO2WMjmdvI/FqTpHpNEc31LInFWDKzSHSYDf3NuNz0uY1A7nm3PuFik3luGA+h+ebp23yHs8dab5a59Qf9GCl16Q5ErX7fIa1U0s83Ec89TfXcNFzxnR33esfGMnfK7ENd7O57GDcvRY2T9D495yRb+znn6cuOlbmNst8vRqneYzRFuBrY85aG9Lqk9Ed+3oor+rpbvst3yyrinMM3dgAAAAAAAAqKgx0AAAAAAICC4mAHAAAAAACgoDjYAQAAAAAAKChdYfNlECpQpIo63fTbC2Xubu/8qIulLV2My0wUX4p1Uacpe/oixyF9ouBhHLiuqaKYaFveRvnveqDoVtwacLHXxz+Wudkqfx6aR7qobJL5wttW18V139R1uXgxPXa6zRdKnhBV0AuknTlneGC5zG00/HPPB/WTSCP/3LNAwdHXvMMXcQu574oT/XXH6cw+y5iz2tFq6PmmWvaFaqNA4UgriWU6UCx34y18UcyQZ/59n4vF0fjMIlGoM8Fapp05JynrZ5w2/TgJTCOWi3kgDly3c6cj9UWEodu+4+8rMH5z9jltUWOk9JqRF91ulfRzKLX8ezBP9F6k0sY08J0blo4498g91vf3FYX26Bit0HyzkZhveqY+KXOvPvswF0sHfcMGM7O45BtE/D/t3WuMXVUZxvF3730uc+nFwXIVqmDEALZoaCiYJgIKCREkWCgkxJR4STQxoDaCIgSFWCMCATEECCFivOCQFImI0mjA4oUSTYEmSJBogxW5tDDO7Zwz5+y9/OK391nJDNOZzDr9/z6+Xd1zOnudtddZPXmfLBJgk3dFU9tYKEDp99F/3vYPORZzJ9ecEyLhIqI2VupAmGVq61LXzwMV3JCZHvvey7a6Wuxz4Au/uMaPje21+gTf2AEAAAAAAEgUBzsAAAAAAACJ4mAHAAAAAAAgURzsAAAAAAAAJIqDHQAAAAAAgEQtmVSsuchlX26znY/8yNXOPG+THDud+VShWG7H6ztucbXBhk81MTPLgr/K04/qFC8sviqSHRWC75JelpFzT5EMFCLXfeCvr7rapSceIcd2h3wtL/R11XugJBdrwYSpN2V9qrPM1VYMjsixpejwn5vuzt/eeaur7X3VJ7eZmXUrf99bInHiQOh2dYoKIgr9nBhvTbtavejIsU2RNBKCTtuafuF5V5uI3LPKfL3TXpg1pNHQqRmIC5FEkJ5ImWlE5oP6v7tYSNX4k36fU0Q2RSGItSySdoL5m0uaWuwd3BXPmjLyEWAoluQqXCGSrup5Meu/XxX9nVCzFD0n5tPJp6yTY/Pcz6jYvqXM/HzKxFphZnbOlX69+c0dOoG4EKmKtZren9eKJD/WLjlqjpiZrRVrztlbHpRjf3vbRlcb6On5EESsVTfyqfxvP/2yq3VMrzkzbb/PaXX0dfslu5Nv7AAAAAAAACSKgx0AAAAAAIBEcbADAAAAAACQKA52AAAAAAAAEpVml6lIo8BS9PN64pc/kWNbue9UW++15vWyzMwy0diQlrZLSBY5yxT1LNZoWTSTC5WekxetO8zVeqJRs5lZJRoOFnXddLTsideWRV6vrGIuhprLZX3CBl2t3ZmQY79926irHTIy/7P1O369x9WOWP0BOVY1h1MNOOcq1tzzYJfX9LowHPx9rxW+ob+Z2ZXX3+Bq3XL+bf6aorHzTd+8at7XzUSjy1Zr/s/Wg00eWbmL3DefrEQDdTOzLPMNuYM19c8TS1GItJMsxT0eaOj5i8WVR/YBRV003c50I9Pp4OdILUQa54t5043M3bLye58i0iQci6w3I8uZ6kmb64+OTdGZPZZBsv1O3wA3i8zHrOtfWyh9cIWZWacXaySPhVLvjMt6a9q/31s1PXeOGfH7kf1TuiFybw7bn+WV34+vGnhDju2Xz0p8YwcAAAAAACBRHOwAAAAAAAAkioMdAAAAAACARHGwAwAAAAAAkCgOdgAAAAAAABKVZipW3SfRmJnlVdvVYglEg+W0q519s052GRApSK2gu3U/tuUkVwsi7QgHTr55vaxX9+90tRB0O/V2x3fSr9f1fauJ49A9L43p19D1869X09c99vhVrpZl+i0aRP92EVRiZmbF5tP0H2DWpsbHZH1l0//SJxp6fTr6KJ9wdue2l+TYKvfXHY+kPez4/R9drTE0IseGMOlqRWTeqHCVo2+/RI49UiRrkZRl0aSRxtCwq820dOrM7d/6iqsdetIpcmxzwCdLdCb1dfe/tMvVeiptz8zywq9Z0WAKsRAN5pFEHUSFoNf+zPzvMmR6n5ObT6oaPvUKPVY9liLpa2/tvNXVpjv6NWBx9SJ701D6tagRSahpiuTZ2373b/0DxRSJBHPZFR87ytUqkaSExZerWDwzq4n1fCayjzYx9T61+WY5dJn4XsGeSELao/d9yb+uMCXH9kuy0VKlfr+Tbf/Z28zsgq8/4GoPbb1Ujt0/6fdEJ156vRyb1fyzpjGj7/yL2652tT1jei+tEj1TxDd2AAAAAAAAEsXBDgAAAAAAQKI42AEAAAAAAEgUBzsAAAAAAACJSrJ58lnnXijrTzy2zdXySJOvzkzL1bZffbIcG6rZN6otxdiONfVgLLqi0GeZ1531HVf77pPXybGh8s0rjzvhnXJsJfpJ5pHzVNV+7Kp1X5NjZcdCehAumGLkOFmf2D/mauORhrljpW9k+oXzj5djs8KvI+8Y1k2Zz/jIBld793EflGP3vPysq4Xe/JueptQoWb3WNaL5s5nZpk2bXG10dHTWPyvSj9KqGf9uz8U9NzMLnY6rjb34vL6ueP6E6LrgAwS6kWa5VTn7OfKJCy5wtdGHH5ZjU5o3i048Z8zMMjWnskhAg2iqPPX092d93W6ksa2aDY1YF3YsqlDpuVBv+H1orFl6IRIirjzzXZGf56/RE42azUz+V3JWG9Jjsah27XpG1k/+0FpX23HPFjm2Vvdz4f77fPN/M5Nb2BBZb9TScvrnfiDHPvcMz5TF9vTdn5b1meYKVysj3a1blb/Jf3/4RjlWrTkDdR9OYmbWm3jN1VYP6rEh9Efrbb6xAwAAAAAAkCgOdgAAAAAAABLFwQ4AAAAAAECiONgBAAAAAABIFAc7AAAAAAAAiUoyFWum0F30zzh3o6s9/quH9EVynxxQBp0moIK1YvkPIfd/cv7WP8mxJIIsrHzzelfr/XCnHqtCpiI3+WdP7XO1y047XA8WXdbLTHf+H33Kd2+/ZsPsz17VvxcHRjsSOTa8wq9FoeVTjMzMtn7xYle79sZ75dggVpjxt1Rumtlbj1zraivPu0GOZc1ZXIMDOn2h3fGpMUWmH8e94lBX6/R0YlI0rlHo9nxixZEnvX/Wf18lhpnp1DDm3dwVeWQ+hJ6r5ZH4NZnyEYlJq3q+XpMRXGZBrIeD63T6Dfd+cQ0Xem2YmKm7Wr0WST0r/TUiAVpmmUiNrfmfZaZT9+7cvkeOZd4sDUEsAbHwoPWX3+JqT9wTScVS14isN+s/c6ur7X6W+bFUHLXqFVl/2X+ksTC0Uo4dGfTPtZlSPwNV+nQZdBJfrbHM1VZdeJMc2y9rDt/YAQAAAAAASBQHOwAAAAAAAIniYAcAAAAAACBRHOwAAAAAAAAkKsnmyZXqZmy6UeAZH/cNlc3Mmqd/1V9XdvOav35pyNQPapfrBsNr16xxtU2nHS3HXrjuSFf78VP/md8LM+bJUjY5oRtSHtIcdLUVy/WyOvLRb7ja58/Rc2wuVKNk5tLcxH5fa9S6cEmkafDPfdPgNydKOXbZsP8/ld6Mbx5oZnbih9e62r4x3ShwoVx0sf83qybJZsy9A6XUfW2tXvP7lEp1ODWzgVO3uFoIek7OF/d9afjvtA4BGVrh73u7o8fe9fheV1uY3THzZqnL5Y3Xs2HH3b5R8gbR+HiumCNLh/r0vfeVw+TY1atfd7V/vab3x8de9D1RjTwE56nf5xPf2AEAAAAAAEgUBzsAAAAAAACJ4mAHAAAAAAAgURzsAAAAAAAAJIqDHQAAAAAAgEQlmYqVZzoVq1db5mpVe0KODaKre793ykZcrfDpEPVCd/7v9nyn9k+uO1yOfegvr7nac8yz5Aw1p2R932TH1Rq5Xp+Uu7b79BEzs/ccOuBq/3yjLceybi1dywd9apqZ2di0T7XKezrpat+4SIbI9KM7Cz5Za6NItDLT6RYxDz7oE7CYdwurqvTzp9f1977KY0lX7HMONkOZTrqaHPdzZGjZ7BPSmDcHqdKvIYNN/Z2AdtvPpz/c65OyzMw2fNanZTHH0rR8xH/2NjPb+8qQq73vGL2PVZgPbw/f2AEAAAAAAEgUBzsAAAAAAACJ4mAHAAAAAAAgURzsAAAAAAAAJCrJ5slVEM0kzcx830izmm/eZGaWz6HBKfpfqHzTt1pkmtVrs587uv0lUjPUHJH14aavTc905dhCHKPvepbmcMmZw5s69HRz0pWiWXto1OVYmRUQWYIu3ugbJY+O+sbHc0UTw8UXMv0AUjOqCLphbhYJmkD/ygu95qwQ++OqHdnkAP83uHzY1Vo9/Z2AWiRwBP1D3eFuT334NhsQ2REvj+lGy3qjg7eDb+wAAAAAAAAkioMdAAAAAACARHGwAwAAAAAAkCgOdgAAAAAAABLFwQ4AAAAAAECist27d9PGHAAAAAAAIEF8YwcAAAAAACBRHOwAAAAAAAAkioMdAAAAAACARHGwAwAAAAAAkCgOdgAAAAAAABLFwQ4AAAAAAECi/gfeQkhEYM9M7AAAAABJRU5ErkJggg==\n"},"metadata":{"image/png":{"width":1142,"height":1213}},"output_type":"display_data"}],"execution_count":null},{"cell_type":"markdown","source":"The reconstruction to a matrix from its constituating NMF-factors has several effects on the resulting matrix. Above are the reconstructions of the original images, given by the NMF-method, for rank $d = \\{4, 16, 64, 144 \\}$, and the reconstruction plots are vastly different.\n\n$\\textbf{d=4}$: The reconstruction of the grid images from the rank $4$ NMF seem to grasp contours and the most dominant facial features, however the reconstructions are oddly homogenous. A peculiar observation is that the outline of the characters seem to be preserved, and not expanded nor shrinked, even for $d=4$ - which is surprising because other facial features seem so dissociated. What is the most elegant about this observation is that from a basis of 4 different features ($W$'s), the product produces so many distinct outlines (!). By simply looking at the outline of the initial features for the $d=4$ it seems \"impossible\" that a linear combination of only these features can produce all the reconstructions, because the outlines of the initial features seemed to be so clear cut. However by assessing the initial features with a digital colourmeasurer, very dim pixels become apparent, meaning that feature basises span a wider subspace than what the human eye can distinct. This can of course also be examined by assessing the matrices directly, however we thought that this, from a human point of view, was a fascinating and illustrational point to make about NMF. \n\n$\\textbf{d=16}:$ In the reconstruction of the grid images from the rank $16$ NMF, more details, such as more distinctive coloured features and sharper contours are apparent. The grid images still look grainy, however they are starting to resemble the original dataset. \n\n$\\textbf{d=64}:$ The reconstructions are recognizable and quite precise, however, there is some deviation from the original images. The skin colour on the faces vary with different shades. The colours look more diluted, and especially the stronger colours are not as bright and clear in the reconstructions. Overall, the original image look cleaner and sharper. Some features that were shared by multiple images appear differently in separate images in the reconstruction, meaning the adding of multiple features might have disturbed the appearance of each of them individually. Some features, however, seems to be extracted and reconstructed with high precision, such as the 3D-glasses.\n\nIt is of interest to give a quantitive measure of the compression of the dataset, and we do this by calculating the percentwise reduction in dataset size. The original matrix contains a total of $24 \\cdot 24 \\cdot 3 \\cdot 500 = 864000$ elements. The compressed $WH$ approximation contains a total of $24 \\cdot 24 \\cdot 3 \\cdot 64 + 64 \\cdot 500 = 142592$ elements. This corresponds to a compression of 83,5% of the original dataset, i.e. now storing the data in a dataset 16,5% the size of the original one. 6 times the number of images can be stored in the compressed $WH$ form, however, one must take into consideration the loss of data.\n\nIt is as expected that $d=64$ is not sufficient to yield a perfect reconstrution of the original images. The image matrix was found to have a rank of $373$, meaning significantly more basis vectors than 64 is required to extract all the information of the original images. However, the reconstructions are recognizable, and for certain objectives, such a compression is of very good use. What degree of precision is tolerable depends on what the data are to be used for. In the case of image compression, one would in most cases seek for a more precise reconstruction than the one showed in the plots above.\n\n$\\textbf{d=144}:$ The $d=144$ reconstruction is similar to the $d=64$ reconstruction in that the characters in a greater detail are starting to resemble the original dataset, however colours are slightly more crisp and popping, and the skin of the characters are slightly smoother for the $d=144$ reconstruction. The reconstruction still does not exactly equal the original image set, however, from a human standpoint, the characters are now distinct and unique, meaning that the characters from the reconstruction can unambigously be mapped onto the original dataset in a one to one mapping between the associated images.  \n\nAs discussed in earlier sections, a weakness of NMF is the enforcement of non-negativity. In the case of image processing, even though the orignal matrices are non-negative, they could, and most likely do, produce negative eigenvalues and eigenvectors. This means that linear combinations of some key features does not exclusively add together, but also subtract and cancel out. In practice, this could mean that if some basis vector contains the eyes, and another contains a hairstyle, and these two overlap for some pixels, we could have another basis vector with negative elements which ensures that in the overlapping of the hair and eyes, the eyes are hidden behind the hair. Because the NMF is exclusively an additive method, meaning the matrix is reconstructed by positive linear combinations of non-negative basis vectors, some features can overlap and disturb the appearance of one another. This is why in some cases, a perfect reconstruction is impossible with NMF, no matter how large $d$ is chosen.","metadata":{"tags":[],"cell_id":"56b16818c25447daa905f59160623513","deepnote_app_coordinates":{"h":5,"w":12,"x":0,"y":181},"deepnote_cell_type":"markdown"}},{"cell_type":"code","source":"def ex2e():\n    maxIterations = 1000 \n    kList = np.arange(0, maxIterations, 1)\n    dList = [16, 32, 64, 144]\n\n    plt.figure(figsize=(20, 5))\n    for d in dList:\n        norm = NMFImages(faces, d, maxIterations)[3]\n        plt.plot(kList, norm, label = f'd = {d}') \n    plt.legend()\n    plt.title(f'Norm as function of number of iterations in NMF', fontsize = 16)\n    plt.xlabel('Number of iterations, k', fontsize = 14)\n    plt.ylabel(r'$||A - W_k H_k||_F$', fontsize = 14)\n    plt.semilogy()\n    plt.grid()\n    plt.show()\nex2e()","metadata":{"tags":[],"cell_id":"cef548e8cc884cdf81df1d386847e2eb","source_hash":"1c90953a","execution_start":1649447500059,"execution_millis":235572,"deepnote_app_coordinates":{"h":5,"w":12,"x":0,"y":187},"deepnote_to_be_reexecuted":false,"deepnote_cell_type":"code"},"outputs":[{"data":{"text/plain":"<Figure size 1440x360 with 1 Axes>","image/png":"iVBORw0KGgoAAAANSUhEUgAABJkAAAFTCAYAAACagd1eAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAB9FElEQVR4nO3dd3gc1dnG4d+7VV2yLffeAdvYgLGpxvReQ+gfmJJACgFCCAGSQBJIQqiBAKGXQCAJCZ1QjekdbAjFFPdeZMtWL3u+P2ZXXq1W0qquJD/3lb125syZM++sdq3o4cysOecQERERERERERFpC1+6CxARERERERERke5PIZOIiIiIiIiIiLSZQiYREREREREREWkzhUwiIiIiIiIiItJmCplERERERERERKTNFDKJiIiIiIiIiEibKWQSEZG0M7NZZubMbKOZ9UrYFohuuyJN5XUJZraNmc02s03R1+OoNNUxxcyuMLPeSbZ16Z+TmV1qZkvMrMbM5qa7nlSZ2RwzeyPddTTHzAaY2ZNmVhR9L5zfSL+Z0e0z49rON7NjOqnUZDUVRN/XOybZNsfM5qShrCaZ2SIzu6+dx3Nm9tsk2640M5fQNifa/61Gxrs3un1ZI8dJfHT597iIiDQvkO4CRERE4uQDFwO/SHchXdD1wCjgOGAjMD9NdUwBLgceBIoStu0KLEvcoSsws2nAVcA1wOPA5rQW1DP9GtgLmAWsBBY10u8jvPfK53Ft5wNvAP/psOqaVoD3vl6GV1+8H3Z6Nak5GtjUAeOeb2Y3OefWpdB3M7CrmY1xzn0TazSzLOBYGv+cPQ9ckdDWEeciIiKdTCGTiIh0JS8A55rZDc651R1xADMLO+cqO2LsDrYt8Jpz7rl0F9IY59w76a6hCdtGn//qnFuQ1kq6oHb6XGwLzHPOPdZUJ+fcJqDD3yvt9Vl3zn3efK/O55z7uAOGfQ2YDlwCXJhC/0+A/sAp1A+NYrPSnscLFBOt6+L/XoiISCvpcjkREelKrow+/7K5jmY2zcxeMrMSMys1s5ejs1Xi+9xnZsvMbFcze8vMyoE/mdmI6OUZ55jZH8xslZltNrMHzSzLzMaY2fPRsb8xs9NSqKevmd1uZl+ZWZmZLTWzv5vZ4IR+48zsMTNbY2YV0cu3/mVmSf/DT+zSImAE8H+xS0vizm9Rkn3qXd4Td3nSEWb2FzNbF308aGYFCfsGzOxiM/s8Wt9aM3suerneLODeaNev4y5zGRHdt8HlcmZ2kJm9bWblZlZsZo+b2fgk9b5hZvuZ2UfR1+9/ZnZ0c697dP8m3wvR1+K+6Oq3yepMGG9R9LU5wcy+iI75gZntkaTuOY3sf1/ceuxy0N3M7J/R99pqM7sk7jX6OHqc981sp0bqOjL6ulSa2ZdmdlySPpPNu2RtQ/Q1f9PM9kzok/Rz0cTrYWZ2gZnNN7MqM1sZfR/lRbePiL4nZwJ7Jr4vkoxX73K56Ht4OHBy3L7xr1+bzin6c5wdfS+XRF/r0+L2HQEsjK7eGVfDrOj2Bj9nMxtv3ud4Y7Smd8zsoIQ+V0THGWtmz0SPvdjMfm1mvrh+OWZ2s3n/FlSa92/DS2a2TWM/k9jr1sj7bBcze8i8S2tXmNlNZpbR1FhxlgK3AT+0hH+7mvA3vJAp3ql4s9JKUxxDRER6CIVMIiLSlawE/gJ838yGN9bJzLYHXgV64V2acyqQB7xqZpMTuucDjwAPAwcDf4/bdgkwCDgN71Kf44G/Ao8Bz+BdjvIJcK+ZTWim9t5ARXTMg4CLgLHAmwl/4D0DDAZ+AById2lgJY3/To5dWrQWeDa6nGxmQCr+DDjgJOA3wHeibfEewbus7FngKOB7eJc1DYzWHgsCvxtXy8pkB4v+0f0MUIL32v4AmAi8keQP2NHRWq7HmwWxEviXmY1p6oRSfC/8EPhDdPmYaM13NTUusCfeTI5fRWv3A09bQijXQvcDn+K9rx4Hfm9mV+Ndwnd19DjZwONmFkrYdwxwE3Bd9By+AR4xs71jHcy7n9BbeO/F7+H9fNcDLyUJrpr6XCS6Cu/n8iJwOF54Mwt4JhqWrMR7TT8BPqaZ90USRwOr2DLrZVfgd+14TqOAR4GT8d7TTwF3mdk50e0r2TLz5g9xNTyTrFgzG4R3ad9k4MdsuYT1GTM7OMkujwGzo8d+HO+zFx9c3xAd4zfA/sDZwFy8S/ha42/At3jndBvwI7x/l1L1e6AG772f6vFGmdluUPf67As80MQ+Zl6gHf+wFtQoIiJdlXNODz300EMPPdL6wPuD1eH9Id0b7w+2e6LbAtFtV8T1fzTapyCuLQ/vHkH/iWu7L7rvkQnHGxFtn53Q/p9o+ylxbb3w/uC6vIXn5AeGRsc7OtpWGF0/ohWv0TLgvoS2+4BFSfrOAebErc+MHvf+hH5/wQvGLLq+T7TfT1L5WSXZlvhz+gD4GgjEtY0EqoHrE+qtBsbGtfUDaoFLm3ldUn0vnBWtb0QKr/UiYAPQK65tanT/kxp7nRP2vy9uPfaa/TquLQCsiZ73yLj2I6J990o4jgN2SXh/fQm8Htf2MvAFEEro9wXweHOfi0Zei954IWjie++UxPcyXvDS4PVIMmbs/Tgz4TV7MEnfdj0nvDA3ANyJd2lf4r8JZ6XweboW79+EMQk1zQc+imu7Ijrm6QnjfQq8ELf+P+I+D6k+mnif/Sah39PAVymO92B0+XdAFTA6un4l4JK8Lm9El1/DuxQV4OfAkuhrfR+wLMlxXJLHfi19DfTQQw899Oh6D81kEhGRLsU5V4Q3W+NUS7isKs4M4Gnn3Ma4/TYBT+LdeDheNd4fWcn8N2H9y+jz83HjbsALA4Y2V7uZ/cDM5plZCd4foUuim2LnsR5YAPzRzL5nZmObG7OdJc7M+BQI491TBeAAvD/27mzrgcwsG9gR+IdzribW7pxbCLxJw5/T1865r+P6rcF73Yc1c6iWvBda4u3ozz7m0+hzc/U0pe79Fn1NvsH7439hXJ/YezDx/bbUxd3DxjlXC/wLmGZmPjPLxDvffwGR2OwQwICX8F6neE19LuLtAoTwbvQe7xG893hbXuMmtdc5RS9Xe9jMlkf7VOOFjo39+9KcGcA7Lu5G19Gfx8PAlNhlhHESP3f/o/776H1glnnffjjVzPytrKux431Ky9+31+LdtPs3KfZ/ADjOzMJ4swkfcs5Fmuj/X2DnhMe7LaxRRES6IIVMIiLSFd2ANxOlwVdpR/Um+aU4q/BmHsVbG/0DMJkNCetVTbQ3eU8TMzsXuBXvj99jgGl4f6AT29c55/Auh/kA77Kcr8xsgZn9oKmx21Hit8HFboocO7c+QJFzrrwdjtULLwxo7OfUu5naYvU1dy+ZlrwXWqJePW7LDaRTvbdNMsneV429BxOPk+xG+KvxAqC+eK+DH+8Sp+qEx4+BXvH3AaLpz0W82M+p3mscDcnW0/Dn2J7afE5mloN3md9kvEtT98QLNO7BC1hbW1dj7zmj4fsu2ecu/ud7LnA7cAZe4LTGzG4w7xvaWiPZ8Vp0rs65YrzLIk9M4VJh8ILATLzLjifQ9KVy4P0780HCQ9/4KCLSA+jb5UREpMtxzpWY2R/wZjRdk6RLETAgSfsAGv7R7tq5vMacALzsnKv7RiYzG5nYyXnfbHZq9P4jsXu63Gpmi5xziTOrmlOBFzIk6oMXALTUOqC3mWW2Q9C0Ae+1b+znlCxUao2WvBfaWwXepXmJOiJ46d9IWxXe/boygQhwC438gZ8wsyTVz0Xs5zQA+CzWGJ1R1If2+zkms5G2n9OueDcV39M590as0Rq50X6KmnrPOVr4vnPOleDdM+mS6L3ojgX+iPezvbgNdbbVzcD5eJfKfdZUR+dcsZk9gRfkfeCc+6LjyxMRka5IM5lERKSruhVYzpYbTcd7FTjEzHJjDdHlw/HuE5IOWXgzLOKd3lhn55kL/DTaNLEVx1wM9DezvrEGMxtN6y8DegFvJsZZTfSJzejJbGog51wp8CHw3fjLf6J/RO9G+/2c0vleWAyMi79Jt5nNAHIb36XVhppZbGYc0df0u8B7zrlI9PV+HS+4/CjJLJEPWnncd/DCjhMS2o/H+4+Vc1o5bqJKEt5T7XROsdlAdZ9NM+sFHJnk+CTW0IhXgV0s7tvzoj+P44GPo5drtopzbrFz7jq8S9xa829Cu3HOleH9+3sU3uyv5vwF76bqjX5ToYiI9HyaySQiIl2Sc67SzH4L3JFk8++Aw4CXo9/O5fD+i38WjV9i19GeAy42s0uB9/Buon1sfIfoN6H9GfgH3v14/Hg3663B+/aplvoX3mvxoJldj3dj8UvwZiS1mHPuFTP7N3C9mQ2N1hTEuwfNM865OXjfNAfwIzO7H++P90+cc1VJhvwV3v1hnjazW4EcvHu8FOPNUmsP6XwvPAJ8H7gn+lXyI/FCw+IOONZq4B9mdjnezKUfAOOizzE/xbsB8/NmdjfeJV2FePfG8jvnftHSgzrniszsOrxZNqV43zq4LV748AaNfANbK3wO7Glmh+FddrbOObeItp/TW8Am4Jboa5cN/BLvM5If12813uy/E8zsE6AUWOicSzYj8Aa8z+2L0TE34X2D4Tjg0BaeN2b2Nt49xD7F+ybGvfCCtftbOlYHuBP4Gd792poUnSn2RnP9RESkZ9NMJhER6cruxft2snqcc5/gfUPVJrw/xP5G9I8z59y8ziwwzm/x7qtyAd5Xlm8PHJjQZxXezcB/ivdH5cPAIOAw59yHLT1g9MbDxwKD8b4a/efRsb9q1Rl4TsD7VqyjojXeg3ePlZXRY86Lbj8c7w/K96PnkKy+5/D+6C4A/gn8Fe9bwfZwzq1oQ43xx0jbe8E59wpwDjAdbwbH6XjfuraxAw73Dd69e36G9y2IY4ETozXE6vkIb8bJeuAmvJlpfwYm4QU1rXUZ3vvqYLwba/8C7/K1Q5u5uXNLXIL37Wz/xHtPXQFtPyfn3FrgaLxA91G8e6HdRcKNzKPncRbe/ZReitZweCNjrgD2wLuE7LbouL3xXo/nUj7jLV4DjgMewgvtjgUucM79uRVjtatoeHxFuusQEZHuI/aVxSIiIiIiIiIiIq2mmUwiIiIiIiIiItJmCplERERERERERKTNFDKJiIiIiIiIiEibKWQSEREREREREZE2U8gkIiIiIiIiIiJtFkh3AR2psLDQjRgxIt1ltFlpaSnZ2dnpLkOkW9DnRSQ1+qyIpEafFZHU6LMikpqe8ln58MMP1znn+ia29+iQacSIEXzwwQfpLqPN5syZw8yZM9Ndhki3oM+LSGr0WRFJjT4rIqnRZ0UkNT3ls2Jmi5O163I5ERERERERERFpM4VMIiIiIiIiIiLSZgqZRERERERERESkzXr0PZlEREREREREROJVV1ezbNkyKioqOv3Y+fn5fPHFF51+3NbKyMhgyJAhBIPBlPorZBIRERERERGRrcayZcvIzc1lxIgRmFmnHnvz5s3k5uZ26jFbyznH+vXrWbZsGSNHjkxpH10uJyIiIiIiIiJbjYqKCvr06dPpAVN3Y2b06dOnRTO+FDKJiIiIiIiIyFZFAVNqWvo6KWQSEREREREREUmTK664gmuvvbbN45xxxhn069ePiRMnNth28803s8022zBhwgR+/vOft/lYjVHIJCIiIiIiIiLSzc2aNYvnnnuuQfsrr7zCE088wbx58/jss8/42c9+1mE1KGTq4tZtKuPLz96jpqY23aWIiIiIiIiISDu46qqrGDduHHvssQfz589vlzFnzJhB7969G7Tfdttt/OIXvyAcDgPQr1+/djleMgqZurg37/gJ2zx4Ly8/eXe6SxERERERERGRNvrwww955JFHmDt3Ls8++yzvv/9+0n4PPfQQU6ZMafA49thjW3S8r776itdff53p06ez1157NXq89hDosJGlXWy/z4lU3PUmHzx1Jxzz/XSXIyIiIiIiItJj/Oapz/h8xaZ2HXO7QXlcfviERre//vrrHH300WRlZQFwxBFHJO138sknc/LJJ7e5npqaGoqKinjnnXd4//33Oe6441iwYEGH3PxcIVMXN3LHfXl2iJ8Rn5dw4x/PJzx6f6bsMJ1po/rg9+lu+CIiIiIiIiI90UMPPcQ111zToH3MmDE8+uijKY8zZMgQjjnmGMyMadOm4fP5WLduHX379m3PcgGFTN1C2YxdGPn3NznwvudZ3ec51o0w/jTqQAYd+GNO2W20wiYRERERERGRVmhqxlFHmTFjBrNmzeKSSy6hpqaGp556irPPPrtBv/aayXTUUUfxyiuvsPfee/PVV19RVVVFYWFhm8dNRvdk6gYKZ5yC769/ZOmxO1Gem8GYD2G/p5+j/8Mn84N7XqWksibdJYqIiIiIiIhICnbccUeOP/54Jk+ezMEHH8zOO+/cLuOeeOKJ7LrrrsyfP58hQ4Zw993evZ3POOMMFixYwMSJEznhhBO4//77O+RSOdBMpm5j/MwjGT/zSABen30/Vb++mkFzijnKfsV5/uu447SdNaNJREREREREpBu47LLLuOyyy9p1zIcffjhpeygU4sEHH2zXYzVGM5m6oT33OY2Ce25lY47R54M19P7ynzzw9qJ0lyUiIiIiIiIiWzGFTN3UTuNmsuDsA8nb6OP4Vc9w04tfUFRale6yRERERERERGQrpZCpG/vOKb9j4QAf1V9H2KXybc1mEhEREREREZG0UcjUjeWGcll34A4UFPk4pfoN/v7uEqprI+kuS0RERERERES2QgqZurkpJ/yYiEFkxRLKNm/g5S9Wp7skEREREREREdkKKWTq5iaNmM7SgX5qVgU4IvNTnvl0VbpLEhEREREREZGtkEKmbs7MKJ04ij6rfRyT/T9mf7GaiuradJclIiIiIiIiIim44ooruPbaa9s0RkVFBdOmTWPy5MlMmDCByy+/vG7bySefzPjx45k4cSJnnHEG1dXVbS25UQqZeoA+u+9FsBb8Kz6hrKqaN75el+6SRERERERERKSThMNhZs+ezbx585g7dy7PPfcc77zzDuCFTF9++SWffvop5eXl3HXXXR1Wh0KmHmDi3t8BYPX6CNMzlvDf/+mSOREREREREZGu6qqrrmLcuHHssccezJ8/v83jmRk5OTkAVFdXU11djZkBcMghh2BmmBnTpk1j2bJlbT5eYxQy9QCF/UawId9P5cYgpxV+w4ufr6KqRt8yJyIiIiIiItLVfPjhhzzyyCPMnTuXZ599lvfffz9pv4ceeogpU6Y0eBx77LFJ+9fW1jJlyhT69evH/vvvz/Tp0+ttr66u5m9/+xsHHXRQu59TTKDDRpZOVTqiH9nLV7KT+4hNFfvx9oL17DWub7rLEhEREREREem6/vsLWPVp+445YBIc/MdGN7/++uscffTRZGVlAXDEEUck7XfyySdz8sknp3xYv9/P3Llz2bhxI0cffTT/+9//mDhxYt32H/7wh8yYMYM999wz5TFbSjOZeojw+PEMWA9FGz5nULiCZz5Zke6SRERERERERKSVWjqTKaagoIC9996b5557rq7tN7/5DWvXruX666/v0Jo1k6mHGDhlV2r+OYf5ZWHOGbWIa/+Xw5VHTSIUUI4oIiIiIiIiklQTM446yowZM5g1axaXXHIJNTU1PPXUU5x99tkN+rVkJtPatWsJBoMUFBRQXl7Oiy++yMUXXwzAXXfdxfPPP8/LL7+Mz9exGYESiB5i6I7edLc1JdnsH/qETRU1vP712jRXJSIiIiIiIiLxdtxxR44//ngmT57MwQcfzM4779zmMVeuXMnee+/N9ttvz84778z+++/PYYcdBsA555zD6tWr2XXXXZkyZQq//e1v23y8xmgmUw8RHjacqrCf6o1BBqx9i4KME3lq3gr23bZ/uksTERERERERkTiXXXYZl112WbuNt/322/Pxxx8n3VZTU9Nux2mOZjL1EObzUTG8H71XV7OxfB1njNnMi5+vpqK6Nt2liYiIiIiIiMhWQCFTD5K5zbYMXwNzwxkclTGX0qpaXv5iTbrLEhEREREREZGtgEKmHmTgDruRXQmfZgxj6MoXGJyfwQNvL0p3WSIiIiIiIiKyFVDI1IPkbDsBgFUbDFv/FedPrubdhUV8tqI4zZWJiIiIiIiISE+nkKkHCY8bhzMILd/M2kCAw/3vkRn0c++bi9JdmoiIiIiIiIj0cAqZehBfVhYMHsDwNY53hk4m46snOHbHwTw5dwXrSirTXZ6IiIiIiIiI9GAKmXqY3O0mMXKt8U5BX1j/Dd/fpoyq2gj3vrkw3aWJiIiIiIiISIIrrriCa6+9ts3jbNy4kWOPPZZtttmGbbfdlrfffrve9uuuuw4zY926dW0+VmMUMvUwGePH029DhI82rcL5Agxd8iRHTB7EPW8sYs2minSXJyIiIiIiIiId4LzzzuOggw7iyy+/ZN68eWy77bZ125YuXcoLL7zAsGHDOrQGhUw9TMb48ZiDjKXrWTh2H5j3MD/dZzjVtRFumv11ussTERERERER2epdddVVjBs3jj322IP58+e3ebzi4mJee+01zjzzTABCoRAFBQV12y+44AL+9Kc/YWZtPlZTFDL1MOFttgFg+FrH24O3hbL1jFj3KidOG8Yj7y1l4brSNFcoIiIiIiIisvX68MMPeeSRR5g7dy7PPvss77//ftJ+Dz30EFOmTGnwOPbYYxv0XbhwIX379uX0009nhx124KyzzqK01Pv7/4knnmDw4MFMnjy5Q88LINDhR5BOFRw0CF92NhOKfLxbvYGT84fCh/dz7tGP8O+PlvG7pz/n7tOmdnh6KSIiIiIiItLVXf3e1XxZ9GW7jrlN7224eNrFjW5//fXXOfroo8nKygLgiCOOSNrv5JNP5uSTT07pmDU1NXz00UfcfPPNTJ8+nfPOO48//vGPXHLJJfz+97/nhRdeaPmJtIJmMvUw5vMRHjeOcRsy+GD1h9RMOQkWvEK/mlVcsN84Zn+5huc/W53uMkVERERERESkCS2ZyTRkyBCGDBnC9OnTATj22GP56KOP+Pbbb1m4cCGTJ09mxIgRLFu2jB133JFVq1Z1SM2aydQDhbcZT+GTX7C5qprPh+/M9uaDD+7l9H0u5z8fL+eKJz9jj7GF5IT14xcREREREZGtV1MzjjrKjBkzmDVrFpdccgk1NTU89dRTnH322Q36tWQm04ABAxg6dCjz589n/PjxvPzyy2y33XZMmjSJNWvW1PUbMWIEH3zwAYWFhe12PvE0k6kHyhg/Hl9pBYWb4N2SRbDNYfDhvQRqyrjq6Ims3lzBDS9+le4yRURERERERLY6O+64I8cffzyTJ0/m4IMPZuedd26XcW+++WZOPvlktt9+e+bOncull17aLuO2hKay9EDhceMB2K10EO+ufJfv7fpj+OJJmPcwO077HidOG8a9by7k6B0GM3FwfpqrFREREREREdm6XHbZZVx22WXtOuaUKVP44IMPmuyzaNGidj1mIs1k6oEyxo8Dn49pxX34eM3HVAzcHgbvBO/cCpFaLj5wG3pnh7no0U+oqomku1wRERERERER6QEUMvVAvuxswmPHMmJpFVWRKj5eOxd2/REULYD5/yU/K8gfjpnEFys38eeXddmciIiIiIiIiLSdQqYeKnP77cn4ailB/Ly78l3Y9kgoGAZv3ADOsf92/Tlu6hBum/MtHy7ekO5yRURERERERKSbU8jUQ2VOmUxk82ZmuLFeyOQPwO7nwfIPYOGrAPzqsO0YVJDJTx7+mI1lVWmuWERERERERES6M4VMPVTm5MkA7Fncn8+LPmdT1SaYcgrkDIDXrgUgNyPIX07akTWbK7jwn/OIRFw6SxYRERERERGRbkwhUw8VGjUKX04OY5c7Ii7C+yvfh2AG7PZjWPQ6LH0PgClDC7jskG15+cs13Pbqt2muWkRERERERES6q24TMpnZUWZ2p5n9w8wOSHc9XZ35fGRuP4mcr1eQGcjk7ZVvext2Oh0ye8Hr19X1PW23ERwxeRDXPD+fpz9ZkaaKRURERERERLY+V1xxBddee22bxznjjDPo168fEydOTLr9uuuuw8xYt25dvfb333+fQCDAo48+2uYa0hoymdk9ZrbGzP6X0H6Qmc03s2/M7BcAzrnHnXPfA84Bjk9Hvd1NxvbbU/nV1+zWayfeWvGW1xjOgV1+CF89B6s+BcDM+NOx2zN1eC9++s95fLCoKI1Vi4iIiIiIiEhLzZo1i+eeey7ptqVLl/LCCy8wbNiweu21tbVcfPHFHHBA+8zlSfdMpvuAg+IbzMwP3AIcDGwHnGhm28V1+WV0uzQjc/JkqK1l77JhLN28lKWblnobpn0PQrn1ZjNlBP3ccepUBhdkMuve9/WNcyIiIiIiIiId5KqrrmLcuHHssccezJ8/v13GnDFjBr1790667YILLuBPf/oTZlav/eabb+Y73/kO/fr1a5ca0hoyOedeAxKnzUwDvnHOLXDOVQGPAEea52rgv865jzq71u4odvPv7Vb4AXhzxZvRDb1g5zPhs8dh3dd1/Xtnh/j796ZTmBPitHve433NaBIRERERERFpVx9++CGPPPIIc+fO5dlnn+X9999P2u+hhx5iypQpDR7HHntsi473xBNPMHjwYCZHM4KY5cuX89hjj/GDH/yg1eeSKNBuI7WfwcDSuPVlwHTgXGA/IN/Mxjjn/ppsZzP7PvB9gP79+zNnzpyOrbYTlJSUtPo8+gwcSOWcd+l9TG+e/ORJBqwaAEDQ7cAuviBrHr2Y+dv8pN4+501yXP1eLSfe8TZnTAyz26Cu+DYRSa4tnxeRrYk+KyKp0WdFJDX6rEh3kp+fz+bNmwHYeN31VH31VbuOHxo3joILf5p0W21tLS+++CKHHHIItbW1mBkHHXQQlZWVdTXFHHHEERxxxBFJx0nsG1NSUkIkEqnbXlZWxu9+9zsef/xxNm/ejHOOkpISwuEwP/7xj/n1r39NaWkp1dXVlJeXJx23oqIi5c93t0kPnHM3ATel0O8O4A6AqVOnupkzZ3ZwZR1vzpw5tPY8Vr32GsWPP8G+ww/j2aXPs/uM3Qn6gt7GmrcY+MHdDDzhRiiof13mzD2rOOfBD7njkyIoGMzPDhhPKJDuqytFmteWz4vI1kSfFZHU6LMikhp9VqQ7+eKLL8jNzQWgNBQk4ve36/jBULBu/ESbN28mIyODcDhc1ycUCtVbj3nooYe45pprGowxZsyYRm/SnZOTg8/nqxtr0aJFLFmyhD322APwZi/NmDGD9957j7lz53LmmWcCsG7dOl588UVyc3M56qij6o2ZkZHBDjvskNK5d8WQaTkwNG59SLRNWiFr2jQ2/P1h9iobyr+qS5m3Zh5TB0z1Nu7+E/jgHnjzJji0/p3se2WH+NuZ0/nt059xx2sLeOPrddxw/BTGD0j+QRERERERERHpbgZcemmnH3PGjBnMmjWLSy65hJqaGp566inOPvvsBv1OPvlkTj755DYda9KkSaxZs6ZufcSIEXzwwQcUFhaycOHCuvZZs2Zx2GGHNQiYWqorTk15HxhrZiPNLAScADyZ5pq6rayddwZgzMIK/Obn9eWvb9mYPwQmnwAfPQCbVzfYNxTwceVRk7jz1Kms2lTBoTe9zu+e/pzi8urOKl9ERERERESkR9lxxx05/vjjmTx5MgcffDA7R/9ub6sTTzyRXXfdlfnz5zNkyBDuvvvudhm3JdI6k8nMHgZmAoVmtgy43Dl3t5n9GHge8AP3OOc+S2OZ3VqgTx9CY0ZT++EnTP3uVGYvmc0FO12wpcMeF8Dch+Dtv8ABv0s6xv7b9Wen4XtxzfPzuefNhfzrg6XM2n0kp+82gl7ZoU46ExEREREREZGe4bLLLuOyyy5r1zEffvjhZvssWrQoaft9993XLjWk+9vlTnTODXTOBZ1zQ5xzd0fbn3XOjXPOjXbOXZXOGnuC7GnTKP/wQ/YbtDeLNi1iwcYFWzb2GQ0TjvEumytr/NvkemeH+MMxk3jqx3uw6+g+3PTy1+x+9Wx+89RnfLU6+Q3HRERERERERGTr0RUvl5N2ljVtGpGyMvYsGQTAS0teqt9hzwuhqgTeua3ZsSYOzuf2/5vK8+fPYP/t+vPgO4s54IbXOPrWN3nwncWs2VzREacgIiIiIiIiIl2cQqatQOy+TOF5X7N94fa8vOTl+h36bwfbHeVdMrdpZUpjjh+Qy59P2IF3LtmXXx66LZsravjl4/9j+u9f5ju3vcUdr33LgrUlOOfa+WxEREREREREpCtSyLQVCPTpQ3jbbSl94w32Hb4vn6//nJUlCWHSfldApAZmX9misfvkhDlrz1G8eMEMnjt/T87fdxzlVbX8/tkv2ee6V9n9j7O58J/z+M9Hy1ixsbz9TkpERERERESklTQhIjUtfZ3SeuNv6Tw5e+zO+nvvY58+l3ADN/Dykpc5ZbtTtnToPRKmfR/evgWmnw0Dt2/R+GbGNgPy2GZAHuftN5alRWW8+tVa3vp2HbO/XM2/P1oGQP+8MFOGFjBlaC+mDC1g+yH5ZIf1NhQREREREZHOkZGRwfr16+nTpw9mlu5yuiznHOvXrycjIyPlffTX/VYie489WX/nXfT5fAXb9t6WZxY8Uz9kApjxM5j7d/jvz2HWs+Br/US3ob2zOGWX4Zyyy3AiEccXqzbx3sIi5i7dyNylG3n+s9V1fYf1zmL8gFzG989l/IBcthmQy4jCbIJ+TbQTERERERGR9jVkyBCWLVvG2rVrO/3YFRUVLQpt0i0jI4MhQ4ak3F8h01Yia4cp+LKyKHnjDQ479jCu+eAaFmxcwKiCUVs6ZfaCA34HT/wIProfpp7eLsf2+YwJg/KZMCi/rq2otIp5Szfy6fJi5q/azPzVm5n95RpqI95UvKDfGNorixGF2Yzok83IwiyG98lmZGE2gwoy8fuUNouIiIiIiEjLBYNBRo4cmZZjz5kzhx122CEtx+4MPTJkMrPDgcPHjBmT7lK6DAuFyJo+ndLX3+Dgi37I9R9ez1MLnuK8Hc+r33HKyTDvEXjxchh/MOQO6JB6emeH2Hubfuy9Tb+6torqWhasLWX+6k18tbqERetKWbS+jLe/XU95dW1dv5Dfx9DemYwszGZ4n2xG9MmKPmczqCCDgGZAiYiIiIiIiHS6HhkyOeeeAp6aOnXq99JdS1eSvecelLzyCvlrStlt0G489e1TnLvDufgsLpQxg8P/DLfuCk9fACf83WvrBBlBP9sNymO7QXn12p1zrNlcycJ1pXXBk/dcyhvfrKOiOlLXN+AzhvbOYnifLEb0yfaeo7OhhvTK1CV4IiIiIiIiIh2kR4ZMklzOHnuwGih57XWO2PMILnrtIt5f9T7TB06v37HPaNj31/DCZfDhvTD1jLTUG2Nm9M/LoH9eBruM6lNvWyyAWrSulMXry1i0fsvzB4s2UFJZU9fX7zMGF2TWC6BigdSw3llkhfRxEBEREREREWkt/VW9FQkNG0Zo5EhK5sxh5km3kBvM5d9f/7thyASwyw/h25fhuUth+O7Qd3znF5yC+ABqepIAan1pFYvXl7JoXZn3vN57fmLucjZV1NTr3zc3zLDeWQzvncWwPlkMLshkQH4GA/Iy6J+fQW44oG8eEBEREREREWmEQqatTM4+e1P0wN8Illdz5JgjeeTLR1gzdQ39svrV7+jzwVG3wW27wb9mwZkvQjgnLTW3lplRmBOmMCfMTsN7N9i+sayKJUVlLF5fFn0uZUlRGe8sWM9jc5fjXP3+WSG/FzjlZTAwP4O+eWEKs8P0yQnRJydMn+wQhTlhemeHCAV0WZ6IiIiIiIhsXRQybWVy99mHorvvofSNNzhx9xN56IuH+NdX/+JHU36UpPMA+M7d8OAx8Pg58N0HvPCphyjIClGQFWL7IQUNtlVU17JmUyUri8tZtamC1ZsqWFVcyapN5awqruDdhUWs3VxJVW2k4cBAXkaAwhwvgOqVFSI3I0heZsB7zgiQlxEkNyNAXqb3nBMOkBUKkBnykxn0K6QSERERERGRbkch01Ymc8oU/L16sfnl2Qw7+GD2HLIn/5r/L7436XuE/KGGO4zeGw64Ep6/FF6/Fvb6eecXnQYZQT/D+niXzTXGOcfmyhrWl1SxvqSSdSVVrC+trFtfX1rF+hJvttTmiho2lVezubKm0fHiBXxGZtDvhU7R4Ckz5CerbjlAZtBHVihAOOAjHPQTDvjIaOWzz6fLAEVERERERKRtFDJtZczvJ2fmTDa//DKuupqTtjmJc146h+cXPc/how9PvtMuP4SVn8ArV0H/CbDNoZ1bdBdlZuRlBMnLCDKyMDulfWojjpLKGjZXVG8Jnipq2FxZTXlVhPLqWsqraiirqo0ue89lVbVURJ83lFbXbSurqqGyJkJlTfIZVakK+X3RsMpHOOAnHPSR0chzyO8jGIg++42A30fQ7yPkN4J+H4G4ZW/don29/YI+856j+8f6BaP9AgntfgVgIiIiIiIi3YJCpq1Qzj57U/zYY5R9+BG7Tt+V0fmjued/93DoqEPxWZLLtMzg8Bth3Vfw6Jlw2pMwdFqn190T+H1GfmaQ/Mxgu44biTiqaiNUVkeorKmlopnnypoIFdVNP1fGrZeW1lBR7e1fXRt7uHrLHcVn1AusAj7D7zMCPm/dWzb8Pi+cKt1czi1fvlWvT1P7BHwW18dX1zfor7/u9Wm4XjdWdIyGx7C6sKyx9YDPh88HfvPWdYN5ERERERHpjhQybYVydt8dC4fZ/NJLZO8ynbO2P4tLXr+EV5a8wr7D902+UzATTvon3HMAPPRdOOM56Ldt5xYujfL5jAyfn4ygH2jfACsVzjlqItHQqcYLvGoiW5arayPU1G5ZTrZeF1rVRKiJhmbVNdG26Fi1EW9bTa13vGTrkXIvxKmpdZTV1FAbiW3zxopf9/aNNFiPdFxmlhKfeYGkLxo6+c0Lsfxm+GLrvi2PWH+/z4c/GlYl7xe3Hl32+rFl3yb7JRsvum+s5kb6eQ/vvVq3bIZFn2NtZlvOx+L61evro15/f/x2X+Njp3JsERERERFpPYVMWyFfVhY5M/Zk8/PP0//SSzhoxEHcNvc2bv/kdvYZtk/jf2jl9IX/ewzuPgD+dgyc+QIUDO3c4qVLMrO6S9xIcmuvzjRnzhxmztylTWNEIo5a13gQVVvrqI5EA6vaWPuWwKtuvTY+0NrSPz4g88IvRyR6vLqHc14dcbXURuL7QW0kQq2jmX6OqprIlvFc3L4RR8SR/LgJ9cTGS3cA19GaDbjqAiovYGt8e/1tfl/DIK3x8Kz+cXxx2y263d/k9vhxtgRsiTUuXlzFR9VfYWyp2fAmr1rdev12X/T3g5nVa4v1IdreYLzYOHH7NTledBmsQVuj49W1JdYde923jFe/RiP2a6+uLa7dl7Bf3Xhx+9V/Her3rbccPQZ1x2h8PGPL+yX+5yIiIiLSlSlk2krlHnQQm198ifKPPiJr6lS+t/33+NWbv+K1Za+x19C9Gt+x1wg45T9w7yFw/+HepXMFwzqtbpHO4PMZPoygP92VdD3OxYdReGFU7ZZQqrGwzEHdducg4rzAyluPLke2tDXYHtmyT6x/bd2+W7Y3Nnazx65XQ/xx4vtuqa020tT2LWPHgrnE4yTWXRtxVNUmOXaD80p4jSKNj10bSVZT9HjRZb79Ot1vKWmhxNCqsbAtFszRIGyrH+L5jMbDsVTGqxeOxQd60Tasru4tbXEnE78e169+W/1+ycYn6X4JfeLbmtiWeNyiogruXfBeo+eRWF/9fo2ff1OvU+rn2PxrGB9OJpSV/LVJOlaS80gcLOmxG55HUz9j6rU1cezEPk2cY/PHbv44JBm/yfdXw92aPMfEOpvqk1h/0/2s2T7JJK01heN9s7iaRW8ubH6sVM4phRoaH6v5827tWMl2Tj5WG+pv5fsimcQ62nLeqbyOqf+3kOY7pjJWKodL9T/QpDZW2/sUZKX5v8h3AoVMW6ncmTOxcJhN/32OrKlTOXTUodw+73Zu/vhm9hi8B35fE39dD5gIp/wbHvoO3HMQnPoEFI7tvOJFJG3MovejSnch0mberL+ZuLjwyQHOgcNrq7fMlkCLhPZYgOW8DQlt1B2j0fHqtdUfz0VnzzUYL37cWN3R9ojbUkdsnEjc9lj9kUjieAnLbHltaNCWZLxGzjFx3EbHizvfLT+X+uMRCxNJfu7xr0nsNSPuHOu/jl7x3uvQxHjxP5e4863/s9qyX0xsKXlb/fXEfjTo5+qtN7stth4rOEm/ZMdOrA+grNrhL6+u19jwPOK2ucRtbTjHRuqLX0n1PBqcf8NSmvlZJTnHJMehhecR/x5N7N/Wc0w+VlPn0fj5S4q++DzdFYh0abuN7sP3e/ifzvo7YSvly84mZ6+92PSCd8lc0B/kJzv+hJ+/9nOeWfgMR4w+oukBhu4Ms56Bvx3tBU3/9xgM3L5zihcRkXYTm7XiS+m/4YlsfbxAdvd0lyFdSF3Q1dIgLUnA1fRxkrTRsDF5v8Q+SfZL8ZiJHRur4c0332T33XeP65ds/ObrSPW8U2lqz9fQ6+cS1pN0Srpf6+po7WuY/JhtOe9k/drvtWhu7NaOk6rOrCk7HGDZ5x+kUFX31SNDJjM7HDh8zJgx6S6lS8s7+CA2v/ACZR98SPb0aRw44kDu/+x+bv74Zg4YfgAZgYymBxgwCU7/LzxwpHf53HfuhPEHd07xIiIiIiJpUHeZYtJsfusN7HNCRq/snn8pkEhbLevhE/6SfF999+ece8o59/38/Px0l9Kl5ey1F5aZyabn/guAz3xcOPVCVpWu4sEvHkxtkMKxcOaL0Gc0PHwivH6d5hWLiIiIiIiIbIV6ZMgkqfFlZZEzcy82v/AirqYGgJ0H7MzeQ/fmjk/uYFXpqtQGyh8MZzwHE78DL/8WHj0dKoo7sHIRERERERER6WoUMm3l8g46mNr16yn7YMt1oRdPuxjnHFe/d3XqAwUz4Tt3wX5XwOdPwm17wOK3279gEREREREREemSFDJt5XJm7IllZbHpmWfq2gbnDObsyWfz0pKXeG3Za6kPZgZ7XABnPO8t33cIvPw7qK7ogMpFREREREREpCtRyLSV82Vmkrf//mz673NEKraEQadtdxoj80fyh3f/QEVNC0OioTvDOW/A9ifA69fCX3eHhS0Iq0RERERERESk21HIJOQffTSRkhI2v/RyXVvQH+Sy6ZexrGQZd356Z8sHzciDo2+DU/4NkRq4/3D4z/eheFk7Vi4iIiIiIiIiXYVCJiFr2s4EBw2i+LHH6rVPHzidw0Ydxj2f3sP8ovmtG3zMfvDDd2DPC+Gzx+DmneClK6B8Y5vrFhEREREREZGuQyGTYD4f+UcdRelbb1G9qv43yl2888Xkh/P55Zu/pDpS3boDBDNh31/DuR/CdkfBGzfCnyfDK7+H0vVtrl9ERERERERE0q9VIZOZ/a69C5H0yj/qSHCO4iefqtdekFHAr3f9NV8Wfcldn97VtoMUDINjboezX4URe8CrV8ONE+G/v9BldCIiIiIiIiLdXGtnMh0aWzCz+9qnFEmn0LBhZE7dieLHHsM5V2/bPsP24ZCRh3DHvDtaf9lcvIGT4YSH4IfvwnZHwnt3wI3bwz9OgW9nQyTS9mOIiIiIiIiISKdqj8vltm+HMaQLKDj6aKoWLqRi3rwG2y6Zdgl54TwufeNSKmsr2+eA/baBo/8K582FXX8Ii96Evx0NN+8Ab9yg2U0iIiIiIiIi3UhrQ6a+ZnaUmY1s12okrXIPPAjLzGTjfx5rsK0go4Df7f47vtrwFTd+eGP7HrhgGBxwJVz4JRxzF+QN9m4OfsMEuOdgeO9OKF3XvscUERERERERkXbV2pDpeuBw4BFglJm9aWZ3mdmFZnZI+5Unncmfk03ewQdT/PTT1JaUNNg+Y8gMTtrmJB784kFeX/Z6+xcQCMP234XTn4VzP4K9fwnlRfDsz+Dacd4sp/fuhI1L2v/YIiIiIiIiItImrQqZnHM3OOfOdM5Nd84VAKcATwAh4KR2rE86Wa8TT8SVlVH8xBNJt/906k8Z22ssv3zzl6wr78DZRX1Gw14XwQ/fgR+8BXucDxsWeYHTjZPgll3gxV/DNy9BZcNATEREREREREQ6V3vckwnn3ELn3FPOuT84505pjzHbwswON7M7iouL011Kt5M5aSIZEyey4eGHG9wAHCDsD/OnPf9EaXUpv3zzl0RcB9+k2wz6T4B9fw0/+Rh+/CEc+HvI6Qdv3woPfgf+OAzu3NcLnb56AcqKOrYmEREREREREWmgXUKmriYaeH0/Pz8/3aV0S71OPJGqb76l/IMPkm4f02sMF029iDeXv8lDXzzUucUVjoFdfwSnPQm/WAz/9xjscQH4Al7o9Pfvwp9Gwp8nw79mwZs3waI3oHJz59YpIiIiIiIispUJNNfBzBYCDae0NO9G59xNrdhP0izvkINZffXVbHj4YbJ23jlpn+PGH8ebK97k+g+uZ1LhJKb0m9K5RQKEsmH0Pt4DoKoMlr0PKz6CFR/Dsg/hs9hNzA16DYe+22x59NsGCsdDKKvzaxcRERERERHpYZoNmYBZrRx7USv3kzTzZWZScPTRFP397/Rfu5ZA374N+pgZV+5xJSc8fQI/nfNT/nn4PynMLExDtXFCWTBqL+8RU7rOC5xWfAxrvoC1X8I3L0OkOtrBIG8Q9BoJvUdEn0dCr+hyVu80nIiIiIiIiIhI99NsyOSce7UzCpGupeCE4ym6/342PvoohT/4QdI+eaE8bph5A6c8ewoXzrmQuw68i6Av2MmVNiO7EMbu7z1iaquhaCGs/QLWfAlFC2DDQvj6RShZXX//UK4XQuUNgrzByZcze3n3jhIRERERERHZiqUyk0m2QuGRI8nefXeK/v53ep95Jr5QKGm/8b3Hc/lul3PJ65dw/QfXc/G0izu50lbwB6HvOO+x3ZH1t1WVet9iV7TQC56Kl8Om5bBpBXw7G0pWQeLNzv0hyO7rBVrZ/eKW+8Y9Cr2blWf1gUC4005VREREREREpLMoZJJG9TnzDJaccSabnnySgmOPbbTfYaMO47N1n/HgFw8yMn8kx40/rhOrbGehbO/b7PpPSL69ttqb7bRphRc+FS/31kvXQela77HmC++5tjL5GIFMb/ZTZgFkFHjPmb22LCdrC+VAONerT7OmREREREREpAvSjb+lUVm77kp4u21Zf/c95B9zDOZr/MsIL5x6IYs2LeL37/6eIblD2G3Qbp1YaSfyByF/iPdoinPeN9qVrq0fQJWtg/KN3qMi+rxxCayc5y1XlzZTgEXDphwI58Qt52551G3LiwunsiCYDcFML6gKZm1Z9nexSxxFRERERESkW9KNv6VRZkafM89kxYU/o+SVV8jdd99G+wZ8Aa6ZcQ2nPncqF865kAcPeZDRBaM7sdouxgwy8rxHnxa8DjVVUFEM5Ru2hFAVG73AqnIzVJVAZUl0OdpWWeIFWLE+lZvB1aZ+TF/QC51CWfWfg1nRQCqzkeVoUBXI8B7BDG+WViAcbQ/XX1eYJSIiIiIi0qPpxt/SpLwDD2Tt9Tew/q67mwyZAHJCOdyyzy2c9OxJ/PClH/LAwQ/QP7t/J1XaQwRCkNPXe7SWc1BTEQ2jNnnBVFWZN0uqqgyqyxtZLvXW6/qWQMmahu2J96RKlfnjwqiMhHAqtpwknIqt+4Pesj/kPQJhr80f9l43fwj8YXI3fQ2r+3rtyfbxBXTJoYiIiIiISAdo0z2ZzOws59xd7VWMdD0WCND79NNZfeWVlH30EVk77thk/4E5A7ll31s44/kz+P6L3+e+g+6jV0avTqpWAC9ACWZ6j7aEVck4B7VV3g3Sq8ugugJqyqGm0guiaiq8R3XFluXE9epo/3r7VXoztkpWJxmnvEXB1k4AHzXVw+JCp1DjYVQswErs5w95z75A9DkYffbHLSdui18PxLUnrsf18wUa9m3iklUREREREZF0a+uNvw8zswXOudkAZpYF3OOcO6HtpUlXUXDM0az7y19Yf/sdZN3+12b7b9dnO27e52Z+8NIP+OFLP+SuA+8iO5jdCZVKhzOLziwKA70777i11V64VVMZXY4+11QmLFfx6dwPmbTdeO/Sw9rK6H5V3nNC32bHrCyJ2xY3TqQaamuiz9W07rZ1rWC+poMrXyAadvm9mWN164HovvHr/i1969YDXpBVbz3ZeC0cP7ZsPm/ZfN5x6q3Htsc9Guzj996DDfZpbszYfprBJiIiIiLSkdoaMp0KPGtmK4AI8HfgljZXJV2KLyuL3rNOY+2Nf6Z83jwyJ09udp+dB+zMdXtdx3mvnMe5s8/lL/v8haxgVidUKz2SPxqshJoPK9cv88N2Mzu+pniRWi9sioVOkZq49bgwqm69poltycZIZcxqr45IjTfzK1LTcL2mMrpeG91WG7deA5FIM+s1nfu6tjtrx+AqMQiL6xMLtGLtWFx7fFtCO3Hbk/ZNNmZiXxrZ39fgWMMWL4LXP0qhVpLun9LxY7Wn9Ez947do3xb2rfccOx4tPF6y80tljGbOT2GoiIiIdGOtCpnM7AZgLjAPOAt4CPABpzvn5rZXcdJ19Drl/yi6737W3nQzw+5O7QrJvYbuxe/3+D2XvHEJP3z5h9yy7y2a0SQ9U2zGDhnprqTjRSJxoVNjoVaSEMtFvHXnEtYjceuR6HokSZ9II/s0tz1hvJTHTKXOxmqIPuPi2l1Cm9vS1mRfV7+twRjR5yaPFdcnziiAhZ367pEWSSXUaiqsa499WxL40YrjJQZ06QgYk7xeCc9jl6+AsmcaOT9aeLwUfl7JXpukywnHr1umkfZk9TY2dqrLKRynTbXQSHuqr0Wqx0/1OG05fhOvVyrHqTdO4nip9km23sh+rejji80Qb0uNCtpFur3WzmR6BdgeOBTYFhgMvA0caGaDnXPPtFN90kX4c7Lp872zWHPNtZR9+CFZO+2U0n6HjDoEn/n4xeu/4JwXz+HW/W4lN5TbwdWKSIfx+QCfvi2wO4oFW9Hw6dVX57DXnns2EXLRsC1pyNVcX9fIM41vb3bfxsaIpLBP/DMtPF6yWluzT6SR+pt7Tjw/Wni8FvwMUvpZNHX85n4WcftGIiker71+9rToeP2qq6HIn7BvS99rDpGebgbA6+09aiphVbK2FvRpcr/4Pm0ZpyNqbFBYG4PJNtZYLx9sr2C0vWpsRLJ9km5r6/a45QETITCz6bq6uZRCJjPLdc5tjq07554EnozbngFMxAue9gMUMvVAvU46ifX33sfam25m+P33pbzfQSMPIuALcNGrF3H2i2dz2363kR/O77hCRUSkoboZHwB+nC/ofbujiDTpzTlzmDlzZtsHak0oGdsvcdm5+uN6Cy1YbmLspMvUb2/VMZurBVpeV2uOSUJ7K47Z7PFpQV2pvv5Jfh5J25rr00iN7dBnwYIFjBo1spHjN1Vza861vc6DFPuko8Z6xXWxGhvZJ201NlJT0s9kwnGa29bW7YnbKjZBDj1aqjOZNprZ18CHcY+PYsGTc64C+CD6kB7Kl5lJ4ffOYvUf/kjpO++Svcv0lPfdb/h+3LD3Dfx0zk/53gvf49b9bqUws7ADqxURERHpQuoFvSI9z5LaOYzac2a6yxDp+ubMSXcFHSrV78M+EXgCGAD8CpgNbDCzL83sITP7qZnN6KgipesoOOEEAv36sfbGG3HJkuMmzBw6k5v2uYlFmxZxyrOnsHjT4g6qUkREREREREQ6W0ohk3Pun865i51z++J9b7kBv8YLnvoBl+Ldp6lLMLPDzeyO4uLidJfS4/jCYQrP/THlc+ey+YUXW7z/HoP34O4D7qasuoz/e/b/+HTtpx1QpYiIiIiIiIh0tlRnMtVxW6avPB0NnvZ3zhUCI9u3tNZzzj3lnPt+fn5+ukvpkQqOOYbw2LGsue46XFVVi/ef1HcSfzvkb2QHsznzhTN5demrHVCliIiIiIiIiHSmFodMjXHOLWmvsaRrM7+ffj+/iOolS9jwyCOtGmN43nD+dsjfGJk/kp+88hPu/+z+Fl9+JyIiIiIiIiJdR7uFTLJ1yd5jD7J32411t9xKbSsvSyzMLOTeA+9l32H7cu0H13LpG5dSUVPRzpWKiIiIiIiISGdIKWQyswfN7Hwz293MsqLNmnayFTMz+v38Imo3bWLdbX9t9ThZwSyu2+s6zt3hXJ5Z8Ayn/vdUVpasbMdKRURERERERKQzpDqTaSDejb5fB2LTVq4yswvNbKaZ5XVIddKlZWyzDfnfOYaihx6icsHCVo9jZnx/++9z0z43sWTzEk545gTeWP5GO1YqIiIiIiIiIh0t1W+X29c51xsYA5wE/AnIAC4BZgMbzOyrDqtSuqx+55+PLxxm9VVXtfmeSjOHzuTvh/6d3hm9+cFLP+Ca96+hqrblNxYXERERERERkc7XonsyOecWOOf+5Zz7hXPugOi3yo0Cjgce7ZAKpUsLFBbS9yfnUvrmm5S8/HKbxxuVP4qHD32YE8afwAOfP8Apz57CwuLWz5ISERERERERkc7Rpht/m9lZzrlFzrlHnXOXtldR0r30OvFEwmPHsPoPfyRS0fYbd2cEMrhsl8u4ae+bWFm6kuOfPp4HP3+Q2khtO1QrIiIiIiIiIh2hrd8ud5iZ7RNbMbMsM2vdd9pLt2XBIP0v+yXVy5ez/q67223cvYftzaOHP8pO/Xfi6vev5tTnTuWbDd+02/giIiIiIiIi0n7aGjKdCvzWzLYxs3HAa8DzbS9LupvsXaaTe/BBrL/jDqoWLWq3cftn9+fWfW/lD3v+gSWblvDdp7/LbXNv072aRERERERERLqYVoVMZnaDmZ2Gdz+ms4CHgH8AZznn7m3H+qQb6X/JJVg4zMrLr2jzTcDjmRmHjTqMJ456ggOGH8Ct827l6CeO5rVlr7XbMURERERERESkbVo7k+kVYChwKfAvYCSwAjjQzA5tp9qkmwn260e/n/2Msnffpfg/j7X7+L0zenP1jKu5ff/b8fv8/OjlH/Gjl3/Ekk1L2v1YIiIiIiIiItIyKYVMZlYYv+6ce9I5d6Vz7jjn3CRgEHA5sBbYr/3LlO6i4LvHkjl1J1b/6U/UrF/fIcfYbdBu/Pvwf/OzqT/jw9UfctQTR/Hnj/5MaXVphxxPRERERERERJqX6kymJWZ2m5mNSbbROVfhnPvAOXePc+6CdqxPuhnz+Rj4m9/gyspY/fs/dNhxgv4gp004jaeOeoqDRhzEXZ/excH/PpgHP39Q92sSERERERERSYNUQ6YzgZ2AL83scTPbvQNrkm4uPHo0fc45m03PPMOmF17o0GP1zerL7/f8PQ8f+jDje4/n6vev5rDHDuPxbx6nNlLboccWERERERERkS1SCpmccw8756YB+0SbXjWzt83sO2ZmHVeedFeF3/8+GRMmsOryKzrssrl4EwsncucBd3LH/nfQO6M3v3rzV3znye/w3MLnFDaJiIiIiIiIdIIW3fjbOfeac+4oYFvgI+B+4Gsz+5GZZXZAfdJNWTDIoD/+gUhpKSsvv7xdv22uKbsO2pWHD32Y62dej8Nx0WsXcdQTR/HY149RHanulBpEREREREREtkat+nY559zXzrkf4X3D3P3AbwF9xZfUEx47lr7nnUfJSy9T/MQTnXZcM2P/4fvz2JGPcf3M68kMZPLrt37Nof85lIe/fJiKmopOq0VERERERERkaxFIpZOZ3QIUAPlJnnM6pjTpCXrPOo3Ns2ez+sqryJo6ldCQIZ12bJ/52H/4/uw3bD9eX/46d35yJ79/9/fcNvc2jht/HCdscwKFmYXNDyQiIiIiIiIizUp1JtMPgKOBb4HbgcuA/wNmAmOB/kBGB9Qn3Zz5/Qy6+mowY/lPL8RVd/4la2bGjCEzeODgB7j3wHuZ0m8Kd3xyBwc8egC/fOOXzC+a3+k1iYiIiIiIiPQ0qYZMU4HHgbOBo4A1zrk5zrmPnHPfOufWOue6zPfGm9nhZnZHcXFxuksRIDRkMAN/91sqPvmEtX/+c9rqMDOmDpjKTfvcxFNHP8V3xn6HFxa/wLFPHctZL5zF7CWzqYnUpK0+ERERERERke4s1W+X+8g5dxLerKXFwPNm9rqZHd6h1bWSc+4p59z38/Pz012KROUddBAFxx/P+rvupuT1N9JdDsPzhnPZLpfx4rEvcv6O57OweCHnvXIeB/77QG6bexurSlelu0QRERERERGRbqWl3y631Dn3U2AY8CRwi5l9YWZnmlmoQyqUHqP/Jb8gPHYsKy6+mOpVXSPEyQ/nc+akM3nuO89x48wbGVswllvn3cqB/z6Qn8z+CXOWztG30omIiIiIiIikoLXfLlcMXAvsBDwE/AlY1H5lSU/ky8hg8I034CoqWPaT84hUdZkrLAn6guw7fF/+uv9fefaYZzl9wunMWzuPc2efyz7/3Icr37mSuWvm4pxLd6kiIiIiIiIiXVKq3y73DN43ycU/Yt8qZx1TmvRE4dGjGfjHP7D8J+ex+ne/Y+DvfpfukhoYmjuU83c6nx/t8CPeWv4WTy94mse/eZx/zP8HQ3KGcPDIg9l76N5MKJyAz1qV04qIiIiIiIj0OCmFTMAa4CtgA7Ax7nljQptIs/IOOICKs89m/e23kzFxEr2OPy7dJSUV9AXZa+he7DV0L0qqSnh5ycs8veBp7vnfPdz56Z30y+zHzKEz2XvY3kwbMI2QX1eMioiIiIiIyNYrpZDJOXd6RxciW5e+PzmXis8+Y9WVV5IxfhyZU6aku6Qm5YRyOHLMkRw55kiKK4t5bdlrvLL0FZ5a8BT//OqfZAYy2bH/juw6cFd2GbgLY3uN1SwnERERERER2aqkOpNJpF2Z38/ga69h4XePY9lPzmPEv/5JsH//dJeVkvxwPoePPpzDRx9OZW0l7658lzeWv8E7K9/h2g+uBaB3Rm+mD5zOtAHT2KHfDozMH6nQSURERERERHo0hUySNv6CAob85S8sPukklp7zA0Y8+Dd82dnpLqtFwv4wM4bMYMaQGQCsKl3Fuyvf5Z2V7/DOynf478L/ApAXymNy38ns0G8HpvSbwsTCiWQGMtNZuoiIiIiIiEi7UsgkaZUxfhyDb7yBpef8gOUX/owht/wF8/vTXVarDcgeUHdZnXOOxZsW8/Gaj5m3dh4fr/mY15e/DkDAAozrPY7t+mzHtr23ZUKfCYztNVb3dRIREREREZFuSyGTpF3Onnsy4JeXseo3v2X1H69mwGWXprukdmFmjMgfwYj8ERw99mgAiiuLmbd2HnPXzOWTtZ/w/KLnefSrRwEI+AKMLRhbFzyN6TWGMQVjyA/np/M0RERERERERFLS6pDJzGYA7znnKtqxHtlK9TrxRKoWL6HovvsIDR1K71P/L90ldYj8cH69y+uccywrWcbn6z/n8/Wf88X6L3hpyUv8++t/1+3TL7MfowtGM6bXGMYWjGV0wWhGF4wmO9i9Li0UERERERGRnq0tM5leAbYFvmqnWmQr1++in1G1bCmr//AHAv36knfQQekuqcOZGUNzhzI0dygHjjgQ8IKnVaWr+Hrj13y78Vu+2fgNX2/4mn/O/yeVtZV1+/bL7MewvGEMzxvuPed6z0Nzh5IRyEjXKYmIiIiIiMhWqi0hk7VbFSJEv3HummtYctb3WH7Rz/Hl5JKzx+7pLqvTmRkDcwYyMGdg3YwngNpILctLlteFT4s3LWbJpiW8svQViiqKtuyPMSB7AMPyhjEkZwiDcgYxKGcQg3MGMyh7EH2z+uqb7kRERERERKTd6Z5M0qX4MjMZetutLD71NJadey7D7r6brB13SHdZXYLf52dY3jCG5Q1j32H71tu2qWoTSzYtqQueFm9OHkABBH1BBmYP3BI8xYVQ/bP60zezL0F/sDNPTURERERERHoAhUzS5fjz8hh2150sOvlklp5zDsP/9gAZ48enu6wuLS+Ux8TCiUwsnNhgW3lNOStLVrKidAUrSlawvGQ5K0q85TlL57C+Yn29/obRO6M3/bL60T+rP/2y+tU9Yuv9s/uTE8zBTBMaRURERERExKOQSbqkQGEhw++5h0UnncySM89i+AMPEB41Mt1ldUuZgUxGFYxiVMGopNvLa8pZWbqSFSUrWF26mjVla1hd5j2vKF3B3LVz2Vi5Mem4sdCpb1ZfCjMKKcwspE9mn3rr+eF8hVEiIiIiIiJbAYVM0mUFBw9m2D13s/jU01h82qkMv/9+wqOSByXSepmBTEblj2JUfuOvbWVtJWvK1tR7rC5bXRdKzV0zl3Xl6+rdmDwm4AvQJ6MPhZmFjT76ZHrbMwOZHXmqIiIiIiIi0oEUMkmXFh49muH338fiWaez+NTTGH7/fYRHj053WVudsD9c9y14jXHOUVpdyrrydd6jYh3rytbVW19dtprP1n9GUUURERdpMEZOMIfCzEJ6Z/Smd0ZvemX0oldGr/rrYW+9IKOAoE/3jhIREREREekqFDJJlxceM4bhD9zP4tNO84Km++4lPHZsusuSBGZGTiiHnFAOI/JHNNm3NlLLhsoNrC9fz7rydawtX8u68nV16+vK17GweCEfrfmIjZUbkwZSALmhXC98Cm8JozZt2MTSz5fSK6MXBeEC8kP5FIQLyAvnkRvK1TfriYiIiIiIdJC2hExXAevaqxCRpoRHjWL4/dGg6bRZDLv7LjK23TbdZUkr+X3+ukvlxtP0Td1rI7VsqtrEhooNrK9Yz4aKDWyo2EBRZVHd8oaKDSwrWcYnaz9hQ8UGXnz/xaRj+cxHXiivLnSKhVD5Ye9REC6oW65bD+WTHczWfaVERERERESa0eqQyTn3q/YsRKQ5XtD0AEvOOIPF/3cqQ265hezp09JdlnQwv89fd9ncKJq/J9fsV2az0247UVRRRHFlsfeoKmZjxUaKq4rr2jZWbmRt2Vq+2fANxVXFlFaXNjpmwAJbQqlYCBVqJJSKPueF8sgMZCqcEhERERGRrYYul5NuJTxqJCMe/jtLzvoeS886i0HXXkvegQekuyzpQnzmqwt9WqK6trpBCFUvpIpbX1myki8qv2BT1SbKa8obHTPkCzUIofJCeWQHs8kKZpEVyCI7mF23nh3MJjtQfz0rkIXf52/ryyIiIiIiItLhFDJJtxMcOJARDz3I0nN+wPLzz6f28l/T64QT0l2WdHNBf7DuEr6WqKytbBhKxdYTQqvFmxazqWoTZdVllNWUNXqvqUSZgcxGA6m65fhtCUFV3bZAlmZXiYiIiIhIh1HIJN2Sv6CAYffew/LzL2DVFb+hevly+l5wAebTTZ2lc4X9Yfpl9aNfVr8W7eeco7ymnLKaMkqrS+seZdXR9Zq45fhtNd7y2rK1LKpe5LXXlDU5oyqez3xkBbKSzpxqLKCq1z9uPSuQRdgf1kwrEREREREB2iFkMrMRwA7AFOfc5W2uSCRFvsxMhvzlZlb97krW33kXlQsWMvhPV+PLzk53aSLNMrO6YKels6eSqY3U1gVWsZlSjQVU9cKraJi1oWRDvf0qaytTPnbQFyQjkEGmP5NwIExGIIMMf0aD53AgnLQ9I+BtC/vChP1hQv5QvefE5YAvoNlYIiIiIiJdUMohk5kFgO2IBkrR5+2BfMCAlUCXCJnM7HDg8DFjxqS7FOlgFgwy4DdXEB4zhtV//COLTj6FobfeQnDQoHSXJtKp/D4/uaFcckO57TJedaTaC50SAqv4sKqipsJ71CY811RQWVtJeU05RdVFSfvUutpW12YYIX8oaQhV77mR0Kq5fcP+MEFfkKA/SMgXarAc8nvPCrtEREREROpLKWQys4/wAqYQsAL4DPgQ2AM4DnjBObe5o4psKefcU8BTU6dO/V66a5GOZ2b0PvX/CI0cwfILfsrC7x7HkD/fSNbUqekuTaTbCvqCrbqBeqqqI9X1wqjKmkoqI5VU1VZRWes9xy9X1lbWW26srSriLW+q3NRov+pIdbudR9AXrBc8xZ6D/mDDbb5Q0vZk+yXbFvKHCPgC9caJLce3BXyBumef6RJiEREREek8qc5k2ha4FrjGOVccazSznwBfdKWASbZeOXvuyYh/PMLSH/6QxafNot+FF9L79FmaaSDSBQV9QYKhILm0z8yrloi4SIOwKj6gqqzxgqiq2irvOVJFdW011ZHoozbaFt+ntoqaSE2DtthzY2NWRaL71VZT42ra/Vx95msQPMWeqyuqufnJm+vWk/VJ9txsH3+QgCU8+wL1lpsaL+AL4Dc/fvPr328RERGRbibVkGlH4M/Ao2Z2oXPukw6sSaTVwqNHM/LRR1l56WWs+dOfKP/4Ywb+/ir8uZ3/h6yIdE0+83n3gwpkpLuUemojtdS4mgYhVXzA1SDAioZVNRFvvxq3JbCK7RcLv2LLsfWVq1dSkFNQt14TqaG8przeevxy4nNbLnlMVSycCvgC+H1+AuY9B31B/OavF0oFfUGvT3Q9ft/4/eP3SdaebP/YuMn2bzBetJamao61K0QTERGRnialkMk59wVwgJkdAzxmZq8Bv+zQykRayZ+by+Cb/kzRffez5tprqTj2WIbcdBMZ48enuzQRkUb5fX78+An7w51yvDlz5jBz5sxW7x9xkUZDqAZtccFXvRCrkbZYwFXrauuWG6xH+8XCudpIbV17bGZZY/vXulqqI9X19om4SPu9uCmKBVBNBVv1Qqv4kCq+b0LgFT9u/HixGWLJlmOXV8aHZc32jYVo5sfn89Udt7F9Y9t1GaeIiEjP1aJvl3PO/cfMngV+AXwC+IBgRxQm0hZmRp/TZ5G5/SSWn38Bi447nv6XXkrBcd/VfzkWEWkHPvPV3US9J4i4SF1gFR9eJQ254vukGIzFnuvCLddw/1SPWVlTSZkr2zJe7BiJ48XV0hkzz1oiPnBqLJxKDLPqBVvN7NtcgOYzX73l2HYzq9fmMx/fbP6GDV9vqNevuX2StafSJ1l7Y8fT/58REZGuqEUhE4BzrgK4wszuA24AXjaza4GbnXOl7VyfSJtk7bQTIx/7Dyt+/nNWXX45Ja++ysArf0egd+90lyYiIl2Iz3z4/D6CPfS/nTnnvCDN1XqPSG1dCBVrjy3HArBG+0bDsPjlZP2TLcf6NjhOsn0aOU5s3+raaspdefP1JlmudbUtm732Vsf9bFrLsBYHVvH7mBk+os+xtiTb65bNV9c/1i+xPXGc5rYnO2a9fRs5flPjNNU3tt7UedaNk9A/2bb4Y9b1j71GTfVvbD1+/7jjA/XqbnQ9uj9Gg3FERDpLi0OmGOfcIuBoMzsAuBH4KdCvfcoSaT+BwkKG3nUXRQ88wNrrb2DBEUcy6Korydlrr3SXJiIi0iliQYMff7pL6TKcc9S4Gpxz1LrauudYGBVxESIuwptvvcn0XabXa4v1id8nvj2VPqnsm+o+ie3J+gB16845IsQtuwgRki/H960bN7o9ti3pGC6CwzV5zKa2x7bFt0vrtTnsioVX8YFeQhBXXlbODY/fkFowliQIa1GNjQR8iTUC9faJPQP1xkmlX712o0Fbg+cm+jU4Xlx7/Hk21S9pXcnOK9X6W3Neyepq5HVM/PklO1aq9cZ+1qnWEGtLNn5MvfOLW48tJ/tZRBsbPf7WqtUhU4xz7gUzmwz8pB3qEekQ5vPRZ9YssnfdjRUXXcTSs8+h4Lvfpd/PL9JNwUVERLZCZkbQmp+51ivQi0E5gzqhImlOu4RZuEbHqdse1ye2HB961W2PC9vqtif2b2w9fv+44wH1am50PVkdTdXdwjoS+yfWkWys1TWrKSworFdjhAg4trzWsfUkx2hs3KQ1Jnntm3rtYv28/7l6bXXPzfSLvQcT94nvqzBUEiWGVtMGTOOk0ElprqpjtTlkAnDOVQPXtcdYIh0pY/w4Rvzrn6y96SaK7r2PktdeY8AVl5O7997pLk1EREREmqAZeV1bW79QoidpLoyK3w4kD7uShV9Jxq7XlhCU1Qvn4mtI6J+shvi+sXEa9EuhhkZDveZemybqTfU1jK8rsU9jP6sG7SQZp7HXzGts9LUFGJI7BJa3z/usq2o2ZDKzhRD3aqfuRufcTa3YT6RD+cJh+l90EXkHHcTKSy9j2Q9+SN5hh9H/sksJ9OqV7vJERERERKQbi7/MSyTRnOVz0l1Ch0plJtOsVo69qJX7iXSKzEmTGPnvR1l3x52su/12St98k/6XXkLeYYdt1dfQioiIiIiIiLRGsyGTc+7VzihEJB0sFKLvj39E7gH7s/KXv2LFRT9n478eZcDlvyY8enS6yxMRERERERHpNnzpLkCkK8gYN44RD/+dAVdcTsWXX7LgqKNZc931RMrK0l2aiIiIiIiISLegezKJRJnfT68TTiB3//1Zc+11rL/zToqfeZr+F/+C3AP21yV0IiIiIiIiIk3QPZlEEgT69GHQH35PwbHfYdVvfsvy884jc6ed6H/xz8ncfvt0lyciIiIiIiLSJemeTCKNyNppJ0b+599s/M9/WHvTzSw67njyDjmEvj/9KaEhg9NdnoiIiIiIiEiXonsyiTTBAgF6HXcco597jj4/OIfNs2ez4JBDWHPttdRu3pzu8kRERERERES6DIVMIinw52TT77zzGP3cf8k7+GDW330P3+63P+vvuotIeXm6yxMRERERERFJO4VMIi0QHDCAQVf/kZH/fpSMyduz5trr+OaAAyh68CEiVVXpLk9EREREREQkbRQyibRCxnbbMeyOOxj+0IOER4xk9ZVX8u1BB7Hx0UdxNTXpLk9ERERERESk0ylkEmmDrJ12YtgD9zP07rsI9Clk5S9/xYJDD6P4qadxtbXpLk9ERERERESk0yhkEmkjMyNn990Z8c9/MOSWv2DhMCsuuogFhx7Gxscf18wmERERERER2SooZBJpJ2ZG7r77MvLxxxj85z9jGRms/MUlfHvwId5ldLpnk4iIiIiIiPRgCplE2pn5fOQdeAAjH/sPQ269BX9+Pit/+Su+OeggNjz8sG4QLiIiIiIiIj2SQiaRDmJm5O6zDyP+9U+G3nkHwX79WfWb3/Ltvvux7o47qS0uTneJIiIiIiIiIu1GIZNIBzMzcvbck+EP/51h995DeOxY1l5/PV/vvQ+rrryKqqVL012iiIiIiIiISJsF0l2AyNbCzMjedVeyd92Vii+/pOje+9jwyCNs+Pvfyd1/f/qcPovMKVPSXaaIiIiIiIhIq2gmk0gaZGyzDYOu/iNjXn6JPmeeQenbb7PohBNZdOJJFD/9jG4SLiIiIiIiIt2OQiaRNAr270+/Cy9k7Cuz6X/ppdSsX8+Kn/2Mr/fehzU33kj1ypXpLlFEREREREQkJQqZRLoAX3Y2vU/9P0Y/91+G3nkHmZMmsf72O/hm3/1Ydu65lL79Ns65dJcpIiIiIiIi0ijdk0mkCzGfj5w99yRnzz2pWracjf94hI3/epTNL75EaORICo49lvwjjyBQWJjuUkVERERERETq0UwmkS4qNGQw/S68kDGvzmHQ1X/EX1DAmmuu4euZe7P0xz9m8+xXcDU16S5TREREREREBOihM5nM7HDg8DFjxqS7FJE284XD5B95JPlHHknlggVs/Pe/KX7iSUpeehl/30IKjjqK/KOPITxqZLpLFRERERERka1Yj5zJ5Jx7yjn3/fz8/HSXItKuwqNG0f+iixj7ymyG3PIXMidtz/p77mXBIYew6ORT2PCPf1JbXJzuMkVERERERGQr1CNDJpGezoJBcvfdl6G33sKYV2bT72cXUrthA6suv5yv9tiTpT/+MZuee55IZWW6SxUREREREZGtRI+8XE5kaxLs148+Z51F7zPPpOLzz9n05FMUP/sMJS+9jC8nh9wDDiD/8MPImjYN8/vTXa6IiIiIiIj0UAqZRHoIMyNzwgQyJ0yg388vouzddyl+8ik2P/88xf/5D4F+/cg98EDyDjyAzB12UOAkIiIiIiIi7Uohk0gPZH4/2bvtRvZuuxG54nJKXnmF4qefYeM//sGGv/0Nf99Ccvfbj7wDDyRr6lQsoH8KREREREREpG30l6VID+fLyCDv4IPJO/hgaktKKXl1DptfeJHix59g48OP4O/Vi9z99iX3gAPJnj4NC4XSXbKIiIiIiIh0QwqZRLYi/pxs8g89lPxDDyVSXk7J66+z+fkX2PTsf9n4r0fx5eSQvcce5O49k+wZMwj06pXukkVERERERKSbUMgkspXyZWaSd8AB5B1wAJHKSkrffIuSV16hZM4cNj/3HPh8ZO6wA7l7zyRn770JjRqFmaW7bBEREREREemiFDKJCL5wmNx99iZ3n71xkQgVn31OySuvsHnOK6y59jrWXHsdwWHDvMBp5kyydtpJl9WJiIiIiIhIPQqZRKQe8/nInDSRzEkT6fuTc6letcqb3fTKK2x4+BGK7n8AX1YWWdOnk7377mTvvhuhESM0y0lERERERGQrp5BJRJoUHDCAXiecQK8TTiBSVkbp229T8sYbdZfXAQQHDaoLnLJ32QV/QUF6ixYREREREZFOp5BJRFLmy8oid999yd13XwCqliyh9K23KH3zTTb9979s/Ne/wIyMCRPImjaNrJ2nkrXTTvjz8tJcuYiIiIiIiHQ0hUwi0mqhYcMIDRtGrxNOwNXUUP7Jp5S++Sal777Dhr/9jaJ77gGfj4xttiFr553JmrazFzppppOIiIiIiEiPo5BJRNqFBQJk7bgDWTvuQN9zf0ykooLyeZ9Q9t57lL3/Phsefpii++8HM8Ljx5M1dSqZO0wha8oUAoMG6Z5OIiIiIiIi3ZxCJhHpEL6MDLKnTyN7+jQAIpWVVHzyCaXvv0/Z+++z8dFH2fDggwAE+vYlc4cdyJwyhcwpU8iYsB2+cDid5YuIiIiIiEgLKWQSkU7hC4e9S+Z23hkAV11NxVdfUf7xXMrneo/NL7wAgAWDhLfblqwpO5A5ZTIZkyYRHDxYs51ERERERES6MIVMIpIWFgySOWECmRMmwCknA1Czdi3l8+ZRPncuZXPnsuGRR7xL7AB/fj4ZE7YjY8JEMiZMIGPiBAVPIiIiIiIiXYhCJhHpMgJ9+5K7337k7rcfEJ3tNP8rKj77jIr//Y+Kzz5j/X33QXU1EAueJkRDJy98wrk0noGIiIiIiMjWSyGTiHRZFgySOXECmRMnwPHHARCpqqIyFjx99j/KP/uM9ffeCzU1APTNymTxdhMIb7MNGduMJzx+G8Jjx+DLyEjnqYiIiIiIiPR4CplEpFvxhUJkTppI5qSJwPGAd1Pxyq+84GnB7Nlkb9rMxv/8B1dW5u3k9xMaMYKMbbYhvM1473n8eAJ9++pyOxERERERkXaikElEuj1fOEzmpElkTprE5gED2GnmTFwkQvXSpVR8OZ+KL7+g8sv5lH38EZueeaZuP3/v3ltmO40bR3jMaMKjR+PLykrj2YiIiIiIiHRPCplEpEcyn4/Q8OGEhg8n78AD6tpri4upmD+fyi/nUzH/Syq/nM+Ghx7CVVXV9QkOHkx4zBjCY8cQGjOG8JixhEePwpeZmY5TERERERER6RYUMonIVsWfn0/2tGlkT5tW1+ZqaqhaspTKb76m8ptvqPrmGyq//oaSt96qu8k4ZgSHDPHCp2gAFR4zhtCoUbrfk4iIiIiICAqZRESwQIDwqJGER42EA7bMevLCpyVUfv1NvQCq5PXX6240DhAYNJDwiJGERo4kNGok4ZHecqB/f8znS8cpiYiIiIiIdDqFTCIijfDCp1GER42CuEvuXHU1VYsXU/nNN1QuWEDVwkVULVhA8WOPEYndbBywzExCI0YQHjmCUCyEGjmS0IgR+HOy03FKIiIiIiIiHUYhk4hIC1kwWHfZXDznHDVr1lK1cCFVixZStXAhlQsXUv7p/9j03PMQidT1DfTrFw2dRhAaOozQ8GEEhw4jNHSIbjwuIiIiIiLdkkImEZF2YmYE+/cj2L8f2btMr7ctUlVF9eLFVC5c6M18WuiFUJv/+xy1xcX1+gb69iU4fJgXPg0bSnDYMELRhz8/vzNPSUREREREJGUKmUREOoEvFCI8dizhsWMbbKstLqZqyVKqly6haskSqpYspWrJYkrffJPix9bUHyc/3wuchg6tC6KCgwd7j/79sGCws05JRERERESkHoVMIiJp5s/PJ3NSPpmTJjbYFikvp2rpUqrjwqfqJUsp/+QTNj33XL1L8PD5CAzoT3DQIEKDBxOIPgcHDSI4eDCBgQPxhUKdeGYiIiIiIrI1UcgkItKF+TIzyRg3joxx4xpsc1VVVK9cSfXy5VSvWEHV8uXURJ9L33+fmlWr64dQZt6leNHQKThoEMFBAwn0H0Bw4AACAwbgLyjAzDrxDEVEREREpKdQyCQi0k1ZKERo+HBCw4cn3e6qq6levaYuhIp/Lv/kEzY9/zzU1NQfMyODYP/+BAYOjD4PIDjAC6CC0TZffr6CKBERERERaUAhk4hID2XBIKEhgwkNGZx0u6utpWbdempWr6J65aq65+pVK6lZtZrS996jZs0aqK2tP25mZjR46k9wwMC65+DAAd6sqP79FESJiIiIiGyFFDKJiGylzO+v+za8zO23T9rHC6LWUbNyJdWrVlG9ahU1K1dRvXo1NStXUvrWW9SsXVv/sjy8WVaBvn3rP/r1bdDm790b8/k643RFRERERKSDKWQSEZFGeUFUf4L9+5PZSB9XU0PN2rXebKhVK6les4aatWu9x5q1VC5YQOm77xLZtKnhzn4/gcLChoFUfCjVpw/+Pn3whcMdeq4iIiIiItI2CplERKRNLBDw7tc0cCCwQ6P9IhUV3qyoNWvjQqgtgVT1ihWUz5tHbVFR0v19OTle4FRYSKB3b/yFfQj0KSTQpzf+Pn28sKp3b/yFhfiys3W5noiIiIhIJ1PIJCIincKXkUFoyBBCQ4Y02c9VV1Ozfv2WIGrdOmqLirz7R61fR+36IioXLKD2vfeoLS5OOoaFw3UzoLxgqg+B3n0IFG5piwVW/vx8XbInIiIiItIOFDKJiEiXYsEgwQHet9o1x1VXU1O0gdr166hZXxQNodZTs77Ia1u3nurVq6n47DNqiooa3MQcAL8ff+9eBHr1xt+7N/5eBd5yr17R9l7R5d74C3oR6FWAhUIdcOYiIiIiIt2bQiYREem2LBisu3l5c1wkQm1xsRdCxc2KqlkfXd6wkdqiIiq/+JLSDRuINDJLCrxL9+oCqYJoANWrF4He0UCqV3RbtN2Xm6vL90RERESkx1PIJCIiWwXz+Qj08mYmhceMaba/q6nxQqmiImo2bKC2aAO1GzdQU1TkBVIbNlBbVET12jVUzJ9PbVERrqoq+WCBAP6CAvwF+fjzC5pZjq4XFOhm5yIiIiLSrShkEhERScICgbp7N6US9TjncGVl1MQCqA1F1G7Y4F3OtyH62LiR2uJiqpcupeLTT6nduLHxYAqwzEz8+flbwqfYcnxbQcL2/HwsoF/vIiIiItL59P9CRURE2oGZYdnZhLKzYcjglPeLlJd7M6Y2bow+4paL6y9Xfv11XVvS+0tF+XJzG4ZT+Xn48vLw53nL4SVLKc3IxJ+fhz8vD19+vr6VT0RERETaRCGTiIhIGvkyM/FlZqZ0o/MY5xyRkhIvcNqQPJCKX65asoRIcTG1mzdDJAJAAbDk9tsTivHhz83Fl5+PPy8WPkWDqbzceiGVPy8PX25e3HIu5ve33wsjIiIiIt2OQiYREZFuxszw5+biz82FIUNS3s9FIkTKyogUF/Pu7NnsMHYctZuKiWzaRO2mzVuWizdRu2kTkU2bqF65ktpN3jrV1U2O74vW5MvNxZebgz8nN9qWgy8n2pabiy87Z8tyTnR7bq43k8rna+vLIyIiIiJpopBJRERkK2E+H/6cHPw5OdQMHUr2LtNT3tc5hysvp3bzZmqLY8GUF0hFNtcPpmpLSohs3kz1mtVEvv2WyObN1JaUQE1NMwUavuxsL5jKyUkIq7aEUluWtzz7srPrHhYK6bI/ERERkTRQyCQiIiLNMjMsKwtfVhbB/v1bvL9zDldRQe3mzUSiIVTt5hIiJZu9trrl6LYSr6127TqqFi7aElQ1M5sK8L7NLy508mVnNwiifDnZ9fvk5ODLarjdsrIUWImIiIikSCGTiIiIdDgzw6L3n6Jfv1aN4ZzDVVZ696OKD6tKS4mUlBIpjXuUlHjPZd56bfTSv/htOJdK4fiyspIGVf6chCArKxtfVia+rCzvXOPWfZnR9qwsLBhUcCUiIiI9Uo8MmczscODwMWPGpLsUERERaSdmhmVk4MvIIFBY2KaxYpf/RUpLvcv7SsviQqqSeoFVbSywivUpKaG6qIjK2PbS0tRmWMUEAnWhU91zVhaWFQ2m6triA6ssfJlZ+LLjAquEIMvCYYVXIiIiklY9MmRyzj0FPDV16tTvpbsWERER6XriL/8L9O3b5vEiVVVESktxZWVEysu9G6yXRZ/Ly4iUlXmhVrL26Hpt0Qaqly2v29+VleFaEl75fPgyM72wKjMaRmVkeGFURgaWmYEvIxNfZgaW0UhbVrS9ri2j3ji635WIiIg0pUeGTCIiIiKdyRcK4QuFoFevdh3XVVc3CK1cNJyKlJd7s6vKt4RWLj7Eqqjwgq2KCqo3FePKK+q1uYqKlhcUu+wxOqOsRQFWZgYWCuPLCHuzrsIZ+MIhLCMDC4fxhcPecijk7R8O69sGRUREuhmFTCIiIiJdlAWD+INB/Hl57T62i0S8e1zFBU+R8nJcRQWR8gpcRTmR8goiFeVbAqpkbdF9azdvombNmvrjVVS07FLCBBYM1g+hwmEsI4wv3ERbRhgLeYGVLxzCwhnR7V6wZeFYiBUXctULv3TZoYiISGspZBIRERHZCpnPt+Vm7O08Ayueq64mUlnpBU+VVbjKimi4VYmrrPC2VVTiqqKBV91ypdevMtpWWRntW1G3vWbz5obbo4+2sFDIC5tCIQqd49u8vC1tYW/WmoXCdX28tnDcfkEv1Ipr84VDcdvj+sTGCCX08fvb6ScgIiLSeRQyiYiIiEiHic3GIien047pIhFcVdWWMKvKC6ci8WFWNPCKhVle4FW1JcSqqsJVVrFy8WJ69e5NpKrS26eqyrskcePG6DG847iqqug+lVBb2/aTCAS8SwfjAq8GYVY0lEpsSxqCxcKt2HJiuBXXVrddQZeIiLSQQiYRERER6VHM58MyMiAjA39+28aaP2cOO86c2aJ9XE2NFzpVVuKqqr2QKxZ6xbfFwqm4oMpVxfWprKwXeNXvU+Xdoys6cytSXVUXgsX6tVkgsCXkqgug4gKsWOgVTrYeC7ZCScKthusNgq5QCIJBXbooItLNKGQSEREREWlHFghggQC+rKy01eCcw1VX14VQrjIaVsVCqEovqIqFXd6lhlX1g666YKv+et2sropKaoo34arjgrLYcSoqIBJp20mY1QVPvsQgKyOjfqgVu+9WdL3u3lx1gVdG/fArdk+uBuNHHwq4RERaRSGTiIiIiEgPY2ZYKAShEOTmpqUGV1OzJXSqTAizqqsSwq3EsKsy7n5dVfXu01UXdEVDri2hV8WWY7Xm2xPjxQdcoVDyUCtuFlcqoVbiZYsWDHlhViiYsBz0ZoAFAvqGRRHpdhQyiYiIiIhIu6ub0ZWd3enHTjqTq95y1ZYbz8dmaFVW1J+9FQu14gOvuJlc9QKuxBvPO9c+JxIIbAmdgsEtj/hgqrG2WGCVGGA16NPUepLxEmtRECYicRQyiYiIiIhIj5LOmVzOOYh9q2LipYkVFVuWq6u9e29Vxz2qqlq2HmurqiJSWtrsPu1yU/pE0SCsr8FXmVlbwqdYQJbsEQpuCdCCScKvxP1DDcdocv9Q8uPj9+sySJEOppBJRERERESknZgZhEL403ipYmNcbW3djemTBlFVzYRZja1XVbFs0SJ69+/XYD+qa+qWI2VlDcetrvZqit+npqZjXgCzeiEWDcKrUPKQK+nD206j20NbxkgSkiUeg/j9YiGZZolJN6SQSUREREREZCtgfj/m90M43O5jfzFnDgNb+E2MjXGRSDQMq8ZVV0FCCNXwkWx7Vb3Qqn5A1nTIVReKlZdH90+yT3wo1l6XRyby+5sOuhJmezUIvAJNhWRbgrJ6s70a2z9ZUBYfkgUCmiUmgEImERERERER6ULM59tyuSOdf0+vlnK1tckDqFgwVVMNLQ7J4kOw+JlhycavIVJegdu0uYkxaur27yj1wqpQCiFX4myxhCBryyWRoUbGaG62WRACycfWLLGOo5BJREREREREpJXqZohlZKS7lGbF7hnW3CWLDWZ81TTcp/44zQVlNfVml0UqyreMUdXY8as6fpZYM5dFUi/IShJ2pRyUeY9AYd+OOZ8uRCGTiIiIiIiIyFYgds8wC4XSXUpK6maJxUKouuCrqn7Y1dgllVXV9fdP2LfeJZWNXRJZUUmkpLSZSzZTmyWWtcsuMOu0Tnjl0kchk4iIiIiIiIh0OXWzxLoB51zT9w+rqcFCIRYuXpzuUjuUQiYRERERERERkTYws7obpzeph4dMutuViIiIiIiIiIi0mUImERERERERERFpM4VMIiIiIiIiIiLSZgqZRERERERERESkzRQyiYiIiIiIiIhImylkEhERERERERGRNlPIJCIiIiIiIiIibaaQSURERERERERE2kwhk4iIiIiIiIiItJlCJhERERERERERaTNzzqW7hg5jZmuBxemuox0UAuvSXYRIN6HPi0hq9FkRSY0+KyKp0WdFJDU95bMy3DnXN7GxR4dMPYWZfeCcm5ruOkS6A31eRFKjz4pIavRZEUmNPisiqenpnxVdLiciIiIiIiIiIm2mkElERERERERERNpMIVP3cEe6CxDpRvR5EUmNPisiqdFnRSQ1+qyIpKZHf1Z0TyYREREREREREWkzzWQSEREREREREZE2U8jUxZnZQWY238y+MbNfpLsekXQys6Fm9oqZfW5mn5nZedH23mb2opl9HX3uFW03M7sp+vn5xMx2TO8ZiHQuM/Ob2cdm9nR0faSZvRv9TPzDzELR9nB0/Zvo9hFpLVykE5lZgZk9amZfmtkXZrarfq+INGRmF0T//9f/zOxhM8vQ7xURj5ndY2ZrzOx/cW0t/l1iZqdF+39tZqel41zaSiFTF2ZmfuAW4GBgO+BEM9suvVWJpFUNcKFzbjtgF+BH0c/EL4CXnXNjgZej6+B9dsZGH98Hbuv8kkXS6jzgi7j1q4EbnHNjgA3AmdH2M4EN0fYbov1EthZ/Bp5zzm0DTMb7zOj3ikgcMxsM/ASY6pybCPiBE9DvFZGY+4CDEtpa9LvEzHoDlwPTgWnA5bFgqjtRyNS1TQO+cc4tcM5VAY8AR6a5JpG0cc6tdM59FF3ejPeHwGC8z8X90W73A0dFl48EHnCed4ACMxvYuVWLpIeZDQEOBe6KrhuwD/BotEviZyX2GXoU2DfaX6RHM7N8YAZwN4Bzrso5txH9XhFJJgBkmlkAyAJWot8rIgA4514DihKaW/q75EDgRedckXNuA/AiDYOrLk8hU9c2GFgat74s2iay1YtOu94BeBfo75xbGd20CugfXdZnSLZmNwI/ByLR9T7ARudcTXQ9/vNQ91mJbi+O9hfp6UYCa4F7o5eW3mVm2ej3ikg9zrnlwLXAErxwqRj4EP1eEWlKS3+X9IjfMQqZRKTbMbMc4N/A+c65TfHbnPeVmfraTNmqmdlhwBrn3IfprkWkiwsAOwK3Oed2AErZcjkDoN8rIgDRS3aOxAtmBwHZdMMZFiLpsjX9LlHI1LUtB4bGrQ+JtolstcwsiBcwPeSc+0+0eXXscoXo85pouz5DsrXaHTjCzBbhXWq9D959ZwqilzlA/c9D3Wcluj0fWN+ZBYukyTJgmXPu3ej6o3ihk36viNS3H7DQObfWOVcN/Afvd41+r4g0rqW/S3rE7xiFTF3b+8DY6Lc2hPBurvdkmmsSSZvotfx3A184566P2/QkEPv2hdOAJ+LaT41+g8MuQHHclFWRHss5d4lzbohzbgTe747ZzrmTgVeAY6PdEj8rsc/QsdH+W8V/bZOtm3NuFbDUzMZHm/YFPke/V0QSLQF2MbOs6P8fi31W9HtFpHEt/V3yPHCAmfWKzh48INrWrZg+612bmR2Cd18NP3CPc+6q9FYkkj5mtgfwOvApW+4zcynefZn+CQwDFgPHOeeKov8n6C9407nLgNOdcx90euEiaWRmM4GfOecOM7NReDObegMfA6c45yrNLAP4G959zoqAE5xzC9JUskinMrMpeDfIDwELgNPx/kOsfq+IxDGz3wDH433b78fAWXj3i9HvFdnqmdnDwEygEFiN9y1xj9PC3yVmdgbe3zcAVznn7u3E02gXCplERERERERERKTNdLmciIiIiIiIiIi0mUImERERERERERFpM4VMIiIiIiIiIiLSZgqZRERERERERESkzRQyiYiIiIiIiIhImylkEhERkR7BzO4zs6fTXUc8MzvSzL42sxozu6+RPnPM7C+dXFqzumJdZjbCzJyZTU13LSIiItKQQiYRERFps2jA48zsVwntM6PthemqLc3uBv4NDAfOa6TPMcAlsRUzW2RmP+uE2mLHm2VmJc3VJSIiItIchUwiIiLSXiqAi8ysb7oLaU9mFmzlfgVAH+B559xy51xxsn7OuSLn3OY2lNjY8UNt2b+j6hIREZGeSyGTiIiItJdXgEXArxrrkGxmU+IlUHF9DjazD82s3MxeN7MhZraXmc0zsxIze9rM+iQ5xi/NbHW0z71mlhm3zczs52b2bXTcT83slCS1nGhms82sHDi7kXPpZWb3m9mG6FgvmdmE2DkAG6JdZ0fHnNnIOHWXpZnZHLxZT9dE93Fx/XYzs1fNrMzMlpvZbWaWlzDObWZ2rZmtBd6Mtv/UzD4xs9LofndFA7BYnfcC2bHjmdkViXU1d77R7bOir/m+Zva/6PFeMbORcX2GmtkTZlYUPY8vzeyEZK9LKszMZ2a3mNlCMxvb2nFERESkfShkEhERkfYSAX4BnGNmo9thvN8A5wPTgV7AP4BfA98HZgITgCsS9tkLmAzsC3wHOAC4Om77lcCZwI+A7YA/ALeb2aEJ4/wBuDXa5/FG6rsvWtuRwDSgDHguGmq9Fa2PaB0Do23NOQZYBvw2us9AADObBLwAPBk9v2OAKcA9CfufAhiwJ3BqtC2C9zpOAE6K1npzdNtb0W1lcce7thXnGxPGu8TuDGBXoAD4a9z2W4EsYO9oPecDGxs5XpOiM8wewvuZ7+6c+7o144iIiEj7CaS7ABEREek5nHPPmtmbwFVAq2eoRP3KOfc6gJn9FS8Y2ck591G07X7g2IR9aoHTnXMlwP/M7GLgbjOL3Vvop8ABsXGBhWY2DS90eiZunJudc482Vlh01swRwF7Oudeibf8HLAFOds7dZWZrot2LnHOrUjlh51yRmdUCmxP2uQj4h3PuurgafgB8bGb9nHOxYy10zl2YMOaNcauLzOznwBNmdppzrsrMir1ujdfY3PkCd0W7BoAfOefmR/tcC9xjZuacc3iztP7tnJsXqzeV1yWJbOApvBBrhnOuqJXjiIiISDtSyCQiIiLt7WLgbTO7po3jfBK3vDr6/GlCW7/EfaIBU8zbQAgYjTfLJgNv9o2L6xPEu8wv3gfN1LYt3gyht2MNzrliM/sUb/ZTe9sJGGNmx8e1WfR5NBALmT5M3NHM9sGbXbQtkA/48V6TAcCKFI+f6vlWxgKmqBXRY/UCioA/A381s4OAl4HHnHMNak7Bg8BKYG/nXGkr9hcREZEOoMvlREREpF05597D+0a1PyXZHIk+W1xbYzfWro4fNjp2YltL/r9MrO/heJeaxR4T8C6ri9eW4MI136XFfHizhabEPSYDY4G5cf3q1W1mw/FmaH0BfBcvrDojurlNNwaPE3++NY1s8wE45+4GRuLdB2oc8FbsHlAt9AwwEdi9FfuKiIhIB1HIJCIiIh3hUrz7Ah2U0L42+jwwrm1KOx53kpllx63vAlQB3wKfA5XAcOfcNwmPxS08zhd4/z9q11hD9Cbck6LHaYsqvNlG8T4CJiSp+xvnXHkTY03FC5MucM697Zz7ChiUwvEStdv5OueWOefucM4dx5Z7bLXUXXj3c3rczPZvxf4iIiLSARQyiYiISLtzzn0D3AGcl7DpG2ApcIWZjTOzA4BftuOhA3j3AJoQDR/+CNzpnCt1zm3Gu6n1tWZ2hpmNMbMpZnaOmbUo6IjeZPoJvJuG7xm9MfeDwCbg7208h0XAnmY22LZ8C9/VwDQz+6uZ7RCt/TAzu72Zsb7G+/9755vZSDM7ES+cSTxehpntb2aFZpaVOEh7na+Z/dnMDjKzUWY2BS+EbFUo55y7A7gABU0iIiJdhkImERER6Si/JeHyqejlbicAo4B5eN8gd2k7HvNV4DPgFeAxYDbw87jtv8L7RrqfRfu9iPftb625AfXpwHt43/j2Ht63ph3UzMyiVPwaGIo3+2otgHPuE2AGMALvHOfhfQPe6uRDeKL7nYd3w/PPgbPwzj2+z1t43wD3cPR4Pye59jhfH94N3D/He+1XA6fFNprZHDObk+pgzrnbgQtR0CQiItIlmPdFHyIiIiIi6WVmi4G/Ouf+kO5aREREpOU0k0lERERE0s7MJuDdM+u6dNciIiIiraOZTCIiIiIiIiIi0maaySQiIiIiIiIiIm2mkElERERERERERNpMIZOIiIiIiIiIiLSZQiYREREREREREWkzhUwiIiIiIiIiItJmCplERERERERERKTNFDKJiIiIiIiIiEib/T8wG1ox/Yf/sAAAAABJRU5ErkJggg==\n"},"metadata":{"needs_background":"light","image/png":{"width":1177,"height":339}},"output_type":"display_data"}],"execution_count":null},{"cell_type":"markdown","source":"Above are plots showing how the norm changes as the number of iterations increases in the NMF algorithm, for $d=\\{16, 32, 64, 144\\}$. In the previous sections, NMF reconstructions for $d=16$, $d=64$ and $d=144$ have been examined. For $d=16$, the reconstructions were dissociated and blend, and few distinct features were reconstructed with high precision. For $d=64$, more features were learned and reconstructed to a higher degree of precision, however, the deviation from the original images were noticeable. For $d=144$, the reconstructions were sharper and more detailed features were more apparent. It is difficult to predict exactly which convergence value for the norm the different rank approximations will yield just by examining the plots, and it is also difficult to say something about how well the images are reconstructed for a given convergence value of the norm. One must take into consideration the size of the matrix that is reconstructed, and the scaling of the values in the matrix. The norm is proportional to the scaling, and in general more non-zero elements corresponds to a larger norm (not always). We have a $(24 \\cdot 24 \\cdot 3 \\times 500)$-matrix, where all elements hold a value between $0$ and $1$. \n\nThe norm converges to a value of around $85$ and $65$ for $d=16$ and $d=32$ respectively, while for $d=64$, it converges to around $40$. The algorithm requires more iterations before it converges for higher rank approximations, hence it is somewhat difficult to see whether the norm has indeed converged to a final value for $d=144$. However, the graph undoubtedly flats out close to $1000$ iterations, and it seems to converge to a value close to $10$.\n\nIt is as expected that the norm converges to a smaller value for higher rank approximations, however as discussed above, it is difficult to conclude anything from each convergence value individually. To really know anything about the precision, in the practical sense, not numerical, of the image reconstructions, one must examine the plots, not the value of the norm. Comparing different values of the norm for different rank approximations however, is useful, and tells us something about the cost/benefit-ratio of increasing rank, which will be further examined in the next section.","metadata":{"tags":[],"cell_id":"2d3f40e00da449a78fb0e5e30e2e7f73","deepnote_app_coordinates":{"h":5,"w":12,"x":0,"y":193},"deepnote_cell_type":"markdown"}},{"cell_type":"code","source":"def ex2f():\n    maxIterations = 1000 \n    dList = [16, 64, 128, 256, 373, 512, 1024]\n    normList = np.zeros(len(dList))\n    for i in range(len(dList)):\n        W, H, opacityMatrix, norm = NMFImages(faces, dList[i], maxIterations)\n        normList[i] = norm[-1]\n\n    plt.figure(figsize=(13, 6)) \n    plt.axes([0, 0, 2, 1])\n    plt.plot(dList, normList) \n    plt.title(f'A = Image Matrix with shape (24*24*3 x 500)', fontsize = 20)\n    plt.xlabel('Number of columns in W, d', fontsize = 18)\n    plt.ylabel(r'$||A - W H||_F$', fontsize = 18)\n    plt.axvline(x = 387, label = 'Elements in WH = elements in A', color = 'r', linestyle = '--')\n    plt.legend(fontsize = 18)\n    plt.semilogy()\n    plt.grid()\n    plt.show()\nex2f()","metadata":{"tags":[],"cell_id":"866b3085e37946489e9ce26f19fbbdf9","source_hash":"275cff0e","execution_start":1649447735671,"execution_millis":2165155,"deepnote_app_coordinates":{"h":5,"w":12,"x":0,"y":199},"deepnote_to_be_reexecuted":false,"deepnote_cell_type":"code"},"outputs":[{"data":{"text/plain":"<Figure size 936x432 with 1 Axes>","image/png":"iVBORw0KGgoAAAANSUhEUgAAB5IAAAH6CAYAAADFkACOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACkU0lEQVR4nOzdd3gVZfrG8fs5qSSkEkJJgARC7yQgFqooWFAUy9qxYVl7Wduu5Wfboi66a1fEigVQFyuKRFRQSgARpUoLIJ0A0sn7+2NOYggJBEiYhHw/1zXXkKnPnDMZlHve9zXnnAAAAAAAAAAAAAAAKBDwuwAAAAAAAAAAAAAAQOVCkAwAAAAAAAAAAAAA2ANBMgAAAAAAAAAAAABgDwTJAAAAAAAAAAAAAIA9ECQDAAAAAAAAAAAAAPZAkAwAAAAAAAAAAAAA2ANBMgAAAACgQpjZ/WbmzKyn37WUxMwGBesbdID7OTPLrpiqSj1npf4sy5OZXRq81i5+14Ijj5llBu+vK/yuBQAAAKjsCJIBAACAasbM7gn+I7ozs+Z+11OcmS0K1pbmdy2VRZHA05nZ+H1sl2Zm+QXblsN5s8vjOFVN8B5c5Hcd1ZGZ1ZT0iKTRzrlJRZZHm9kFZvaWmc02s9/NbJOZTTGzW80svIzH/2uR36U++9m21OeQmXUIhvvfmdkKM9thZsvMbLiZdSpjLUnBfZ2Zfbufbe83s2H7WH+7mX0SvHc3m9lGM5tpZk+YWWpZ6ilvxZ5bJU1Xl7JfDTN7wMzmmNk2M1tlZu+aWct9nCvRzIYEr3+7mS03s6ElXbtzbqqkDyQ9GLzfAAAAAJQi1O8CAAAAABw+ZmaSrpDkJJmkKyXd5mtROBC7JHUzs+bOuTklrL9C3ve6S5Xj//f+K+ltSUv8LqQU70v6XtIKvwtBoRsk1ZX092LLu0l6Q9I6SePkBYEJkk6T9JikM83seOfcttIOHAx475W0WdJeAaKZ1ZO0xjm3s4R1JinVObc0uOg5SUdJmippVPCYHST9SdJZZnauc27Ufq71+ZLqKHLORs65xaWsayBpmXMuP7joqmANX0taKSlMUkdJN0u63Mx6Ouem7aeeivKhpOklLJ9SfIGZRUj6QtKxwfVPSmog6WxJp5hZb+fcD8X2qSVpgqRmkr6S98xpIenS4D5HO+d+LXaqRyX9IO9+e+SgrwwAAAA4wlWGf1gAAAAAcPicKClN0jBJ/SRdYmZ3O+d2+FkUyuwjSQPkBca3F11hZiHygpPJkupLSjncxRXnnFsjaY3fdZTGOZcnKc/vOuAJ3sNXS5rrnJtQbPVvki6U9F7R55WZ3SYpW9Ixkv4s6fFSjh0p6XV5vx8LJF1Uwmb3S+puZtc7574ssm+WvJciNsh7bkrSm5IudM7NL3aeC+QF3i+Y2UelPVvN7GJJZ0q6VtIzJaxPl/Sjmb0s6b5i1/EXeS8AnSypoCVzm5JCdDO7UtILkh4Obu+HD5xzw8q47S3yQuQRks4tCMrN7B15Lw8MNbO2RQJ0yQuCm0l6wjl3a8FCM7tBXhD9jP743iRJzrlJZjZb0lVm9vdixwMAAAAQRNfWAAAAQPVyZXD+orwgJEnSGf6VU3bBrlCzzaxOsMvSlcHubSeYWbfgNtFm9i8zWxzs3nSWmZ1dwrHigl3BfmVmucFuaVeb2f/M7Oh91HCBmeWY2dZgd6uvm1l920cX0GbWN9jl7JpgTQuCNcYfxMcwS9JEeS8AhBVbd4q8APnFfdQ/yMxGmtmvwWvYGOya98Ji26UFr6dH8Oei3dFmF9luUXCKDXahu8jMdprZ/cH1e43ra2ZPBpc9UUJ9lwfXfWFm+/z/VfO6EHZm1rTY8leDy8cWWx4TrG18kWV7jJFsZj2D191IUqNi1z2shBqSzOwF87onLrjfLt1X3SUco13wWgq65F0dvMeGlPAdF+xzlplNMrMtZrbOzN42s71eHDBvLNgnzWxGcLttZjbPzB43s4QSti/8PMzslODv1u9mtt7MRhT/rIvsF2Vmd5nZ9OD2m81sopmddyCfhaQT5LU+fbf4CufcdOfcm8WDWefcJv0RHvfcx7EflZQuaZCk0kLDqyU9IOk5MxsRXPaEvBa1r0o6tch5/1M8RA4uf1PSPEm1JLUt6SRm1lDSU5JelvRpSds45xZKaikpRtLPko6X1E7ST/JaPndxzn1bZPvSWmIXfJYlfncl1HZz8B4YWcK6Pma227wus2uU5XgHwsxM3ncgSX8pGu465z6U9I2kVgo+l4L71JT3UsDv8l4EKOq/khZL6mtmjUs45duSGsq77wAAAACUgCAZAAAAqCbMrI68bmALWvsNC64a7FtRBy5e0nfyumwdLmmkpCxJn5tZe0ljJZ0ur+Xuq/JCgnfMrGux47SU10IvX9LH8sKiLyT1ljTezPoV215m9hd5LQ3Tgsd+RVLrYD3xJRVrZvdJ+kxeF7gfywuP5strTfidmcUe8CfgBcW1g9dZ1JXyurYdvo99n5UXko6XNERekNJI0utm9mCR7TbIC9QKutV9oMg0rNgxw+V1JztA0hh5LQAX7qOG2yXlSLrJzE4pWGhmreV9Pr/Ja+m5vxaCBUHx8cWWF/x8jHmtNwv0kNcr11iVbpG8ayxoqVz0uj8otm28vO/+aHmtJ1+VF+QPNbNL9lO7JC9Elte97unyuth+Ql7wt1peS9WIEna7Vt59uEjS0/KCxXMlfWlet8BFXSmvq+U58u7XZ+V1432LvPsvppTSzpR3vbnyvs+JkgZK+t6KjasefCHiW3mtQndLGirvs6gt6S0ze2h/n0MRBWMW73O84BIUdEW9q6SVZtZb0o2S7nLOzSvtIM7ztrzAtl5wcStJHZxzzzrnSjz+gdQTDEuHybu/btnXQZxzuc65yyVdL+8+6yjpKefcmc652WWspX9w/mNZNnbO/Vve8/NMM7u2SN115d132ySd45zbWsbzS1IHM7vJzO40s4us9DGbm8h7Zs8NBunFFYTuvYss6yqphqTvgi8VFL2WfEmfB3/sVcLxvgvOCZIBAACAUtC1NQAAAFB9XCpv3MxhkuSc+8nMpkrqZWYZJbWuK42Z3aRSwtNSTHfOfXAA25emvbxxRa8t0uXpF5Jekzdu6neSeha0zjOz1+WFpndoz5bXv0iqH+x6uVAw4Jgk6d/yAuCC5Y3lBc9rJHUqGCfVzO6U9Ja8sE7FjtVLXgu5iZJOds5tKLJukLxg7wF5Y5geiHflhcBXygswFWyNepKkV5xzm72sqkRtnHMLitUZLi+gudPMnnPOLQvWer95LYkbOefu30c99eS1mOzhnPt9f8U753aY2bnywuRhZtZB0npJ70iKlHSac27l/o4jL7yWvOD4ueC1NJfXpfcX8sKhY7V34PyVSuGcWyTvugcFf75/H+dvL69F6VXOud3B8w+RF9jdIS9M3Z9L5F3zgGCLy0LBFsNbStinn6TOzrmZRbZ9S9J58gLpoq15H5X054L6imx/uaSX5IXS/yjhHP0l9XfOfVRknxvl3XfPaM/wfoi8gPMO59w/i2wfKS+MvtvMRjjnppdwnuKOC873Gjt3Py4Lzj8rvsLM4uQ9876R96JCqYIh7zmSHpI0I7j4Z0nTgoH4S/sLk4MvrbSStExeyF/cTfJaTp/onNtoZon7OFaqvGfISfKeI9GSbjSzHpLuLmmcdDO7QlKqvLGX28oL5xdLunNfdRczSN6Yxo+b2XeSZsoLketIusw598sBHEvyQvyidpvZS5JuKtaSuuAlhbmlHKfgJYBmh7hPgcnBefdS9gUAAACqPVokAwAAANVAMCC5Ql4L3NeKrBomyfRHl9dldZO8cTvLOg042NqL2SLp9mKtVd+S1/IvQdKNRYMJ59w38lpudih6EOdcXvEQObg8V1442yLY/WyB8+W9iPufghA5uL2TF9DsEdQF3RCcX1k0RA7uN0xeUHNBqVdaimBY+5akE8wsLbj4Mkkh2ke31sF9F5SwbIe8lq2h2rt1b1ndWpYQucg558trCZ8k71r+K69196POuX21GC56jF/lfbe97I/kvKD+e+V9J0Wv53h53d9+X9Y692OLpFuKhrTOuZ/lvczQMtjlblnt1brTObe+lFbZTxUNkYMKvvcuxY6xuHiIHDRU0kZJfUup56uiIXLQf+WNLdzbzBpJkpnVkjdu8ZSiIXLw3NvkBeom7/enLBpK2umcW1vG7WVm18kL16fLu67i/iMpUdKlwd/XfXlOXnB7jXPurOCyW+Q9vy6V11J3X7Uk6o/n680lBPit5LXcfq7oGMylHCtd3gsvv8sLpsfKe0mhdXA+2cyOK2HXK+Q9c2+VdKKkqZL67KsldnHBz/88eS8evSMvWD9e0pvOuVfKehx5PRNcLy/sjZbXYv8ceb+3V2nv7ysuOC9t3PKC5fGHuI+kwjHSt8m77wAAAACUgBbJAAAAQPXQW163oZ8755YVWf6WvPFFB5nZX51zO0vcuxjnXFr5l1gmc0vovnS3ma2UFB0MF4tbJq9r6T2Y2bHyWsodLSlZXhfNRaVIWhL8c8fgfK8ud51zi81sqbwur4s6Wl4Xt2dbCeM0B89X28xqHUhwFvSivLFELw92n325pB+dc5P2tVMwHL9DXijUUF6XsEXtNc5uGWxTGbvNLco597aZHS8v+Oou77O97wAP85W8EL2DpGny7vMVzrnvg63tj5ckM6stqY2kMWW9x8tgnnNuYwnLC140SJDX1fi+vCPvHvwgOCbvl/K66N0r8C+ipNa6Rc9ZyLwxlq+S12K+lbzQregL5aV9318XXxD8PftW3nOko7xWrp3lvcDgLDgudjEFYzy3LOU8xdWS1zq9TMzsTHkton+TNLD4d2tmA+WNn/vnUp4Nxd0vaU3x4zjnpgRbGpfWJbPMLFreWMpNJf3TOfdesfVhkl6X17X4X/ZXiHNuoZm1cc4tDu5fsHybpAfMbKi8Z1vx/boGt68lqZO8nhSmmtk5zrnPi2+/j/N/G3y2PCTpLnkte6/e9157HeNr7XkvbZH0npl9L6/F93lm9g/n3IwSD3B4rJPX0hoAAABACQiSAQAAgOqhYBzkYUUXOufWmdloeeOfnq5gV8mVWGmtznbtZ90e/+9jZmfIu9Zt8rpBXiCv5V++vG5ne2jP8WkLWr2V1uXySu0dJNcKnnd/4WhNSQcUJDvncswsR14rye/ljXN8/b72CXbPPUle2PiNvPGM8+S13E2T181ySWPy7s+qMrT0LM0IeUGy5LX2Lqn17L6MlRckH29mM+SNg/pJkXV/CXZt3Ftey9gytXYuow2lLC/o+jhkfwdwzk0ys26S7pF0lrzQU2Y2R9IDzrmSxrsu6bylnfMdeV26/yov5PxN0vbguptU+vdd2n3+W3Be8PtQKzjvHJxKU9bW2VvldfW9X2Y2QN4Y36sk9SoeFAdbBz8n7zt/tizHdM6t2Mc6pz8C++K1RMsbA/04SU845+4oYbO75AXwvZxz+3vBoOCci/exrsRaiqxfK+kLM5ssaba8cdAbHeDYxqMk/Z+8lw9eKmvd++OcW2pmn8jrkaG7/uhGvOAZHlfijn8s31Bk2cHsU1QNldAjAAAAAAAPQTIAAABwhAu2xhwQ/HG4mZUUTkle2FymINnHMZLLy4OSdkjKKj7ep5k9Ly9ILqqg5WkdSbNKOF5JLdryJAWcc6WOgXqIXpAXlD0nLwh5Yz/b3yIv+Ls02LV2ITM7T16QfDAOKkQ2syR5YwwXjAP8bzMb55xbfQCHKRjvuE/wz4n6Iyz+Sl5410tlGB/ZL865iZJONbMISZnyumm+XtJbZrZ6f10gl8bMsuSFyF9KOqno2L5mFtC+W8WW1kKzbnCeV2z+b+fcLQdTZzGrJDU1s7B9tRwPtvB/S16w3buUbpsbyus6/XhJ+aWMG/5FcPnNzrkhxVc650odbLxILTHyQuRu8loilxQiS17rYJOUXUotx5qZk5TnnIsvoZb791dLSZxzG8xsory/A1qrjONPB8e4Lvi7Yr2ke83sw5LGZT5IBb/n0UWWFRy7pPGMJa+1t7TneMgHs4+kwt+DeHldcAMAAAAoAUEyAAAAcOS7RF43ylPljSNaktMk9TGzdOdcWf5R/SZ5rWDL6lVJHxzA9hUtQ9KsEkLkgLxWhcVNkxfKHadiYWRwvNgGJezzvaRTzKy1c66k8PlQFXRLnirpteLjMJcgIzgfWcK64sF5gd2SZGYhB9FauFTBMY1flde1csH43C9Kes3MTi5rC2fn3G9m9rO8EK9fcHFBkPydvNa3x8trkbxe3vdYFru1d1fnFco5t13SBEkTzGyevLF2T5cXBB+Mgu/7f0VD5KAu2rtb86L2uh/MLER//G4UfI6T5LXi73aQNRb3o7zgr7mkn0rawMwukHfvLFMJLZGLWCvvRYWSdA+e51NJy0s71/4EW7t/JqmrpIedc3/dx+ZfSNprXHZ5rbXPldcK/CP98WJFeSrowrz4fbAvT0hqL69r7PHyrvMdMzsqeK8eqoLhBop+fwvkDSfQrJS/i04Kzos+g7+X9yLNsWYWU3Tog+Dz/MTgj+NKqKG5vHB/+kFdAQAAAFANBPa/CQAAAIAqriCou9Y5d0VJk6Tn5f2D+hWlH+YPzrk055wdwDSogq7tYC2S1/KxfsGCYLh5v7yxZIt7S14Ic72ZNSi2z6MquRvjfwfnLxY9T5F9o4Pjrh6UYGDST17Ava8Aq8Ci4LxnsTr6qvTvvaDL7YYHXuE+3SLpZEnvOOdecs69JK8b5n6Sbj/AY30lKUreWMPzCrr8DXbhO1HSOfLG9c12zuWX8Zhr5Y1fva+w9ZCZ2TGlnKOgRfChhIqLgvOexc6ZLOnp/ezb28xOLbbsOnmf47iCLpedc6skvSkpy8z+Fgyb92BmTcwsvYw1ZwfnJf5emNkl8gL2JZK672vcY+fc0n087yYEN3siuOyAw3ozS5AX8neVdN9+QmQ5554upZY7g5vMDy674SBqaWhmJbYiN7Or5HU7vlTSzDIeb6Cka+S9jHGfc26MpH/KC5b/va99ix0nq4RlATO7S94Y8mvkBdSSCrsPfy744z+DQXDBfqfLe2HhZxUZdznY3fbr8lo231/sdNfJ67b/81LulYL7rKSQGQAAAIBokQwAAAAc0cysp7wuP2c65ybtY9OX5Y3TeqmZ3VdCC8Yjzb/lBRbTzGykpJ2SjpUXIo+W1L/oxs65BWZ2r6RHJM0ws3fkdet7grzulGdIaldsn7Fmdqe8oHlecEzQhfJaIDaS1+rzW/3RkvaAOee+PYDNn5E3pvJ7ZjZCXkvMNsHzvyuvVWRxYyWdLWlUsP6tkhY7514/2JrNrLO8z2ShpKuKrBosL/B62MzGO+e+L+Mhx8oLjJLljelafF3PIn8uq7HBWj4zs/HyWjbPcM6NPoBjlMVf5IW238j7PDbL6374JHktqF84hGNPlhcEnmlmE+Tda3WCx54j7/svzWhJ75vZ+5LmS+oQ3G+dpGuLbXudvNa9/yfpIjP7Vl7r2vqSWsr7HM9T2boP/lDSEEl9Jb1UdIWZ9ZI0VN4L8ePkPauK77+hpC6qK8goSVnyWtEGzOz+Erb5wDk3/TDU0kne7/VEed/XSnnd2HeV1FbefXVRWXoVMLM0eZ/9eknnF9nnr/Jacl9jZmOdcyX1bFDcZDP7Sd7zcZm88YqPlffc2SLpAufcxmL7PCHpVHljhv9gZmPlvchydnCfy0p4IeRueb/nt5hZB3kt5VvKa9G/StKfS6nvRHm9D3xYhmsBAAAAqiWCZAAAAODIVtAa+aV9beScW2RmX8oLRvtLer+iC/OTc+55M9sur4vuS+QFpN/IC1oHqliQHNznUTPLldea9lJJmyR9Li8MHKM/xlEuus8/zOw7STfI6xb4dHkB9DJ5IeFb5X1tpXHO/RgM4x6SdIq8/x+cIelMSRtUcpD8krzQ+0/yrjNUXmvAgwqSg10BvxP88U/OuYIxduWc22hm58oLP4ebWccydNctea1Y8+UFjMXHQB4rbzxslbBuXx6SN3Zqf3nBV4i87pTLO0h+Rl5gd5S8+yNUUm5w+eMFLX8PhnNut5mdJu9aTpZ3Dy6T950+JK9lZ2lGybs/75F3r+wMLrvLObfHWLPB762HvBcBzpf3+xMpL8ycJ+lmed06l6XmpWY2WlJ/M0twzq0vsrqR/uhV7bJSDrFYXhB9OBS0sm4i6b5Stlmkw9Ntco6kJ+W12D1F3sst2+R1G/24pCcLWurvi5mFSXpb3r0/0Dm3pGCdc25XcCz16ZJeMrOpzrlF+znkY/K6Ue8drClfXmvyp+W1Bt+rlbBzbruZnSCvpfZ58u6fjfKGRrjPObfXfeucW2tmR8v7HgYEP4e1kl6RdK9zLreEa40LbvtRWT4bAAAAoLqyMg49BQAAAAAogZnFygvNpjvnjva7HuBgmdkgeeHbpc65YT7VcIy8lwlucc6VuRtl4ECY2fWSnpLU7QB7dgAAAACqFcZIBgAAAIAyMLPawRZ7RZeFymvxF6kjvBU3cDg45yZIek/SHWYW5Xc9OPIExyW/S9JIQmQAAABg3+jaGgAAAADKZqCk/wt2Ab5UXlet3eWNQT1d0n/8Kw04otwmr/vqdEmzfK4FR540eV23D/O3DAAAAKDyI0gGAAAAgLL5QdK38sLjWsFlCyU9LOkfzrmtfhUGHEmCY/Pe73cdODI5534R9xcAAABQJoyRDAAAAAAAAAAAAADYA2MkAwAAAAAAAAAAAAD2UK26tk5KSnJpaWl+l1Hhfv/9d0VHR/tdBgBUWTxHARzx5szx5s2bl/uheYYCwKHhOQoAh4bnKAAcPJ6h1dPUqVPXOOdql7SuWgXJaWlpmjJlit9lVLjs7Gz17NnT7zIAoMriOQrgiFfwjMvOLvdD8wwFgEPDcxQADg3PUQA4eDxDqyczW1zaumoVJAMAAACQdPTRflcAAAAAAACASo4gGQAAAKhuHn3U7woAAAAAAABQyQX8LgAAAAAAAAAAAAAAULkQJAMAAADVzcCB3gQAAAAAAACUgq6tAQAAgOpm7Vq/KwAAAAAAAEAlR4tkAAAAAAAAAAAAAMAeqkWQbGb9zeyFvLw8v0sBAAAAAAAAAAAAgEqvWnRt7ZwbLWl0VlbWlX7XAgAAAAAAAADAkWjbtm1avXq1tm3bpl27dvldDoADFBcXp19++cXvMnCIQkNDFRkZqdq1aysyMvLQjlVONQEAAACoKo4/3u8KAAAAABxh8vLytHLlStWuXVt169ZVaGiozMzvsgAcgE2bNikmJsbvMnAInHPatWuXNm/erCVLlqhOnTqKi4s76OMRJAMAAADVzd/+5ncFAAAAAI4wa9asUWpqqqKiovwuBQCqLTNTWFiYEhISFBERod9+++2QguRqMUYyAAAAAAAAAACoODt27FCNGjX8LgMAEFSjRg1t3779kI5BkAwAAABUNyed5E0AAAAAUI7oyhoAKo/yeCbTtTUAAABQ3Wzd6ncFAAAAAAAAqORokQwAAAAAAAAAAAAA2ANBMgAAAAAAAAAAQAUxMw0aNMjvMqqcQYMG0V36YXL//ffLzLR48WK/S6lSFi1aJDPT/fff73cpFYYgGQAAAAAAAAAAoIyys7NlZqVOoaHVa1TRIUOGaNiwYX6XUSbPPfeczEwvvfTSXuvefvttmZkaNGhQ4r4tWrRQfHy8du/eLemPoHvNmjUlbj9s2DCZmUaMGFF+F4CDMn36dN1///1atGiR36UclHPPPVdmpuOPP/6wn7t6Pc1Qrr7/da2SYyLUuHZNv0sBAADAgTj1VL8rAAAAAIAq77zzztPJJ5+81/JAoHq14RsyZIjS0tLKvdX1iy++qOeee65cj9mrVy9J3ssAV1xxxR7rxo0bp9DQUOXm5mr+/PnKyMgoXLdixQrNmTNH/fv3V0hISLnWhIo3ffp0PfDAA+rZs6fS0tLK7biNGjXS1q1bK/TlkbVr1+qDDz5QkyZNNG7cOC1atKhcr2F/CJJxUHbsytdt783Qzt35envw0UpPiva7JAAAAJTVbbf5XQEAAAAAVHmdOnXShRde6HcZR6ywsDCFhYWV6zGbN2+uevXqKTs7e6912dnZOu+88zR8+HBlZ2fvESQXbN+zZ89yrQdVm5kpMjKyQs/xxhtvaOfOnXrnnXd09NFH65VXXtEDDzxQoecsqnq9FoNyEx4a0MuXdNbO3U7nvfC9Fq/93e+SAAAAAAAAAACoMr788kudeOKJio+PV2RkpNq1a1diC9y0tDT17NlTM2bMUJ8+fVSzZk0lJyfr1ltv1a5du7Rt2zbddtttSklJUWRkpLp3765ffvllr+Ns375djzzyiFq3bq3IyEjFx8erf//+mjZt2h7bFXTdPWzYML3yyitq3bq1IiIi1KhRI/3zn//cY9uCcXW//vrrPbr3LuhCeMKECTrppJNUt25dRUZGKiUlRSeffLK+//77/X4+JY2RXLAsLy9P11xzjZKTkxUZGaljjz1WP/zww36PKXmtkpctW6Z58+YVLluxYoXmzp2rU045RZmZmRo3btxen0nBvlXJvHnzdNFFF6levXoKDw9XWlqabr/9dv3+e9kynby8PN1xxx3KyMhQRESEateurfPOO0+//vrrHtsVdOM9duxY/d///Z8aNWqkGjVq6Kijjir8rr/++msdd9xxio6OVr169fTggw+WeM4pU6bojDPOUFJSkiIiItS8eXM9/PDD2rVr1x7bFbQuXr58uc477zwlJCQoKipKffv21dy5cwu3u//++3XppZdK8r6/gnu0oAX9tm3bdP/996t58+aKiopSfHy82rZtq9tvv32/n09JYyQXXfbRRx+pc+fOioyMVL169XT77bfvdR378/LLL6tnz57KzMzUqaeeqmHDhik/P/+AjnEoqkWLZDPrL6l/0bdHcOia143Rm1ccpfNf/F7nvfC93h58tBrWivK7LAAAAOxPwRvUJbyBDQAAAAAomy1btpQ4Pm54eLhiY2P3ue8LL7ygq6++Wl27dtU999yj6OhoffHFF7rmmmu0YMEC/etf/9pj+9zcXJ1wwgk699xzddZZZ2nMmDF64oknFBoaqlmzZmnr1q268847tWbNGj322GMaMGCAfvnll8Jutnfu3Kl+/fppwoQJuuiii3TdddcpLy9PL774oo499liNHz9eWVlZe5zzueee08qVK3X55ZcrPj5eb7zxhu644w6lpqbq/PPPlyS9/vrruvnmm5WUlKR77rmncN/atWtrzpw5OuGEE1S3bl3deOONqlOnjlauXKlvv/1WM2bMUNeuXQ/qc5ekvn37qnbt2rr33nu1du1aPfHEEzrllFO0cOFCxcTE7HPfXr166a233lJ2draaNm0q6Y+guEePHsrJydEbb7yxxz7Z2dlKSEhQ+/bt9zreunXrSjzP5s2by3w9O3fuVF5eXpm3T0pK2u82U6dOVe/evRUfH6+rrrpKKSkpmjFjhp566il99913+vrrr/fZ4jsvL0/HHHOMlixZossuu0ytW7fWihUr9Mwzz+ioo47SlClT1KhRoz32ufPOO7V7927deOON2rFjhx5//HGdeOKJeu2113T55Zdr8ODBuuCCC/Tuu+/q3nvvVXp6+h6t+j/++GOdeeaZysjI0K233qrExERNnDhR9957r6ZPn6733ntvj/P9/vvv6t69u7p27apHHnlECxcu1JNPPqnTTz9dP/30k0JCQnTmmWdqxYoVeuGFF3T33XerZcuWkqQmTZpIkv785z9r6NChuvjii3XLLbdo165dmjdvnr766qsyfx8l+eSTT/TMM8/o6quv1mWXXaYPP/xQjz32mBISEnT33XeX6RiTJ0/WzJkzC8cgHzRokN5///3Cl1AOC+dctZkyMzNddTBu3LjDer6flm1w7R/43B3z6Fi3ZO3vh/XcAFARDvdzFAAOux49vKkC8AwFgEPDcxQADg3PUf/8/PPPfpdw2IwbN85JKnU65ZRT9thekrvkkksKf16+fLmLiIhw55133l7HvuGGG1wgEHALFiwoXNaoUSMnyb377rt7bNupUydnZu60005z+fn5hcuffPJJJ8l99tlnhcueeOKJvZY551xeXp5r0KCB61Hk/xELrq9evXpuw4YNhct///13l5SU5Lp27brHMRo1arTH/sXr+OGHH/ZaVxaXXHKJ82KsvZddc801eyx/9913nST33HPP7fe48+fPd5L2+PwHDx7smjdv7pxz7pNPPnGS3Jw5c5xz3vclyZ1++ukl1rK/6b333ttvTfu7p4pPZdGuXTvXvHlzt3Hjxj2Wjxo1yklyr7zySuGy++67z0lyM2fOLFx2ww03uMjISDd9+vQ99l+0aJGLiYnZ455+5ZVXnCTXsWNHt3379sLlH374oZPkQkND3eTJkwuXb9++3dWtW3ePe2nr1q2uTp06rlu3bm7nzp17nLPg/i36jO/Ro4eT5P7xj3/sse0///nPve71gvpK+jsiISHBnXTSSXstL4uFCxc6Se6+++7ba1lUVJRbuHBh4fL8/HzXunVrV7du3TIf/+qrr3bR0dFu06ZNzjnnduzY4WrXru3OOeecMh+jLM9mSVNcKdlqtWiRjIrVun6c3rg82DL5xe/19uCuSk2gZTIAAAAAAAAAQH/0ilTUOedI114rbdkinXzy3usHDfKmNWuks87ae/0110jnnistXSpddNHe62+9VerfX5ozR7rqqj3XlVPvTIMHD9bZZ5+91/LatWvvc78RI0Zo+/btuvzyy/dq0dy/f3899dRT+vLLLzV48ODC5SkpKXud67jjjlNOTo6uv/76PbqA7tatmySvW+O+fftK8sZZbdGihTIzM/c65wknnKBXX31VW7duVY0aNQqXX3rppYqLiyv8OSoqSl27dtXEiRP3eX0FCvb98MMP1a5du3IdS/bmm2/e4+fevXtL0h7dVZemSZMmatCgwR7jJGdnZxeOf3zssccqJCRE2dnZatas2X67tR45cmSJLdDHjBmzV8vy0rRv315ffPFFmbYti5kzZ+rHH3/UAw88oO3bt2v79u2F6wq6lx4zZkxh987FOef05ptvqnv37kpJSdnjnomOjlbXrl01ZsyYvfa75pprFB4eXvhzwb141FFH7dHiPTw8XF26dNF3331XuOyLL77QypUr9eijj2rDhg17HPfkk0/WLbfcojFjxuwxTnUgENANN9ywx7ZF74WC+39f4uLiNGvWLP30009q06bNfrcvqwEDBigtLa3wZzNTr1699N///lebN29WzZo197n/1q1bNXz4cA0cOLBw27CwMF1wwQV69tlntW7dOiUmJpZbvaUhSEa5aJMSpzev6KrzX/LC5HcGH6368TX2vyMAAAAAAAAAAFVQ06ZN1adPnwPer2D84n3tu3Llyj1+Tk9P32ubhISEEtcVLF+7du0e59y6des+Q+41a9aoQYMGhT83btx4r21q1aq1x3H35U9/+pPeeOMNPfLII/r3v/+trl27qm/fvvrTn/60V5fIB6p4bbVq1ZKkMtfWq1cvvfbaa5ozZ45iY2M1d+5c3XfffZKk2NhYdezYUePGjdPgwYMLg+SeJb0QIal79+4ldjWdm5tbxqvxvrODuZdKU3CP3XfffYXXVVzxe6yo1atXa+3atRozZkyp90xBt+lFFf9eSrtHC9YVv0cl6bLLLiu1ruI1169ff68XFA70XhgyZIguuugitW3bVo0bN1avXr3Uv39/9e/fv8RrLKvSfn8KattfkDxixAjl5eWpR48emj9/fuHy7t27a8iQIXrjjTf2CtErAkEyyk3bVK9l8oUv/VDYMrleHGEyAAAAAAAAAFRr+2oBHBW17/VJSfte36DBvtc3b15uLZDLi9eTrPTaa6+pXr16JW5TPIQKCQkp9XilrSs4T8Gf27ZtqyeeeKLU4xQPDPd1zrKIiIjQF198oUmTJunzzz/X+PHjde+99+r+++/XW2+9pTPOOOOgj12Wa96XgiA5Ozu7sDVxjx49Ctf36NFDb731liSvtXKtWrXUrl27g653f3bs2FHqWMslqVu37j7XF3wOt956q/r161fiNgUh777279Onj+64444y11Xa91KWe6ngnP/617/UoUOHErepX79+mY9b1nvh9NNP16JFi/TJJ5/o66+/1pdffqmXX35Z3bp105dffrlHC+sDcai1vfzyy5Kkyy+/vMT1Q4cOJUhG1dO+Qbxeu7yLLnp5ks5/8Qe9Pbir6sSWX3cVAAAAKAfnnON3BQAAAABQbTVt2lSSlJSUVK6tUPd3ztWrV6t3796H1MqyJEW71S5Jly5d1KVLF0nS0qVL1bFjR/31r389pCD5UBV0Uz1u3DjFxcWpSZMmSklJKVzfo0cPPf744xo3bpzmzp2rM888c7/XeSgmTJhQatfZJdlfEFlwj4WEhBzUPVa7dm3Fx8dr48aNh/Uelbyus8v7nPv77hITE3XhhRfqwgsvlHNOd955p/75z3/qww8/LLH7+oq2YMECjR8/XhdccIEGDBiw1/qxY8fqueee09SpU5WZmVmhtRAko9x1bJigVy/rrItfnqTzXvBaJicTJgMAAFQe117rdwUAAAAAUG2dc845uvvuu3XfffepZ8+ee4xLLEl5eXmKjIxUREREuZ3z4osv1u23364nnnhCt912217rV65cqTp16hzUsWvWrFlia9o1a9bs1eVzamqqateufUCtbytCo0aNlJ6erq+//lqxsbF7tEaWvLF9A4GA7r//fkmld2tdXsp7jOSOHTuqTZs2eu6553TVVVft1cJ9165d2rhxY6lj7AYCAV1wwQV6+umnNWLECJ1Vwjjlq1atUnJycrnV3LdvXyUnJ+vvf/+7zj333L1q27p1q3bt2qWYmJgDPnZBN9LF77vdu3dr06ZNio+PL1xmZurYsWOJ2x8uQ4cOlXNOt9xyizp16rTX+qysLD333HMaOnQoQTKqpsxGiRp2WRddMnSSznvxew0f3FXJMYTJAAAAlcKWLd48KsrfOgAAAACgCsvJydEbb7xR4roBAwaUOgZqamqqnn32WV1xxRVq2bKlLrroIjVq1EirV6/WzJkz9cEHH+jnn39WWlpaudV644036osvvtDtt9+ur776Sr1791ZsbKyWLFmisWPHKjIyUuPGjTuoY3ft2lUvv/yy/va3v6lly5YKBALq37+/HnroIY0ZM0annnqq0tPT5ZzT6NGjNXv2bP3lL38pt2s7WL169dLQoUP122+/6Z577tljXXx8vNq1a6fx48cXbluRynuMZDPT66+/rt69e6tdu3a67LLL1Lp1a23ZskXz58/XqFGj9Oijj2rQoEGlHuPhhx/Wd999p3POOUfnnHOOunbtqvDwcC1evFiffPKJMjMzNWzYsHKrOTo6Wq+99poGDBig5s2b67LLLlNGRoY2bNig2bNna9SoUXr//fcPKtTv3LmzAoGAHn74Ya1fv17R0dFKT09X8+bNVa9ePZ122mnq2LGjkpOTtXDhQj377LNKSEhQ//79y+36ymr37t0aNmyY0tLSSgyRJSktLU2ZmZl666239Pjjj+81TnR5IkhGhemclqhXBnXWoFcm64IXf9DwwV2VVLP83qACAADAQTr5ZG9eycYJAwAAAICqZPjw4Ro+fHiJ6+bNm6eMjIxS97300kvVrFkzPfbYY3r++ee1YcMGJSUlqXnz5nrwwQf3OwbugQoLC9PHH3+sZ555Rq+//rruu+8+Sd6Ys126dNEll1xy0Md++OGHtW7dOj399NPasGGDnHNauHChBgwYoBUrVujdd9/VypUrVaNGDTVt2lQvvvhiqeO+Hk4FQbKkvVokFyybPn26ateurdatWx/u8g5Zhw4dNG3aND366KP63//+p+eee04xMTFKS0vToEGDdPzxx+9z/7i4OH333Xd6/PHH9e677+rDDz9UaGioUlNTddxxx+mKK64o95r79u2ryZMn6+9//7veeOMNrV69WgkJCWrSpIluueWWgx6numHDhho6dKj+8Y9/6JprrtHOnTt1ySWX6IUXXtBNN92ksWPH6ssvv9TmzZsLg+W77rprrzGZD4fPPvtMy5cv1y233LLP7QYOHKi7775bo0aN0vnnn19h9VhZB5s+EmRlZbkpU6b4XUaFy87OrvBuFg7ExAVrdemwSWqYGKXhV3ZVLcJkAJVcZXuOAkC5K3jGVUCQzDMUAA4Nz1EAODQ8R/3zyy+/qGXLln6XAeAQbNq06aC6jkblVZZns5lNdc5llbSufEdUB0pwdJNaGnpJZy1eu0UXvPSD1v2+w++SAAAAAAAAAAAAAOwDQTIOi2MykvTyJZ21cM3vuuClH7SeMBkAAAAAAAAAAACotAiScdgc1zRJL16cpQWrN+vCl3/Qhi2EyQAAAAAAAAAAAEBlRJCMw6p7s9p64aJMzVu5WRe9PEl5W3b6XRIAAED1M2iQNwEAAAAAAAClIEjGYdezebKeu6iTZv+2URcP/UF5WwmTAQAADiuCZAAAAAAAAOxHtQiSzay/mb2Ql5fndykI6t2ijp69IFM/r9ioS4ZO0qZthMkAAACHzZo13gQAAAAAAACUoloEyc650c65wXFxcX6XgiL6tKqjp8/vpJ+W5emSoZO0efsuv0sCAACoHs46y5sAAAAAAACAUlSLIBmV14mt6+q/53fUjNw8DSJMBgAAAAAAAIAqyznndwkAgKDyeCYTJMN3/drU03/O66hpSzfoslcm63fCZAAAAAAAAACoUsLDw7V161a/ywAABG3dulURERGHdAyCZFQKJ7etpyHndtCUxet02bDJ2rKDMBkAAAAAAAAAqoqkpCTl5uZq3bp12rlzJ62TAcAHzjnt3LlT69atU25urmrVqnVIxwstp7qAQ9a/fX3lO6eb35muy4dN0dBBnVUjPMTvsgAAAAAAAAAA+xEXF6eIiAitXr1aa9eu1a5dNBYCqppt27YpMjLS7zJwiEJDQxUZGamGDRse8vdJkIxK5fQOKcp3Tre8O0NXvjZFL12SpcgwwmQAAIBydc01flcAAAAA4AgUGRmpBg0a+F0GgIOUnZ2tjh07+l0GKhGCZFQ6Z3RMVX6+dNsIL0x+8WLCZAAAgHJ17rl+VwAAAAAAAIBKjjGSUSkNzEzVPwa207fz1+iq16dq287dfpcEAABw5Fi61JsAAAAAAACAUhAko9I6J6uB/n5mW309d7WueWOqtu8iTAYAACgXF13kTQAAAAAAAEApCJJRqZ3buaEeOaOtxs1ZrT+/maMdu/L9LgkAAAAAAAAAAAA44hEko9I7/6iGenBAG335yyr9+S3CZAAAAAAAAAAAAKCiESSjSrioayP93+mt9cXPK3X98Bzt3E2YDAAAAAAAAAAAAFQUgmRUGRcfnab7+rfS57NW6sa3pxEmAwAAAAAAAAAAABUk1O8CgANx6bHp2p3v9NDHv8hsup48t4NCQ3gfAgAA4IDceqvfFQAAAAAAAKCSI0hGlXNFt8bKd06PfDJbIWZ64pz2hMkAAAAHon9/vysAAAAAAABAJUeQjCppcPcm2p0v/eOz2QqY9Pg5HRQSML/LAgAAqBrmzPHmzZv7WwcAAAAAAAAqrWoRJJtZf0n9MzIy/C4F5eiank2U75z+9fkcBQKmf53VnjAZAACgLK66yptnZ/taBgAAAAAAACqvatEfsHNutHNucFxcnN+loJz9uVeGbjmhmUblLNMdI39Ufr7zuyQAAAAAAAAAAACgyqsWLZJxZLvh+Kbane/05Nh5CjHTo2e2VYCWyQAAAAAAAAAAAMBBI0jGEeGmPk2V75z+89V8BQKmhwe0IUwGAAAAAAAAAAAADhJBMo4IZqZbTmim3flOz2QvUEhAevD0NjIjTAYAAAAAAAAAAAAOFEEyjhhmptv7Ntdu5/T8178qYKYHTmtNmAwAAFDcX//qdwUAAAAAAACo5AiScUQxM93Zr4Xy851e/GahAma6r38rwmQAAICi+vTxuwIAAAAAAABUcgTJOOKYme4+uaV250tDv1uokIDpr6e0JEwGAAAoMH26N+/Qwc8qAAAAAAAAUIkRJOOIZGb626ktle+cXv7WC5PvOqkFYTIAAIAk3XSTN8/O9rMKAAAAAAAAVGIEyThiWbBb63zn9MJ4b8zkO/o1J0wGAAAAAAAAAAAA9oMgGUc0M9MDp7XW7nyn575eoJCAdNuJhMkAAAAAAAAAAADAvhAk44hnZnrw9DbKd05Pj1ugEDPdcmJzv8sCAAAAAAAAAAAAKi2CZFQLgYDp4QFtlZ8vPfXVfAUCppv6NPO7LAAAAAAAAAAAAKBSIkhGtREImB49s612O6chX85TiJmuP76p32UBAAAcfo884ncFAAAAAAAAqOQIklGtBAKmfwxsp/x8p8e/mKtAwPTnXhl+lwUAAHB4HXOM3xUAAAAAAACgkiNIRrUTEjD96+z2yndO//p8jkICpqt7NPG7LAAAgMNnwgRvTqAMAAAAAACAUhAko1oKCZgeO7u9djvp75/OVoiZruze2O+yAAAADo+77/bm2dm+lgEAAAAAAIDKiyAZ1VZoSED/PsdrmfzwJ7/ITLqiG2EyAAAAAAAAAAAAQJCMai00JKAh53ZQfr7TQx//opCA6dJj0/0uCwAAAAAAAAAAAPBVwO8CAL+FhQT01Hkd1bd1HT0w+me9NnGR3yUBAAAAAAAAAAAAvqoWQbKZ9TezF/Ly8vwuBZVUWEhA/zmvk05oVUf3fjhLb3y/2O+SAAAAAAAAAAAAAN9UiyDZOTfaOTc4Li7O71JQiYWHBvT0+Z10fItk/fWDn/TWD0v8LgkAAKBiDBniTQAAAAAAAEApqkWQDJRVeGhAz1zYSb2a19bd78/UO5MJkwEAwBGoQwdvAgAAAAAAAEpBkAwUExEaomcvzFSPZrV156iZem/KUr9LAgAAKF9ffulNAAAAAAAAQCkIkoESRIaF6PmLMnVcRpL+MvJHjZya63dJAAAA5eehh7wJAAAAAAAAKAVBMlCKyLAQvXhxlo5pUku3jZihD6Yt87skAAAAAAAAAAAA4LAgSAb2ITIsRC9d3FlHpSfqlnen68PphMkAAAAAAAAAAAA48hEkA/tRIzxEQwd1VlZaom5+Z7o++nG53yUBAAAAAAAAAAAAFYogGSiDqPBQvTKoszIbJejGt6frk5kr/C4JAAAAAAAAAAAAqDChfhcAVBXREaF65dIuumToJN0wfJoCZurXpq7fZQEAABy455/3uwIAAAAAAABUcrRIBg5AzYhQDbu0s9qmxum6t3I0ZtZvfpcEAABw4Jo39yYAAAAAAACgFATJwAGKiQzTq5d1UeuUOP35rRx9+fNKv0sCAAA4MKNHexMAAAAAAABQCoJk4CDERobptcu6qGW9WF37Zo7GzV7ld0kAAABl9/jj3gQAAAAAAACUgiAZOEhxNcL0+mVHqVndmrrq9anKnkOYDAAAAAAAAAAAgCMDQTJwCOKiwvTG5UcpI7mmBr8+VePnrva7JAAAAAAAAAAAAOCQESQDhyg+KlxvXnGUGidF68rXpujbeWv8LgkAAAAAAAAAAAA4JATJQDlIiPbC5LRa0britcmaMJ8wGQAAAAAAAAAAAFUXQTJQTmrVjNCbVx6lBglRuuzVyfr+17V+lwQAAFCy11/3JgAAAAAAAKAUBMlAOUqqGaG3ruyq1IQoXfrKZE1auM7vkgAAAPbWoIE3AQAAAAAAAKUgSAbKWe2YCL115VGqFx+pQa9M0pRFhMkAAKCSeecdbwIAAAAAAABKQZAMVIDkmEgNv7Kr6sRG6pKhkzR18Xq/SwIAAPjDs896EwAAAAAAAFAKgmSggtSJ9cLk2jERumToJE1bQpgMAAAAAAAAAACAqoEgGahAdeMiNXxwVyVGh+vilydpxtINfpcEAAAAAAAAAAAA7BdBMlDB6sXV0PDBXRUfHaaLXv5BM3Pz/C4JAAAAAAAAAAAA2KdqESSbWX8zeyEvjwAP/kiJr6HhV3ZVTGSYLnz5B/20jHsRAAAAAAAAAAAAlVe1CJKdc6Odc4Pj4uL8LgXVWGpClN4e3FU1I0J14cs/6OflG/0uCQAAVFcjRngTAAAAAAAAUIpqESQDlUWDxCgNv7KraoSF6IKXvtcvKwiTAQCAD5KSvAkAAAAAAAAoBUEycJg1rOWFyRGhIbrgpR80+zfCZAAAcJgNG+ZNAAAAAAAAQCkIkgEfpCVFa/jgrgoNmM54eoJe/36xnHN+lwUAAKoLgmQAAAAAAADsB0Ey4JP0pGj977rjlJWWoL998JMGvTJZKzdu87ssAAAAAAAAAAAAgCAZ8FPduEi9dlkX/d/prfXDwrXqO2S8Pvpxud9lAQAAAAAAAAAAoJojSAZ8Zma6+Og0fXxDNzWqFa3r3pqmG9+eprwtO/0uDQAAAAAAAAAAANUUQTJQSTSpXVMjrz5aN/dppo9+XKG+Q8br23lr/C4LAAAAAAAAAAAA1RBBMlCJhIYEdGOfpnr/2mMUHRGiC1/+Qff/b5a27tjtd2kAAOBI8skn3gQAAAAAAACUgiAZqITapcbr4xu6adAxaRo2YZFO/c83+jF3g99lAQCAI0VUlDcBAAAAAAAApSBIBiqpyLAQ3X9aa71x+VHasmO3znxmgp78cp527s73uzQAAFDVPfOMNwEAAAAAAAClIEgGKrnjmibpsxu765R29fTvL+fqrGcnaMHqzX6XBQAAqrJ33/UmAAAAAAAAoBQEyUAVEBcVpif/1FH/Pb+jFq/bolOe+kavTVwk55zfpQEAAAAAAAAAAOAIRJAMVCGntquvz2/qrqPSa+neD2fp4qGT9FveNr/LAgAAAAAAAAAAwBGGIBmoYurERmrYpZ310IA2mrJovfoOGa//zVjud1kAAAAAAAAAAAA4ghAkA1WQmenCro30yY3dlJ4UrRuGT9P1w6dpw5YdfpcGAAAAAAAAAACAIwBBMlCFpSdFa8TVR+vWE5rp05kr1HfIeI2fu9rvsgAAQGWXne1NAAAAAAAAQCkIkoEqLjQkoOuPb6r3rz1WMZFhunjoJN374U/aumO336UBAAAAAAAAAACgiiJIBo4QbVPj9NH1x+myY9P12sTFOuWpbzR96Qa/ywIAAJXRY495EwAAAAAAAFAKgmTgCBIZFqJ7+7fSW1ccpW07d2vgsxP0xBdztXN3vt+lAQCAyuSjj7wJAAAAAAAAKAVBMnAEOiYjSZ/e1F2nt6+vp8bO08BnJ2j+qs1+lwUAAAAAAAAAAIAqgiAZOELF1QjTE+d20LMXdNLSdVt0ylPf6JXvFio/3/ldGgAAAAAAAAAAACo5gmTgCHdS23r6/KbuOqZJLT0w+mddPHSSVuRt9bssAAAAAAAAAAAAVGIEyUA1kBwbqaGDOuuRM9oqZ8l69f33eH04fZmco3UyAADVUo0a3gQAAAAAAACUgiAZqCbMTOcf1VCf3NBNGck1dePb03Xd8GnasGWH36UBAIDD7dNPvQkAAAAAAAAoBUEyUM2kJUXr3auO1u19m+vzn37Tif8er+w5q/wuCwAAAAAAAAAAAJUIQTJQDYWGBPTnXhn64M/HKj4qTINemay/fjBTW3bs8rs0AABwODz4oDcBAAAAAAAApSBIBqqxNilx+t91x+nKbul684clOuWpb5WzZL3fZQEAgIo2dqw3AQAAAAAAAKUgSAaquciwEN1zSiu9dUVX7diVr7OenaDHx8zRzt35fpcGAAAAAAAAAAAAnxAkA5AkHd2klj69qZvO6Jiq/3w1X2c8853mrdzkd1kAAAAAAAAAAADwAUEygEKxkWF6/Jz2eu7CTC3fsE2n/OdbvfztQuXnO79LAwAAAAAAAAAAwGFULYJkM+tvZi/k5eX5XQpQJfRrU1ef3dRN3TKS9OBHP+vCl3/Qsg1b/S4LAACUl1q1vAkAAAAAAAAoRbUIkp1zo51zg+Pi4vwuBagykmMi9dIlWfr7mW01fekG9RsyXqNycuUcrZMBAKjyRo70JgAAAAAAAKAU1SJIBnBwzEx/6tJQn93YXc3rxOiWd2fo2jdztO73HX6XBgAAAAAAAAAAgApEkAxgvxrWitI7Vx2tO/q10Je/rFTfIeM1bvYqv8sCAAAH6667vAkAAAAAAAAoBUEygDIJCZiu6dlEH/75ONWKDtelwybr7vdn6vftu/wuDQAAHKiJE70JAAAAAAAAKAVBMoAD0qp+rD687lhd1b2xhk9aopOf+kZTF6/3uywAAAAAAAAAAACUI4JkAAcsIjREd53cUm9f2VW7djud/dwE/evz2dqxK9/v0gAAAAAAAAAAAFAOCJIBHLSjGtfSZzd108BOqXp63AKd8cx3mrtyk99lAQAAAAAAAAAA4BARJAM4JDGRYfrX2e31wkWZ+i1vm079z7d66ZtflZ/v/C4NAACUJjXVmwAAAAAAAIBShPpdAIAjw4mt66pTowTdOXKmHvr4F335y0o9dnZ7pSZE+V0aAAAo7o03/K4AAAAAAAAAlRwtkgGUm6SaEXrx4kz986x2mpmbp5OGfKMRU3PlHK2TAQAAAAAAAAAAqhKCZADlysx0TlYDfXZTd7WsF6vb3puhq9+YqrWbt/tdGgAAKHDTTd4EAAAAAAAAlIIgGUCFaJAYpeGDu+quk1po3OzV6jvkG439ZaXfZQEAAEmaPt2bAAAAAAAAgFIQJAOoMCEB01U9mujD645VUs1wXf7qFN058kdt3r7L79IAAAAAAAAAAACwDwTJACpcy3qx+vC6Y3V1jyZ6Z8pSnfzkN5qyaJ3fZQEAAAAAAAAAAKAUBMkADouI0BDdeVILvXvV0XJyOuf5ifrHZ7O1Y1e+36UBAAAAAAAAAACgGIJkAIdV57REfXpjd52T1UDPZi/Q6U9/p9m/bfS7LAAAqpdmzbwJAAAAAAAAKAVBMoDDrmZEqP4+sJ1eujhLqzdt02n/+U4vjF+g3fnO79IAAKgeXnjBmwAAAAAAAIBSECQD8E2fVnX0+U3d1atFbT3yyWyd9+L3Wrpui99lAQAAAAAAAAAAVHsEyQB8VatmhJ67MFOPnd1ePy/fqJOe/EbvTlkq52idDABAhRk82JsAAAAAAACAUhAkA/CdmemszFR9emM3ta4fq7+M+FGDX5+qNZu3+10aAABHprlzvQkAAAAAAAAoBUEygEqjQWKUhl/ZVfec3FJfz1mtfkPG64ufV/pdFgAAAAAAAAAAQLVDkAygUgkETFd2b6zR1x+n2jGRuvK1KfrLiBnavH2X36UBAAAAAAAAAABUGwTJACql5nVj9OGfj9W1PZtoxNRcnfTkeE1auM7vsgAAAAAAAAAAAKoFgmQAlVZ4aEB/6ddC7119tEymc1+YqEc//UXbd+32uzQAAKq2Dh28CQAAAAAAAChFqN8FAMD+ZDZK1Kc3dtNDH/+i57/+VV/PWa1/n9tBLevF+l0aAABV05AhflcAAAAAAACASo4WyQCqhOiIUD16ZlsNHZSlNZt36LT/fqtnsxdod77zuzQAAAAAAAAAAIAjDkEygCqld4s6GnNzd/VpWUf/+Gy2/vTCRC1dt8XvsgAAqFouvNCbAAAAAAAAgFIQJAOochKjw/XMBZ30xDntNXvFJvUbMl7vTF4i52idDABAmeTmehMAAAAAAABQCoJkAFWSmenMTqn67ObuapcarztGztSVr03R6k3b/S4NAAAAAAAAAACgyiNIBlClpcTX0JtXHKW/ndpK4+etUb8h4/X5rN/8LgsAAAAAAAAAAKBKI0gGUOUFAqbLj0vXx9cfp3rxkbrq9am67b0Z2rRtp9+lAQAAAAAAAAAAVEkEyQCOGE3rxGjUNcfq+t4ZGpWTq35DvtH3v671uywAACqfo4/2JgAAAAAAAKAUBMkAjijhoQHdemJzvXf1MQoLMZ334vd6+OOftW3nbr9LAwCg8nj0UW8CAAAAAAAASkGQDOCIlNkoQZ/c2E3nd2moF79ZqNP/+51mLc/zuywAAAAAAAAAAIAqgSAZwBErKjxUD5/RVq9c2lnrtuzQgKe/09Pj5mt3vvO7NAAA/DVwoDcBAAAAAAAApSBIBnDE69U8WWNu6q4TW9XVvz6fo3Oen6jFa3/3uywAAPyzdq03AQAAAAAAAKUgSAZQLSREh+u/53fUkHM7aO7KTTrpyW80fNISOUfrZAAAAAAAAAAAgOIIkgFUG2amAR1T9PlN3dWxYbzuGjVTV7w6Ras2bfO7NAAAAAAAAAAAgErlkINkM+tXHoUAwOFSP76GXr/sKN3Xv5W+nb9Gff89Xp/9tMLvsgAAAAAAAAAAACqN8miR/G7RH8ysZTkcEwAqVCBguvTYdH18w3FKTYjS1W/k6JZ3p2vjtp1+lwYAQMU7/nhvAgAAAAAAAEoRWg7HsGI/fycpsRyOCwAVLiM5RqOuPUb/+Wq+nh43Xz/8uk7/OrudjmmS5HdpAABUnL/9ze8KAAAAAAAAUMmVR4tkV+zn4sEyAFRqYSEB3XJCM424+miFhwZ0/os/6MGPfta2nbv9Lg0AAAAAAAAAAMAX5REkm5nFF/m5eLAMAFVCx4YJ+viG43RR10Z6+duF6v+fb/XTsjy/ywIAoPyddJI3AQAAAAAAAKUojyBZktaa2TIz+1xSpJmdbmb1y+nYAHDYRIWH6sEBbfTqZV20cdtODXj6O/33q3natTvf79IAACg/W7d6EwAAAAAAAFCK8giSYyW1lvQXSbMkTZb0uqSlZrbUzEaWwzkOiZn1N7MX8vJoWQigbHo0q63Pb+quk9rW02Nj5uqc5ydq0Zrf/S4LAAAAAAAAAADgsDjkINl5Zjvn3nTO3eKc6yEpTlIrSXdKWnSo5zhUzrnRzrnBcXFxfpcCoAqJjwrXf87rqCf/1EHzV23WSU9+o2ey52vVpm1+lwYAAAAAAAAAAFChQivioM45J2lOcHqzIs4BAIfL6R1S1CU9UXeNmql/fjZHj4+Zq+5NkzQwM1V9WtZRZFiI3yUCAAAAAAAAAACUqwoJkgHgSFMvroaGXdpF81dt1sicXL2fs0zXvTVNsZGhOrV9fQ3slKpODeNlZn6XCgDA/p16qt8VAAAAAAAAoJIjSAaAA5CRXFN39Guh205srgkL1mjk1FyNysnVWz8sUeOkaJ3ZKUVndEpVSnwNv0sFAKB0t93mdwUAAAAAAACo5PYbJJvZV+VwHuecO74cjgMAlUJIwNStaW11a1pbm7bt1Kczf9OInFw9NmauHv9iro5uXEsDO6WqX5u6io7gnR0AAAAAAAAAAFC1lCXdCEhyh3ge+noFcMSKiQzTOZ0b6JzODbRk7RaNmparUTnLdOt7M/S3D3/SSW3qaWBmirqm11IgwOMQAFAJ9OzpzbOz/awCAAAAAAAAldh+g2TnXM/DUAcAHBEa1orSTX2a6cbjm2ryovUaOTVXH89coZE5uUqJr6EzO6VoYKdUpSVF+10qAAAAAAAAAABAqehvFQAqgJmpS3qiuqQn6v7TWmvMz79pxNRc/XfcfP3nq/nKbJSggZ1SdUq7eoqrEeZ3uQAAAAAAAAAAAHsgSAaAClYjPESnd0jR6R1S9FveNr0/bZlG5uTq7vdn6oHRs3RCqzoamJmqbhlJCg0J+F0uAAAAAAAAAAAAQTIAHE514yJ1Tc8murpHY/2Ym6eRObn634zl+ujHFUqOidCAjl7X183rxvhdKgAAAAAAAAAAqMb2GySb2VflcB7nnDu+HI4DAEcEM1P7BvFq3yBe95zSUuNmr9KIqbka+u1CvTD+V7VJidVZnVJ1WocUJUaH+10uAOBIc845flcAAAAAAACASq4sLZIDktwhnscOcX8AOGJFhIaoX5t66temntZs3q4Ppy/XyKm5un/0z3r4k1/Uq3myBmamqlfzZIWH0vU1AKAcXHut3xUAAAAAAACgkttvkOyc63kY6gAASEqqGaHLj0vX5cel65cVGzVyaq4+mL5cY35eqYSoMJ3ewev6uk1KrMx4RwcAcJC2bPHmUVH+1gEAAAAAAIBKizGSAaCSalkvVn89tZXuPKmFxs9brZFTl+mtH5Zo2IRFalanpgZ2StUZHVOUHBvpd6kAgKrm5JO9eXa2r2UAAAAAAACg8ipTkGxm6yXlSJoWnOc452ZXZGEAAE9oSEC9W9RR7xZ1lLdlp0b/uFwjc3L16Kez9Y/PZqtb09oamJmqE1vVUWRYiN/lAgAAAAAAAACAI0BZWySvlNRTUi8Fx0s2sy2SpisYLAenWc65/HKvEgAgSYqLCtOFXRvpwq6NtGD1Zo3KydX7Oct0w/BpiokM1ant6mlgp1RlNkqg62sAAAAAAAAAAHDQyhQkO+damFmcpC6SjpLUXVIfSccGJxfcdLuZzZQ01Tl3bQXUCwAIalK7pm7v20K3ntBcE39d642nPG25hk9aqrRaUTqzU6rO7JSi1ATGvwQAAAAAAAAAAAemzGMkO+fyJH0h6Qszy5A0V9I1khZKai+pXXDeUVKWJIJkADgMAgHTsRlJOjYjSf83YJc+nblCI3Ny9cQXc/XEF3PVtXGiBnZK1clt6yk6osyPfQAAAAAAAAAAUI0dbKJQ0AJ5tXNujKQxBSvMLFxSq0MtDABw4GpGhOrsrAY6O6uBlq7bovenLdPInFzdPuJH3fvhLJ3Upq4GZqbq6Ma1FAjQ9TUAVFuDBvldAQAAAAAAACq5cm+a5pzbIW/sZACAjxokRumG45vq+t4Zmrp4vUbm5OqjGSs0atoy1Y+LLOz6unHtmn6XCgA43AiSAQAAAAAAsB/0cQoARzgzU1ZaorLSEnVf/9Ya8/NKjZyaq2ey5+u/4+arU8N4DcxM1ant6iuuRpjf5QIADoc1a7x5UpK/dQAAAAAAAKDSIkgGgGokMixEp7Wvr9Pa19fKjdu8rq+n5uqe93/SA6N/1gmt6uisTqnq1jRJoSEBv8sFAFSUs87y5tnZvpYBAAAAAACAyqtMQbKZfSJpoqRJwQkAUMXViY3U1T2a6KrujTVzWZ5GTs3V/2Ys18c/rlDtmAgN6FBfAzNT1aJurN+lAgAAAAAAAACAw6ysLZL7BScX/HlZ8M/9zGyDpB+dc2vKvzwAQEUzM7VLjVe71Hjdc0orfTV7lUbm5OqV7xbpxW8WqnX9WA3slKrTO9RXrZoRfpcLAAAAAAAAAAAOg7IGyXGSOgWnzODcSbpC0uWSZGa/SZpRMDnn3i73agEAFSo8NKB+beqqX5u6Wrt5u/43Y7lG5uTq/z76WY988ot6Nk/WWZkp6t2ijsJD6foaAAAAAAAAAIAjVZmCZOfcJklfBydJkplFS+qgP4LlTEkn6I+WywTJAFCF1aoZoUuPTdelx6Zrzm+bNDInV+9PW6Yvf1mp+Kgwnda+vgZ2SlW71DiZmd/lAgAAAAAAAACAclTWMZIbO+d+LbrMOfe7pO+CU8F2NSS1lxcsAwCOEM3rxujuk1vqL32b65v5azRyaq7enrxUr01crIzkmhrYKVVndExR3bhIv0sFAJTFNdf4XQEAAAAAAAAqubJ2bT3XzD6Q9LhzbmJpGznntkr6PjgBAI4woSEB9WqerF7Nk5W3dac+/nGFRubk6h+fzda/Pp+tYzOSdFZmqk5sVVc1wkP8LhcAUJpzz/W7AgAAAAAAAFRyZQ2SR0o6U9IZZvaDpCckjXTOuQqrDABQqcXVCNP5RzXU+Uc11MI1v2tUTq5G5SzTjW9PV0xEqE5uW08DM1PVOS2Brq8BoLJZutSbN2jgbx0AAAAAAACotMo6RvK5ZtZA0g2SrpD0jqTFZjZE0svBbq4BANVUelK0bj2xuW7u00zfL1yrkVOXafSPy/XOlKVqmBilMzulaGCnVDVIjPK7VACAJF10kTfPzva1DAAAAAAAAFRegbJu6Jxb6py7XVKqpJsk7ZY0RNJSM/uHmaVUSIUAgCojEDAd0yRJj5/TXpPv6aPHz26v1IQaenLsPHX75zid+/xEvTtlqTZv3+V3qQAAAAAAAAAAYB/KHCQXcM797pz7j6Rm8rq7ninpdkm/mtnrZtaxnGsEAFRB0RGhGpiZqreu7Kpv7+it205splWbtusvI35U54e+1M3vTNe389Zodz6jJAAAAAAAAAAAUNmUdYzkvQTHR/5A0gfB8PhmSedKOt/MvnbO9S6fEgEAVV1KfA1d17up/twrQzlLNmhkTq5Gz1iu96ctU724SJ3RMUUDM1PVpHZNv0sFAAAAAAAAAAAqY5BsZjUkxRWb4ov9vF7SN5J6S+pRAbUCAKo4M1NmowRlNkrQvae20hc/r9TInFw99/UCPZO9QB0axGtgZqr6t6un+Khwv8sFAAAAAAAAAKDaKmuL5M1F/mwlrN8iaaOkPEmTg3MAAEoVGRai/u3rq3/7+lq1cZs+mL5MI6cu098++EkPjv5ZfVola2CnVHVvVlthIQc8EgMAYF9uvdXvCgAAAAAAAFDJlTVILgiPZ0h6RNIceWHxRkkbnXO7K6A2AEA1kRwbqcHdm+jKbo01a/lGjZiaq//NWK5PZv6mpJrhOr1DigZ2SlWr+rF+lwoAR4b+/f2uAAAAAAAAAJVcWYPkTpJuk3S2pNckvSXpcefc4ooqDABQ/ZiZ2qTEqU1KnO4+uaWy56zSyJxcvTZxkV7+dqFa1ovVwE4pGtAxRUk1I/wuFwCqrjlzvHnz5v7WAQAAAAAAgEqrTEGyc266pAvN7C+SbpA0WNIgM/tM0mPOuXEVVyIAoDoKDw3oxNZ1dWLrulr3+w6NnrFcI3Ny9dDHv+jRT2erZ7PaGpiZquNbJisiNMTvcgGgarnqKm+ene1rGQAAAAAAAKi8ytoiWZLknFsu6U4z+z9Jl8sLlb80sxmSHpP0Dt1cAwDKW2J0uC45Jk2XHJOmeSs3aUROrj6YtkxjZ69SXI0w9W9fTwM7papDg3iZ2f4PCAAAAAAAAAAA9ilwMDs557Y45/4jqZmksyRtkfSGpF/N7BYziynHGgEAKNS0TozuOqmlJtx5vF69rIt6NKut96bk6oxnJqjPE1/r6XHztSJvq99lAgAAAAAAAABQpR1Qi+TinHNO0vuS3jezoyTdJ+lfkv4mKeHQywMAoGQhAVOPZrXVo1ltbdy2U5/8uEIjc3L1r8/n6LExc3RcRpLO7JSifq3rqUY4XV8DAAAAAAAAAHAgyhQkm9ldkmIlxRWbii6LkWTBKbYiigUAoCSxkWH6U5eG+lOXhlq89neNzFmmUTm5uvmdGfpbxCyd3LauBnZKVee0RAUCdH0NAAAAAAAAAMD+lLVF8sPFft4lKU/SBkmrJc0L/rnoBADAYdeoVrRuOaGZbjq+qSYtWqeRU3P18Y8r9O6UXDVIrKEzO6ZqYKdUNawV5XepAOCfv/7V7woAAAAAAABQyZU1SO6mIiGxc+73iioIAIDyEAiYujaupa6Na+mB01vr81m/aeTUZXrqq3l6cuw8dUlL1MDMFJ3ctp5iIsP8LhcADq8+ffyuAAAAAAAAAJVcmYJk59x3FV0IAAAVJSo8VGd0TNUZHVO1fMNWvT9tmUZOzdUdI2fqvv/NUt/WXtfXx2YkKYSurwFUB9One/MOHfysAgAAAAAAAJVYWVskAwBwRKgfX0N/7pWha3s20bSlGzRyaq5Gz1iuD6cvV93YSA3omKKGu/P9LhMAKtZNN3nz7Gw/qwAAAAAAAEAlRpAMAKiWzEydGiaoU8ME/e3UVhr7yyqNzMnVi9/8qt35Tu8s+lYDM1PVv119JUSH+10uAAAAAAAAAACHFUEyAKDaiwwL0Snt6umUdvW0etN2PT5ivKbn5eveD2fpwY9+1vEt6mhgZqp6Nq+tsJCA3+UCAAAAAAAAAFDhCJIBACiidkyE+qWH6e89u2vW8jyNnLpMH05fps9m/aZa0eE6rUN9nZWZqtb14/wuFQAAAAAAAACACkOQDABAKVrXj1Pr+nG66+QW+nrOao3MydWb3y/RK98tUou6MRrYKVWnd6yv5JhIv0sFAAAAAAAAAKBcHVKQbGbxkhKdc7+WTzkAAFQ+YSEB9WlVR31a1dGGLTs0esZyjchZpoc/+UV//2y2ujdN0sDMVPVpWUeRYSF+lwsA+/fII35XAAAAAAAAgEruUFsk3yjpXkn8qzkAoFqIjwrXRUen6aKj0zR/1SaNzFmm93OW6bq3pik2MlT929fXwMxUdWwQLzPzu1wAKNkxx/hdAQAAAAAAACo5urYGAOAgZSTH6I5+LXTbic01YcEajZya63V//cMSNU6K1sDMVJ3RMUX142v4XSoA7GnCBG9OoAwAAAAAAIBSECQDAHCIQgKmbk1rq1vT2tq0bac+nfmbRuTk6l+fz9FjY+bomCa1NLBTqvq1qauocP7qBVAJ3H23N8/O9rUMAAAAAAAAVF78azYAAOUoJjJM53RuoHM6N9CStVs0aprXSvmWd2fobx/8pJPa1tPATqk6Kj1RgQBdXwMAAAAAAAAAKieCZAAAKkjDWlG6qU8z3dC7qSYvWqeRObn6ZOZvGjE1V6kJNXRmxxSd2SlVaUnRfpcKAAAAAAAAAMAeCJIBAKhggYDpqMa1dFTjWnrgtDb6fNZvGpmTq/+Mm6+nvpqvrEYJGpiZqlPa1VNsZJjf5QIAAAAAAAAAQJAMAMDhVCM8RAM6pmhAxxStyNuq96ct08ipubpr1Ezd/79ZOrF1XQ3slKJuTWsrhK6vAQAAAAAAAAA+IUgGAMAn9eJq6NqeGbqmRxPNyM3TyKm5+t+M5Ro9Y7mSYyJ0RscUDcxMVbM6MX6XCuBIM2SI3xUAAAAAAACgkiNIBgDAZ2amDg3i1aFBvP56akt99csqjczJ1cvfLtTz439V25Q4DeyUotM6pCgxOtzvcgEcCTp08LsCAAAAAAAAVHIEyQAAVCIRoSE6qW09ndS2ntZs3q4Ppy/XyKm5un/0z3r4k1/Uu0WyBnZKVc/myQoPDfhdLoCq6ssvvXmfPv7WAQAAAAAAgErrUINkC04AAKCcJdWM0OXHpevy49L1y4qNGjk1Vx9MX67PZ61UYnS4TmtfX2dlpqp1/ViZ8dcxgAPw0EPenCAZAAAAAAAApTjUIPnfkl4pj0IAAEDpWtaL1V9PbaU7T2qh8fNWa+TUZXrrhyUaNmGRmteJ0cDMFA3okKLk2Ei/SwUAAAAAAAAAHAEOKUh2zuVJyiunWgAAwH6EhgTUu0Ud9W5RR3lbdmr0j8s1MidXj3wyW3//dLa6N6utgZ1SdUKrOooMC/G7XAAAAAAAAABAFcUYyQAAVFFxUWG6sGsjXdi1kRas3qxRObl6P2eZrh8+TTGRoTq1XX2dlZmiTg0T6PoaAAAAAAAAAHBACJIBADgCNKldU7f3baFbT2iuib+u9cZTnrZMwyctUXpStM7smKIzOqUoNSHK71IBAAAAAAAAAFUAQTIAAEeQQMB0bEaSjs1I0v8N2KVPZ67QyJxcPf7FXD3+xVwd3biWBmam6qQ2dRUdwX8GANXW88/7XQEAAAAAAAAquQr5F2QzCzjn8ivi2AAAoGxqRoTq7KwGOjurgZau26L3py3TyJxc3fbeDN374U/q16auzuqUqq6NaykQoOtroFpp3tzvCgAAAAAAAFDJHXKQbGbRktpL6lBkaiWp5qEeGwAAlI8GiVG64fimur53hqYuXq8RU3P18Y8rNCpnmVLia+iMjikamJmq9KRov0sFcDiMHu3N+/f3tw4AAAAAAABUWgcUJJtZfe0ZGHeQ1FhSQTMmk7Rb0sJyqg8AAJQjM1NWWqKy0hJ1/2mt9fms3zQyZ5meyZ6v/46br04N4zUwM1WntquvuBphfpcLoKI8/rg3J0gGAAAAAABAKcoUJJvZGHmtjpMKFknaJWmupDGS+kl6SNKbkhY453aVf6kAAKA8RYaF6PQOKTq9Q4pWbtzmdX09NVf3vP+THhj9s05oVUdnZaaqW0aSQkMCfpcLAAAAAAAAADiMytoiuY+kXyUNkzQzOP3inNthZhnyAuXpzrk5FVJlCcyssaR7JMU55846XOcFAOBIVCc2Ulf3aKKrujfWzGV5Gjk1V/+bsVwf/7hCtWMivK6vO6Wqed0Yv0sFAAAAAAAAABwGZW1eNFJSuqQ6ksY652Y453YE17nyKsbMhprZKjP7qdjyfmY2x8zmm9mdkuSc+9U5d3l5nRsAAHhdX7dLjdcDp7fRD3f30XMXZqpDg3gN/Xah+g4Zr1P/841e+W6h1m7e7nepAAAAAAAAAIAKVKYg2Tl3tqTj5Y2JPNfM/mpmkRVQzzB53WQXMrMQSU9LOklSK0nnmVmrCjg3AAAoIjw0oH5t6urFi7P0w93H677+3l+/D4z+WUc9MlZXvjZFn/30m3bsyve5UgAAAAAAAABAeStr19ZyzmWbWSdJV0v6P0mDg62DJ5VXMc658WaWVmxxF0nznXO/SpKZvS3pdEk/l9d5AQDAvtWqGaFLj03Xpcema85vmzQyJ1fvT1umL35eqYSoMJ3Wvr4GZqaqbUqczMzvcgHsz+uv+10BAAAAAAAAKjlz7sB7pjazBEkPSRosaYGkppLOds6NOuSCvCD5I+dcm+DPZ0nq55y7IvjzRZKOknSfpIclnSDpJefco6Ucb3CwTtWpUyfz7bffPtQSK73NmzerZs2afpcBAFUWz9Gy2Z3vNGvtbn27bJdyVu3Wrnypfk3TcfVDdXT9UCVElnUEDQBHEp6hAHBoeI4CwKHhOQoAB49naPXUq1evqc65rJLWHVSQXLizWVtJT0nqIWmMpFudc7MO+oAqe5DsnLvuQI+dlZXlpkyZcijlVQnZ2dnq2bOn32UAQJXFc/TA5W3dqY9/XKGRObmauni9AiYd17S2BnZKUd/WdRUZFuJ3iQCKeucdb37uueV+aJ6hAHBoeI4CwKHhOQoAB49naPVkZqUGyWXu2rokzrmZknqZ2dmS/iVphpmNlPSAc668up5eJqlBkZ9Tg8sAAEAlEVcjTOcf1VDnH9VQC9f8rlE5uRqVs0w3vj1dMRGhOqVdPQ3MTFVWowS6vgYqg2ef9eYVECQDAAAAAADgyHBIQXIB59x7ZjZa0h2S/iLpTElh5XFsSZMlNTWzdHkB8p8knV9OxwYAAOUsPSlat57YXDf3aabvF67VyKnL9L8Zy/X25KVqVCtKZ3ZM1ZmdUtQgMcrvUgEAAAAAAAAApSi3wQudc9uccw9Iailp5MEcw8yGS5ooqbmZ5ZrZ5c65XZKuk/S5pF8kvXuo3WcDAICKFwiYjmmSpMfPaa/J9/TRY2e3V/24Gvr3l3PV7Z/jdO7zE/XelKXavH2X36UCAAAAAAAAAIoplxbJRTnnlshrNXww+55XyvJPJH1yKHUBAAD/REeE6qzMVJ2Vmarc9Vv0fs4yjZq2TLeP+FH3fjhLJ7Wpq1Pb11NWWqJiI8urUxMAAAAAAAAAwMHab5BsZl+Vw3mcc+74cjgOAACo4lITonT98U11Xe8M5SxZrxFTl+mjH5dr1LRlMpNa1I1Vl7QEZaUlqkt6ourERvpdMgAAAAAAAABUO2VpkRyQ5A7xPHaI+wMAgCOMmSmzUaIyGyXqvv6tlLNkvSYvXK8pi9fpvam5enXiYklSg8Qa6pyWqC5pieqcnqjGSdEy4z8tgEMyYoTfFQAAAAAAAKCS22+Q7JzreRjqAAAA1VhkWIiOaZKkY5okSZJ27c7Xzys2avKi9Zq8cJ2+nrNao3KWSZJqRYcrKy1BndMS1TktUa3rxyo0JOBn+UDVk5TkdwUAAAAAAACo5Mp9jGQAAIBDFRoSULvUeLVLjdflx6XLOaeFa37X5EXrNCnYavnzWSslSVHhIerYML6w1XKHhvGKCuc/cYB9GjbMmw8a5GcVAAAAAAAAqMT4V1YAAFDpmZka166pxrVr6tzODSVJKzdu0+RF6zRl0XpNWrhOT46dJ+ek0ICpdUpc4TjLndMSlRgd7vMVAJUMQTIAAAAAAAD2o1oEyWbWX1L/jIwMv0sBAADlpE5spE5tV1+ntqsvSdq4badyFq/X5EXrNHnher06cbFe/GahJCkjuaY6F+kOOzWhBuMsAwAAAAAAAMA+7DdINrOvyuE8zjl3fDkc52BPPlrS6KysrCv9qgEAAFSs2Mgw9WyerJ7NkyVJ23ft1szcPG+c5UXr9PGPKzR80lJJUt3YSHVOTywMl5vXiVEgQLAMAAAAAAAAAAXK0iI5IMkd4nn4l1kAAHBYRYSGKCstUVlpibpGTZSf7zR31SZNXrhOkxat1+SF6zR6xnJJUkxkqLIaJahzujfOctvUOEWEhvh8BQAAAAAAAADgn/0Gyc65noehDgAAgAoVCJha1I1Vi7qxuujoNDnnlLt+q9cVdrDV8rg5cyRJ4aEBdUiNV+d0b5zlzEYJio0M8/kKAAAAAAAAAODwqRZjJAMAABRnZmqQGKUGiVE6s1OqJGnd7zs0ZdG6wnD5+a9/1dPjFshMalE3Vl3SEoJdYieqTmykz1cAHIJPPvG7AgAAAAAAAFRyBMkAAABBidHhOrF1XZ3Yuq4kacuOXZq+ZENhi+X3pubq1YmLJUkNE6PUOS04znJ6ohonRcuM0TxQRURF+V0BAAAAAAAAKjmCZAAAgFJEhYfqmIwkHZORJEnauTtfv6zYqEkLvVbL2XNWaWROriSpVnS4stIS1DktUV3SE9WqXqxCQwJ+lg+U7plnvPm11/pbBwAAAAAAACotgmQAAIAyCgsJqF1qvNqlxuuKbo3lnNOva37X5IV/jLP8+ayVkqSo8BB1apigrLQEdUlLVIeG8YoK5z+9UEm8+643J0gGAAAAAABAKfjXTAAAgINkZmpSu6aa1K6pP3VpKElauXGbN8bywnWatGi9nhw7T85JoQFT65Q4b5zltERlpSUqMTrc5ysAAAAAAAAAgJIRJAMAAJSjOrGROrVdfZ3arr4kaeO2nZq6eL0mL1ynKYvW69WJi/XiNwslSRnJNf8YZzktUakJNRhnGQAAAAAAAEClQJAMAABQgWIjw9SrebJ6NU+WJG3buVs/LcvTpGCr5Y9+XK7hk5ZIkurFRSorLVFd0hKUlZao5nViFAgQLAMAAAAAAAA4/AiSAQAADqPIsBBlBbu2Vk8pP99pzspNXnfYi7yWy6NnLJckxUaGBrf1xllumxqniNAQfy8AAAAAAAAAQLVAkAwAAOCjQMDUsl6sWtaL1cVHp8k5p9z1W4PB8jpNWrhOX81eJUkKDw2oQ2q8Oqd7XWF3apSg2Mgwn68AVVJ2tt8VAAAAAAAAoJKrFkGymfWX1D8jI8PvUgAAAPbJzNQgMUoNEqN0ZqdUSdLazds1ZfF6TVm0TpMWrdfzX/+qp8ctUMCkFnVj1SX9j1bLybGRPl8BAAAAAAAAgCNBtQiSnXOjJY3Oysq60u9aAAAADlStmhHq27qu+rauK0nasmOXpi/Z4I2zvGid3pm8VMMmLJIkNUyMUue0RHVJ98ZZbpwULTPGWUYxjz3mzW+7zd86AAAAAAAAUGlViyAZAADgSBIVHqpjMpJ0TEaSJGnn7nz9vHxjYXfY4+as0sicXElSUs1wZTUKtlhOT1SrerEKDQn4WT4qg48+8uYEyQAAAAAAACgFQTIAAEAVFxYSUPsG8WrfIF5XdGss55wWrP492BW2Fy5/Nus3SVJUeIg6NfTGWO6cnqCODRJUIzzE5ysAAAAAAAAAUNkQJAMAABxhzEwZyTWVkVxTf+rSUJL0W962whbLkxet15Cxc+WcFBowtUmJU+e0YLiclqiE6HCfrwAAAAAAAACA3wiSAQAAqoG6cZHq376++revL0nK27pTOYvXF4bLr05YrBe/WShJappcU1kF4yw3SlRqQg3GWQYAAAAAAACqGYJkAACAaiiuRph6tUhWrxbJkqRtO3dr5rI8TVq4TlMWrdNHPy7X8ElLJEn14iKDrZUT1Dk9Uc2SYxQIECxXaTVq+F0BAAAAAAAAKjmCZAAAACgyLKSwa2tJ2p3vNOe3TZqyeJ0mLVynHxau1f9mLJckxUaGKiu4bZf0BLVJiVNEKOMsVymffup3BQAAAAAAAKjkCJIBAACwl5CAqVX9WLWqH6uLj06Tc06567dq0sJ1hd1hfzV7lSQpIjSg9g3i1SUtUVlpCcpslKCYyDCfrwAAAAAAAADAoSBIBgAAwH6ZmRokRqlBYpQGZqZKktZu3q7Ji9ZrSjBYfvbrBdo9zilgUou6seqSnljYJXZybKTPV4A9PPigN//b3/ytAwAAAAAAAJUWQTIAAAAOSq2aEerXpq76takrSdqyY5emLdlQ2Gr5nclLNWzCIklSo1pRf4yznJao9KRomTHOsm/GjvXmBMkAAAAAAAAoBUEyAAAAykVUeKiOzUjSsRlJkqSdu/M1a/lGTVnkjbP81exVGjE1V5KUVDNcWY0S1Tk9UV3SEtWyXoxCQwJ+lg8AAAAAAACgCIJkAAAAVIiwkIA6NIhXhwbxuqJbYznntGD1794YywvXafLidfps1m+SpOjwEHVqlBAMlxPUsUGCaoSH+HwFAAAAAAAAQPVFkAwAAIDDwsyUkVxTGck1dV6XhpKkFXlbC8dZnrRwnYaMnSvnpNCAqU1KXOE4y1mNEpQQHe7zFQAAAAAAAADVB0EyAAAAfFMvroZOa19Dp7WvL0nK27pTOYvXa1Kw1fKw7xbphfG/SpKaJtdU5/Q/xllOTYjys/SqrVYtvysAAAAAAABAJVctgmQz6y+pf0ZGht+lAAAAYB/iaoSpV4tk9WqRLEnatnO3fszN87rDXrROo6cv11s/LJEk1Y+LVFZaYmG43Cw5RoGA+Vl+1TFypN8VAAAAAAAAoJKrFkGyc260pNFZWVlX+l0LAAAAyi4yLERd0hPVJT1RkrQ732nOb5s0edE6TVq0Tt//ulb/m7FckhdCZzVKUFZaorqkJ6htSrzCQwN+lg8AAAAAAABUWdUiSAYAAMCRISRgalU/Vq3qx+qSY9LknNPSdVs1adE6b5zlRes0dvYqSVJEaEDtG8SrS7DVcqeG8YqJDPP5CiqJu+7y5o8+6m8dAAAAAAAAqLQIkgEAAFBlmZka1opSw1pROiszVZK0ZvN2TVm0vrA77Ge/XqD/jpuvgEkt68Wqc1qiN6UnKDkm0ucr8MnEiX5XAAAAAAAAgEqOIBkAAABHlKSaEerXpq76takrSfp9+y5NW7KhsNXyO5OXatiERZKkRrWi1DktUV3SEpWVlqD0pGiZMc4yAAAAAAAAQJAMAACAI1p0RKiOa5qk45omSZJ27s7XT8vyNGXReq8r7F9WasTUXEleCN05LTjOclqiWtaLUWgI4ywDAAAAAACg+iFIBgAAQLUSFhJQx4YJ6tgwQVd2byznnBas3qxJC9cXjrP86U+/SZKiw0PUqVGCOgdbLHdskKAa4SE+XwEAAAAAAABQ8QiSAQAAUK2ZmTKSY5SRHKPzj2ooSVqRt1WTF63X5IXeOMv//nKunJPCQkxtUuIKx1nOapSghOhwn6/gIKSm+l0BAAAAAAAAKjmCZAAAAKCYenE1dFr7GjqtfX1JUt6WnZq6ZF1hq+Vh3y3SC+N/lSQ1Ta6pzul/jLOcmhDlZ+ll88YbflcAAAAAAACASo4gGQAAANiPuKgw9W5RR71b1JEkbdu5WzOWbtCUxes1aeE6jZ6+XG/9sESSVD8uUp3TEwvHWW6aXFOBgPlZPgAAAAAAAHDACJIBAACAAxQZFqKjGtfSUY1r6c+9pN35TrN/2xjsCnu9JixYqw+nL5ckxdUIU1ajBHVO97rDbpsSp/DQgL8XcNNN3nzIED+rAAAAAAAAQCVGkAwAAAAcopCAqXX9OLWuH6dBx6bLOacl67bsMc7y2NmrJEkRoQF1aBDvjbOcnqhODeMVExl2eAuePv3wng8AAAAAAABVDkEyAAAAUM7MTI1qRatRrWidlZkqSVqzebumLAqOs7x4nZ79eoH+O26+Aia1rBerzmmJ6pLujbOcHBPp8xUAAAAAAACguiNIBgAAAA6DpJoR6temnvq1qSdJ2rx9l6YtWV/YavntyUs0bMIiSVJarShlpSWqVb1YNa1TUxnJNVU3NlJmjLUMAAAAAACAw4MgGQAAAPBBzYhQdWtaW92a1pYk7diVr1nL8zR5kTfO8lezV2nE1Nw9ts9I9kLlpsk1vYC5doxSE2ooECBgBgAAAAAAQPkiSAYAAAAqgfDQgDo2TFDHhgka3F1yzmnN5h2av2qz5q/apHmrNmv+qs36eu7qPQLmyLCAmtT2wmUvaI5R0zo11SgxSqEhgZJP1qzZYboqAAAAAAAAVFUEyQAAAEAlZGaqHROh2jEROrpJrT3W5W3ZqfmrN2neys2at8qbJi9arw+mLy/cJizElJ4UrabJMX+0ZK5TU+lJ0Yp44YXDfTkAAAAAAACoYqpFkGxm/SX1z8jI8LsUAAAA4JDFRYUps1GiMhsl7rF88/ZdWhBsuTwv2JL5p+V5+uSnFXLO2yZgUqNa0YVdZHvzGDVJjlZUeLX43wMAAAAAAACUQbX4lyLn3GhJo7Oysq70uxYAAACgotSMCFX7BvFq3yB+j+Xbdu7Wr6t/17xVm7Rg1WZ1fvQubdy2Uzf2uka78l3hdinxNdS0TnAM5uQYNQkGzXE1wg7zlQAAAAAAAMBv1SJIBgAAAKqzyLAQtaofq1b1Y70Fj6yTIqQTH+ynxWt/17yVf7RinrdqsyYuWKvtu/IL968TG1HYcrmwm+zkmqpVM8KnKwIAAAAAAEBFI0gGAAAAqqmwkIAykmOUkRyzx/Ld+U6567cUjsE8P9hN9rtTlmrLjt2F2yVGh+8RLDdNjtH6bflyzsnMDvflAAAAAAAAoBwRJAMAAADYQ0jA1KhWtBrVilafVnUKlzvntCJvm9dyeeWmYMC8WR//uEJ5W3cWbnfvxDHKqFNTGbVrBrvK9loyp8TXUCBAwAwAAAAAAFAVECQDAAAAKBMzU/34GqofX0M9mtUuXO6c0+rN2zV/1WZ98u00WVw9zV+1WePmrNZ7U3MLt6sRFqImydF7dZHdMDFKoSEBPy4JAAAAAAAApSBIBgAAAKqbDh3K9XBmpuSYSCXHRGrH0jD17NmmcN2GLTv+GH955WbNW7VJP/y6Vu9PW1a4TXhIQOlJ0Xu1Yk5LilJEaEi51goAAAAAAICyIUgGAAAAqpshQw7bqeKjwpWVlqistMQ9lm/atlMLVv8eDJk3af7KzfppWZ4+mblCznnbhARMjRKjvJbLdQpaMMeoSe2aqhFOwAwAAAAAAFCRCJIBAAAAHHYxkWHq0CBeHRrE77F8287dWrB6c+H4ywWtmL+avUq78r2E2UxKia+hpsk11bTOH91kZyTXVGxkmA9XAwAAAAAAcOQhSAYAAACqmwsv9OZvvOFvHSWIDAtR6/pxal0/bo/lO3bla/Ha3zWvIGBetVnzVm7Sdwv+v707j5P8rus8/v7UffVRfc1MJpNjMkMQceXIcuo6KIewRnRhgV10CSqs4notLiALK+uCLCoirhpdLxQVyEYEg7o8iGQ4FgFJAgk5ZxImmclkjnRVH1XVXb86vvvH71fV9auunq6Z6enq7no9H496/Lq/9a1ffX/dnUr1vPvz/czKqzfb83aPplb6L7e3yh7RRDax2ZcCAAAAAACwrREkAwAAAMPmxIlBr+C8JWIRHdw1ooO7RkLjjabT8ULFD5bPLLYrmW/62nFVvEZ73mQ2sRIwd1Qyz4wkZWabfTkAAAAAAABbHkEyAAAAgG0rGjFdNZXVVVNZvegpu9rjzabT4wvLOnJ6sb1F9tGzJd3yjZNaWK63542kYjo4s9J/+cAuP2i+bCytSISAGQAAAAAADC+CZAAAAAA7TiRi2jue1t7xtA5dO9Med87p7GJ1ZXvsoIr5s/ef0U1fW6nUTsej7erlazqqmPfl04pFI4O4JAAAAAAAgE1FkAwAAABgaJiZZkZTmhlN6XkHpkL3Fcpee2vsVsD8Tw/P6uN3Ptaek4hGtH8627FN9ogO7srpqsmsEjECZgAAAAAAsHMQJAMAAADD5rnPHfQKtqSJbELPunpCz7p6IjS+uFxrB8ytSua7Tszr7+5+XM75c6IR05WTGb9yeWakHTRfM51TOhEdwNUAAAAAAABcHIJkAAAAYNi8972DXsG2MpKK6+lX5PX0K/Kh8SWvoYfOlkJVzEfOlHTrfWfUaPoJs5m0L59pb5N9oOM2kooP4nIAAAAAAAD6QpAMAAAAABcgnYjqqXvH9NS9Y6Fxr97Usdmyjpxe2SL76JmSvnjkCXmNZnvenrFUaIvsVticzyY2+1IAAAAAAABWIUgGAAAAhs0rXuEf//qvB7uOHSoRi+hJu0b0pF0jkva0x+uNpo4Xl3TktF+5/FCwTfZHv3pcS7VGe95ULqFrpnM6uCvowRyEzdMjSZnZAK4IAAAAAAAMI4JkAAAAYNjMzg56BUMpFo3o6qmsrp7K6sXfvjLebDqdnF/SkTMlHe2oYv7k109qcbnenjeaiungrhEdCELmAzM5Hdw1osvGUgTMAAAAAABgwxEkAwAAAMAARSKmy/MZXZ7P6AXXzrTHnXM6s1j1+y8HVcxHz5R0632n9bGvHW/PyySiod7LrSrmfRMZRSMEzAAAAAAA4MIMRZBsZtdLuv7AgQODXgoAAAAA9MXMtGs0pV2jKT3/wFTovtmSHzAfPVvSkdN+wPylo7P6+B2PteckYhHtn8qGqpgPzuR05WRWiVhksy8HAAAAAABsM0MRJDvnbpF0y3XXXfeGQa8FAAAAAC7WZC6pyVxSz94/GRpfWK75AXNwO3J6UXc+WtQt3zjZnhOLmK6czPiVy7tWKpmvmc4pFY9u9qUAAAAAAIAtaiiCZAAAAAAdvu/7Br0CXCKjqbiecUVez7giHxqveHU9fLbc7r985HRJD55e1GfuO61G00mSzKR9+YwOzuR0YJe/RXYrZM4l+dURAAAAAIBhw78GAAAAAMPmne8c9AqwyTKJmJ66d0xP3TsWGq/WGzr2RGUlYD5T0tHTJX3+yFnVGq4977KxlK5p9V/e1erFnNN4JrHZlwIAAAAAADYJQTIAAAAADKlkLKprd4/o2t0jofF6o6lHCxU/WG5tk31mUX/11Ue0XGu2503lkn4F80wutE32dC4pM9vsywEAAAAAABuIIBkAAAAYNi99qX/8h38Y7DqwZcWiEe2fzmn/dE4v+faV8WbT6bG5pXawfOR0SUfPlvSJOx/TYrXenjeWjrcDZj9kHtHBmZz2jKUImAEAAAAA2CYIkgEAAIBhs7Q06BVgm4pETPsmMto3kdELnjzTHnfO6fRCdSVgDqqYP33PKX30n2vtedlENAiXR9rbYx/cldPl+YyiEQJmAAAAAAC2EoJkAAAAAMBFMTPtHktp91hK33VwKnTfbKm6aovsLx49q7++40R7TjLmV0C3t8kOAuYrJ7OKRyObfTkAAAAAAEAEyQAAAACAS2gyl9RkLqnn7J8Mjc8v1YJweTEImEu6/ZGi/vYbJ9tzYhHTVVNZP1ieyemamZwOzoxo/3RWqXh0sy8FAAAAAIChQpAMAAAAANh0Y+m4nnllXs+8Mh8ar3h1PXSmrCMdAfP9pxb16XtOqen8ORGT9k1kggrmkVA/5mySX3MBAAAAANgI/IYNAAAADJsf+IFBrwBYUyYR03dcPqbvuHwsNL5ca+jYbFlHTvvh8kPBNtmfe/Csag3Xnrd3PB1ULndulT2isUx8sy8FAAAAAIBtjSAZAAAAGDa/+IuDXgFw3lLxqJ68e1RP3j0aGq81mnq0UNGR0+Ftsr/y8Kyq9WZ73vRIUgem/d7LrUrmAzM5TeUSMrPNvhwAAAAAALY8gmQAAAAAwLYVj0Z0zXRO10znJO1ujzeaTo8Vl3T07GK7ivnomZI+fsdjKlXr7XnjmXjH1tgr22TvGUsRMAMAAAAAhhpBMgAAADBsDh3yj4cPD3IVwCUVjZiumMzoismMvvfJu9rjzjmdWlj2K5fbAfOi/uGbpzRXOd6el0vG2ltkH2hvlT2ivfm0ohECZgAAAADAzkeQDAAAAAAYGmamPWNp7RlL67sPTrfHnXOaLXv+FtlnSzp6elFHzpT0+QfP6ubbT7TnJWN+BfTBXTkdmM7p6umspnJJTWYTmsgmNJ5JEDQDAAAAAHYEgmQAAAAAwNAzM03lkprKJfXcayZD981Xajp6djFUxfy1Y0V98usne5xHymf8UHkim2gHzJ23yWzSP+YSymcSSsQim3WZAAAAAAD0jSAZAAAAAIBzGMvE9cwrJ/TMKydC4+VqXY/MVlQoe5otV1UoeyqWPc2WvWDM05EzJX+84sm53ucfScU6AuegujkXDqEns8n2WCoe3YSrBgAAAAAMO4JkAAAAAAAuQDYZ01MuG+1rbqPpNFdZCZjbx5KnQrnaHjtRrOgbJ+ZULHuqN3snz5lEtEeVc0cI3RVE55IxmbHdNgAAAADg/BAkAwAAAMPmVa8a9AqAoRONmCZzSU3mkjrYx3znnBaW6potV1WseJothUPo1sdPlKp68NSiZsueqvVmz3MlopGVwDm3OnzuHJ/MJjSaiitCn2cAAAAAGHoEyQAAAMCwedObBr0CAOswM41l4hrLxPua75xTxWt0hM3VdvjcXQV9bLasYrmmUrXe81zRiCmfia/q6bw6iPbH85m4YlH6PAMAAADATkOQDAAAAAybSsU/ZjKDXQeADWNmyiZjyiZj2jfR33/by7VGqNq5M4QulFfG73t8QbNlT/NLtTWeWxpLxzuqnLu22e7cgjsIopMx+jwDAAAAwFZHkAwAAAAMm5e9zD8ePjzQZQAYrFQ8qj1jae0ZS/c1v9Zoqhj0eS6Uuno9l6sqlmuaLVf1rSfKuv2RogplT2u0eVYuGevaYruzr3M4hJ7MJZRJ8M8XAAAAALDZ+E0MAAAAAACsKx6NaGYkpZmRVF/zm02n+aVaR1/nqv9xKdzr+eT8sr55cl6Fsqdao3fynIpHQltsh6qcQ9XO/pzRVExm9HkGAAAAgItBkAwAAAAAADZcJGLKZxPKZxN9zXfOabFa7wqaqyqUayshdHA7eqakQtnTUq3R81zxqCmfCQfMk+cIn8fTcUUiBM8AAAAA0IkgGQAAAAAADJyZaTQV12gqrqumsn09ZslraLbV0zmodl7V67ns6URxToWSp8Vqved5IiblM37oHQqa29tuJ0Nj+WxC8WhkIy8fAAAAALacoQiSzex6SdcfOHBg0EsBAAAAAAAbJJ2I6vJERpfnM33Nr9YbmqvUNNsOnKvtKufOIPrB04sqlD3NLdXk1ujzPJqKaTKXXN3ruasKOh/cl4pHN/DKAQAAAODSG4og2Tl3i6RbrrvuujcMei0AAADAwN1ww6BXAAADkYxFtWs0ql2j/fV5rjeamluq+UFzqavXc0f4fLxQ0dePz6lY9lRv9k6eM4loV+CcDALncBB9ptJUqVpXNhGlzzMAAACAgRqKIBkAAABAB4JkAOhLLBrRVC6pqVxS2rX+fOecFpbq4e22W6FzaSWEPrNY1f2nFjVb9uTVm6vO85bPf1qJWKRHX+eV8DmfSbQ/nswmNJqizzMAAACAjUWQDAAAAAybJ57wj1NTg10HAOwwZqaxTFxjmbj2T68/3zmnstdQobSyzfaXbr9L0/v2twPoViB9bLasQslT2Wv0PFc0Yn643O7r3N3rOdmx7bYfREcJngEAAACcA0EyAAAAMGxe+Ur/ePjwQJcBAMPOzJRLxpRLxnTFpN/nOXo6rkPfc82aj1muNcJ9ncvVjm23V6qg7z25oNlSVQvL9TWeWxpPx4Og2Q+Z8x1bbIe33fbvT8Qil+TrAAAAAGBrIkgGAAAAAADYJlLxqC4bT+uy8XRf82uNpopd22x3htCtbbcfOltS4ZinYsXTGm2eNZKMaSKXWN3ruWcVdFLpRHQDrxwAAADAZiNIBgAAAAAA2KHi0YhmRlOaGU31Nb/RdJpfqoUqnWd7BNAniku668S8ihVPtUbv5DkVj7SrmUPhc65ru+1gbCQZkxnbbQMAAABbBUEyAAAAAAAAJPm9llvB74GZ9ec757RYrQd9nluBc9X/uCuIPnqmpNlyVcu1Zs9zJaIR5bPxcJVzR9C8Ej77c8bTcUXo8wwAAABcMgTJAAAAAAAAuCBmptFUXKOpuK6ayvb1mIpX79HXORw+FyqejhcrKpQ8LVZ793mOmJTPdATOudXbbbdC6IlsQhOZhGJR+jwDAAAA/SJIBgAAAIbNT/3UoFcAABhimURMmYmY9k1k+ppfrTdULNc0G/R0bvV17u71fP+pRRXKnuYqtTXPNZaOh6udg5A5n2l9HK6GTsXp8wwAAIDhRZAMAAAADJtXv3rQKwAAoG/JWFS7x6LaPdZfn+d6o6lipRYEzSvhc6gCuuTpkdmK7nh0TsWKp0azd5/nbCIaVDR3VTmHguiV+zKJKH2eAQAAsGMQJAMAAADD5vhx/7hv32DXAQDAJRCLRjQ9ktT0SFLSyLrzm02nheVau5fzyrbb1Y6+z55OzS/r3pMLKpQ9eY3efZ6TsUjHdtpJTWSCns+5rp7P2YQms0mNpmMEzwAAANiyCJIBAACAYfOjP+ofDx8e6DIAANgKIhHTeCah8UxC10yvP985p1K1vrrKORRE+5XQD58tqVD2VPEaPc8Vi5jy3VXOQZ/niVxiVRX0eCahaITgGQAAAJuDIBkAAAAAAADok5lpJBXXSCquKyezfT1mudZob6kd6vXcHvPD528+Nq/ZsqfF5foazy2Np+PtiuaJoPo5HEQn29tu5zMJJWKRjbx8AAAADBGCZAAAAAAAAOASSsWj2jue1t7xdF/zvXpTc5WVSmc/cK6Gqp9ny56Oni2pcMxTseLJ9W7zrJFUrCNoTra33m6N5bu2204noht45QAAANjOCJIBAAAAAACALSQRi2hmNKWZ0VRf8xtNp7mKtypoLpRWej0XK55OFCu668ScCmVP9Wbv5Dkdj7Yrmru3224H0h1BdC5Jn2cAAICdiiAZAAAAAAAA2MaiEdNkLqnJXFIH+5jvnNPCcqvPczXo69zV67ns6YlSVQ+eWtRs2VO13ux5rkQ0shI4d4XP+Y4QujU2lo4rQp9nAACAbYEgGQAAABg2b37zoFcAAAAGyMw0lo5rLB3X1VPr93l2zqniNTrC5qoK5Vq72rnQEUQ/MltRoeypVO3d5zkaMeUz8VU9nVcH0f54PhNXLEqfZwAAgEEgSAYAAACGzfXXD3oFAABgGzEzZZMxZZMx7ZvI9PWY5VpDxYrXrnYOh9Ar4/c9vqDZsqf5pdqa5xpvBc+Z7sC5Y7vtjvFkjD7PAAAAG4EgGQAAABg2DzzgH6+9drDrAAAAO1YqHtWesbT2jKX7ml9rNDVXqQWBc3UlfA4F0VUdmy3rjkeLKpQ9rdHmWblkrKu/c2df53D4PJFNKJOI0ucZAACgB4JkAAAAYNj8x//oHw8fHugyAAAAWuLRiKZHkpoeSUoaWXd+s+k0v1Tr6Ou8ss12Z6/nk/PLuufkggplT16jd5/nZCzih8u5HlXOoWpnf7vt0VSM4BkAAAwFgmQAAAAAAAAA20okYspnE8pnE33Nd86pVK2vbLFdCm+33Rk+P3SmpELZ01Kt0fNc8agpnwkHzN3hc74jhB7PJBSNEDwDAIDthyAZAAAAAAAAwI5mZhpJxTWSiuvKyWxfj1nyGu1ttrvD52JHCH13cU6zZU+Ly/We54mYNJ7pUeXc3nY7GRrLZxOKRyMbefkAAAAXhCAZAAAAAAAAALqkE1Fdnsjo8nymr/levaliZaWvc6jXc0cQ/eDpRRXKnuaWanJr9HkeTcU0mUuuWeXsjyXbvZ9T8egGXjkAAICPIBkAAAAAAAAALlIiFtGu0ZR2jab6mt9oOhUrK1tqhwPnle22jxcq+vrxORXLnurN3slzJhENVzlnk8G2291V0H74nE1E6fMMAADWRZAMAAAADJt3vGPQKwAAABh60YhpKpfUVC7Z13znnBaW6uHttlsBdEf4fGaxqvtPLWq27MmrN3ueKxGLhKqbw4FzsqP/sz82moorQp9nAACGDkEyAAAAMGxe+MJBrwAAAADnycw0lolrLBPX/un15zvnVPEaHaFztb3tdmcQPVv2dGy2rELJU9lr9DxXNGLKZzr7Onf3eg6Hz+PpuGL0eQYAYNsjSAYAAACGzde/7h+f9rRBrgIAAACXkJkpm4wpm4xp30R/fZ6Xa42uoHl1+Fwse7rv5IJmy57ml2prPLc0lo6v3m67FT7nuno9ZxNKxAieAQDYagiSAQAAgGHz8z/vHw8fHuQqAAAAsMWk4lFdNp7WZePpvubXGs2VPs+lcJVzobUFd8nTw2fL+tqxoooVT2u0edZIMqaJXKJn+JwPjflBdCbBP20DAHCp8X9bAAAAAAAAAMB5i0cjmhlJaWYk1df8ZtNpbqkWqnRuVTl39nx+bG5Zdz82r0LZU63RO3lOxSPtaubO8HnujKfT2UdXttsOtuIeScZkRp9nAADOB0EyAAAAAAAAAOCSi0SsHfwemFl/vnNOi9V6qNq5UK76H5fCvZ6PnilptlzVcq2pmx+8e9W54lFbtcV25y287XZS4+m4IhGCZwDAcBuKINnMrpd0/YEDBwa9FAAAAAAAAABAH8xMo6m4RlNxXTWV7esxn771Nj3lGc/2Q+dKd+BcbX98vFhRoeRpsVrveZ6ISflMeDvtVb2eg2rniWxC+UxC8Sh9ngEAO8tQBMnOuVsk3XLddde9YdBrAQAAAAAAAABcGsmYad9ERvsmMn3Nr9YbKpZrmg1C5lZf5+7w+f5TiyqWPc0t1eTW6PM8lo73rHLurHTuHEvFoxt45QAAbLyhCJIBAAAAdPjVXx30CgAAAIAtIRmLavdYVLvH+uvzXG80gz7PK4Fze7vtVvhc8vTobEV3PjqnYsVTo9k7ec4mokFFc1eVc1f4PJHxK5+ziSh9ngEAm4ogGQAAABg2z3veoFcAAAAAbEuxaERTuaSmcklp1/rzm02nheXaStDcFT4Xg/D59MKy7nt8QbNlT1692fNciVgkHDS3ttrO9ej1nE1qNB0jeAYAXBSCZAAAAGDYfOlL/pFAGQAAALikIhHTeCah8UxC10yvP985p7LXUKHktbfbboXQK0G0P/6tJ8oqlD1VvEbPc8Uipnx3lXMQPk/kEn6lc0f/53wmoWiE4BkAsIIgGQAAABg2b3+7fzx8eKDLAAAAABBmZsolY8olY7pisr8+z8u1RntL7dlyVcVKZ+XzShB9z8kFzZaqWliur/Hc0njQ53kym/TD51x3EJ1sh8/5TEKJWGQjLx8AsMUQJAMAAAAAAAAAsE2l4lHtHU9r73i6r/m1RrO9pfZKX+dw9fNs2dPRsyUVjnkqVjy53m2eNZKKhYLmiWy453NnED2ZTSqdiG7glQMALjWCZAAAAAAAAAAAhkQ8GtHMaEozo6m+5jeaTnMVL1TpHNpuO+j5fKK4pLtOzKtQ9lRv9k6e0/FoaDvtUK/nHuFzLkmfZwAYJIJkAAAAAAAAAADQUzRimswlNZlL6sDM+vOdc1pYrgdBc3XN8Hm25OnI6ZJmy1Ut15o9z5WIRvz+zb16Pec6ej4HY2PpuCL0eQaADUOQDAAAAAAAAAAANoSZaSwd11g6rqunsn09puLVe/R1rrZ7P7fGHi1UVCh7KlV793mORkz5THxVT+fuKuj2LZNQLEqfZwBYC0EyAAAAMGx+67cGvQIAAAAAaMskYspMxLRvItPX/OVaI7TVditoLnaE0IWyp/tOLahQ9jRXqa15rrF0PFztnOvR67ljPBmjzzOA4UGQDAAAAAybpz1t0CsAAAAAgAuWike1ZyytPWPpvubXG00VK7UgcK6uhM+hILqqY7Nl3fFoUYWypzXaPCuXjHX1d/a32Z7IdAbOKyF0JhGlzzOAbYsgGQAAABg2t97qH1/4wsGuAwAAAAA2QSwa0fRIUtMjSUkj685vNp3ml2qhvs6Fzu22g9vj88u656Rf9ew1evd5TsYi7Z7Oq6qcs+HweSKb0GgqRvAMYMsgSAYAAACGzbvf7R8JkgEAAABglUjElM8mlM8m+prvnFOpWl/p71zq0es5uD10pqRC2dNSrdHzXPGoKd9R3ZzPtALnpCZyHeFzcBzPJBSNEDwDuDQIkgEAAAAAAAAAAC6QmWkkFddIKq4rJ7N9PWbJa6hQ8UPn0Hbb5daYH0I/VpzXbNnT4nK953kiJo1nelQ5t7fdTobG8tmE4tHIRl4+gB2MIBkAAAAAAAAAAGATpRNR7U2ktXe8vz7PXr2pYmWlr3N3+FwMjkeCiudixZNbo8/zSCrWscV2sr31dnjb7ZUK6FQ8uoFXDmA7IUgGAAAAAAAAAADYwhKxiHaNprRrNNXX/EbTaa7SucV257bbK9ttnyhW9I0TcyqWPdWbvZPnTCIarnLOJoO+zsEtEw6ic0n6PAM7BUEyAAAAAAAAAADADhKNmCZzSU3mkjrYx3znnBaW6u1K586+zp2Vz2dLVT1walGzZU/VerPnuRKxiB8uB32ew9tuJ0Pjk9mERlNxRejzDGxJBMkAAADAsPmDPxj0CgAAAAAAW4iZaSwT11gmrv3T6893zqniNTpC52p72+3uKuhjs2UVSp7KXqPnuaIRUz7T2dc56Oec6Q6i/RA6n4krRp9nYFMQJAMAAADD5tprB70CAAAAAMA2ZmbKJmPKJmPaN5Hp6zHLtUbPKudCqwo6CKLvO7mg2bKn+aXaGs8tjaXjq7fbzvaqgk4qn40rGaPPM3AhCJIBAACAYXPLLf7x+usHuw4AAAAAwNBIxaO6bDyty8bTfc2vNZoqBn2eC6WuXs8d4fPDZ8u6/ZGiCmVPa7R51kgypolcomflc2cI3QqiMwniM0AiSAYAAACGz/vf7x8JkgEAAAAAW1Q8GtHMSEozI6m+5jebTvNLtY7+zlX/41K45/PJ+WV98+S8CmVPtUbv5DkVj7S30g5VPue6ej0HYyPJmMzo84ydhyAZAAAAAAAAAAAA21okYspnE8pnE33Nd85psVrvCppXwudC2VMhqIg+eqakQtnTUq13n+d41O/zvLK1dleVczZ833g6rkiE4BlbH0EyAAAAAAAAAAAAhoqZaTQV12gqrqumsn09ZslraLa1rXZH4Bzabrvs6URxToWSp8Vqved5IqZ28Bzu6xwOoFshdD6bUDwa2cjLB/pCkAwAAAAAAAAAAACsI52I6vJERpfnM33Nr9YbKpZr7fC589YZRD9walGFsqe5pZrcGn2eR1MxTeZ6bLe9RhV0Kh7dwCvHsCJIBgAAAAAAAAAAADZYMhbV7rGodo/11+e53mhqbqnmB82lru22O8LnR2cruvPRORUrnhrN3slzNhHVREfAnM90Vj53bLedTWoil1A2QfCM1QiSAQAAgGHz4Q8PegUAAAAAAKBLLBrRVC6pqVxS2rX+/GbTaXG5Ht5uuxU6l1ZC6NMLy7rv8QXNlj159WbPcyViEeViTnvu+kJH0JxcM3weTcdkRp/nnY4gGQAAABg2+/YNegUAAAAAAOAiRSKmsUxcY5m49k+vP985p7LXUKHk9Qyf7zn6qBIjSRUqNR2bLatQ8lT2Gj3PFYuY8q0ezpmEJnKdQbMfQnf2f85nEopGCJ63G4JkAAAAYNh87GP+8dWvHuw6AAAAAADApjEz5ZIx5ZIxXTG5us/z4cOndejQs0Jjy7VGuK9zudqx7fZKEH3vyQXNlqpaWK6v8dzSeDq+sp12Nhw+h8aDWyIWuSRfB/SPIBkAAAAYNjfe6B8JkgEAAAAAwDmk4lFdNp7WZePpvubXGk0VOwJmv6+zX/1cqKxsu/3Q2ZL++ZinYsXTGm2eNZKMBX2eVwLnlz51j17w5JkNvEKcC0EyAAAAAAAAAAAAgIsWj0Y0M5rSzGiqr/mNptP8Ui1U6Rzq9RxUQZ8oLumuE/N60q4RguRNRJAMAAAAAAAAAAAAYNNFI9beyvoA+fCWw+biAAAAAAAAAAAAAIAQgmQAAAAAAAAAAAAAQAhbWwMAAADD5uabB70CAAAAAAAAbHEEyQAAAMCwmZoa9AoAAAAAAACwxbG1NQAAADBsPvQh/wYAAAAAAACsgSAZAAAAGDYEyQAAAAAAAFgHQTIAAAAAAAAAAAAAIIQgGQAAAAAAAAAAAAAQQpAMAAAAAAAAAAAAAAghSAYAAAAAAAAAAAAAhMQGvQAAAAAAm+zv/37QKwAAAAAAAMAWR5AMAAAADJtMZtArAAAAAAAAwBbH1tYAAADAsPm93/NvAAAAAAAAwBqGIkg2s+vN7H/Pz88PeikAAADA4N10k38DAAAAAAAA1jAUQbJz7hbn3BvHxsYGvRQAAAAAAAAAAAAA2PKGIkgGAAAAAAAAAAAAAPSPIBkAAAAAAAAAAAAAEEKQDAAAAAAAAAAAAAAIMefcoNewaczsrKRHBr2OTTAl6YlBLwIAtjFeRwHgwvEaCgAXh9dRALg4vI4CwIXjNXQ4Xemcm+51x1AFycPCzL7mnLtu0OsAgO2K11EAuHC8hgLAxeF1FAAuDq+jAHDheA1FN7a2BgAAAAAAAAAAAACEECQDAAAAAAAAAAAAAEIIknem/z3oBQDANsfrKABcOF5DAeDi8DoKABeH11EAuHC8hiKEHskAAAAAAAAAAAAAgBAqkgEAAAAAAAAAAAAAIQTJO4iZfb+ZPWBmR83sbYNeDwBsRWa2z8xuM7N7zeweM/u5YHzCzD5jZkeCYz4YNzP77eC19S4ze8ZgrwAABs/MomZ2p5l9Kvj8ajP7SvBa+TEzSwTjyeDzo8H9Vw104QCwBZjZuJndbGb3m9l9ZvZc3osCQP/M7BeC3+e/aWYfMbMU70cBYG1m9idmdsbMvtkxdt7vP83sdcH8I2b2ukFcCzYfQfIOYWZRSb8r6aWSniLp35nZUwa7KgDYkuqS3uyce4qk50j66eD18m2S/tE5d1DSPwafS/7r6sHg9kZJN27+kgFgy/k5Sfd1fP4+SR9wzh2QVJT048H4j0sqBuMfCOYBwLD7oKT/65x7sqTvlP96yntRAOiDme2V9LOSrnPOPVVSVNJrxPtRADiXD0n6/q6x83r/aWYTkn5Z0rMlPUvSL7fCZ+xsBMk7x7MkHXXOPeyc8yR9VNLLB7wmANhynHOPO+fuCD5elP8Pd3vlv2b+WTDtzyT9UPDxyyX9ufN9WdK4me3Z3FUDwNZhZpdL+teS/ij43CR9r6Sbgyndr6Gt19abJX1fMB8AhpKZjUn6V5L+WJKcc55zbk68FwWA8xGTlDazmKSMpMfF+1EAWJNz7vOSCl3D5/v+8yWSPuOcKzjnipI+o9XhNHYgguSdY6+k4x2fnwjGAABrCLa0erqkr0ja5Zx7PLjrlKRdwce8vgJA2G9JeoukZvD5pKQ551w9+LzzdbL9GhrcPx/MB4BhdbWks5L+NGgR8EdmlhXvRQGgL865xyT9hqRH5QfI85JuF+9HAeB8ne/7T96XDimCZADAUDKznKS/lvTzzrmFzvucc06SG8jCAGALM7MfkHTGOXf7oNcCANtUTNIzJN3onHu6pLJWthGUxHtRADiXYBvVl8v/w5zLJGVFRRwAXBTef+JcCJJ3jsck7ev4/PJgDADQxczi8kPkv3TOfTwYPt3aJjA4ngnGeX0FgBXPl/SDZnZMfiuV75Xf63M82FpQCr9Otl9Dg/vHJM1u5oIBYIs5IemEc+4rwec3yw+WeS8KAP15oaRvOefOOudqkj4u/z0q70cB4Pyc7/tP3pcOKYLkneOfJR00s6vNLCHpNZL+dsBrAoAtJ+iF9MeS7nPO/WbHXX8r6XXBx6+T9MmO8f9gvudImu/Y9gUAhopz7pecc5c7566S/37zs86510q6TdIrg2ndr6Gt19ZXBvP5K2cAQ8s5d0rScTO7Nhj6Pkn3iveiANCvRyU9x8wywe/3rddR3o8CwPk53/efn5b0YjPLB7tDvDgYww5n/H9z5zCzl8nvWReV9CfOufcMdkUAsPWY2XdJ+oKku7XS3/Pt8vsk3yTpCkmPSHqVc64Q/GL6O/K3yqpIer1z7mubvnAA2GLM7JCkX3TO/YCZ7ZdfoTwh6U5JP+Kcq5pZStKH5fejL0h6jXPu4QEtGQC2BDN7mqQ/kpSQ9LCk18v/Q3/eiwJAH8zsv0t6taS6/PeePyG/TyfvRwGgBzP7iKRDkqYknZb0y5I+ofN8/2lmPyb/31El6T3OuT/dxMvAgBAkAwAAAAAAAAAAAABC2NoaAAAAAAAAAAAAABBCkAwAAAAAAAAAAAAACCFIBgAAAAAAAAAAAACEECQDAAAAAAAAAAAAAEIIkgEAAAAAAAAAAAAAIQTJAAAAAIALYmbOzD406HVcCDPLmNlvm9mjZtYws2Ob/PxXBV+/d23m8w6SmX3IzNyg13Gpmdnhzf55AgAAAIBLgSAZAAAAALYQMzsUBIzOzN6wxhxnZp/a7LXtMG+V9DOSPibpBkk/P8jF4MKY2U8G/z38RI/7XhPcd3yNx95vZnNmFr30KwUAAACA7YcgGQAAAAC2rneZWXrQi9ihXiTpbufcf3HOfdg594lBL2gIvEHSRv883xYcD/W47wWS6pIuN7MDnXeY2R5J10r6vHOuscFrAgAAAIAdgSAZAAAAALamr0m6TFTKSpLMLGpmmQ085W5JhQ08H9bhnKs555Y3+JwPSHpcvYPkQ5I+Ij9M7r6/9fnhjVwPAAAAAOwkBMkAAAAAsDXdJOl2SW81s8n1Jq/Vr9jMbgjuO9Qx9q5g7Clm9ltm9riZVczsH83s2mDOvzGzO8xsycyOmdkbz/HcLzSzLwfnOGVmHzSzXI95Y2b2PjM7amZVMztrZh8xs/1rrPmFZvZOM3tI0rKkV63zNYiZ2VvN7F4zWzazWTP7GzP7ju5zS7pa0vd0bCP+rnOdO3jsK4L+t3PBtT4Q9FlOdMzJmtl7zeyh4BpPmdmfm9mVfZy/ta35DT3uW9VfuNWLN+i3/DfBuorB3JyZRczs7Wb2reDrcYeZPX+t5zSz15vZPcG6HzGzt/RYx/PM7B+C61o2s8fM7O/N7Dl9XF+va/hQ8PxjZnajmZ0Jzvv/zOzZ650zcJukvWZ2sOO8eyQ9SdLfyf/v6AVdjznU8dgLYmZ5M/tDM3vCzMrB9+OZF3o+AAAAANhqYoNeAAAAAACgJyfpbZI+I+m/SvrPl+A5/kxSSdKvSpqW9GZJnzazd0r6NUk3SvoTST8u6Q/M7F7n3Be7zvEMSa+U9IeS/lx+YPezkp5qZi9yzjUlP0SW9CVJVwTnvEfSHklvkvQVM7vOOfdI17l/Q1I8OPeCpAfWuZ6/lB82fyZY+25JPy3pn8zsu51zd0r6vKQflfQBSU9Iek/w2LvOdWIze4+kt0u6N3js45KukfQKSf9NkmdmcUmflvR8STdLer+kg5J+StKLg2s8sc41nK+spM9K+pz8n5d/KenHJKUkzUp6tqT/Jf/r+IuSbjGzK51zi13n+UlJuyT9saQ5ST8i6X1mdsI591fB1+Ba+V/bU5I+KOl08JjvkvSdkr58EdfxaUlnJf2KpEn5P+9/Z2ZX91hrt9sk/Xv54fCRYOxQcPyc/J/RH+l6zCFJRUnfuJDFdnyv/6WkD8u/9qdJulX+1x0AAAAAtj2CZAAAAADYopxzt5rZZyS9ycw+2CNovVinJP2gc85Jkpk9IT8g/F1J3+6cOx6Mf0zScfmhbHeQ/B2Sfrijx/DvmdkH5YfJr5L00WD8VyTtl/Qc51w7vDO/ivpuSf9d0g1d505LerpzrrLehZjZi4Lnu0nSazquqVXZ/duSvts597Ckh83s3ZJOO+f+oo9zP0t+iHybpJd1bs9sZm/rmHqD/BD5151zb+mYc6ukT0l6r/wQeyNNSfo159yvB5//vpnl5X8t7pD0XOdcLVjHfZI+KT90/YOu81wh6ducc/PB3D+R9Iikn5H0V8Gcl0jKSPp3zrmvbvB13OGce1PrEzO7V/73stdau7Wqil8g/48OJD8ofsA5d8rMDkt6i5k9yTn3YEe18idbf+hwAV4vP0T+FefcL3et+wPyv3YAAAAAsK2xtTUAAAAAbG1vlZSQ9D8uwbl/uxW4Br4QHP+2FSJLknPurPxq4INa7YGOELnlfwbHH5YkMzNJr5VfDfyYmU21bpLK8qs5X9zj3Df2EyJ3Ppek93ReUxBa3yLpu8xsus9zdXttcPyl7h6/LtCxhqb8wLhzzt9J+rqkl5vZRv8e3pBfcdzpC5JM0u+3QuSOcan39/FPWyGyJAVf9y93zW3d/3IzS13Uqlf7QNfnnw2OvdYa4px7SP4fOhzqGD4kvxpZkv6f/K/ToY77pIvY1lrSDwXnfH/X+I3yq+cBAAAAYNsjSAYAAACALSzYjvkjkl5rZv9ig0//cNfnxeD4rR5zi/K3HO52X/eAc+5x+dsjt3ofTwePfbH87Yu7by+Sv0VytwfPufqwq+WHuKvWI38b7dacC3FQ/lbj622DfLWkk865Yo/77pE0Ir+CeCM93h1ua43vY8e6en0fu38WJH+L5s65H5W/dfPbJRXM7LNBT+p1+z/3IfT8zrnW9tDr9gcP3CZpj5ld21Fx/LngXAuS7tRKn+RDwfHwRax3v/yvfSg0ds5V1ftrCQAAAADbDkEyAAAAAGx975BUl/S+C3jsuVoaNc5z3C7g+Tsfd6v80LjX7SU9HtdvNfJmcMHtUj/HWtb6Pq71vTrXfb2+j+c6jyQ/JHXOvUh+3+X3Bo/5FUn3m9kPn/PB65/7Yn/mWtXFhxTuj6yOj7+nY86s1umLDQAAAADDjh7JAAAAALDFOee+ZWY3Svo5Mzu0xrSCpIke4/t7jG2kb+seCCpCx7VSmXlWfoXyqHPu1ku0jofl/7H0t2l1QPiU4Nir0rofD0p6qaTvlHSu3sAPS/p+Mxt3zs31WMOCpCfO8fhCcBzE97FvQX/kr0qSme2TX+37bkl/M8BldfZJnpf0kHPusY77PyfpzWb2AvnVyh/v2tb9fD0s6cVmNtpZlWxmSfnfq15V6QAAAACwrVCRDAAAAADbw7vlB5G/tsb9D0p6rpllWgNmlpf0+ku8rmvN7Ie6xt4aHD8hSc65pqS/lPQsM3tlr5OY2cxFruMTwfGXgp7MrfM+VdIPSvpi0Ov5QvxVcPxVM0t039nxfJ+Q/3v227ruf6mkp8vvPd08x/N8S37l+Qu7Hv88Sc+5oJVvoKCndbcT8v9QoFf4vWmcc4/I//p9j8L9kVu+IH/r83cFnx++yKf8pKSopDd3jf+UpNGLPDcAAAAAbAlUJAMAAADANuCce8LMfl3S/1hjyu9I+gtJnzWzD8uvCH6DpEck7b6ES7tb0l+Y2R9KOiK/IvSV8oO8j3XM+6+Sni/pJjO7SdKXJXmSrpT0Mkm3S7rhQhfhnPtMcN7XSMqb2afkX/dPS1qW9LMXce6vmtn75Afkd5jZxySdkt8T+ZWSniW/4vpDkl4n6a1mdpWkz0s6IOlNkk7L7y18rucpmdmHJP2EmX1Efth5UP4fA9wlvyJ6kN5hZi+W9Cn5oa1Jul7Sk7X2Hzhsptsk/Zj87/t7Ou9wzs2Z2V2S/lXH3JCg2v82SX/mnLthnef6U0lvlPTfzOxqSf8k/48F/q2kh8S/twAAAADYAfjFBgAAAAC2j9+UH0ru6b7DOfeXZnaZpP8UzHtYfv/apvyetpfKHZL+s/zg7iflV03/jqS3d1bfOufmzez58is4XyXp5fKrb09I+qKkP9qAtbw2WM8Nkt4vqSw/0H6nc+7uizmxc+5tZvYN+V/ft8ivPD4u6e8V9HJ2ztXM7CXye1q/WtK/kR8w/x9J73DOHe/jqX5BfkD7w/K/RrfLD2vfqMEHyZ+Q/7P3Kkm7JC3J/+OBN0j648Etq60VJEurK5JbY0+TX0F9T4/7R4LjYz3uC3HOeWb2Ikm/LumHJL1C0j/L7/f9G5Ku6n/ZAAAAALA12cW1BAIAAAAAANj+zOw35f8RwgHnXGGd6QAAAACw49EjGQAAAAAAQHqJpPcQIgMAAACAj4pkAAAAAAAAAAAAAEAIFckAAAAAAAAAAAAAgBCCZAAAAAAAAAAAAABACEEyAAAAAAAAAAAAACCEIBkAAAAAAAAAAAAAEEKQDAAAAAAAAAAAAAAIIUgGAAAAAAAAAAAAAIQQJAMAAAAAAAAAAAAAQgiSAQAAAAAAAAAAAAAh/x930PbT8hf6IgAAAABJRU5ErkJggg==\n"},"metadata":{"needs_background":"light","image/png":{"width":1938,"height":506}},"output_type":"display_data"}],"execution_count":null},{"cell_type":"markdown","source":"Above is a plot showing the final value of the norm for varying values of $d$. The computations are done with the total number of iterations set to $1000$, for $d=\\{16, 64, 128, 256, 373, 512, 1024\\}$. $d=373$ is included since it is the rank of the image matrix, and it is of interest to examine whether the norm converges to a smaller value if $d$ is chosen larger than the rank, or if the $d$=rank indeed yields a best possible approximation. It is expected that, in general, larger $d$ corresponds to smaller norm, however at some point it is expected that the norm converges to the same value even if $d$ is increased, as there is a limit to how precise a reconstruction the NMF might yield (this limit could be a perfect reconstruction, but that is not the case here). One must also take into consideration the fact that for larger $d$, more iterations might be required before the norm converges. Hence, the algorithm might not converge within the set number of iterations for larger $d$, and the plot might not show a true representation of which $d$ yields the most precise approximation. \n\nIn the plot, the value of $d$ which corresponds to the number of elements in $W$ and $H$ equalling the number of elements in the orignal image matrix is marked with a vertical line. Increasing $d$ further than this  value is meaningless if the sole purpose is to reduce the size of the dataset. This value is found by solving the equation\n\n$$\n\\# \\text{elements in W and H} = \\# \\text{elements in original image matrix}\n$$\n$$\n\\Rightarrow d \\cdot 24 \\cdot 24 \\cdot 3 + 500 \\cdot d = 24 \\cdot 24 \\cdot 3 \\cdot 500,\n$$\n\nand is equal to $387$ (after rounding down). \n\nThe plot confirms that the higher the rank of the approximations, the more precise are the reconstructions. Even when $d$ is increased beyond the original matrix rank of $373$, the norm converges to a significantly smaller value. Examining the point at which the size of the reconstructed dataset equals the size of the original dataset, we see that the norm converges to a value of around 6 for this $d$. In other words, even by reconstructing the images to a dataset of equal size to the orignal one, the NMF is not capable of a perfect reconstruction. This all but confirms the limitations the non-negativity constraint imposes on the reconstructions. If the purpose is to obtain a compressed dataset, one must accept a norm of at least 6.\n\nThe graph decreases at a higher rate for smaller values of $d$, whiler for larger $d$ it flats out. This means that for smaller rank approximations, the cost/benefit ratio of further increasing $d$ is smaller, i.e. the improvement of the reconstruction is relatively greater compared to the increase in runtime and datasize for smaller $d$ than for larger $d$. Hence, for larger $d$, it is increasingly more important to carefully examine whether further increasing the rank is indeed beneficial. This is even more important when noise is added to the equation, which it will be throughout the rest of the project.","metadata":{"tags":[],"cell_id":"57b1a8aba6b04d4f95cf92e68a6b7a8a","deepnote_app_coordinates":{"h":5,"w":12,"x":0,"y":205},"deepnote_cell_type":"markdown"}},{"cell_type":"markdown","source":"## Task 3","metadata":{"tags":[],"cell_id":"afa8c13dfdf942b7a16dcdbf0fc19ae6","is_collapsed":false,"formattedRanges":[],"deepnote_app_coordinates":{"h":5,"w":12,"x":0,"y":211},"deepnote_cell_type":"text-cell-h2"}},{"cell_type":"markdown","source":"In the following section static noise is added to the images. The greatest consequence of adding the static noise is that previously equal features - the 3D glasses, the cigar, the single earring - now look different. This has the consequence that a better NMF, being an NMF with higher rank, will learn the noise. This means that a better reconstruction actually will shift a reconstruction away from its original state (without the noise). This phenomenom os called overfitting, and is crucial concept in this section. \n\nThe NMF used in this section can remove noise without knowledge of the original unpolluted dataset, so the method is unsupervised. However, because we have access to the original dataset, the norm of the difference between the denoised dataset and the original dataset will be calculated in order to analyse what NMF rank-values yield the best denoising. \n\nTo mimic the effects of random processes that occur in nature, we have applied a model called $\\textit{Additive Gaussian noise.}$ This model accurately reflects many systems and is a simple model to handle mathematically. We have applied the model in the following way:\n$$ \nA_{noisy} = A + \\sigma E \n$$    \nwhere $\\sigma$ is a positive scalar which represents the noise level and E is a matrix with the excact same shape as the original matrix A. It is called Gaussian noise because the components of the matrix $E$ are realizations of the standard normal distrubution. Furthermore we have made some assumptions to avoid certain difficulties. We only added noise on the colour channels that are non-zero for each respective pixel. We also clipped the values of each pixel to hold a value between 0 and 1, to make sure that the noisy images are plottable images.\n\nFor all plots and subtasks in task 3, we are using $\\sigma = 0.10$ and \n$N$(Number of images) $ = 500$.","metadata":{"tags":[],"cell_id":"7f64301132a04ca7875c9edf2e58d179","deepnote_app_coordinates":{"h":5,"w":12,"x":0,"y":217},"deepnote_cell_type":"markdown"}},{"cell_type":"code","source":"def add_noise(imgs_reshaped):\n    \"\"\"\n        Adds gaussian noise to images as described in text.\n        Note that imgs must be given as a (24*24*3, N) numpy array, i.e the reshaped images\n    Input:\n            imgs_reshaped: (1728,N) numpy array\n            sigma: scalar, noise level\n    Output:\n            noisy_faces: (1728,N) numpy array containing noisy images\n    \"\"\"\n    # Noise level\n    sigma = 0.10\n\n    # Array that will store the rgb channels of the noisy images\n    noisy_faces = np.copy(imgs_reshaped)\n\n    # Number of noisy values we need\n    nnzero = imgs_reshaped[np.nonzero(imgs_reshaped)].shape[0]\n\n    # Sample noisy values and add noise\n    noise = np.random.normal(0.0,1,nnzero)\n    noisy_faces[np.nonzero(imgs_reshaped)] += sigma*noise\n    \n    # Clip to lie between 0 and 1 so that we can still interpret them as images\n    noisy_faces = np.maximum(0.0,np.minimum(1.0, noisy_faces))      \n\n    return noisy_faces\n\n\"\"\" Global variables for task 3 \"\"\"\nopacityMatrix = faces[:,:, 3, :]         # Stores the opacity channel in 24 x 24 x N array\nimagesWithoutAlpha = faces[:,:,:3, :]    # Removes alpha from the images\nimagesWithoutAlphaReshaped = np.reshape(imagesWithoutAlpha, (np.prod(imagesWithoutAlpha.shape)//N, N))\nnoisyFaces = add_noise(imagesWithoutAlpha)\n\n\"\"\" Reconstructing noise images with opacity \"\"\"\n\nnoiseWithOpacity = np.zeros(faces.shape)\nnoiseWithOpacity[:,:,:3,:] = noisyFaces.reshape(imagesWithoutAlpha.shape)\nnoiseWithOpacity[:,:,3,:] = opacityMatrix\n\ndef ex3a():\n\n    plotimgs(noiseWithOpacity, d = None, nplot = 8, filename=\"Noisy_Images.png\")\n    noisyFacesReshaped = np.reshape(noisyFaces, (np.prod(noisyFaces.shape)//N, N))\n    \n    noiseResidual = np.linalg.norm(imagesWithoutAlphaReshaped - noisyFacesReshaped, ord = 'fro') # Calculate frobenius norm\n    print('||A - A_noisy||_F for 500 images = ',noiseResidual)\n    return noiseResidual\n    \nnoiseResidual = ex3a()","metadata":{"tags":[],"cell_id":"7eba019393af49638f755f552ca922c9","source_hash":"8250a108","execution_start":1649449900867,"execution_millis":3536,"deepnote_app_coordinates":{"h":5,"w":12,"x":0,"y":223},"deepnote_to_be_reexecuted":false,"deepnote_cell_type":"code"},"outputs":[{"data":{"text/plain":"<Figure size 1152x1152 with 64 Axes>","image/png":"iVBORw0KGgoAAAANSUhEUgAABHYAAAS9CAYAAAAiHt73AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd3RVdfb//x1SgSSEQAIJJfQeeq8iKqCiFHvvjl1HP/aCbRwdx4odCzZERRRQUar03hJ6AqEF0htppP3+4Ee+MHtfuDGFnPB8rDVrMa9szj3mnpxz7puTvT2ioqJKBAAAAAAAAI5T60zvAAAAAAAAAP4eFnYAAAAAAAAcioUdAAAAAAAAh2JhBwAAAAAAwKFY2AEAAAAAAHAoFnYAAAAAAAAcioUdAABQ5Z566imJjIyUyMhIWbNmzZneHQAAAMfyOtM7AAAQGTlypMTHx6vcw8NDateuLf7+/uLv7y8tWrSQDh06SNeuXaVfv37i5XVmTuNfffWVZGVliYjI3XfffUb2oTrZvn27LFiwQERE+vTpI3369Dkj+/G/x9G4cePkhRdeOO3fW7p0qdx1110iItK7d2/5/PPPK20fz2Y333yzrF27VkREXnzxRRk7duyZ3SEAAFAjsLADANVYSUmJ5OTkSE5OjiQmJsru3btLFxAaNmwoY8eOlVtvvVX8/f2rdL++/vrr0gUEFnaOLex88MEHpf//TC3s/K+ZM2fKjTfeKK1btz7TuwIAAIBKwsIOAFQzV1xxhTRr1qz0/x89elSysrIkOTlZtmzZInFxcVJSUiLJyckyefJk+fXXX+Wll16Svn37nsG9RnVUVFQkb731lrz77rtnelcAAABQSVjYAYBqZtSoUad84uPQoUPy3Xffyddffy1Hjx6VQ4cOyd133y2ffPKJ9OjRowr3FNWZp6enFBUVyaJFi2TDhg3V7th4+eWX5eWXXz7TuwEAAOB4NE8GAIcJCwuThx56SL7++msJDQ0VEZH8/Hy5//77JT09/czuHKqNE/u3vPnmm2duRwAAAFCpeGIHAByqY8eO8tZbb8mNN94oBQUFkp6eLl988YU8+OCDZn1OTo4sXrxYVq1aJdu2bZMDBw5Idna2+Pn5ScOGDaVr165y0UUXycCBA12+ZmRkpFtZeHi4/PHHHxX++ifau3evTJ8+XdauXSt79+6VnJwc8fT0lMDAQGnatKn06NFDBgwYIL169RJvb+9Tbmv58uXy559/yvr16yU5OVny8/MlKChIOnXqJCNGjJCLL77YbFT9/vvvn9RbR0Tkgw8+UJlI1TfLvfrqq2X58uVy6NAh2bBhgyxYsEDOPffcCtl2dna2/Pjjj7J48WLZs2ePpKenS506dSQ8PFz69+8vl19++Um/Tmh56qmnZObMmSIi8tlnn7l8Si0xMVGmT58uK1eulD179khWVpbUqlVL/P39JTw8XLp16yYDBw6U3r17S506dUTkWG+q0aNHy8GDB0VE5JdffpFWrVqd9r9ryZIlpT2jevbsKVOmTHH7e1JRrO9LbGysfPfdd7Jy5UpJSEiQ2rVrS8uWLeWqq66SCy64QGrV+n//TpeXlye//vqrzJw5U/bt2yeZmZkSGhoqw4YNk9tuu00aNmx4ytc/evSoLF++XFauXClbtmwp3Ya3t7cEBwdLly5d5Pzzz5fzzz//pNc9ldzcXJk2bZrMnTtX4uLipKCgQEJDQ6Vfv35y5ZVXSrt27WTNmjVyyy23iIjIJZdcctqnuXJycuTnn3+WJUuWSExMjKSlpYm3t7eEhIRI7969ZcKECdK5c+fT7tvfOb7+juPnyePnxuLiYvntt99k1qxZpftfv3596datm1x22WWnPQ+e2Ih7zpw50qRJE9mxY4dMmzZNVq1aJYmJieLt7S0RERFywQUXyNVXXy1+fn5u7evSpUtl+vTpsnnz5tL9atu2rVx66aUyatQo8fDwOKlRe1RU1N/+vgAAKgYLOwDgYJGRkTJmzBj56aefRERk6tSpcvfdd4uPj89Jdbt27ZJrrrlG8vLy1DaOHDkiR44ckbi4OJk5c6YMGjRIXnvtNQkMDKyw/azo1//qq6/kjTfekMLCwpPywsJCSUpKkqSkJNmwYYN89tlnMmnSJBk2bJi5nYSEBHn88cdLPyCdKDExURITE2XRokXy+eefy9tvvy0tWrQo23/4KRw8eFBGjRpV+v+PfzirKN7e3nLPPffI008/LSIi77zzjgwbNkw8PT3Ltd3FixfLM888I6mpqSflGRkZkpGRIdu2bZOvvvpK7rjjjtJJW3/XnDlz5LnnnpOcnBz1tdTUVElNTZXo6Gj55ptv5IknnpBrrrlGRI5Nkxs3bpxMmjRJRERmzJghDz/88Glfb8aMGaV/njBhQrn2vaJMnz5d/vWvf8nRo0dLs9zcXElNTZV169bJwoUL5ZVXXpFatWrJnj175L777pO9e/eetI0DBw7IN998I7///rt8+umn0qZNG/O1MjIyZPTo0aUT705UWFgoBw8elIMHD8off/whnTt3lrfeeksaN258yv3fvXu33H333aWLbMft3btX9u7dKzNmzJDHHnvMrYW34+bNmycvvviiOgbz8/PlyJEjsmfPHvnxxx/lsssukyeeeMLlwu7fPb7KKysrSx555BFZvnz5SXliYqLMnTtX5s6dK5deeqk8//zzbv+8fvnll/Lmm2+edE7My8uT6OhoiY6OlpkzZ8onn3xyyoW9wsJCefbZZ2XWrFlqvxITE2XZsmUya9Ysee2118rwXwsAqAos7ACAw1111VWlCzs5OTmyefNm6d2790k1OTk5kpeXJx4eHtKxY0fp0KGDhIaGip+fn2RlZcn27dtl1apVUlhYKMuWLZN//vOf8vHHH6t/kT/+4fiTTz6RzMzMk7IT/e+Urop6fRGRhQsXnvTBokOHDtKzZ8/SDyxpaWkSGxsrGzduND+wHbd//3656aabJDExUUREAgMDZdCgQdKiRQvx9vaW+Ph4Wbx4cek0shtuuEGmTZsmYWFhpdsYOHCg1KlTR7Zs2SJz5swREZEBAwaY/9repUsXl/tSWcaMGSNTpkyRXbt2SWxsrPzyyy8yfvz4v729+fPny8MPPyxFRUUiIhIcHCzDhw+X8PBwyczMlKVLl0psbKwUFhbK+++/L5mZmfLYY4/9rdfaunWrPP7446Wv1aJFC+nbt680atRIatWqJZmZmbJnzx5Zv3596bF4onHjxskHH3wgRUVFMmvWLHnggQfMp66OS0tLk4ULF4qISEBAgJx//vl/a78r0uLFi2XKlClSq1YtGTJkiHTu3Fk8PT1l8+bNsmTJEhER+e2336R169Yyfvx4uf322yUhIUFatmwpgwcPluDgYDl06JDMmTNHMjMzJTU1VR555BH54YcfzMWOgoKC0kWdNm3aSMeOHSUsLEzq1KkjOTk5smvXLlmxYoXk5eXJli1b5B//+IdMnTpVateube7/4cOH5dZbb5Xk5GQREfH19ZWhQ4dK27ZtpbCwUDZt2iSrV6+Wl19+WW666Sa3vifff/+9vPTSS1JSUlK6n71795bQ0FApKCiQbdu2ydKlS6WwsFB++OEHycjIkP/+979qO+U9vsrjueeek+XLl0vdunXl3HPPlYiICMnJyZEVK1bItm3bROTYU2YlJSVu9aH66aef5OOPPxYvLy8ZNmyYdOzYUby8vGTHjh2yYMECKSoqkpiYGHnqqafko48+crmdZ555RmbPnl36/zt16iT9+/eXOnXqyL59+2ThwoWyZMkSmThxYrm/BwCAisXCDgA4XIcOHSQgIKD0A9m6devUwk5AQIA88MADMm7cOGnQoIG5nf3798vDDz8s27Ztk1WrVsmvv/4qY8aMOanm+IevqVOnln7YcecDWUW9vojIF198Ufrnl19+WS655BJzewUFBbJo0aKTFmJO/NrDDz9cuqhz4403yr333qt+VaGgoEDeeOMN+frrryUtLU2efPJJ+fzzz0u/3r17d+nevbv8/PPPpQs73bt3d/tDamWrVauWPPjgg3LPPfeIyLFfHbvooovE19e3zNtKTk6WZ599tvSD8Pnnny8vvPDCSYt4Dz/8sHzxxRfyxhtviIjI119/LQMGDJChQ4eW+fW+/vrr0te655575M477xQPDw9VV1RUJKtWrVL/TaGhoTJkyBBZtGiRpKSkyF9//SUjRoxw+XqzZs0qfdph9OjRLhcrqtIXX3whoaGhMmnSJOnYseNJX/vtt99KF82mTJkiGzdulMTERHnkkUfkhhtuOOl7dccdd8j1118vhw4dktjYWJk3b56MHj1avZ63t7fcdtttcvnll0t4eLi5TykpKfLkk0/K8uXLJTY2VqZMmSL/+Mc/zNqXX365dFEnIiJC3n//fWnevPlJNStWrJAHH3zwpJ9rVzZt2iSvvPKKlJSUSHBwsLz44ovmsbV//3554IEHZNeuXfLnn3/KjBkzZNy4cSfVlPf4+rsOHTok8fHx0rVrV3nzzTdL+6SJiDz00EMyffp0eeGFF6S4uFhmzpwp55577imPWxGRjz/+WFq0aCFvv/22evJpw4YNcscdd0heXp4sX75cNm7cKN27d1fbmDdvXumijqenpzz33HPqe5aSkiL//Oc/5Y8//jC/VwCAM4fmyQDgcB4eHtK2bdvS/3/o0CFV06pVK7nttttcLqqIiDRr1kwmTZpUurjx448/Vtg+VuTrb9++XUSO/Uu9q0UdkWMfUs8//3xp166d+tqsWbNK/2X8uuuuk0ceecTsP+Ht7S2PPfZYaW+atWvXyvr1612+ZnU0dOhQ6dWrl4gc+9Wzr7/++m9t5+uvvy5dzOvYsaO89tpr6sksDw8Pufnmm+X6668vzd57772/9XrH35+AgAC5/fbbXX6Q9PT0lIEDB5b+N57osssuK/3zib9mZTnx6+V5qqkieXp6yrvvvqsWdURELrzwQunfv7+IiGRmZsqSJUvkxhtvlBtvvFF9rxo1aiT33Xdf6f+fN2+e+Xr16tWTBx54wOWijohIgwYNTlqQcPVzunPnTlm0aJGIHPs5mjRpklrUETn2hNvEiRNLn8A5leO/funl5SXvv/++ywXDZs2ayQcffFDaE2fy5MmqpiKOr7+jpKRE6tevL5MmTTppUee4CRMmyJ133ln6/0/1hM1xderUkQ8++MD8dbYePXqc9Ctk8+fPN7fx8ccfl/75zjvvVIs6Isfe+0mTJkmDBg3cer8AAFWHhR0AqAHq1atX+ueMjIy/vZ3Q0NDSDzBRUVEn9fWoCu68fnFxsYgc66fxd02dOlVERPz8/Eqb5Z7KzTffXPrn4x9Wy6tJkyYSFRVV+r+K7K/zv/75z3+W/vnTTz/9W8fI8Ya+IiL333//KX+t6e677y594mXr1q2ya9euMr/e8fe5oKCg9M9lNXjwYGnUqJGIHGsIm5SUZNZFRUVJTEyMiIi0b9/eraa7VWH48OHSqVMnl18/sXeUt7e33HrrrW7VHl8c/bvq1KlTur2EhAQ5cOCAqjnxV3ouvvjiU/anGj169Gl77OzYsaN0UfWCCy447XvUqFGj0qeS9u3bJ7GxsSd9vSKOr7/r+uuvl/r167v8+s0331y6aLpt2zbZuXPnKbc3fvx4adq0qcuvX3DBBaV/Pr6gdaLdu3eX5nXr1j3lE4cBAQFyww03nHJ/AABVj1/FAoAa4MRpLUeOHDllbVFRkcTGxsru3bslMzNTcnNzT/rX17S0NBE59oHnwIEDZWpq6o7yvn67du1k8+bNsn//fnnjjTfkrrvuKtOvzaSnp8uOHTtERKRr164SEBBw2r/Tvn370j9HR0e7/VrVRdeuXeX888+XuXPnSlZWlkyePNmtZsLHHThwoHRRxN/fXwYMGHDKen9/fxk4cGDp0wEbNmw46akyd7Rv3152794teXl58uyzz8rjjz9+0gKmOzw9PWXcuHHy4YcfSlFRkfzyyy9y2223qbrjPapExHxS4Uw53WSkEz/Md+rUSYKCglzWBgYGSr169SQjI6P016NOpaSkROLi4iQmJkbS09MlJyfnpJ/TExdz4uLi1MLCpk2bSv88fPjw077e8OHDZffu3S6/vnLlytI/Dxo06LTbEzn2a6rHRUdHS+vWrUv/f0UcX3/X6X61qnbt2jJo0KDSyYIbN240nzw8bvDgwafcXkREROmf/7fhtMjJ71X//v1Pez4dPny4vPnmm6esAQBULRZ2AKAGyM7OLv3z//56zHFZWVnyySefyC+//GLe3Lv6OxWlol7/lltuKR3p/vnnn8v3339f+qsSkZGR0rFjx1OON9+5c2fpB9TVq1eb49pP5fjCk9Pcf//9snDhQiksLJSpU6fKtddee9qJRsft27ev9M/t2rVza1JPx44dSxd2/ndKkztuuOEGmTt3rhQWFsrs2bNl7ty50rdvX+ndu7d07dpVunTp4tb45nHjxsnHH38sxcXF5sJObm5uaX8kX19fufjii8u8r5XF6g91ohMXdE9Xe7w+IyNDcnNzXdbk5+fLl19+KT/88IP5a50W6+f0xGPGnUW909Wc+NTKU089JU899ZRb+3bc//7cVtTxVVa+vr5uTddr165d6cJOXFzcKWtP997XrVu39M9WQ/kTfz7dea8iIiLEx8enyp/oBAC4xsIOANQAJ05tsf7V+eDBg3LrrbeqkcOnU1E37hX5+iNGjJDnn39eXn/9dcnKypLs7OzSEcEi/+9fu8ePHy9DhgxRfz89Pf1v/Tccd6oPxdVZixYtZNy4cfLDDz9Ifn6+vPvuu25N3BE5+fg61VMhJzrxV03+zq9+denSRd566y2ZOHGiJCcnS35+vixZsqR0GpSPj4/06dNHxo4dKxdccIE5QU1EJDw8XAYMGCDLli2TuLg4Wbdu3Un9UubOnVv6lNu5555bZU9tuON0DXtP7Avj4+Nz2u0dr3fVHyUjI0PuuOMO2bp1axn20v61yLIeM6erqeif24o6vsoqMDDQrW2d+P043VSushwn1ntf1veqVq1aEhgY6NaTXwCAqsHCDgA4XHFx8Un/mm01Pn3yySdLF1XCw8Plqquukp49e0qTJk3E399ffH19S2/+n3rqqZP6qVSEin798ePHy3nnnSdz5syRpUuXysaNG0v/RT43N1fmzZsn8+bNk0GDBskbb7xx0pMNxyfhiBz71+lTNWC2uHoiygnuvvtumT17tuTm5srs2bPlpptuKvOvSFWlYcOGye+//y5z586VxYsXy/r160snmR09elSWLVsmy5YtkylTpsg777wjISEh5nYuv/xyWbZsmYgc+7WrExd2Tvw1rAkTJlTif03198orr5Qu6gQHB8uVV14pffv2laZNm0pQUNBJP6fvvfeefPjhh1W2byf+3I4dO/akX6tyhzUJqqKOLwAAzjQWdgDA4bZv335SX53/HXW+devW0qajTZo0ke+//14CAwNdbq8if/2qMl8/MDBQrrjiCrniiiukpKRE9uzZI2vWrJG5c+fKqlWrRERk2bJl8vzzz8urr75a+vdOfCKjQYMG1WY0eVVo2LChXHfddfLJJ59IcXGxvPXWW25NrTrx/XL3yYkTf/WlPE/B+Pn5yZgxY2TMmDEicqy3y5o1a2TBggWyZMkSKSoqkujoaHn44Yflyy+/NLcxbNgwadiwoSQnJ8vcuXPlySeflLp168q+fftKj82mTZtK3759//Z+Ol1aWpr8/vvvInKsQe7UqVNPOR3rdL28AgICJCUlRUSOHTOnWxA93XF14jHUr1+/CvuVuYo4vsoiMzNTiouLT/vUzonfj1OdLyvCiX3G3Pn5Li4uPu1TRACAqsVULABwuGnTppX+2d/fX/WM2bx5c+mfx44de9oPCcenA1WUqnh9Dw8PadWqlVx55ZUyefJkef3110ufLJgzZ85Jvwp0YjPm002bqYluueWW0l+TWrx4saxdu/a0f+fEMdW7du1ya4rQiZOXTmzeWl5NmzaVcePGybvvviuff/556a8gbdiwweW0Jy8vLxk7dqyIHHui6/gCxowZM0p/NWXcuHEuR16fDaKiokrf1/POO++UizoictpJZye+5+5MRTtdTVX93P6d46ss8vPzT9szR+Tk/0Z3evKUR1nfq71799JfBwCqGRZ2AMDBoqKiZNasWaX//+qrr1aNg0/Xf+dE27dvl/3795/2dU8cdX3ir0hYKuP1T2fkyJGlH4aKi4tPag7auHFjadmypYgcmxBz4rSdv6ss348zzd/fX26//fbS/+/OdJumTZtKaGioiBx7omrFihWnrM/Ozi791ScRkR49evzNvT21Hj16SJ8+fUr//6k+MI8fP7504WbGjBlSVFRU+it/np6ecumll1bKPjpFWX5Ok5OTZcOGDaes6datW+mfFy5ceNrXX7Ro0Sm/fuIktj///FMKCwtPu83yKsvxVRYLFiw45dfz8vJO+vmxfo2sIp24/ZUrV562j5g77ycAoGqxsAMADrV9+3Z58MEHpaCgQESONau98cYbVd2JzTBP1RS1uLhYXn/9dbde+8RfqzhdY9zKeP2y+t/motdcc03pn1999VVzUowrVvPRE3+V4e80Cq5qV111lTRp0kREjj1RNW/evNP+neO/qiIiMmnSpFN+sP7www9LPxx26tSpyvr4nKqJbLNmzUp/1Wrz5s3y5ZdflvZTGTRokDRq1KhK9rG6cvfnVOTYYuDpnti46KKLSv/866+/nnJRZM6cORIbG3vK7R2fVCVyrBn7J598csr6E7lqFl1Wp2tS7K6vvvrqlOeJzz//vPRX3Tp06HDKUecVoVWrVtKxY0cRObYo+8UXX7iszcrKkq+++qpS9wcAUHYs7ACAwxw6dEjeeustufbaa0s/mPr6+so777xj/kt7z549S/88a9Ys+euvv1RNZmamPProo7Jq1Sq3fh3lxF8NWL169SlrK/L14+Pj5YYbbpA5c+a4XIwpKSmRb775Rvbs2SMixxa8Tvw1DpFjTXI7dOggIsd+9eumm2465a935OXlydy5c+Wmm24yP/Se+P1Yt26dW7+qdPDgQYmMjCz9X1knhpWHt7e33HPPPaX//+effz7t37nuuutKj6/o6Gh5/PHHJTs7+6SakpIS+fLLL2XKlCml2YmvUxbjx4+X6dOnn/ID8Ny5c0ufuPLy8jrpKRHLZZddVvrnd95556TXOtt17dq19Mmz1atXn/Qrnsfl5+fLv//9b5k5c+ZpzxPt27eXoUOHisixRsT33XffSSPQj1u5cqU899xzbp13Hn300dJ9fP/99+U///nPKXv9HDp0SCZPnix33nmn+lpFHV9PPfVU6c+wOyPYPTw8JDU1Ve655x5zqtSMGTPko48+Kv3/1r5Xhttuu630zx999JHMmDFD1aSmpsp9990nycnJZ/WvLQJAdUTzZACoZubMmSNbtmwp/f8FBQWSlZUlKSkpEh0dLXv27DnpX6DDw8PlpZdecvm4fps2beScc86RRYsWSVFRkdx7773Sr18/6dSpU2kD2UWLFklmZqa0adNGWrZsWTo63JWhQ4fKb7/9JiIiEydOlLVr10rz5s1LP3T5+/uXTpuqyNcvKSmRDRs2yIYNG8TPz08iIyOlbdu2EhwcLMXFxZKcnCzLli07aZHk3nvvVb+e5u3tLe+8847cdNNNEh8fL9u2bZMJEyZI165dpWvXrtKgQQMpKCiQ9PR02bVrl0RHR5/y1xMiIiIkIiJC9u7dKzExMXLjjTfK4MGDT3qSp3///mqB6Uy6+OKLZcqUKbJjxw63fn2sYcOG8vzzz8vDDz8sRUVF8scff8iaNWtk+PDh0qRJE8nMzJSlS5ee1CPpuuuuK/1wX1a7du2SiRMnyksvvSRdunSR9u3bS4MGDaRWrVqSkpIia9asOem1brjhBgkODj7lNkeMGCH169eXtLS00ieOGjRoIMOGDftb+1iTHG9G/u2334qIyEsvvSS//PKLdO/eXYKCgiQ+Pl7++usvSU5OloYNG8o555wjP/744ym3+cwzz8iVV14pqampEhcXJ+PHj5dhw4ZJ27ZtpbCwUDZu3Fi6MHzTTTfJ559/LiLictGgR48e8uyzz8rzzz8vRUVF8uWXX8pPP/0k/fr1k1atWkndunUlOztbEhISZOvWraXHR5s2bdS2KuP4ckdYWJh06tRJ5s2bJ2PGjJFzzz1XIiIiJCcnR1auXHnSuf/iiy+W8847r9yv6Y4LLrhARo8eLb///rsUFRXJs88+K9OmTZP+/ftLnTp1ZN++fbJgwQLJysqSkSNHSlRUlMTHx1fJvgEATo+FHQCoZr7//nu36kJCQmTs2LFy6623St26dU9Z+9JLL8mdd95Z+qFh1apVpZOjjuvYsaO88cYb8sEHH5z2tUeOHCk//PCDrFu3TrKzs9W/7oeHh580RryiXt/T01Nq1aolxcXFkpeXJ2vWrJE1a9aYtb6+vnL//ffLFVdcYX49LCxMpk2bJhMnTpT58+eLyLFf0Tmx2fP/Cg0Nddn8+dFHH5UHHnig9APrxo0bT/r6iy++WK0Wdjw8POTBBx+Uu+66y+2/M2LECHnnnXfk6aeflrS0NElNTZXp06erOi8vL7n99tvl7rvv/tv75+XlJYWFhS6/n8d5enrKDTfcIA888MBpt+nt7S2XXHLJSU8UXXLJJSf1SDqbPfzww7J//35ZsmSJiBzr4RUVFXVSTdOmTeWNN95wq89K48aNZfLkyXLffffJwYMHJT8/X/7880/5888/S2u8vLzk0UcflZYtW5Yu7Pj5+bnc5rhx4yQ8PFyee+45OXjwoBw5ckTmz59f+jNssRZ2KuP4ctcLL7wgR44ckZUrV5b2efpfY8aMkRdeeKHCXtMdL7/8sohIaXPxLVu2nLTQJHLs1xYnTpxY2oz8VO8VAKDqcCcDANVc7dq1xd/fXwICAiQiIkI6duwo3bp1k379+omnp6db26hXr5589dVX8uOPP8rvv/8uMTExkpeXV/prSiNHjpRLL71UPdniipeXl3zyySfy/fffy/z58yU2NlYyMzNd9l2pqNdv3LixLFiwQJYtWybr16+XHTt2SHx8vGRmZoqHh4cEBARIy5YtpV+/fjJu3Dhp3LjxKbcXFBQkb731luzYsUNmz54t69atk4MHD0pmZqZ4eXlJvXr1JCIiQrp06SKDBg2S3r17uxxTPHToUJk6dap8++23snHjRjl8+LDk5eVVWH+PyjB48GDp16+fWmQ7leNPa02fPl3++usv2b17t2RkZEidOnUkPDxcBgwYIJdddtlJk7T+jsWLF8vy5ctl7dq1sm3bNjl48KBkZGRISUmJ+Pv7S/PmzaV3795y6aWXlmnBbMKECSct7IwbN65c+1mT+Pj4yHvvvSezZ8+WmTNnyrZt2yQ7O1uCgoKkefPmMmLECBk/frz4+/u73UC3bdu2MmPGDJk6darMnTtX9u7dKwUFBRIaGip9+vSRq6++Wtq3b39Sn6fTjUbv16+fzJ49W+bOnSuLFy+WqKgoSU1NlZycHKldu7aEhoZK69atpVevXjJ06FBp1qyZ2kZlHV/uCAgIkI8++khmzZols2fPltjYWElPT5f69etL165d5bLLLpNBgwZV6Gu6w9vbW1577TUZM2aMTJ8+XTZv3izp6ekSFBQkbdq0kTFjxshFF10ktWrVKv0VuNO9VwCAquERFRVVfe84AQAAKtC6devkpptuEpFj/Z9OXOTBmfPxxx/Lu+++KyLHfoXL1ZN2ThUZGSkix55m/OOPP87w3pRPQkJC6a+Ide3aVb755pszvEcAAJonAwCAs8aJjaJpmlx9LF68uPTPnTt3PoN7gtM58b3q1KnTGdwTAMBxLOwAAICzQnp6eunTEoGBgTJy5MgzvEcQObZQsGnTJhE51vvq+OhtVD/Z2dny6aeflv7/c8899wzuDQDgOBZ2AADAWWHSpEml080mTJhA49cq8Nprr52yIfn8+fPlscceK/3/V199tcs+Vqhcv/76q8yYMUPy8/PNr8fHx8tdd91VOnWwTZs20r9//6rcRQCACzRPBgAANdLxqU65ubmyZs0aWbZsmYgca157vM8OKteSJUvkq6++koiICOnRo4eEh4eLl5eXJCUlqZHiXbt2leuvv/4M7u3Z7dChQ/L222/La6+9Jr1795Y2bdqUjpDfvn27rFy5srRBvq+vr7z00ksuR9MDAKoWCzsAAKBGWrJkiXzwwQcnZR4eHvLMM89IcHDwaf/+4cOHZc6cOeXah8GDB5vjts82e/fulb1797r8+tChQ+XVV19l9Hw1cOTIEVm0aJEsWrTI/HpISIi8/vrr9EICgGqEqycAAKjxGjZsKO3bt5c777xTevTo4dbf2b9/v/z3v/8t1+seHxV9tnr77bdlwYIFsmHDBomPj5fU1FTJzMyU2rVrS0hIiPTo0UMuuugi6dOnz5ne1bPelVdeKY0aNZKVK1dKbGyspKamSlpamogcO47bt28vgwcPlrFjx/JrjABQzTDuHAAAwLBmzRq55ZZbyrWNF198UcaOHVsxOwQAAGBgYQcAAAAAAMChGDsAAAAAAADgUCzsAAAAAAAAOBQLOwAAAAAAAA7Fwg4AAAAAAIBDsbADAAAAAADgUCzsAAAAAAAAOBQLOwAAAAAAAA7Fwg4AAAAAAIBDsbADAAAAAADgUCzsAAAAAAAAOBQLOwAAAAAAAA7Fwg4AAAAAAIBDsbADAAAAAADgUCzsAAAAAAAAOBQLOwAAAAAAAA7Fwg4AAAAAAIBDsbADAAAAAADgUCzsAAAAAAAAOBQLOwAAAAAAAA7Fwg4AAAAAAIBDsbADAAAAAADgUCzsAAAAAAAAOBQLOwAAAAAAAA7Fwg4AAAAAAIBDsbADAAAAAADgUCzsAAAAAAAAOBQLOwAAAAAAAA7Fwg4AAAAAAIBDsbADAAAAAADgUCzsAAAAAAAAOBQLOwAAAAAAAA7Fwg4AAAAAAIBDsbADAAAAAADgUCzsAAAAAAAAOBQLOwAAAAAAAA7Fwg4AAAAAAIBDsbADAAAAAADgUCzsAAAAAAAAOBQLOwAAAAAAAA7Fwg4AAAAAAIBDeZ3pHQAAAAAAAHAlMjLS7dqoqKhK3JPqiSd2AAAAAAAAHIqFHQAAAAAAAIdiYQcAAAAAAMChWNgBAAAAAABwKBZ2AAAAAAAAHIqpWAAAAAAA4IxzNf3q/lv7q+ydT1dW9u44Bk/sAAAAAAAAOBQLOwAAAAAAAA7Fwg4AAAAAAIBDsbADAAAAAADgUDRPBgCgmnok6x8qS1jpY9Ye8Nf5wgGvV/g+AQBwIlfNbt0VFRVVQXsCp7GOne9eHGPWhoRsU9k7n1b4LjkWT+wAAAAAAAA4FAs7AAAAAAAADsXCDgAAAAAAgEOxsAMAAAAAAOBQLOwAAAAAAAA4FFOxACl/N/+KYE0EcLVfTA8Aqr8bVr1p5qnNU1SWnpJk1tYJz1XZkb6FZm2tTH+V3Rp1oVmbFdJGZU331TVr3+j7ipmj6i0+P1tlK5KLzFp/Hz+VZXRZZtZecPgyldXZN9es3dS+kcqu/rGJWQvAucpyb3zxC+eorP68OLM2vrBXuV6Le2BncvUevzu6gcpq5ej7JBGRegnjjPQ/5dmtGoUndgAAAAAAAByKhR0AAAAAAACHYmEHAAAAAADAoVjYAQAAAAAAcKga1Tz5ieveU9nv+wabtR06HFBZSt1is/bwji4qazx4u1mbdshDZZ71Rpu1q14qMXNUnurQJNmV6rxvsA19dKPKAg4EmLW1i7JU1sa/sVn7m1+O/vuxe83anAbBOmxYz6yNeruFmaP8hmXerrImdSPMWv80/Z4lpOv3XETEo5m3/vvrj5q1oR66trBXiFmbv1ZfqzxaZZq1V8e/r7Kp4XebtagYP9xSYObx6UdUNsrH/je6P0KbqSz0gG6aLSKyq068ykZ+2dyszXtwh8o23p5u1nb/pLOZA6g+XN1/3vzAtSpbv9O+/ngmhapsey3d7F1ExLu/btQ/yv9WszaueKvKGCxS/Vnv0XPd7NqCVvq+uffGjWZtyiX253p396GmHyM8sQMAAAAAAOBQLOwAAAAAAAA4FAs7AAAAAAAADsXCDgAAAAAAgEOxsAMAAAAAAOBQHlFRUY4bzRR51Rwzb53UUWVJzQeYtZn+a1QWHNLSrG112F9l6TlhZm1uq/0qa+K5y6zdtlhP1lr+xzCzFmXHlKljanoH+KoQ+cgmM2+Y0UJl7XoZU6pEJH/NepUlp9rTq/Y20hOLura5yKw9uHaJylKG1TZr+/6yTGWfzhlh1sI2IudSM2+ypI/KNgz9wawNie6qsva19UQrEZE4Tz1Za0DYZrN2np+eeNRzR6FZuyZCT2Tzis0zawOa6G0ULNFTlERE/rj8EzOHaz+P01lGo4Vm7WDjdmJVop4wIyIS0kjfp6T66Mk1IiID+qWqbNt6P3u7bfR5a+OqbWbtLUuZilUdDBs0T2VZfQeatZ3D9XS8vdH21L5WdfUBuS/dvvfy9dP3vL0PF5m1L/52vpmj/Kx742uuvMWsPZhaX2Wd8/eYtdvy9OTP9Db2Z5o+CYv132/qY9bWHuirMp8f7aHOs+dOUxn3wJXL1WetRfMnqCzloJ7UKCLSYF+MygoOzjZr67fuq7LMLvpzuojI/sRAld14w89mbU05TnhiBwAAAAAAwKFY2AEAAAAAAHAoFnYAAAAAAAAcioUdAAAAAAAAh6r2zZMjr9upw4DxZu1FjXXtr7sSzdp67XRDv1bFB83aDfl/qqzj4ivM2m0X6AapLYsyzNoOgbpZ82uPBJm1cI0mycfUlMZfZ9odF+gGj7EDzzFrE/OX6rBoqFk7YXWcypYO0ZmISEisznfWtpu7+/jqpvFHSjqYtZL6poqiptGk0pWRvwxW2eAOvc3atQEJKktfp5sZi4h0v0pnUb/q5oEiIs3b6ff9cNgRszZpu25E6pHbxKzt5p2sssI2uWZtnR264W6TBrrBqohIVmYrlb3a+T6zFsfMuDxFZYUN7Mbq+9YHqKxDiD2goZZfvsq8vdLN2saZunn3aj+78bFXrd9VVrKzl1nbPLhYZb1T15q1f0lPlV0cZTfbhG3Cc3aj/6D9PVS2P9lu2N49QjfkT/cYYtYWDtbnkU2fJpm1Rzs21WHDNLO2c65u1vzdy/Y1EDZX98aXd7tSZW1a6/sIEZHFrXVD/b679bVORGR3Q/1zHbTAvv4kNdBZ2112g+6IoQ31a9Wyj93otFiVLVpgn2+4Zy4765haNP96szZ+UyOVDeytrwciIocLdUPufjsuNGvXrfhFZyG6SbKIyLB8fT7cWfccs/aSV99TmROPEZ7YAQAAAAAAcCgWdgAAAAAAAByKhR0AAAAAAACHYmEHAAAAAADAoVjYAQAAAAAAcCivitrQ4Idbqyw85muzNqNATxXJ6xhv1tZrekBlQR2+MWu3vqUnd3TpZnfnL169WmWJjXTndRER7+ZhKtvWVXeKFxGROf4q2lNvplm65+ANKnvtEed14D7TXHUtr67Tspa9fpuZD3pkchXvibNd+HgXle1P/sGsDfBvrLKsRPtn2MtjusqKw+w18Ii4bJUdPfCrWTs9O1VlHQ7UNWuju/RRWegGe4BhYLY+d8YMXmHWytJ/GiHnHFfi6+hpD3nh9kSQ/qk+Kjs4It2sXT9P54G1m5u1wdl60lVItD0dJip3ow7b6mkTIiK7U1qorMXsQ2ZtYXNflU07qqePiIic42VPuYFrCZ56Ukiej37fRUQiw/Q9TbiPfS7bVRykskP77XNOfla6ygL9l5m1hREDVZYbsNGs9aut7/e+adbVrB2yX5/Lnh2lpzmJiLwwR09jOtsMf1X/rKXl21PEmu7Q73th21Vm7e9FhSrrGmLfHwfpAWnSv5G9D43i9XVpXpfLzdqiPz4zUqZiuWLd7/6jjZ4yJyJysImeVPXLuevM2q33zlKZfVZwxcX9hT3IzzZDR9fdfKNZ2rV2uMpaPXOpWWt9z5w4BelMy5rrYebBo/V1zSO7vlnbLkVPr4r1+M2sTf+nPpeVbLH3IcZT/wy02xJn1tYUPLEDAAAAAADgUCzsAAAAAAAAOBQLOwAAAAAAAA7Fwg4AAAAAAIBDVVjz5KX/1Y0UI29ysW5Ua5GKWqXZTY53r3lFZfem9TJrg2/Tzb/2LGhv1tZprZsN7my616w9dOhTlWXn7jZri5pkqOz24D/N2n8eNGOUUUU0Sf79mX+rbPSLj5u1k/9zl8rCW6WYtRdO+F5lS37VTXRFRF56SzcDfvrBaLPW4ur7UFObwf32b/29ibw2wqz1DdDf804tC8zaVVHfqazkkiFm7eKcrSpr1cRuDrdvkW502S2ktlnr/4luDOrRqa9Zm71PN51bOXi7Wdt/qhmf9e7b9aSZN++gz93b4vSgABGRgiBvHe60f9bDCvurLCPBbjr84sW6+WxojH3pPpLZUWX+B/Q1SUSka/wWlaW3rWfW1mt6WIcp+rVERFL89DF92RarabfIj53fMPOzzXtbzlXZL2OeMGuPPqibRO7Pta8/sjlGRUEl7czSfg2Wq+zAgXFmbdMek1RWslI3yhQROfeDB1Tm+pqkm+O+IM5vkjz8mrYqSx1un4w7vqN/rmo1sZuIZkRmqmxk4GVm7e+jdKP/sFX29bJJqw0q2/PbUrO2YEQdlfVLDTBrZ2bpRtj5MXPN2rTttxppzbyXqSwJN9mNqX126cE2W+/V1wMRkY0b9DCJwILxZm1L4zpRkm53Sd5fq4PKvDPtD0UNO+pzi0+A/Tnw3rFjVLb5t6NmLSpGSIgeMCQiErxID2P4MnW9WTuq7yUqK0rdZ9ZG74tT2X2p9n337G26IX+6fQtXY/DEDgAAAAAAgEOxsAMAAAAAAOBQLOwAAAAAAAA4FAs7AAAAAAAADsXCDgAAAAAAgENV2FQsS6cOepqHiEjqz7NU9svKa8zayEg9Fevofj3pQURkd2N/lXXMbWXWJvmsVFn4TntCTaPNr6msdTO70/vCtnqigc/8cLNWZL+LHGVRlqlPriZHWROwVizSXdpFRKb+oddDD2W7/6PU83x7+lq+x0CVTf+P3W1+wv/pSRJl+T5kefuZeUCBnhbnJD2D9FQVEZFDiXNUNvkbe7JD5Eyd/ZQdatcW6w7/O7N8zdom5/VUWcJaPdFKRGTHFTkqyxv0k1nb4GiuyrLq6mPpmI9d5Ge3Wj/q77eISOadbVTmGWlPD/HwHKGyHgvtc//0ofoY2V54nlnbLslHZcVZO8za9M2eKkvtbl/XfvDR57fsRD0NR0Tk6cKFKmt2xN5uVAN9DvHNsmvhWocj9rmh/aX2hCT3zTfTd8Y/qLL7f5pYzteCiMjCb/X9YuQD9sRW33762p4RZU/XW/+fO/V2XdzjvBDZWWUtwu3zyLzag1XmddOb9j6s1PnW/EFmbZtUPa3xrjX3mLX3minK4qjHl2b+65Rtbm+je48JFbU7VWKS8fnyzitGm7Vr9SBl/A3FoqdfiYgU1wlRmX9n+5wTW6gnYBWk6El+IiJXLaurspXt9LRIEZEGzRqqrPERnR3zq4vcWXhiBwAAAAAAwKFY2AEAAAAAAHAoFnYAAAAAAAAcioUdAAAAAAAAh6rU5skN0rLMfNrKseXa7n/2Z9hfMHsR/27XHijLKxrNnuz+TyI7dGNNF3uAamTOazeprCAhyKy9tFtrlSXtsxsXL3tWNwU/5GE3VPUN2aqy3QERZm15+Xun2F8o0E3JnGRrnt1YfY2LRsnuumSL3bzySKBu1pyxwm6OvTdhtsrCIv9r1kYN+U5l1/j0MWt/fORhlW3LsZvgwpZ6oX1NKSnuprIWu1qYtXmpTVU299qPzNrc6Q+qrI5vplm7MyLW2LFLzdqi3rqZd/89cWbtkW719Gsd1c2XRUTC9ulmz8vq6GbgIiLiqxtRd9l3xK7tYscQaT/J/SbJPy2x77W2Burz/NPdWpi19//0ltuv93ZGssoOHths1r7W+Vy3t3tWOWo32ffar38ofl41ttwvF3akmco+7Wn/XN50YJnKspPrm7Wdg+5WWUqeHiIiIrK7vT7HzW1vn3PkVTs+27lqjn31LefocHWwi63o5skl6b+YlR5B9rWmvErW63NTcUG+Wbug4F8qS9xgfx+uvU83FM9MbWHW3nbFP1Xm6vtbluEkZ5v0wqFmXrhTD/b4a9d0s7af92cqaxpoXztiIotV1qCB/ZzKzrQ/VfanXGjW1hQ8sQMAAAAAAOBQLOwAAAAAAAA4FAs7AAAAAAAADsXCDgAAAAAAgEOxsAMAAAAAAOBQlToV6/1Xg9yuddWJ3HLzFQPM3OOgnkj12TJ70ohlWMuRZt648UqVDamnJyOJiNw7R08lwZlhHVNf/fMOszarnu7Gv23DLrP2wIopKhv54O1mbXyizrzCvzdrE+YGqSxguz2Nqbw80/TkGhGRYl9nT8Va82mA27Wuzjmxe79WWf40YzKRiHj29FFZn/s/MWs3fzFRZXGN9SQAEZExeXqCySFPPYlGROTyRXq6xJ4XLzZrn13NtCzLV90+N/MbsvUEh8zEdWbtrsv0BKwZU/SxJCISmnBYZb8nPWLWtvh4uMraDtJ/X0QkvLM+/qOO2FP4/pj6H5UVprU3a/Ov76+yXp562oSISNaRxir74sL3zNqzjatzztvPP6iydsEbzdrR9y1S2YxBO+3amFB3d03mPPKayka9/qhZezhRT9XxbNvB7deCSORBDzP/9I827m/DOJ5uamdPmZrXTmdtl9gTHN/M09nFDezJa0lBeuLkTj97uxEH9HHjZ59OUUYH6+vJjos/W2TW5mxK0GFGmUYFl9tO4/jPz4sza8+/fJLKCj59xqy91simzvvArr2hlcv9O9u5ulbN+PU+lTVb9qFZGzNW34/8PCbOrP3g3n+rbF8be4mi2bJNKsuva59zLn1NH+vTPlts1tYUPLEDAAAAAADgUCzsAAAAAAAAOBQLOwAAAAAAAA7Fwg4AAAAAAIBDVWrz5IpwT3edHfWwm3w18bSa9612+7WajI+y8ym6QaoEb3V7u6g+anWpbeZxhZtV9n//1k2zRUR+nnipyjK2bjdr6x4MU1lWm95m7W3v/KSyqPduNWvlT3vf3JWVH2TmdX3Ltdka4evluhnxhf5JZm27Iv0N2/7cq2ZteKCfynxy7X34MS1NZU2adDNrU978WWV5xUbXbhER0Y2/4Zqv3yqVeWQXuP33WwbvM/O0c3Wz9pt0v2wREdm0ra3KViywG6/2TmmhsjjPeLP2/97UzQZ/+GCgWbt8hG5eKW/1MWsb3WucRHTPVJygdVKQyjIO93RRvUglX9XqZVZ+VYZ98GtoNFR14ZW2Q8qwZVi+neldKdvteZ693cbx+l74it32Nq4Z5a+yDecVmrUtv9f3LecV2837n1mrs9ftOSQoo1YxwSpz1SK2uK1utCy+9nCGgi16cIR3Z/fftLTd9r3I6n36ojCktvFZS0QKM/aozDPZPh5FXnR73xIPXmSk77r9989GRw/EqcyrQT+z1jfjR5V9Me88s3brzAUqS2uj75lFRMISmqps11D7Bmpm8/tV1i9EH0/H2ENSnIYndgAAAAAAAByKhR0AAAAAAACHYmEHAAAAAADAoVjYAQAAAAAAcCgWdgAAAAAAABzKIyoqqqSqXzQyMlJlJbPtSUEeF+s2+i8Psrv+J0braSW1mrQza1Pa1FXZbm97KkTbfXqqiI+HNYFLpDiznsoCu+nJKiIi/52ms6goezIXys46zlyZ+/FwlS0tsLusjwzWndp3behs1sbU0Z3eO9bVHd1FRIpbN1dZRox97NzzqDFBqwzHjmee/WNf5GdP26mJynJ8rHvjOjMvajdOZe3zPc3aTf4HVRZUO9Xe7so2KivpY083ysjR71l+rj7uRERGXTZbZZxzXLtt9kSVNYpob9bOvOZfbm+3YNG/Vea1Ld2s3TZIX9eObig2a+t462OhuJE9WaL5vkMqSwtpYtY2ufglM7fUm99XZUtDP3X779cU5n3OYn3fISLiMTRbZU+/8rJZ27Ghft96xdiT2g6k69oDXfT0HBGRyPV6EtL25uvM2qON9USa/U31+y4i8uyY91TGOadsXF2rotf3UFmXnhvM2kdHhKpsdzv7PiA3Sk89ChtqT4LNjgvQ2TZ9rRMRCUrT/x1BuYfN2ncS9CTKs+24sd73K5692qz9/oWp5Xqt5PQlZh48r4HKEtrY41NTQ/VnM8+j9rWqfa36Ktuf/7NZe7juDSoL2aon2YqItDzPnh7qrmGRl5j5X1EzVVaTj8ey3B+veHW8mbevp4+dOen2Z+dmHfRUttDN9jjN/Y3SVZZYZN93twvU/x37vOzPOeOvelNlTnyPeWIHAAAAAADAoVjYAQAAAAAAcCgWdgAAAAAAAByKhR0AAAAAAACH8joTL2o1I/IoQ6OmwiS7eeX+NtEq8/baY9YGJOrmSYl1dRM4EZGla6x0u1k76z7dLGrvsqFmrchiFzkqgnWcuWoIFnC4kcra17ebJwft1w2yI/wXmrUdOtVW2dHiHLM2do9uHpZS2M+sFdHNk8siuLndxDMp0d63mshVUzTrGFlZK8asvaGFbu6WJrvM2iFpjVWWmawbloqI1HvUbpBo2bv3SpU1j49w++/DtckXT1TZfdmPm7UX/dlVZb9eYDd49JqrG5GuvMPehzZ/6gana5v0MWs71NINNNOSR5m1B3voJobJKfZgAkvTH+zt/h76H7e3UZOV9z6nf549zMHPT9+nrK2z26w9NDBDh9vDzNpen09ye98mPXGNyi7N0ddQEZFn3d4qXHF1repSlvvm+vpnO2Kv3bw/bc9OlR1plWvW9hQflfnntTRrc+qlqGzV5UVmrXAaMR3IO1op2/XaYl9TPNrpc4hHrn7PRUT86qxWWURMkL3doS3c3refc4xm3n3thvHlFRSsG8Ofjcpyf+xXbJ+HZq3S5xfvK5abtSti9VCZrhF6iIiIyKgbXzdzy8oPw1XWraXOahKe2AEAAAAAAHAoFnYAAAAAAAAcioUdAAAAAAAAh2JhBwAAAAAAwKFY2AEAAAAAAHCoMzIVy1KWDtyZ9fX0KxGRPnk6m+/dzqzNCExXWV+/g2Ztj+56stEF/eqbtYsO6Q7/jcNdfJvX2zGqXr19fio7GmiOQ5Ojfr4qCyuypxC1v0xPGvn25ovM2rAhOmt0OMSsLa+zafpVRfDKtCddvfbtFpXdel13s3Z/zjkq25S7zKyN/+kelS3Pbm7Wxsbo9fmVy/8ya1F+79b9t5nfe2S829vY3u9clW1c9L1Z27+Hnqo4ykdPyhIR8ei6QmVbPrnErC1O36uyrHh7EpOlVYS+LuLUynKf063Ins7yebb+2b4kuJNZm1ykzxmtjtjn/h+eGKOygsN6yqeIyHBjmN8fSXqqIypXWSZ/7tnjqbKQHj3M2hYL9eSahYX2BMdHv9Xv+1N321Nn9u7Wx3TIBr1fcO3KI/YkM3vWkPtSjftaEZEYTz1ZeNqG68za8xfriX2TDwabta8Y98FtGtjTR1M/vF9ls9ZUzvkmX+zPdnAtuXmomXcMmqmy/Zn2+WlkkM52/Wi/x/s/v0pla4obmrX7kvREtZyIJWZtTcETOwAAAAAAAA7Fwg4AAAAAAIBDsbADAAAAAADgUCzsAAAAAAAAOFS1aZ5cFod32Y0CezdJU1m9nulmbZt1uklkXEQjszbQN0llO+PjzVqfUN2MLjFit1krs+0YVW9T/yMq86wdZNbGrumusrzm28zaX265Q2X1etqNT8+55RPXO+gGV00Ty8JVc8+zXai3PreIiDTfv0pleTEXmLU5GdNV1qFjvv2CObr5ZF2PfWZpzw2HVbZuT3lbKaKsJjX6SWWRYv9MBhRtVdnYkIFm7aYduuFoYS3990VEtu16XmXpi+1jt2VD3VQ51GjM68p7tV9wuxZlt2KvbkQqIhJau6vKopMXm7W9085X2camdoNSSeqlopKm6Wbpp3XaquzaVrH2dlEthJ/bTWUb/5xl1nqf00dldy+IM2ubdtJN1PM3HTVrC/t0UdkFWzLN2vdF33dDZF94BxdfWViu7WZMbGLmOyM7q6xblIdZG9NDn1tGuLgGHmqlr2v1G9oDbLKP6s9VxRcWmLUy1Y7dlRCYUb4NnIW8k3eYeVaJvqb4HLGPnS926M/UoYPtgSFB0fpnIKrPdrO2edFmlS1cZzcgryl4YgcAAAAAAMChWNgBAAAAAABwKBZ2AAAAAAAAHIqFHQAAAAAAAIdiYQcAAAAAAMChHDkVa8B1dgfutfENVNZnwSGz9kBTnU37RE/KKqtvhutpNjERvi6q48r9eqgYB9P1tAa/RD1tSESky27dzT/grS/M2kzRE2l6ftbQrN0YNU+H3iFm7eZa6SprkW3/OPs2zFNZ2D1Xm7XNjclaTMoS8Yv8r5nnrP9cZfP+fNusHd7/GZW17T2hfDsmInv+mKiy0MxcF9W/lfv1UH5Joqc9pIfr6TIiIl0X66kx706xp54lFOnJaV6N7elK9/+7SNc2cTVxBVUtpOsG+wv1OqooMt+e6LmxYT2V3XvnHy5e0VWuPXX/lSqL2anvv1B9HNi0X2Xh3nZtuFd9lV1+eI1dbN4m2ROtbu+p92F54jn2dmFaXM++TpTX0q72BKKjTVJUFphun29Cj+r76PPemlG+HROR969ar7Kw7P7l3q6lXrJ9vYRreYfsKXjFWXqi2oFz7OvMXQP0Z4924/5Tvh0TkelTnlTZPY0izNoPZFG5X6864IkdAAAAAAAAh2JhBwAAAAAAwKFY2AEAAAAAAHAoFnYAAAAAAAAcypHNk9dmtDDzy7b3UdnSPovM2qw5PVQ2cIRuMisi0tazWGVhYUvM2u82/aqyCw+apTgDXDUCjjSaBv/y/HNmbcEA3Qx7weW9zFp/X91Q8t39L5m13SPPM/OqRKNkm3e23Ujbs4duhJ2f2sKs7ZSzQGUZPz9t1vq21s0nfX/RTQxFRGYfaqey2iXlb1iI8ivL+Wbvh5PN2qSBPiq7NVs3rxURaXpFY5Utz1xo1sZ56uvd+d1vN2s5L1S9tTn9zLyrd77KdoRlmbX1snWz2pgXRpu1+8PTVbYn/3qztm2XzSpbv10PCkDVK8s5Z9xAFxvxWKGiR4eHmaUlfrqRbgvfdLN2YVqcyj4x7plFOOeI2N8D630UERk2/J8q+2vhG26/VvDhXWbeLKaZymp10Y33RUQOyzKV/fLNYLM2eoOHylr46Ob/IiK7VurPdp6RP5q1ZTFh7FUqm/7zVLOW49G1Ld3txvkjd+xWmXecfTy0+z99L/zhX33N2uLYh1Q2Nsy+P14fs05lq+ran/VrCp7YAQAAAAAAcCgWdgAAAAAAAByKhR0AAAAAAACHYmEHAAAAAADAoVjYAQAAAAAAcChHTsUatNrPzNd3+UVl3ttyzdqQgdtUll+cYNbW8mihsoJib7O2c1BTld21Mdaspct69bamWaqZv3TL8yr7aOYos3bf/DYqC+3zk9v7wDFSPfSrq6dfiYgcOC9cZQFv7TVro0P0FIjdG+zaxGJ9zujSzt6Hgm/mqWzM3HSzluOp+soK2mjmXS6ZpLLiqf9n1i6Ni1FZcl09NU1EZNxFeuofx0f10apOPTNvlJ6jsr37+5u1Rc16qiy5aL5Zu2ulnooTMeZnszZ8YXOVDZnINBmn6Vi7rpk/NVNPWXutZQuz9miw/vfhlLZtzdofv45TGcdHxQiIsD+TuKtxYCcz9/LXE7CWrywxa/v4B6sso4l9j+O/MVRlW0PsaUVjLtyisv6PmKWmG2+xJzFN+ew7lXE8lt25W1eb+Za++jzSen9vs/bzWTeqrHu0/Xo+ddarbE28fS5r1FZPFb141OdmbU1573liBwAAAAAAwKFY2AEAAAAAAHAoFnYAAAAAAAAcioUdAAAAAAAAh3Jk8+RZvXWDSBGRiN91Q7/dzX3N2l9/0V2Zbgkcata2Plc3K5wf1dKsXbBxu8pqSkOms03Eiq1mPuO5J1Q27pJXyv16HCfVV6bRQFBEZJuXbpbe7ZzzzdrWd+jmcDNesJtM+h/uorJVq46YtQ/O3a0yjiXnyU0tMPMdBx5QWa2m/yn363GMVG9H/VeYeV7KBTocajevHHOjbrxdJpPtey0Lx5PzFEf1MvPbrtbNSR+d6uL93WNk6+xSjpHyc/U9jIyMVNnEXt3M2onrNqlsxJtLzNp/3a7vceoMtO+HDsU0UtlVt+jPRMfsd5FrL0+1B9tY+g6boLIpn003azkeK4ZfdoCZd8wdqbLYtBSz9ua7ynmtKoOa/r7zxA4AAAAAAIBDsbADAAAAAADgUCzsAAAAAAAAOBQLOwAAAAAAAA7Fwg4AAAAAAIBDOXIq1pjl+WYeP/6AynxW6o7uIiK/GtlnmYvtF/zZzR2Tmt9t+2wSGDbKzBO7bFTZlOl27Y0T5qiMY8R5vOK9zfyCkmKV7Uxwf7183LO7/vY+HcfxVDPUqd/GzH0S96ksb+LlZq3fxB9UxvHhTF75wWZeL+07la3N6ej2djkecFx2F/v641Wsr2tf965r1l63NltlHGPVwwd79aSsY/RUrJK0JLPSo35IGV7xUBlqtfNvvc/MG9TR09uabV5q1v7nr8kq43isXBmt7HuXI6u2qWxjC30/4wrv29/DEzsAAAAAAAAOxcIOAAAAAACAQ7GwAwAAAAAA4FAs7AAAAAAAADiUI5sn7zrS3Mwb7S9U2Zb0I25vl0ZNOJFXYLyZt0zUzQK9iu0m3agZjjazmwLWDgtUWc7QvW5vl3MOjiv0/MvMc6L09W7/hFb2RiZW4A7hjNq9JdXMQ2q1Vln9jS0re3dQAx2oW2Lm/um6UfKhAH2tOya2AvcIFSns3HAzT/heZ7uy7PuWHUlfq6xOXD2ztlmfMW7vW5eLzlHZ3E/fdfvvu8I9VdXzqm8/I+KT1V9l5zTLMmufr9A9OrvxxA4AAAAAAIBDsbADAAAAAADgUCzsAAAAAAAAOBQLOwAAAAAAAA7Fwg4AAAAAAIBDeURFRdlt8QEAAAAAAFCt8cQOAAAAAACAQ7GwAwAAAAAA4FAs7AAAAAAAADgUCzsAAAAAAAAOxcIOAAAAAACAQ7GwAwAAAAAA4FAs7AAAAAAAADgUCzsAAAAAAAAOxcIOAAAAAACAQ7GwAwAAAAAA4FAs7AAAAAAAADgUCzsAAAAAAAAOxcIOAAAAAACAQ7GwAwAAAAAA4FAs7AAAAAAAADiU15neASeIjIx0uzYqKqoS9wQAAODvcXU/w70LAKC64Fr19/DEDgAAAAAAgEOxsAMAAAAAAOBQLOwAAAAAAAA4FAs7AAAAAAAADsXCDgAAAAAAgEMxFesEZZl+BQAAUF1Z9zRX3DHI7VqmjwAAKpt1/Rl3d1u3a7lW/T88sQMAAAAAAOBQLOwAAAAAAAA4FAs7AAAAAAAADsXCDgAAAAAAgEOdtc2TaZQMAADOJgn5BWd6FwAAOKVDfgNcfGVXle6H0/DEDgAAAAAAgEOxsAMAAAAAAOBQLOwAAAAAAAA4FAs7AAAAAAAADsXCDgAAAAAAgEPV+KlYTL8CAAAQ8U9u6+Irq6t0PwAAcGX0ho1mvrJqd8NxeGIHAAAAAADAoVjYAQAAAAAAcCgWdgAAAAAAAByKhR0AAAAAAACHqlHNk6tDo2RrH6Kios7AnqAsqsOxY+HYcZ7qcCxx3FRv1eEYsXDcVH/lPXbaDNpif+HX8r0Wx07N0aVLFyNdaxcn91ZRyubdZumh0Bz9Wu2amrXROw+43D+cWUtH7jHzZYFdVdZn+xqztsB4rmCPZJm1G1p3VtkVeX5m7Yg5ZowzoLzXqo39j9pfWFi+16rp1yqe2AEAAAAAAHAoFnYAAAAAAAAcioUdAAAAAAAAh2JhBwAAAAAAwKFY2AEAAAAAAHAoR07FctX9etd3N6ksK2CwWduucL7K/C+d6vY+FE16xsz3NgpUWSsX+1vTO3NXR66OnbF9fVU2QELN2rUtM1XWLLW9WeuzZrXKssLs9dRarfTrudpfjp3qwXp/Ng0KN2sbZXdSWUy3eWZtU2MYwOrWwWbt0D+LVNaY46ZaqK7Tr1zhfFN9uHovrh1aV2WNgoeYtW/8bIyIma8nzByzUSUvXGFPnkn21Ncwjp3qwZ5oJRIdHa2yZi5qk1boLGSAi3NZhr5YNehVxyxtUE9fq6KjmX5Vnf1y60aV+dT1MWtbZ+hpWQ1Du5m1O7svUVmTXfZ57OLuh1X21/Rss/a9USkqu2dOO7MWFcPVuf/LO/6hskYX2MsOIy+bpLLCzT1cvOJ2lfx7wSCzsu5afd9d069VPLEDAAAAAADgUCzsAAAAAAAAOBQLOwAAAAAAAA7Fwg4AAAAAAIBDeURFRZWc6Z04FavJ0eLXp5u1AY2SVNYq/Byz1rv4F5XlH7L3of4Nj6ls43/eMmtb1tbNcmOCO5q1va7RDZhrSvOm6sA6dvr1smtvCm+ksuDitmbt4pxklTXvajcALNh+kcr27V9p1u7rUqgy/xYeZu2Pr+nX49ipPK6arX12dQuVhUXZjSPTG+aorE39OLPWt1ErlXkb5zcRkeh1xSoLSRpl1p6zSp87OW4qRnkbJb9xvm7yJyKyS3STyA/m7i3Xa4mI/LdzB5U9vEU3JXSF46biWMfOjYPtwQ9t6uWqLDwl0azd6Zeua7fZDXPrd/RWWdbRjWZtUad8lU2P6mnW/rVKd+Ll2Kk8zV00RI7P0O9Zh3p6aISISKyRtU508Z6F6mN3+5ICs7RwSILKwlz8+/Kh6FSVdejc2qzdvsXaY5TFhxfaHwUbddLXmsV/6HtgEZFbRL/vM1vawyRKkvarrHH+QLO2RUS8yupfeJ5Ze+CbZSq7dFEDsxZlZ12rPn/mSrO2XZMglfkE2j/DcQm/qqx+E7vxdspu/XmtMLm+WVvQYJXKArs3NGvHj/6vypx4reKJHQAAAAAAAIdiYQcAAAAAAMChWNgBAAAAAABwKBZ2AAAAAAAAHIqFHQAAAAAAAIfyOtM78HeEh+qu5yIiXuF9VHao6w9mbdHqCJWFeujpIyIi3/xxv8qy69pd+AsX6gk1Euxn1qLq1W/f2MwLDg9Q2ert0WZtQJg+Tnb/1sKs9fSaprIDAW3M2jZ7g1WWsFNPDkDlsrr+36+b8IuISFpKusoa6aE1IiISm5ipsog8uzv/wsLdKluz2Z661DF0h8patV9o1r4SpDNX05ycOA3AKf5vpJ7gsLrzVrM24kd9/Xiqrz5fiYi8vFpPIPq6kz0RZF5ImsoeH2pv99+L9XZRubz255l5nZ5ZKisYZE/M2zM3UGU+Q+z3ckPdZiprnlzbrE1Zoye49eyRYdb+pYeSoIy6uJh0JfH299wSaEzAShL7/qK16GMvKfSwWRuSoa8fHQbGmLX7RE+I9UkxS6VuoJ6mtH2LfU/W5ZC+QEeH6QlccK22i/NNvYJQlQ30qWvWrvPQk13b5utzkIhIZoGeyhjaZo1ZW7StSGW1frQn0aal6Ol+396206wtWKVv1rzadDZrr53hyI/LVSI09IiZZ6dfqLKS8G/M2h826XuPMTk+Zm1gM/2+HQ2w9+HQLp0XrLCvlzUFT+wAAAAAAAA4FAs7AAAAAAAADsXCDgAAAAAAgEOxsAMAAAAAAOBQjuwGtS+vm5nXr/e5znLONWtzQ/cYG7Ybs7XJ1d+mmHS70Zhfn5Eqi4hebNai6uV829TOOyeqrF7gPrM2z7tEZUFd7CaTR5JGqKxuU7txV86OdP1ajXST1WOSXeSoDMNb9TXzdnW3qWxu/QKzdnyTVJUtdHEG7p+qGxYeWW4fN32H6GMkdodulCki4unR2kjthoWoPPUX6Aa42wuam7VJzf1V1rGzfW6S1Tpa7KXPVyIi3YN0c9GEunajZVS94mC7MW7M0jiVReyzu7s3HqZPMA1ntDBrk7oEqKy17pEsIiJ1MnapLGVTPbsY5RYdbd+bNujSTmVhLhoiywHdHLt2U52JiEy7/3aVXf7wJ2Ztkp5DIg2NJskiIs1FN/rPqd3erA1uoK+jIbvtJtLxPdJ1aPd6hgv1g/Q1SUQkoKG+/pR01oM+RES6bNfvb0ZgiFl7qERvN+iwvu8REanVXDd8zyrU9+wiIrlh+rgJW2Uf57sa9lJZN6/PzNqPLtKf7e781cVUjbNMrE9LM6+T86bK+szQ33MRkav6bVHZ7kz72PFaV0dlBU30MAgRkZ5Nu6ssNHilWVtT8MQOAAAAAACAQ7GwAwAAAAAA4FAs7AAAAAAAADgUCzsAAAAAAAAOxcIOAAAAAACAQzlyKlaHwTFmvn7/P1W2Vmabtf0O6G7mDce0MmuztugO8E0idFduEZHi8FUqSzpkbxdVr9eQIjM/2lZPiEmK9jRr6xwoVtnBjCP26wUdVFnhSv33RURCG16ksnpNfzNrUXmioqJUFhkZadbGzf5QZV12bzVrc/vq6UQjD9ijO7zqn6Oyx561j8ekkkKVnXM0xaz1H/Wcyqz/XlSuJwv0eyYLXEy6six1v/TjzXoam4iIbLZC+9hF1ctpGm/mAdl6KuiBQWvN2phdQSrz6tDYrM0K0MdfsoupSUeb6PufFlk5Zi3Kr0EXexpU4d6fdRgx1qzNNgYOxb2mp1+JiFz5qJ6A9cGbD5q1//jvzSpb/a+PzNrCnt4qG3TeG2atxOtaaWXfO8VFH7C3Abc9la4nuIqITN10VGVjttrXqqOh+j7J28Xlp8hDf8Gzc1ezto63nm6cvSbXrL1ntD43ubrHGSnGdVhuMGuHmClEROqvzzbz6z/aaKRWJiJ6qLVLL8+5SmVPjfrO/Q3UcDyxAwAAAAAA4FAs7AAAAAAAADgUCzsAAAAAAAAOxcIOAAAAAACAQzmyeXIdFz0muxzdq7KE+6aatVkNdHPR1b5PmrX1iyNUluv5vVn74/O6efLA+hebtah6by7ZYH9hSXm3nGemX4tuyuxS3E6d2T0xUU0k56arrFthQ7P26K4ZKosN6W7WNmymG5zWWWmf+NYX6KbKTQ7VNmtRtR4Zrxvvi4i8/pNuHHl/W7s5dsyYAJX99ka6Wfvixfq4eWa23aC7//U6G7owxKx97UCSmaPytN4XZuae5+vhEcs32ttouS5dZYl1dDNUEZGuvkEqq5sZbdZuNE5FP9inPZTRPqtRcrT9PnTpNFZlm+w5DtI9wMP9nXhsstulI//1lsr6P/WB+68l77hdmb/LvgbWbq2/Z7mx9vcMZXPVvnUqy+3W36zdNu9XlbXt2t2srVWgs9x1+83akG765JLXzG4uj6p3/Ufudz5+6o/tZt6ypb4u3dbObqZdlkbJN8fNV1l4fj+z9uX2/m5vtzrjiR0AAAAAAACHYmEHAAAAAADAoVjYAQAAAAAAcCgWdgAAAAAAAByKhR0AAAAAAACHqjZTsSIjI818/TcfquxA0yyztuUC3SX91hV6+pWIyOb/662ykqP2BKMDnZerLHR/O7P2uR9/UtmC2avNWvnEjlE2ro4dyx29e5p5Vkc91WrqV1vd3u41Azqb+fCtW1QW1dGYeiEi76xkikN1YB1PsQsmmrVBuXq0w8tr7MkdRRffp7JH/O1zWca6HSrb6GtPNXm5OFFlnTOSzVqUn6vzzeyf/lDZ0mcecrEVPRXrscuLzMrNWXpaxG8utlqvvrVv9lSsa41TYbtm9nnstX8tcvGKKAtXx077Fvp+YlmnXLN29Po6Kpu/IN2s/Ud3nd3UwNus3bBfTwTZv8++Xn61f73K3oy0/53woQ3FZg5bc2MCVsfm9j2D9U+zZZl+9czBTWbeMdxXZdd4dDBrW/u5/3ovbTygsg61D5m1l7Xvo7JdbZqZtSXG96xLFz0hUEQkOto+H55NrPPQnoX6Z1pEpDBYnxfeXP2ZWRt3NFNlL3k0NWt9W9dXWXLzFmbtK5NfVVlKds2YYFRdubpWLZs4SmWtQvT7LiISdo/+7JzZsa5ZezTez+19m/N/b6ps1H/se61Bmfo4SdmjJ2jXJDyxAwAAAAAA4FAs7AAAAAAAADgUCzsAAAAAAAAOxcIOAAAAAACAQ1Wb5smu5JasUFnzPYVmbZ0DbVW266Nf7O3KdJW1bxZg1kbvaKOypMT9Zu2SV15RWZOdR8xakQ0uclSEVy8fprL02G1mbWhMNyN1v3ly6w67zTxpWw+V9c3QTb5RvcXv1+cWEZHswbo53BtTJ5u1Y4c2V9nRNvXM2oAC3Vy3uXecWbtu8I8qu/7xe83aL80UFWH6O7p534VLV5q1T0Xq5v1N/rXTxZZzVPKCzyCzcu9uXXvnpXaz3Pse0o2/RRa52AdUppH+usHj+vwws3bYUU+VTR5gX1O2pHdX2W/BdsP2hkd1E/aUGD1UQETktWsbqCx1j92sVkQPEIBrjbvo92eb0RxYRKRLF910+9v3xpq119zzs8r8Cu3GtvHi/iCHff99WGXNH/6vWdugW4bKFmzTzcBd6Wz3lxfx082lo118z2Bb1tC+x7nQT5+bnhprD4955bYrVVZy6z32C65aqCLv9uFm6ZNPPa6yu16Za28XlWpvvo/Kpv6orx2uvNvcboBeFgeaLXK79rau/cr9ek7DEzsAAAAAAAAOxcIOAAAAAACAQ7GwAwAAAAAA4FAs7AAAAAAAADgUCzsAAAAAAAAO5REVFVVS1S8aGRmpspL5t5m1HiP0hJn4he+atTkpevrCWheDGsKMCQ4hYYFmbespenjYged2mLVN67RXWckf9gQtv5v/o7KoqCizFseYx87O+matR7s0ld1RP8SszbuhhcrC5u8ya4MLOqssLjTUrPXrsU5lG6fbE0xaBvZX2YDu9hiI26fqaXEcOxXDOsZcWfnHrSrL7XjYrK23rYPKsva0NGt7tW+ksp+LN5m13cL0dhtnHjRrQ/o/pjKOm7Ipy/HR92p76szEZ79X2ZMv32HWji7WE/fS4uypJEcK9ESdkNr2+SZ0tD4XPh5sT3TzuPMClXHcnJp5rTp8sVnr0Xi2yj44x97u7uImKlvkbx9nvSRG78OqIWZtqxaLVJa8Lt+szW+sJ3NlH9aT3kREPjUmrXHsiDTooieLiYiEZepr/t5AD7M2QvS9j4dHXbP257daqGzsg3Gud/B/PP3UTWbeyni51F56+pWIyCMjZ7j9epaSAheTA9ODVBR9OKFcr1WTleUatndXrMpy99v33J6N0lXWMMv+ELa3nz6HpB3SE5dERMJT9M9ESbD++yIiHZronxXON6dmXqt2+Jq1Hu31NWHG83oiqIhIRIGeYJ3QOsKsLcjX982dAuLM2gNJeoLbjnh72mPetu0q63qV/Tlw+LVTVebEY4cndgAAAAAAAByKhR0AAAAAAACHYmEHAAAAAADAoVjYAQAAAAAAcCjdFbgKWM2IPMrQzOvzz94z85GXj1JZSHGmWRsSopsf7w2zm3F1+uprHX5l71vJz8+rLKpugV2MMjOPnXbuHzsfpyWZ+UPrdTO4wGbNzdrM9JUq63+woVl74xL3G/h1i8hR2ewS5zXucjrrGHPVbNAvJ1xlLRaca9auy0pRWfeAPLM2b8GfKus1zN+sPbBFb7eepJu1KD9XzfSsY2RYlG6CLSLyyWjdRHfNq7pxn4hIdvsglS2Mt5tMbg/WjS4b7Z5g1noG/aGyj2+xhxig7MxrVWP3r1UZYc3MfINXmMoil9pN9uP76YbGhX3sJuwfzUl3e9/e6l9bZV4tF9nFb7q92bNKSrQ+b4uIWGnnel3sjTTb5/br5R4MUtm8af8wazMO6PNLQuN6Zm2TJH3vFD3DHjzx8Zt6QMQYT7u5btj9P+sw1x5wIg11M9QuR+wGqdFHou1tnEXKco9TVFefh1p72Q35vdrogSVrFtvXqoxNwSrr3WS1WRvv31plsTuSzVqUnXmtau/+tao4xG4Ev3Wf/rzVacMhs7ZQ9DUsvZG+nxEROeepH93et4UzHlBZ45/t81NNwRM7AAAAAAAADsXCDgAAAAAAgEOxsAMAAAAAAOBQLOwAAAAAAAA4FAs7AAAAAAAADnVGpmJZyjJpxDvDniSTMn+Fyvp0H2zWBl7VT2WZU46atUmftVDZ4RI9FUJE5KhHuspi5n5m1qJilOXYceXNJTvdrv3XAH1M7Qk8YNaOm9BBZe13ppq1JT3Wq+wXewAcqonaR/WkkAZN9HlIRKTJrj4qq+u33awNevETlX3T/HGztkGT3Srb7Bth1qJq/Sd6nZn/+5YLVZbR256euC8jS2X17MuaPLhZTzCZ0UEfSyIiI+t5qOwpP3u6hYj703fgWlmuVYlHO5q1ly5doLILXrcnn6Wsm6+yA23t42xkZC+VeSXYk0JbddD3YAc97AmkInEucrgrycX0q4YS5PY2Sva1VFlKLX0OEBGp37yVytptX2rWRr6oJ9TMf8yetuX/u97ue70LzVrLpgA9gUtExDOaSVeVxeOvZSrbfpX90bEkS0+SDW2ZYdb2bdNUZdsWHDZr23XdqLKI4XXMWlSMslyrPFvZ06t8juqpwO/ssadiDe2gPyt1OmpPhvz0BT0lMOuQfR6Zt1lPcBtyTjuzVqb8ZucOwxM7AAAAAAAADsXCDgAAAAAAgEOxsAMAAAAAAOBQLOwAAAAAAAA4VLVpnlwWIT0am/mhTN3IdMoa3VhUROTygL4q822eZNZmeujGutlH2pq129J1QzDxG2TWivzuIkd19uQKu4mgaWMZNmz3KkM11nTEfpWt21Bi1haG6Oaie7zDzdqFiz5WWTMXTefya+lG7n5Z9nZRPSxonKKy9vvt60/jEv3vLw1idSNuEZF1hXtU1jChp1k7xT9OZbkjd5m18pEdo/Lc2H6rma/tf67KcvavNWsbJuqGlAd62tevFlFNVBbb0G5QmlxLH2f1dtuNT3+45zyVuRps4Kph59mkSxfdGDTaRXPgRHHVsFrr1NxPZcnevmZteLZu0L2yi91I+5UpT6ksK+WIWZvbTjc4bdbRHlpi8Yy2h1x08TS+Z0U0VK4IdTvn6myZPZzBs4Fuqh4X7G3WlqyMUdma9sFmrddqf5Ul+diNtFH1onzt4TFhxfqz+u0tE83a7NR8lS3b46K5+8V6oERuPftc+I9YfX55fZu+b69JeGIHAAAAAADAoVjYAQAAAAAAcCgWdgAAAAAAAByKhR0AAAAAAACHYmEHAAAAAADAoRw5FevcDk+Y+bexd6is8T7dpV1EpL6PnhrT9ML3yrdjIrJk5TcqC1mzvdzbRfX20BXNzDxqlp6+1q/3XLP25SXuT7hA9VAyK11l9bp2NGs7NM5QmUfk0+Xeh/WJz6isQbqeaoKqN2/WCjMf0UBPavgxdp9ZG9x1pMp2pm0ya/2K9RSjDp30tEgRkU5pepraubfraUciIlM+CjFzlI2raVALHtLv8fQke8rUED08RDZltjRrD4XpSWtP3O9q72a6+oJS+I1+vfnR9n9bvthTUGBzNQGrvPb17qGyWll/mLVbpIXKhtxtT17L916lsl0t65q1tfs3Uplvh3ZmbVkwAavybI7sprLeCfZnmoSEVipbMbSXWfv1bj0Bq18tPTVNRKT1nGkqS+nCVKzq4qLETmae0CRVZat36AlnIiLhos8ND0/+wH7Bye7v29AnXlbZ8D7xZu3b3610f8PVGE/sAAAAAAAAOBQLOwAAAAAAAA7Fwg4AAAAAAIBDsbADAAAAAADgUI5snuxTtNnMb+zwsMp8WzY1axPr+6psyoqBZu3FSbr53959umGciEjA2r0qC7z2IrNWJk2yczjOm9/vd/EVnc9bUrn7gooXFRVl5v5GM9TNv75p1qYMPaiyZV/+16wNyj2isoPd/MzaltOzVFb/ro/NWlf/HagcS76+xsynJQSo7IHrPjJrtx3QDZhDWjcwa7P26HxVmm7ULCKSFqcHC/w12d5fVC7PsAMq677f/nc3n5JYleX42s0gA7z18fDWRN0MVUSk1059fjrY1q59J15vt2Vrs1TSkkvsL6BSuDrHW427v7jvFbO2s7dujrtjvH0vHTKwu8rqbu1p1np3/lxlN/X5zKzlWlW1XB43Hk1UtnmpPZyhbTcflZ3/foxZe09Dbx0WLzZr94bp7UaGhJq1HDdVr26+3Sw95LD+rF5QYF9T0urkqmzKytvN2mHf6Pd+dkN9jIiI5Prr66V/YmOztqbgiR0AAAAAAACHYmEHAAAAAADAoVjYAQAAAAAAcCgWdgAAAAAAAByKhR0AAAAAAACHcuRUrPUh+8x8pEcrlS1aX8+s7eD5gcquzOtn1qZs1VMdSsa6GAGR6amiRgPs6Vd0b696d9kN2eWDTVW7H+XFsVN9+WzSE61ERBpe9K7Kfvj+abO2SftmKjt/c5FZ63HXYyrj+KgePPYUm3n9TH+V/ThtgFnb/049gST4kJ5oJSJyIKO2yjx90s3a1Z9dq7JvZtvb5XiqXEezOqisccstZu2mtGCVdQ+/0KytHa3vleJ62u+lzwB9cWy4c75Z2+agnpCUFmBMuRGR/LR8M8eZ590kwcz7PD5FZbM/7mvWJvylj7Hk0fbUvluu3Kgyzi3O49mni5nX9tXTinYm2xNjp8YUqKxfe31uExFpXb+Hyjhuqo/fVqeZuc8RPX26fmiKWZueqe9d4j6zJyrG1NJT+xrH6+ltIiJe7Rqp7JxX/2XW1pRjiid2AAAAAAAAHIqFHQAAAAAAAIdiYQcAAAAAAMChWNgBAAAAAABwKEc2T+674RwzXzMsXmWNe800a5ueP9tIrcyF19wvrSkNmWqCkJaB9hc2ZVbtjqDG8vMMMPOYFbohZZsBN5b79Ti/VF+7DthNBTP77VXZeXHNzdpRl51boft0KhxLlcvV9zcyMtLtbSwdc5XKljX/1aztdMNFKlv/xk6zNr/uDpXF2z2ZJTSmvsq8D4eZtYU7PYxU36uh6vnUyzXz+ZMeUNmIO952f8Nf2Mc555eaITTWvo9e//thlbVr2Ljcr8dxU711aJdo5rUL66hs3xG7yf4Dr31Soft0KjX9eOKJHQAAAAAAAIdiYQcAAAAAAMChWNgBAAAAAABwKBZ2AAAAAAAAHIqFHQAAAAAAAIdy5FQsz6b7zbxZ4QaVhW7d6vZ2a3qnbIikJxeY+esjG6jskT9SKnt3Totj0nlqR1pTYETW7taTkBK3TDBrQztPVxnHgvP069vDzPOTlqssPrLI3oi+rHEsnAXuH9rOzAfP+s79jbz3roq2PTLELF3qEaeylrP7mrX1G+tpSt4p9mSUQWs3qozjt3rIik818815Pir78DM9YU1E5B+36IlsvL81W3Ide4JwjxB9ztqzyZ5M3LLbJSrjuHGmI+m+Zl6473yVeXU76PZ2OR7+Hp7YAQAAAAAAcCgWdgAAAAAAAByKhR0AAAAAAACHYmEHAAAAAADAoRzZPLl2ZoaZR2Xpxl2JHXUTuP+/ugL3CE7h4THczLfV3qOyJzzzzdpXio6ojCZfOK5Oht1wNNL/d5WFJF/uYiu6eTKcZ0dutJnXa++nspLdLpon46xUHKGbrYuIXHNeK5V1CNlt1j47VWcdX19Shr1YXYZaG9fG6iu5fqCZNy7WAwCa/6zve3B2quXbzMwX1NODbYYe6F3Zu4MzbFsbbzOPyF+rstqx9j0RKg5P7AAAAAAAADgUCzsAAAAAAAAOxcIOAAAAAACAQ7GwAwAAAAAA4FAs7AAAAAAAADiUR1RUVMmZ3gkAAAAAAACUHU/sAAAAAAAAOBQLOwAAAAAAAA7Fwg4AAAAAAIBDsbADAAAAAADgUCzsAAAAAAAAOBQLOwAAAAAAAA7Fwg4AAAAAAIBDsbADAAAAAADgUCzsAAAAAAAAOBQLOwAAAAAAAA7Fwg4AAAAAAIBDsbADAAAAAADgUCzsAAAAAAAAOBQLOwAAAAAAAA7Fwg4AAAAAAIBDeZ3pHQAAnCwyMtLt2qioqErcEwAAAADVHU/sAAAAAAAAOBQLOwAAAAAAAA7Fwg4AAAAAAIBDsbADAAAAAADgUCzsAAAAAAAAOBRTsQDgDCnL9CsAAAAAp2fdY9f0SbI8sQMAAAAAAOBQLOwAAAAAAAA4FAs7AAAAAAAADsXCDgAAAAAAgEPV+ObJD7052MwbxPiq7Gicvc4147CnykYHHDRrX1tUs5syAfh7aJQMAAAAJypvM2JX98HlbWhcEdutKY2WeWIHAAAAAADAoVjYAQAAAAAAcCgWdgAAAAAAAByKhR0AAAAAAACHYmEHAAAAAADAoWrUVKyJr41T2caVfcza6wLnq2xtZoRZO6pTnMp8G7c1a2+59GaVffbL52YtgJqH6VcAAMDpqsP9jDWZqLKmK+GYsnx/q3oiVVmOyao8fqvLMckTOwAAAAAAAA7Fwg4AAAAAAIBDsbADAAAAAADgUCzsAAAAAAAAOFSNap6cmuyhsr52P2RZmBOsa9MTzNqtQbohUsu8HLO2+6Ftp9hDOEl1bRqH6qM6HCNlaTqH6qE6HDcWjhsAOPtU12uSSPXeNyeprCbHFVFbGX+/MlXn+26e2AEAAAAAAHAoFnYAAAAAAAAcioUdAAAAAAAAh2JhBwAAAAAAwKFY2AEAAAAAAHAoj6ioqJIzvRNlNfrCIWbev3O6yvYetLfR9MA5KjvScZ9Z23pLhsrW10sxa72yO6vMd8Aus/adV9bZOweXytIlvbI6vVcHlfXfVl26ulc3rr6HD/eurbLCwh5mbe+6gSq7ftkct/fhkYb2EMPAPjp79vdCs5b3t2q5Om4O39RQZWmZyWath6/ODmTZr3cwdZjKWnVbZda2ytHHaZMpK8xajhsAqBmcdr9bWbiuHcPxUDGqy/HEEzsAAAAAAAAOxcIOAAAAAACAQ7GwAwAAAAAA4FAs7AAAAAAAADhUtW+efLY1daouzZfOtMp630vi7dwjvFJertIkJ1yssoaNZlfKa51tx6R17D0brpvdiojsGq0bInefY3S7FZEDRfVU5h/uY9a+sn6xyp648lKzNt3vF5Xl7Y0waz9ftFdlZ9v7W1ms42bdiPpm7b4wP5W13Jhk1q6urRthd+to70PzRL0P3u3s93dnos626kNURERu+0hnHDfVR3W4T+J4cB6Om5qtOry/1QHH2DFVfjx01dHwYLs03rht3rHErh11gc726BlHIiLS+GqdFX9t164whi0Vxtq1ZVHVxx9P7AAAAAAAADgUCzsAAAAAAAAOxcIOAAAAAACAQ7GwAwAAAAAA4FAs7AAAAAAAADjUGZmKNe41Y6LPgWSztmFsJ5XF1t9v1jZrPVRlXod+NGsLdg9Q2b4Lis3amC369cJq69cSEWl9ZJ/KAmutMWuza9dVWa28VLPWd6vO/r2mZnR6p3O/M9XUSQPW8fhK/95mbZLPJpUV5heYtWHn6Mz//R5mba32ekTAX7n2eSQ83UNlfjltzNp/p21XWU19HyuLq/PVjRfq7NIAexsbIvQX6sy3j5sjW0NU1nygfQ0MSdDZ0fQ6Zu0unxyV9bAPR/kpS2ef/WnXcjxVLqddLzkeqgfruBk4qolZu3yOHg/z2LAOZu2rf+lryr3tB5q1k3YsP9UunoTjpvJU13PIyi8eMfP+N71eru1yLJ1aeY+H0S3sPKSPzsK/X2jWxh9tq7KGdzc1a9/4TWeDO9v70PQVvcTRpetus/b761qrbPMP9nYt1eU444kdAAAAAAAAh2JhBwAAAAAAwKFY2AEAAAAAAHAoFnYAAAAAAAAcyqsyN/5AZH8z79vLU2VH915j1tZvN11lh3LsJscey+arbNdR3XxZRCRhoG5E2n273agpIKiRfq3DRpdKEUmWFSq7oLGfWfvbTt0UszC5gVlbENZOZVddYDe8+u7P6tHA6UyzGllVRNO4XYd0o+82HmvN2n11WqksrVA3JhQRidrvo7Lruw1ye79cNe6qro3ynGRjid2stkuMbngb3czeRp0FOlvRXDc+FhHxbqZfr0my/T6m+8eqrLXfDnsn/rJjlF+/Q/o60SE1yKxNWqOvgd1a2MfC78G1Vda7hb3dHxMPqKxrhN1Iu26MvgYGhZqlMmCZbsD8mejmy6g4NeW8bf13VJcmkzWRq+NmRkP9wz3OaJIsIvJoT51ZTZJFRF6+Rjdgfupbu0nyuEh9fzsjKsWs5bgpv4o4h2z+5V6Vdb10klk78567Vdaobr5Z2++1T1UWHW1MiRGR1R9+obK+/7jJrLW4+j6cbcdTZV1TfnexknC5MbfBc5OLz9l1Y1T2rYvXa3lUZ7uMTESk86E4vQ+NI8zaIcapaLOLfajOxw5P7AAAAAAAADgUCzsAAAAAAAAOxcIOAAAAAACAQ7GwAwAAAAAA4FAs7AAAAAAAADiUR1RUVMmZ3olTsbp432sP0JL2m3S2vuk5Zm3b/ftUltcgy6z18Wiow9r674uIlIRmq2xnnRFm7Vcf6Sle1bnTdmUpb6f2snzPyvJas/J1l3YRkYu3tlbZ3vqzzNqG2V1UVru+PYmiVk5nlRUV2z+eXu30dInK+j64UlOP1ZoyjcZdNfV9rGrtuuif9RyJM2t9rIGUR+2RVHXi9bS8P+vYE6ki0/UYirQ6GWZtp1rG9c7DnmAiYUEqio4+ZNeizCrrnJP63TMq21gUb9a2WRasMq9b9LVORKT+QT19rfalL7m9X2U556Tk5pp5g9p6WhzKdiy90q6xmT+x87DKnhxoT9f713J9n/TkYH0uFBH519JolV3Ra4BZ+/06PWGWa1XF4B7HNY/QdDMvSQyqmJ2pIlX5Ho8Ot/PFxgDrPnqInoiItDPyKSvt2vxEnTWvZ9deMExnGYV27bbfdRZdhhWS6nJ+4okdAAAAAAAAh2JhBwAAAAAAwKFY2AEAAAAAAHAoFnYAAAAAAAAcyujgWP11zLUbs81rrxsapxUvMmtjCnTWNr+VWZvTtZHK6m7cY9YuW6OzVi11k2RUL7FbElRWvD7WrE0L0z826xKOmrVjcvQ2aiX0M2t3pOrG2yENd5i1qFr3Xmg3mZz0m24yecnN9vmp9hLdNHtaTJpZe09r3UnuvVi76fYdHUJUljkyyaz97m0zRgXw9fBQ2YESu/Ne0OqNKmu+yW5cXKdQN7Bt7qmbJIuIfHSxzjr1utCszfXUTZlrZ9v7m7/+fTNH9RD70OtmvqtZnsoaF9v3OQd89QCAg0v1+U1EpHN7fUx++t1tZu2tV002c3c1DLabipfk2sMu4D6rSbIrVpNkEZG3W+jmxw8s1Y2PXbGaJLviqiFsdWla6mQfPz/WzO947meVXXJdW7M2fdVelS3eZd8bL/70JpUNvfULs/bhC3SW4eLWeLLehTIpTA4yc8/ybbbKVeUwld9dfHN+fPQfKkvtEGfWjs3S96zdrr/FrB2ZvU5l3+6xlzP6NdLbPRRoP9MSt3i6Do+Ypabqcn7iiR0AAAAAAACHYmEHAAAAAADAoVjYAQAAAAAAcCgWdgAAAAAAAByKhR0AAAAAAACHqjZTsVx1k359Qh+VzU9JNmt3NA5W2dbvMs3a54aGq+yQ/26z9uJN3fR2O+hJWSIi29fqlux3NrvKrP1NvjPzs43VMbwiuotb28jfXWjWFvlMVdmk+fvN2o5J9VQ2/upbzdrNjfRUkqMJ9j54Jtyrsrl5vc3a8nL1fbS+ZzV14oSrY+xV30EqWy+BLrbyu0rOc1HZdFxdlU37jz0Va0wjPQHrPXtImwy4K11lLbfbtZxxys/VcXPX05er7KtfHzZr+1z0qsr2z7Evx+cbw7JC+uSYtWHh+nhKj7CnBwWJrw5zapu1ni076TA62qxF1fvt811m3uVNPZGmw7v1zdpt7TuqrFlYc7N25fVBKvNPdn+6UVmEZNj3cIk+egrd2aYs02yurz1OZW3yw+ztFuvrz3j5xax9IM799/1N34tUtidfTwMVEYnor6+5D6+c6fZrwfXx8fObz+lw/Sq3t/twkJ4iKyLStEeQylrvSjRr/bfrqYyu9LwwQL/WePvvT/5HitvbtdSuV2zmR9Oc/xxEeadfuWR/VJLUZP05u943O83ab/fq6VXN/7nBrP0pYbPKbgzuYNa+O3mOyjL62J+r1pRhApalunxWcv6RCgAAAAAAcJZiYQcAAAAAAMChWNgBAAAAAABwKBZ2AAAAAAAAHKraNE92JT7/gMrGpNoNR33jdaPaUXWamLVp4qmygoAgs3b2kl9V1juru1l7Q6Runrw7TDdvEhGRTXaMymtC5XPQRQda7zoqevT+J83SVX99oLL4VLuhd8P0wyoLb9DarPW4errK5v041qytLNWl+deZlNJmucoar2tn1t5xl87u/8D9prIPTzjXzKdn6uPmmbF2k8mbH9DnHFS9YZkhKgvfbje1jeitm9rGPmtfjhvJYpVtyR5g1vot1A1Hi1bqRoMiItlZ+nq5P1VfF0VEOhxONXOUTUU0r4xePFllXYbeZtYu6/a0ygrty480LLxJZYE5O8zaW5J1o/B1tz5hb/jTP+zcTelBLv79MaekXNs92wws8leZV7EeDCIista3vw7z7ebJs85roLIx8+wGti0u0ENHsnfZTXC9d/L+Vpagrvo+b8X+pmbtrPcGq2zYPUtdbFk3Op/xrH2Pc6iWbt6/9u0rzdreD0xz8XoVr2C/i4/F/nZT5ZqgLANsyqKup27CfuVXC8zaxx/Qzd19tsSYtecWdFXZgsggs/b19bkq+/Im/fdFRD6RJWbuNDyxAwAAAAAA4FAs7AAAAAAAADgUCzsAAAAAAAAOxcIOAAAAAACAQ7GwAwAAAAAA4FBnZCqW1W27ZIPurC8i4tHjkMquCLK3O/oOPREkaU6EWbvcW2d+GXXN2oZ19USQpMBtZm3tAN1tO3Sv7sp9TLqLHJXFY0h7M1+8f6fKSuJ+Nmv3HtHHb53O9ntcN6uXyn6OXW/WxuxMUpmv7x6zFmVjnnN+tycLeYxeobJrOtsTAjoW6akx//YPM2s399LnsgQPe9JVi2x9PqxXz56w9MQ1g1RW/y97EtKjB7PMHOV31Tvvq2zFlxPM2rjFD6ls8+pOZm1Yp9UqK/rjO7N2yQQ9hSLkZfvYLWmmj4VCb/t80/GaWSpjgt6Zkbd/q8p2pGw3a9vFfqOylJUtzdpeffU0v73Jq8zaIwd+UtmG+RvMWvnUjt2Vlmb/+2Nd36Lybfgs06FjM5WFpS80a0c01aPT/rXM3m6qvz0By+I5W98PDT3XnpJTkNLR7e2ibM4ZoX9+X779FbN2Z76+Ln3wSh+ztl3CEZWt8vMwa4ML9c91RIieFiki8vVjj6nMr35js/ayx/W1tSw8PGqbeYnY92pO4uqaXRETsCw9StJVNu35583ausH6PFIUbJ/7l23UtYWJ+8za9RNuVNnCLD+ztrxcfR+r+l6JJ3YAAAAAAAAcioUdAAAAAAAAh2JhBwAAAAAAwKFY2AEAAAAAAHCoM9I82Wok5FGG5k3fp9t555RQleUPsZtBRhh9/trPTzNr75Y8HR629+GFIW1UtrtFnF1s919GBbGOM1fNrQI26ubJ8QPtWv+kJirLTbAbRx5dk66yUc0amrU5tXTD230e+WYtyqa855xrx24x83dTRqhsePv5Zu34IH1+SnfRd/K25Uvc3rd/1dMNC7eMctFYdJrbm4ULZWlAGFysmxmLiPw5Szew7XWB/Z575vmqbF4Pu8HjU1fMNFIrE5l568sqK4mkWXt11/7K5irbs2qGWRuXrKdEhAyMN2u35QWprMFBeyjAH3mFKhvh18isLa8WDex/f0w6QvPkstzjDN/0L/c3vFdHz5+r721FRLbXilHZFRfb+3DJ7Ht0aF8uTTRsL5uyXKue+uQJs/bT369XWdacdLN2zwN6OMnQKH18iIgMvvRnM7d8N1E33S7YOcrtv18m3jzvIFIxjZZXFel73rZt95u1HpsyVZadZzfeHnhIDylKDPAxa9fd9ZnKgo/oRvJlVZ3PRRzBAAAAAAAADsXCDgAAAAAAgEOxsAMAAAAAAOBQLOwAAAAAAAA4FAs7AAAAAAAADnVGpmJZKqID93Of2t3XLW/20JONjnSwO2WPHxagsp6rt5u1B1OXqezzJQlu7xfOjGb+fVTW4JCL963FAhUl57Y2S0PG6CkBOSXGyAkRCf7zXJVttfcAFaAs55ytBZ5m7Q1NclT25VQ98UhEJKC9niSTkL7KrH1oQieVFe6x92FXnVSVde4RaNbKNL2/qDyb0u2pWAUtVqoswZi2JyJS7K3fy4sjgszaC1/Tx828I3qqiYhI+xB9fstNOGTWovpY856+TxnQ0p585ucfpLKdy+xJi30eeFpl67//j1nbdudklSWLffyWV9KRgkrZ7tnm2fP0FKGUsHVmbdNNOvNrlmXWPjdFZ29eb0+oGTW8o8riMu0Rsy+ss6fUomrdOvorlb02zp5I1WGhvqfavruFWTvtJz2lrXDxbrM2J0tPwLvlMz3VsSIU+9jHeU1WWROeVgXo9zPwaIZZmxA8QGW144wTkYhc8PWLKntn2mVmbXzMMJWNz40za2sKntgBAAAAAABwKBZ2AAAAAAAAHIqFHQAAAAAAAIdiYQcAAAAAAMChqk3z5Kr20Aa7qaXJ6JP8k8timpM6UYO26Spbk6YzEZHem4NVlhDZzqzNOHhEZZ5zdLNbEZHDfrqR7uDGjcxaVK3GOTvNPD8mQmVXX6+brYuI/HJQv++9ikLN2j3R2SprPcTPrD366wGVdazrYdaiahXG25fYdgHpKkvZWWLWNrvIW2XfxNuNRSO3NlfZwNZ2s8I5RXVUVrA1zKxF9dGgfbTKfA5cYtamhenGw7Fj55q1SV3PU5lHvN3YtuGFf55qF0+rLEMxXKmshp811Z6D+1XW53K7ybF/jB4AsGKh3Vj9set0E/Z9M3WzWxGR8KJElTXvxrXKaR6dMcf+woyq3Q93cb4pO1ffM+v74Ko2MqKpyjJT9ecnEZFwb33PuzEzxaxdded1Kvs9QZ9bREQ6eeWqbFaIbuJ+zCIXubPwxA4AAAAAAIBDsbADAAAAAADgUCzsAAAAAAAAOBQLOwAAAAAAAA7Fwg4AAAAAAIBDnbVTsSyP9/c389RcY7JRY7ur9gd/bKvQfULVSKndWGV9MnWXdhGRPR107aLIILN2ywV6Ik1TeyiJ3L1Kj19LaNzELkaVOrDlqJmPrNtLZYe87QlaHXObqeyppSvc34kddvzBkBYqazUzxMVG1rj/eii3VvtdTONosFlFh+3TjRzcu1Rlr90bV4a9sCeYfHl3f5X5tdLHKKqXwD16Kkl8U3uaWcC+TJWFXNTCrD0i96ispfQ0axfn6KmiKYvX2fuQpaf5rfbLN2vH9dP/1pjy2BNmrTWJ5WybXFMWYe23qGzdWx3M2r45DVX2YG1fs7ZTmp5GsyxSn99ERJZ4D1JZutcSsxY1w6iRenKoiMg1rWur7Ib3jRHEIrJ9vj7G9jezP2uFNitWWfFiPS1SRMTHK0lldScNNWtbnGXnm4r4b6uVoSd9hgXZ9xjb8jepbOJX9jVloti5ZcW9I1TmMcY+l1lcfR+q8/WHJ3YAAAAAAAAcioUdAAAAAAAAh2JhBwAAAAAAwKFY2AEAAAAAAHAoj6ioKN3dqBqxGhTVZNWl+dLZxjrOCmJWmrXzWjdQ2ah0u7nuviDdeLv5PN14UkSkuIm3yjw7jTFrOU4qj3UsPBnZyKyNC0lRWYSH3ZO+YWGeyuK9ws3apkd0w9FCrxyzdmuxPvbahum/LyLy5E/xKuNYqhjWcbPpH5eYtcuu1U1EfWbqBpEiIjkTdPPJli7es/y96SrbMta+xNeenKWyXvV1Y3gRkRGvTFEZx03ZVdb9TOasT808v4E+F62qpRv6i4g0SNHXpf4Z9r/9eVzzShn2rnJw/JWNdezNH9vSrP09cY/KOncLNmt3xekmuBmBgWbt+Qm6mffYRfb9EO9v5bGOhXs+nWjWvnernZ9tOB7LzjrOfl54m1lbd0qRyg7WW2/WltTV97chDQeatXnbl6nsso9Xm7U15T3miR0AAAAAAACHYmEHAAAAAADAoVjYAQAAAAAAcCgWdgAAAAAAAByKhR0AAAAAAACHsse3VHMlCReauUej36p4T8qnpnTgrqkymrQx89EeDVW2o1B3dBcRaZ2k10539N5n1naor6ffcIxUDw1aJZj54X1NVPaXizmD5/bSp9vQhKZm7VHRrxcbYE/mStzho7LPV6wxazmeqtaBbr5m3nVNnMqiPOqatfW3famyfWvOM2sbNNMT+/rPsC/zSZelqmzEee+btRw31VtASZKZBw58XGW7frKnkgQ2G6qy7RHzy7djLnA8VQ+ftbDzb37W2WN1Q8zaw56eKhscs9WsHbtOZxwL1cNtO2PMfMj7d6rsqrs/quzd+ds4nqo3v6UuJuZ98YbKpnyhr18iIj7b9HS9Npl6yqeISAdjAlZNP0Z4YgcAAAAAAMChWNgBAAAAAABwKBZ2AAAAAAAAHIqFHQAAAAAAAIdyZPPkO/6ZcaZ3AWeBdD/7OCspKVCZh4duIFhWNb2hl5Pt39nSzBvW91DZVYW7zdr7P7XSveXYK9c4lqoH37QhZr4wdKfKOsXkmbUTbl5rpFZWRi/riOPGmYpSapv5L59+qLK24//hYiuTK3CP4AQ5v+0x8/8Or6eyh+fucHu7U1zknF+qry317Ub/xUm6+ezMn140ay8Z/0yF7tOpcCw5U1KoHhIjInL0kadU5nOTcZNSRmfjccITOwAAAAAAAA7Fwg4AAAAAAIBDsbADAAAAAADgUCzsAAAAAAAAOBQLOwAAAAAAAA7lyKlY7XYXmvmVgyNVNm3pme+IfTZ25a4JjqzxMfNlzWJUVrRtg1nr2bGHyjgenMfPyz5V1i/Qk4x2B45wsZX5KuFYqNl8QvaZ+XD/HJWtsAevmThucKKUIfakkdAD+jjZ+NXHZm336++o0H06jmO1+jq/TRsz39NCX9fuD7OnhL7zrc54z52nYbi/mWcd7qayzjvXuL1djgWc6ECbaWa+IWGsyv564gqzdtgr36uM4+z/4YkdAAAAAAAAh2JhBwAAAAAAwKFY2AEAAAAAAHAoFnYAAAAAAAAcypHNk3e0OGLmQ6PCVVa/wwGz9sPtaSqj+RJOVL9lkpl3PtxJZVk+uhkqao6DjcPMvI5HoMp21N1W2bsDhziwdaeZ12qnBwA0C+5eyXuDM60i7jEiI/WQiNCDO8za/Zm9VOaZk+D2a3FPVLP91kAPghARGbCnrcpy/OxGpiK6kSmcJ3xzopn/6p+ssmzP0MreHdRQJSvsZYe8CH2vVHS4svemZuKJHQAAAAAAAIdiYQcAAAAAAMChWNgBAAAAAABwKBZ2AAAAAAAAHIqFHQAAAAAAAIfyiIqKKjnTOwEAAAAAAICy44kdAAAAAAAAh2JhBwAAAAAAwKFY2AEAAAAAAHAoFnYAAAAAAAAcioUdAAAAAAAAh2JhBwAAAAAAwKFY2AEAAAAAAHAoFnYAAAAAAAAcioUdAAAAAAAAh2JhBwAAAAAAwKFY2AEAAAAAAHAoFnYAAAAAAAAcioUdAAAAAAAAh2JhBwAAAAAAwKG8zvQOAEBNEhkZaeZRUVFVVgsAAADg7METOwAAAAAAAA7Fwg4AAAAAAIBDsbADAAAAAADgUCzsAAAAAAAAOBQLOwAAAAAAAA7lERUVVXKmdwIAnMjVpKozjUlZAICKUpZrHdcfADgzeGIHAAAAAADAoVjYAQAAAAAAcCgWdgAAAAAAAByKhR0AAAAAAACH8jrTOwAAAADgzDMbJd8w3ay9csQE9/6+0FQZACobT+wAAAAAAAA4FAs7AAAAAAAADsXCDgAAAAAAgEOxsAMAAAAAAOBQLOwAAAAAAAA4lEdUVFTJmd4J4ExzNcWhKlkTI5guUT1Uh+OjInDcAABETnFdu+ifKmp6yRtm6YGvHlJZ3+veNGtX/0NnXJMAoOLwxA4AAAAAAIBDsbADAAAAAADgUCzsAAAAAAAAOBQLOwAAAAAAAA7ldaZ3AKhK1bkJbnXeNwAVp7r+rNPItPrj2EFl63qXbpS8+bcn7eIH/6Wi1fNfcLHlZ8uxVwCA0+GJHQAAAAAAAIdiYQcAAAAAAMChWNgBAAAAAABwKBZ2AAAAAAAAHIqFHQAAAAAAAIdiKhZqrOo6PaQilOW/jWklZVOW723a4pdUdnRdsVnb6KHyTQQ5PPUp+wuePipqfMVzZqn138bxUXlcHUu//3SNyiIyG5m1qyJ0FpZk12b03KOy/B8bm7UNM6NV5mp/OUaqnqv34u13rlXZA/d/Y9Yefn64yho/t9Cs/eWuS1V26Qe/mLWvv32nyjh2qjfr/ekzx65d8+nLKmt7vX392fXVQyrr2Mu+1m0beKtb+yXCcQPURNXhc1lNP7fwxA4AAAAAAIBDsbADAAAAAADgUCzsAAAAAAAAOBQLOwAAAAAAAA5V45sn06ip5qsO73F1wHFWeWK/spsRp6cfVdmBe+4ya7dcnKCyzm3fM2sTF+oGqX/67TJrB8a2UFnmrIfN2sAx/zVzlJ91Hio5XGIX1zcy3QNbREQ6WmHCBrs4sIeKjvyzwCz19NTHbvrLP5q1QR4eKuN8U3GsY+fnRc+YtYcDd7i93d+btDVSu3lyeOdmbm/XM1wff7MnPmDW0rC9arm6H/L7WmdrVt1t1nbqqBslb/3uCfsF+7yiom2L3jFLh4y6X2VLCvW1ToTjpjq77V+jzDxv7kGVNSlpbdZ2beqvspi0TWbtIa/eKvvwl89PtYuoBsr72aykYKuZe3h3Ktd2a3rDdp7YAQAAAAAAcCgWdgAAAAAAAByKhR0AAAAAAACHYmEHAAAAAADAoVjYAQAAAAAAcKgaNRWruk5HqukduM80V9/H6no8LHvBzgc9W7X7AfcdDgo285A6epJM/QW/mbWb07qpbNsnE81a38NHVHZtc0+zNjtX71tigJ44gao37F17etW+ZD29qm7JIbM2rljn3l303xcRCSn8RGWZS8bYO2dMnGg3ytuuRZXz3XHYzP9x5/cq+/nnG83asWM/Vln0GvtCc3B7kcq++eIGs/bay79U2eTnhpu1qB7ypn2kssaD7zRrt67T73u3AXr6lYjIpt3/UVlzY/qViMiS/XoCVt07vzFrs1ebMarYc7fq++h4F8MeOzXWWXH2brM2M7ueyo562NefRk22q+yR+68xa19/51t751BpKuuzlqvpVxkl+gCsZ0zuLKuaMomPJ3YAAAAAAAAcioUdAAAAAAAAh2JhBwAAAAAAwKFY2AEAAAAAAHAoRzZPrq5NccuqpjRqOtMq4nhYEXy5ygak/mDW/tR/iMo61N5v1nZaGKeyhG9fNGtXXTRHZf1+XWbWWmjSXXl6p9gNADe3qK+yTnMTzdrO7faobLe3n1m7PWKoypru3WjW7gnaobJBXjTBrQ6e3/q0mfuMzlJZvUX25XhH5wYqCy3QjSdFRLYkJans6CVpZm1ovG7Q3aIoxqztb6aoTPXbu//vbuF7cs18/fyXVNalj31M7lrwqsrqJYS5vQ+Bfezm7qg85jV/kN3kuFVt3Sg5x8UngI49dHNsX/s0Il69/k/X+tq1/WJ0o+RVyyebtQNfu01l3ONUnqeHDzJz33Y6G729oVmb2qlAZUc87dr0zAyVxYj++yIiabX0NXCMp/2eP3atPkZe/YbjoyapiEbJNRlP7AAAAAAAADgUCzsAAAAAAAAOxcIOAAAAAACAQ7GwAwAAAAAA4FAs7AAAAAAAADhUtZ+KVVkTsN55Sk8m6hi8z6wN2K3HAaxvEW/WdmikJ0Oce8OSMu6de7xC7Q7yhYln10QcVxMRrGPnmYfsbQx4U0/A+vrFVmZtnSV6ckzxBV3tDRtTsfb3e9Msjdo+QGUlD/Yyaz3eWqf/PpMhKs32wMZmHr5RTy1rteJGs3bBVXEqy1paYtbWyjioXyvIPl2PfVEfI9++4mKECarUpiH2v52E7NXni8ARekqViMjOfrVVVrjFvlY1aa2PheLkaLPWo54+RnY1ZrJRddH/nI/cru370PcuvuIq19qe+5jbtZYrLv5Xuf4+Ksb5I54w8yzjFuW7rDvMWs/GbVXWNHmvWZsY2V1lmxL0FCMRkWZ9VqjskiI9/UpEZKO+BKKCXP3WGJXVrZNp1vaprafAJjaPNWsnPq2Pvc6R4Wbtit90VjtX39eKiDQfca7K7nvoIrP2r+ZtzByVp+Tpl+0v5F+ps1ab7dp4433rtNquTR+hs3qr7Fo/43PynI5m6aFuW1WWYm+1WuOJHQAAAAAAAIdiYQcAAAAAAMChWNgBAAAAAABwKBZ2AAAAAAAAHKraN08urymP3WDmOYN2qMwvxm467F8/W2UBBbq5nIhIfFKCyr694Rqz9povvzVzdwUVeZh5crm2WrP5xj5s5t8++1+Vzf5st1kb2kxnF68eZNZOfjBIZWFrfMzazF2/quzjfLMUVcyrln0s1OnaXGXBU9aatT1f183hNvazmxx3yElSWUxMXbPWo6m/yq5+L9isRdV68J+zq/gVjY6UcKSv33zEzK976PVKeb0ZP16qsj4t2pm106Z+rTLPdLvR/4OfVvXPwNltqYu++bvqvKsyfw+7WfqOHqkqy/0y0Kw93LiFytrvmG/W5pfoRvDvBNkNvkd7X2HmKD+/g8Uq616/pVkbk6SHv2zr/YlZW1KsD76DM/W5QkQkOmiwyq7vZDdlHvC0PhZ+u+JHszZixgQzR8Wo+6fO0joMN2uDkg6p7NeWdoPsxsX6nNE78Bx7J3wOqCjpt25maZ0b9fCI5PPt+6SI13uoLCzR/hAWfZmvvW/VAE/sAAAAAAAAOBQLOwAAAAAAAA7Fwg4AAAAAAIBDsbADAAAAAADgUCzsAAAAAAAAOFSNn4p1aNNUMy8p6Kuy7R6Xm7X/H3v/HV9VnfX9/yu99wakEHpL6E2Qoij2PvY6Ojr23scZdUYde5kZdWyjY++oiBWl904CAQJJgJDeeyHJ94+5rt9937+1jtc5VwrZ8fX8881in03OJ3vv8+E81ooYVKeygHDdVV5EpOC9LSprTNNTa7rC/sORZh4i+nz7svT0dDP/17zZKot4ZbFZO+4BPRHgotxcs/blIdNUFrzhM7M28ko9aa1xnD095MJVRSrbdqw9iUK21tg53OZq3XR8qafO5AdkmbXFFXpiXtbiP9ovOP5WFTUk2+dwIHG7yg55DTRr199+ucpmTrjCPgd0mqt1Y/n8Dv3eiIjURcer7LI/POX2cd+880b7D6L0dWGkf5VZetRdX7n9eugartbOa3deq7LQ1qpuPpv/V3zWAJUdKLUn5dzxjJ52UnWTnhAoInJrp84KnooYYufZ/VaqrHndJ2Zt3mMXqOyYybH261V9p7Jd86rN2sr71qksZtBbZu0cPTRJlpmV8NSphXrqWcZh+3ND3JgklW0vCjRrz3kpWGWvnWkvyLPC96tsYbg9MfZgqJ7Mdcxf7fOdlGrG6CLx4/VE6ZAW/b6LiHwf/bLK3l5Xa9bW+8ep7JkR9nvcb42+//jPe9Ws/cvK1Sob2Npo1l53x/c63Kv/vf8xwkV+5PGNHQAAAAAAAIdiYwcAAAAAAMCh2NgBAAAAAABwKDZ2AAAAAAAAHKrXNE/2pCGlK5ufOkNlE+/60qx9a3iiyhoS28zaiC2jVVY3ptWsvfX7YpU9lTbOrBXZ5yJ3T79Gu7GU3Zrq12fChI0qy/5QN+gSEdk2tVllb1fOM2v7t2erLCHS6PQnIo01BSqr9t5s1r5/gW6UnDv0ZLNW5EMXOTprTXSCyqpKIsza9KoOlZ18z7tm7aJZ+rj/yn3drL0yMFVlFWn62iIiIjO+VdF7l9tNwlN/bx8CnffRLaepLDLMvhqHVtnXIXeNO6ibsouIrIjSTQxThrlowI5eY+o+3YQ9N95+j1/59zUq+/3lduNIy7c/XG/mUaVlKltXlGfWvvHGTSr7TCrdPgd0n9Y8Oy9LGqyyc6+zh4CUPr9LZeUj7EbalSW60XLc22vM2hO+0kMBFr74nH0ONbeZOdz3xlUnmLm3MYihX8sOs/amkyeo7J0rLjVrp593nc6qos3aspaDKjvO327AXv7OHSo7YcjVZu0eF49J8MzwP+n3R0TE52Q95CV/ZIlZm3BQX3M+efAFs/bFV85WWcBr+rOWiIjXCP1ZvSPS3kN44v53VPb0Ky4+VxVk6OP6HmuWxu7U97uy0Yft4/YwvrEDAAAAAADgUGzsAAAAAAAAOBQbOwAAAAAAAA7Fxg4AAAAAAIBDsbEDAAAAAADgUL1mKlZXKB14jsrW31pl1obHRans45YVZm1H1BiVJYmeoiQi8swt5+nawyFmbWcF1eqJPCIitQFe3fJ6TjPh6QaVbbpyuFm7K6laZV5lA8zawPn5Klt17k6z9pgvpqtsc6NeTyIiPklfqSx8Wa5Zi+4zY5ae+FDzw51mbcVbI1T24On2VKzajpkqS4+2p+vVHNRrN31Vk1nbcscSle0J1pMs4DlrWmPj+ilmbdDUhSpbs/h0s9ZviR7d8dBT55q145NLVfbt4TCzNrRZT7k50GhPO1n6nb42pWbrNSoiknrTM2aOrjFugZ7csXCaPZWx9vt4XfuKvc7C9p+iwx8+Nms3z52qsvRX7OvT3nR9v0yYmWfWovM8mRobPMrOxwzdo7L3ttsT0ryWTVZZ2y793CMiMt1LT1Mr6Kefr0VEGpe8rLLCmjyz9gCPPp1WFzbUzP0zl6tse3t/s3aEz4k6vONGs/bj2X9T2dpVAWbtmKOnqexwWapZO/w0fc+96JxNZu0rT5kxPOQ3xd/MG2r0s0fSzlSztqp1kco6XviTWVsxQj/n5Eyzn3MaVuupottjlpm1+e/rSW079umpcCIixQP15NqAd/X1TUSk36X651MmTMUCAAAAAABAJ7CxAwAAAAAA4FBs7AAAAAAAADgUGzsAAAAAAAAO1aeaJwfmVqls59Bas7bcZ6TKZhSGm7WtkboB1M59dmPd4b4xKhuUqrOuUOutG2X+h0+3vF5vlZGRYeZWw8FJ//rRrF12kc68KnUzLxGRsiDdnTBqx26zNvkTvXZErEzk7Zt1tmmY0fxSRMTu8w0PeLJuPv5ENygWERkzX++NTw8ZYtZuCtSX20HedpPjiJP+aOaWjPd1w8KmtCC3/z5cs9ZIkAeNTNdvt+8pA6P1tWVSq931tN/1upFp833Pm7Xn31Xo9rktev0Blb0RZl/z0DU8uebsbTvOrO0fpZs5BjfZjSMHH5Wpsn/u101LRUQeO/UxM7csOv8OlR0YpRu+o2t4sm4CXfwK998/Q2UJ7avM2ohR3+jj2vNCpDlIN7b1SrafQb3bclQWUmR3SR6rS2W1fQpwodV/n5kvS9MDPE7ubzfZ/zxO31OaRtsNkZujjldZSqPddDsnWh8jJHm9WbvpAt2Udk2g/dmuPoJnn66wJVQ3KBYRGVpZobLqXYPM2oZrdRP1tWX2+zM9sk1l+3Ltz7jt8/XwiRk/zDFri4/9XGXpg+x/W0Kuvp5uOyHbrI0ssv7NLi6SPYxv7AAAAAAAADgUGzsAAAAAAAAOxcYOAAAAAACAQ7GxAwAAAAAA4FBs7AAAAAAAADhUn5qKVTFWjwNoLZtr1k77IUtlpcN153URkbMe2Kqy5pemmrWLfL1UlhVid5DvrEa/X9f0q+40530rtac1fO6lp5xNkOFm7cqle1SWsGu0Wbvuq0CV3fWNPUELPcu3UXfhFxFpCH9SZW31/zZrU6JDVZa72p5iVP7zSyqLTssza7/bNExlVXddYNai8zyZUNNRrqcviohEBOn5Lg1Nm8za9Q/Gq2xGzolm7Vuv6WvTaK8ks3ZzzkKVTR2rJ1PgyJg9xl5nwSNiVVYek2rWfl6tJ6rNa9lo1k65+kaV9T+6xKwN8A9RWfgX9jpDzyqe7+IP8hNVtHlli1macImfyhrX2s8t066/R2XffPeiWevVoZ/Ra70bzdr1lWYMD1TtjjbzfoP1tWVXq32Mq/fuV1nNRP05R0Qkq1ivm9aT+pm1xx39O5V1bLnBrF2b0qGyedX2FMkHQnQtPBfWrD+7iIiED9KfU8oTttvHqNefqQ/XHTJrP607V2Uj2vXaExEZO1SvnY+/1pmIyLlb9XPZykj7uWx/rp7gFt9ur6eyWmviXKRZ29P4xg4AAAAAAIBDsbEDAAAAAADgUGzsAAAAAAAAOBQbOwAAAAAAAA7Vp5onD/u5XmVB0RVmbUl/3RCpuMVucrz4qn+o7MABu7Hu2Y8/80un+D+yGnB6ylVzT3SNs2+3m0+aHrPCnV11KughybFpZu69p11lK6reNmuDvtGNkjcdqDJr87MiVdYYZDd3L/P/QGV+MXFmrUi1ixzd4Sgv3SxURCRrgm6IHLfObgY5zGuLyn6KCzNrR5brNbY2qNms9fPWTbfLfO3Ghuh5gUX273t2hW5SXNcxxqxNidVNutvT7canBev0ekiptmvjYvU5JLVnmrXoWZEL7DxwVpPKauf+xqxNXaufb/v55Jm1HV/rYQHFXvawgX4nPmefXCd19rm5rz4zj/G3/137tumseECQWTvw1AkqqyoYatYOTdIDALyCCszaJbvvUtm2xsFmbaIxyMS7yG703/Cj3eQbnhnWEmH/QVuZimKioszSpmp9T6nxtweGzF2t12r9UPs6UvHdqyqLys8zaxem6SFDA/dsNmujCvR3XZJHTzdrZa++3xXRPBkAAAAAAACdwcYOAAAAAACAQ7GxAwAAAAAA4FBs7AAAAAAAADgUGzsAAAAAAAAO1aemYsXV6SkSmcOjzVo/f91te/wdevqViMgX8qPKnpAbzdo3d+gpFLOaS8zaOq8WlZVF2p3I474PVFnM13PM2iRjQkBf7frfW7x6cn8zH+avp5Vs7Fhs1t71ZZeeErrQ6s/0ZCIRkaMv1pfQvVP176qISPbfKlX25FJ7QoAstSdJWJ59ZazKUrewZ98btA0/YOZDivQEx52DUs3auAl6Atad49/s1HmJiLz8xNUqCy8e3unjomscGDPZzBMK9TWnZv/3Zu3cqnKVRR+/zP2T+MiOX379bpWNGLPH/eOi2zT3s/Odq3NUdtakVrM29yQ9Seb3c36wXy/sQ5V9s8OexHfyMZepbNKwbLN28VY9OfCoGXqarYjIwj3BKsuuecuslZX2/bkvOlhvX0N8+uvJrk1Z9s82119Pdhy+sc6s3VGdqrLivz5i1gYE6Il7W6L2mrVz/rJKZfMfn2nWpswwY3go83T7M03agnwdDrEnqpVWb1VZ5Vr72TblKD217+ird5i141r07/uQ5F1m7YX3PKiyxFZ7qmhrjZE323sImXcONPPegKd/AAAAAAAAh2JjBwAAAAAAwKHY2AEAAAAAAHAoNnYAAAAAAAAcqk81T054+W8qe/7y283a0KH+Kht9+2Nm7TkJh1R2bcXlZu2gMUe+cxeNknveNd+4aIIrrnI4yS1/fdjMGxb/pLLsF/X1QkRkzDjd7O+tgfrvi4iE7NV77rlTYuzaVSEqqxO7mR16Vna73eBxaJFu9BfVP8+sDdmkm0x++7h9/9lXrpsfDznavgZ17NKvVx2SbNai57Vs0Q1ORUTK61NVFjtymFn7U5NuRvrQiivM2oSFephDbLVuzC4iMnRTuMrKjtPn9R/fucjhrnRjIIaISMBCnUW32cc4o/HPKts11G7CHrpfX5/++dK9Zm1IvF43i5Pt+8+Z/fXQkW+WmKWmNevdrxXRTZ1/bUan7jTzipgRKiuu1gNlRETGnv9XlXUcON+srdxSqzKv5+43ayf46Sa6QxvtpttN+bkqK4z3M2uHHJhg5ugiw07V2eF9Zun4TeNUljnKbka8Nmibyj7457lmbVRZnspCAu8ya9sTdG3kzzebtd7j9LNS8erPzFo53m5M3hvwjR0AAAAAAACHYmMHAAAAAADAodjYAQAAAAAAcCg2dgAAAAAAAByKjR0AAAAAAACH6lNTsSzebe1m/rs/6mkAC569wKyd5qfHDORGjuzcibnARKvudf9Fc838sfeX9uh5dBbrpGcV1xWZ+dAz41QWtcueRLGjWE9xiBs10axNDClX2ZStW83axql6csDJT35i1rJuetaB4E1mXnBYT/mIqBlq1kYU6UkjBb6DzdpBjXrEzL4dqWatd5iesnb9FX8ya1k3Pa8hR18DRETK5/uobMauAWZtYNRslU0tGGTWRoXo6VWbkrabteEBoSo74ZxXzVrWTue5+hla07K8XrKPkW8MtWpvskdSxT/0tsryVtxk1v5cGK8y3/059kl4YO7POlt6rF3LGrNtTdYTFUVEEiv0PWV4c6tZa83trFqsrysiIsddeYPKKn6+1qwN8dLXkPwC+zo29spLVHaei6FEIWnV9h+gS2Sm6elpadl6PYmIHCzT9xr/4TvM2uPO/kpl27LsiWq7M/SbH1CrJ/mJiBxz1lMq63jhUrNW/PUzWOmDHXZtL8Y3dgAAAAAAAByKjR0AAAAAAACHYmMHAAAAAADAodjYAQAAAAAAcKg+3zx5ZID9T/zgwYtVdtbt73X36eAIG+dlN6QEfkluqN1wdGhJoMomhdmN2c691+he2RWW6kbJNJPsHYb8qBtmi4iMHXaUyt4v2W3WXv+41b7SyjqPddN7hA5PMfM5305QWeuAGrN24m8f6NJz+iWsnZ5n/cythsquhM23m/e3DdXN2X1mPeT2cV3xZI1Y/w7WmGeC9g8x85JE3RQ9O9XFQYy5EX4TD5mlzX+5XmUBx7ro5u2BGRcEqKwuM9qszcsq7fTrwTOZw/qbefq7+ne49K3nzNqaUbpRcvioxzp3YmJfMzKl2UV1dqdfrzfgGzsAAAAAAAAOxcYOAAAAAACAQ7GxAwAAAAAA4FBs7AAAAAAAADgUGzsAAAAAAAAO1eenYtV4e5n51uBkla277SKzdtpz73fpOf03Ovz3vCpfe7rRq7/T78U1r3f32fzPWCO9g1dwhZl39KtS2Z62EW4fl/e3b4tIH2jmP0XqKUan+gw3ax+Tb1TGuun7wkbaa2dzRJvKTqmxp9RYWDt9m6v315oyldl02KwdGNqhstK/vmDWxt13i9vn4AnWaed1tOWbeW2mzhLa3T9uSPur9h9cGqnPYWqaWep1gj6Ju6aHmrXZ5XUq25ZfaNZ+tYJ105tFb7SvOXuL96is+Js/mLUJJz+qMq4X/wff2AEAAAAAAHAoNnYAAAAAAAAcio0dAAAAAAAAh2JjBwAAAAAAwKF6TfPkrmh8ZDWHO2pajFm7t2qhyvI67GaFFho1OdOskO1mXlBys8qePt6uvfPHpSpjPfRtw322mvmiaj+VpY7z6eazgVOsC9BNkkVEjvZbr7KaUvebbqPvS9xtdDgVEZ8Q3Yz088TUbj4b9EWtjRvMfFnyPJWNjA/p7tNBF7vztWWdPsZXxuequr3PmLXrWparbLxvsIsj6+vbZa+t8ejc4Dz7fe3rSEjTDJXlDK7t7tPpk/jGDgAAAAAAgEOxsQMAAAAAAOBQbOwAAAAAAAA4FBs7AAAAAAAADsXGDgAAAAAAgEN5ZWRkdBzpkwAAAAAAAIDn+MYOAAAAAACAQ7GxAwAAAAAA4FBs7AAAAAAAADgUGzsAAAAAAAAOxcYOAAAAAACAQ7GxAwAAAAAA4FBs7AAAAAAAADgUGzsAAAAAAAAOxcYOAAAAAACAQ7GxAwAAAAAA4FBs7AAAAAAAADgUGzsAAAAAAAAOxcYOAAAAAACAQ7GxAwAAAAAA4FBs7AAAAAAAADiU75E+AQDA/ys9Pd3t2oyMjG48EwC/BlxzAAC9HfeqX8Y3dgAAAAAAAByKjR0AAAAAAACHYmMHAAAAAADAodjYAQAAAAAAcCg2dgAAAAAAAByKqVgAcIS46u7/0hXhKrv+rZruPh0AfZyra87yWyaobPYLW7r7dAAAUDyZfoX/g2/sAAAAAAAAOBQbOwAAAAAAAA7Fxg4AAAAAAIBDsbEDAAAAAADgUDRPBqT3NunKyMg40qeALmKtsXdfv9ysrVhRZKTfd/EZAejLrGvOtw8PNmu9gxq6+3QAAFB662cwJ+IbOwAAAAAAAA7Fxg4AAAAAAIBDsbEDAAAAAADgUGzsAAAAAAAAOBQbOwAAAAAAAA7FVCz8qnjSeX145CQz31O1qatO53/k6nyZltV7uXrPbp8wQWWNu/aYtfEJCV16TgD6LlfXnFdvHqCyuspBZm3jwZwuPScAAP5vTL/qfnxjBwAAAAAAwKHY2AEAAAAAAHAoNnYAAAAAAAAcio0dAAAAAAAAh/LKyMjoONIn0VV6a1MmGt0eGZ6sh/O8Z6ns4/YVXXk63Y511vOsNfb07bPN2sFxulFyU/UQs3Z4UZnKJr+12+3zYi30btyr8L9lXnMuTTVro5qmqiyg4YBZe9xcP5X1u8v9eyBrp3fjmgOgJ3HNOTL4xg4AAAAAAIBDsbEDAAAAAADgUGzsAAAAAAAAOBQbOwAAAAAAAA7Fxg4AAAAAAIBDOXIqlqtO2zWnDFVZSNNes3ZZR6TKsuonmLVz0nQH7ZaC/mbtoSpde9oas7TPd+buKb2183pvwTrrPFdr7KPRcSpbMbTdrB3kNVJlvkMrzVrfmFiV/bQ+1KxN7Fivsr9/qadqibAWepqrdXP2rJNUlhbsax9kwnAV5e2ypxUdqvdS2bBBE81a/6wslf1txVKzlnXT81ytnSVPP6yySQFVZm1Bsr42DF9Ra9YukO0qix9wgVm7t22ayn57921mLWunZ/WV5yHWDeAMrq45l8cMVNnEwa1mrU9QP5XduHyz2+dw96RIMx9UFqyy6/YXmLV95ZrDN3YAAAAAAAAcio0dAAAAAAAAh2JjBwAAAAAAwKHY2AEAAAAAAHAoF90aew+rKdMHJ9q1AcENKlvQMsisHRqXq7KU+CVmbcHP+hjD4krM2uBAnS0erxuhitj/tr7SvAlwKuv38pYZUWbtG/H6mjOjUTe7FRHJKIhWWWjuBrN2xN369SL+usesDbx4hspemPqVWcs1p/tYP9vfXHClWTsovFplrRltZu2qinKVRRvN/0VEpiaPUtkh33yzdtxo3cTw6lG/MWtZN93L+vl++Mn5Zm1QwU8qK0kbb9YO+1k/kDzVbg+JOC5KX8vqp+lri4hISo5+/vnHs78za1k73aezjZK/2v+dmQ9b+L3KRt34XKdeS0Rk4+t3qGzy754xa1k3vVdvaNDNWjgyrPf+7vvswR4Fa3VD5Lr2/WZta1uFyt67wj6Hi9/SWUOjj1mbGRKmsreOmmrW9pVrDt/YAQAAAAAAcCg2dgAAAAAAAByKjR0AAAAAAACHYmMHAAAAAADAodjYAQAAAAAAcKheMxXLVZf1N6YFqayoJM2s/axDT5gpSLZfL/9jPalq3vx6s/adOH+Vraq0a+eJnnyzXMrM2nun6XNw9XNwYmduoK+IrWwy82Mnn6qy9q2fmLXlEVtUlthgT53JfumAyryG1Ji1q7euVtnkxFSzViTPRY7u0JZkX/srGo9SWUzKz2btoDVjVdYapqdqiYg0eOtj5I7Wf19EpHTVAJXFHT7erBX51EWO7lJYGmPm3gmnqSy7cqFZWx48WGXRg+xnl/Dsk1VWUa0ncImIBOXoCSShEY1mLXqHmuzlKiv88RGztqGsRWVPfWhfR+66YLvKPnzzWrO2UQ6pbMm6m8zaY6b93czRs6zPJEUf/9Ws7XfefSrrePYds9br9ktVlvfdnWZt6olPu3VeInxWOhKiP2o384SZenpi0bujzdq2FP18+0HYMLP2tBOKVNYgeq9ARCR6l34G29JfP/v0JXxjBwAAAAAAwKHY2AEAAAAAAHAoNnYAAAAAAAAcio0dAAAAAAAAh+o1zZNd8d8XorLBKboBm4hI5rYklR3TmG/Wbhmq97TaM+zmf5EDclSWHtZq1m6NilDZFYcHmbUbv242cwC9S9ZofW0REZm2dpHKmsKGmrXHHdbXjLyhuvGxiMjcbbqp8oqIbLO2X16pyk5oHm7WvkDz5B7VXrrYzGPrvFS2eZTdoDv4eN1U8NRMu/lfVpFufpy1Nt6svSrwA11rNPjGkTEsv9bMh3cUq+y9oX5m7axKXTs60m4y+XXqEpUl9rNrG6fr5snHfDfPrBX51kWOnrTz8y9U1hw8y6xtOmOfyoZm2U1PRXTz5LEDdNNuEZGQrbkqW7Fxj4vjoie5akb8zMsPq8xqkiwiUnG7zq0mySIiTd/oxt2BJz5g1uZkXayywaPeM2utfwcNlbvX/uREM98TWaCy6Nm6obKISHP/cSpL3LPNrJ0/tp/K3t+416xtDdTDlurq7eP2FXxjBwAAAAAAwKHY2AEAAAAAAHAoNnYAAAAAAAAcio0dAAAAAAAAh2JjBwAAAAAAwKF6zVQsV13LrQ7nB1fa3a/PGGlMoyly9Yp2Z25L5dKNKotK1B28/6NaJTcbmSt0bz8yzvear7LIDnvxVAXpiUMfNX7a6XO4QfTUiYQEu7YscorK/rb7326/VvxhewJPiW+g28f4NZkcbk8Wqh0TpbLCvP1mbeXqAJWNm+5v1mbExanMO77QrB1ZW6Wy4jp72hZ61pf/brBz+dKDo6ww/n7nPdHJv+9qigr3sK7hnWBfi4ffcIfbx9DzbFz74oWbVHbmpL97cIRMD2rRXb571X7XEyZtVdnWjfZk1nFr9IPHobZ2s3bnT0epbNT2n8zad5PGq+zs4SeatfLi93aOHnXHdQ+qbPeb9jUo+rd/VdmmD643awNP1hOwthz8h1k7OPlGlS14+naz9qw7nzVzdJ/4JvvZNG2vfo7dP0ZPjhYRGbhTPzfneNvPxy0LKlXWP9L+TOM/cb3KwnPt2r6Cb+wAAAAAAAA4FBs7AAAAAAAADsXGDgAAAAAAgEOxsQMAAAAAAOBQvaZ5sieSrSbJLpxbdtDMg1YlqeztM7zMWteNkrV713SoLHDwz2btQwnz3D4uulfkxBCV+WedY9YObNjQLecw22ie7FXsY9aWF+vz9URlSJj9B82tnTpuX7Xhw01mHj1N/w57helmbSIitbrPslSF2e/DgfIdKptYkGfWPpulrzmnn2GWimS7yNGj1r/0osqKvOxGyzUB+v9fLrnS/Qa6q161m1fuaIxUWVv+CLP2uqcud/v10DVOvuU1t2vPzbEbto8YlKyyR7zs/8878xb3GyU/vqtFZR1txWbtfWP0OaD75AwMMvPgzGNUtvTrx83a/dV6jSRf/ZB93NXlKlt4hv18kn3fFpVtSPzBrEXvNeK3z7hdO+nCl8y8+InrVJZgNEl2hSbJvUeTr/3sUlKmmxQX7c4zawtjdRYeY7/eR6MmqGx4qW7ULCJSu3GzyrLsS2SfwTd2AAAAAAAAHIqNHQAAAAAAAIdiYwcAAAAAAMCh2NgBAAAAAABwKDZ2AAAAAAAAHKrXTMVKT083846OQpVlbSswa0ePn6Syw5vsbt2hE/e6fW4t675Qmf+0M83ayMQslVXk2P829B4xpVNVFjLvW7N24A7j/cyxj5v904MqGzbvYbN2/yydhdTnmrVjs41JbbX2OVgaRE+yEBHxk3D3D+Jwrq45t5w1U2XjG/zN2uW5q1X25h779R4aorPa7fabFjJHT0OrPzzZrD20Vk9p89lpTwgQKXWRw12u1s0r941UWcD6ZrO2ukyPgPh6on07vtNHT5K5+mR70tApmdNV9lN8pFn7ySo9AeurgfZ1wZKRkeF2Lf7D1dpZ8PgtKstsXmPW/vFBPXVvTLufWTu0WD8/ufLYvfeo7P7HnzBrY1t3qayhZYDbrwXPuFo379yh37PJZfoZVESkpLBSZS8stJ+lP739bJXF+r5j1vofM1tlhw7Yz91/XqQnYN1877FmrYg9TRad52o9ueuqDj2JU0Sk/0Y9PfSRKfZzS8I9L7v9evcs0cdNPxxq1l5yvD3ZEZ5xtUb+MLm/ymrFHl+VEa+n7H6zocisvcX4qNMxZJBZOyrzkMoq/ewJwv80BmM/Od4slaV27Dh8YwcAAAAAAMCh2NgBAAAAAABwKDZ2AAAAAAAAHIqNHQAAAAAAAIfqNc2TXSrKU5HvYd140pUFJ3S+kda+2Ei3a+9NGd3p10PPe+zAfTo84Kp6uU7WfGJWNtfrTrobb9MND0VEJj9nN6q06QaanjQz9WqxG41BRA7q/e7v6uwm1lUp8Sq7d6zdOHJzpW7QPbw526yN26eb2OZ66ybJIiIPnK6bT4bt3mnWovuUL6xSWehso8m5iEyepJvdji/WDSJFREpyE1R2RpPREVBEPjpRN1U+sSDCrP1i2pUq2+vztVmL7jXlGN193z/vty6q9bX/oaGdb1w8erD7jdV/lz6206+HzptSGKiy8sSjzdqjIr1Utv0P9vVp28QVKmsuOMOsTSjYobLT49LM2pkbblJZ+YsBZi3Nk3tWwxL7uTT4GP1cOiK3xazdM8BujGvJf1+vhaSL/m7WBvYfqLLS3Ca3XwtdJ3SsnvJS26yboouIXJodrLJTT7WPu0jmq2xEmX3c/KJRKjsrxl578/z0M/on8Tr7j0wXubPwjR0AAAAAAACHYmMHAAAAAADAodjYAQAAAAAAcCg2dgAAAAAAAByKjR0AAAAAAACH6vVTsbz6H6Wygx1bzdr8/T+qLPFQilnbOlhPoajqsCdLFPjoYxR32N26v107QWWXx9gTiLyGR5s5uk/z8pVmXnp4kcoyvCeatX7FejqR/4Y6s9Z/W5jKyi6yJyw1D7pLZYeHJJq1IafcaubuapZIM/eV1k4dt7dKT09XWUep/bP1itMTQW64eppZG162TmWlJXrikYhIeIHuuF+XMtisrQseprKRwzebtS3rCvXfj+ib72Nvdn+mnspwTZx9XfAO+l5lAcvs/2f5ukNPWqyutc8hPHi1yg79ZE/F+m6Onrq0O7fEPjC6VdK0hSrb/Bd97xAReeqt21V2xi49HUlEJHeqnuCYu6O/WVvWXK+yzz/Qk9NERMIb9ZrM7Nht1t561Wtmjs4b+f7DKlsy93Kz9i8dekLsPbH2ZKHKXVeprDHmC7O27SY9ETTUrBT5+dtrVXaC6AmQ6HnW9CsRkY3fnKyyyYNdTTLT9n1hT7rq16DXXus755u1fiPdn4QMz5nPxwdSzVqvlI9V9ls9pEpERLyr+umwo9qs9c3Wz7ER0+3jlo/Qx/08237OCTg2SmWjWpbaB+4j+MYOAAAAAACAQ7GxAwAAAAAA4FBs7AAAAAAAADgUGzsAAAAAAAAO1WuaJ2dkZJi51dRp81+PN2uTz/xCZa0pCWZtUFaeysKPthuCjffTzZdcaa3PVllpfaPbfx+e82TtfL92qVk7+owslcVm6Qa2IiKFIe0qi7pgrVk7/OZXdPiGWSo1P+va7L26GWpXiGo9aOYtvkazsz7AWiNecXp9uBJ1QDc+FhGp9zpaZVU+urm2iEjrubqhceu7dpPjNw7qBs5i92uXa4/XDZgbxW6KKTSq7DRPrjdh8Xbz5MzKG1U2cMTrZq1/h/7/l4hBdnvSxx+1Xu9bs/aNW4JV1lGlm+Ki63iydib+8X2zdtk3usnpd9t3mLXHih7Q4OVvr535N71p5pbtV3ynsqOH6gxdw5N1E1E21qyd59OgsubBh8za0dW6GbdX1FyzNlB082T9hPQfYR/WqOzhY2bYxW/Z6x+dZ60nay2JiCT20+sp54NTzdpY0esmxNffrN0aqp9Bc9PtgSW5+/W5FWytMGtnnvGsmcM18/k4xf3n4xXN9j0lcnqpDsPsz1XnjM1X2aJPB5q1H1UvcfvcrmrUz8ctAfZgApG+8Vmdb+wAAAAAAAA4FBs7AAAAAAAADsXGDgAAAAAAgEOxsQMAAAAAAOBQbOwAAAAAAAA4VK+ZiuWJ4h1eZt5QdJHKzv7dg2ZtadQAlVX+vMasLc/R3dvr/e0pOZt3+6is9m17SgF63oiUQjNv3aunh0zqv9Ks3VU7SWV1S40pRiKyN+tdlZXv/cCsbav102H7BLNW5N8ucvf01elXnvBk0khbRn+zdmb8NpW9sXWUWTvRf6vKYsfoSSUiIvcG6EvzgFEjzdo1hXoKV/9j48xa+dGO0T1Sm2PNvL1kmcpOmqanVImIJA3Qk66+97UnQ/7wqL4ONbbON2uL2w+o7PQp+v4lIvL3z80YR8Cck+9xu3an929V1jo8yaytfn6eyjbstiejBJ6mJ2iNPXmx2+eF7jPx/jvM/LOPr1HZHns4pjTU6ukw6+3hRnLWgvNUtqXEnmYzIFpPb3u40L5XvWi/HHpY+5ZilVX3izdrI3auUlm5/xSzdtIt96msYqE9mc+vrEhltVH2dQxdw5Pn4/Yke6L0lrV6Cuvlow+btW9Vhahs4OQSs/Zmr2NUFpBiT+aKL8hT2YKgHLO2r+AbOwAAAAAAAA7Fxg4AAAAAAIBDsbEDAAAAAADgUGzsAAAAAAAAOJQjmye3lNmnHTheNxd94Z0rzdqZCbo2/+Bos9Z37P0qay9rMWs3Lw5TWdqA081aka9c5OgupSWnmfnMhk9Utic6xayN8itV2ai4EWbt4v26SZfPMLuZadRIe626y2pq5ilXDdN+7ZoD88x8mZduBOd1fJlZu1kvG4lIO2TWVlUmq6ysyG4kF5PSrsMDukklel7oJLv5+VE+e1RWkzzNrP2uWTdEHuL7nVk7KlA3qlywRTdfFhE5pqpSZUOTm83aJctmqszV9YZrSO8x+mm7Gan7frLjlzt5WPS48UWpKtsfa99T9gboASW39rdr35QElaXV2vfA0PhTVbZx50dmLXqHHQFDVFYUat9TRp5ylspa8haatTk/68ETHXn29cYvWTfnLSzjPtNbnDlCN0kWESmp1tmOfCMUkWFF+tljT3CTWXto3GqVnbXYbp6cEaA/x53YYA9DWS32cB2n4Rs7AAAAAAAADsXGDgAAAAAAgEOxsQMAAAAAAOBQbOwAAAAAAAA4FBs7AAAAAAAADuXIqVgzozrMPO+7Tbp27Almbd3PuSo7/5vPO3diIrLsxHCV+dQu6vRx0TVmnqg78YuIfNMco7KOnW1mbf+avTq7+v3OnZiILMjTE5IG+On1JCIy9aCeHrDgm7lm7Yg5evpN0NtzzNrBxqQbptyIjBtnTzfyPpyvssYIu+N+TFKxyp54s9HFK+rrkysftJ2ksu867KlJIva1E+5zNQ1qw7PHqqx+tT0B4tuT9QSsyV9sNGsHHz1DZeNu+8HF2S13kWsbv5qrsrIv9LRIEZGq7WvdPi56t3PT9HoSEZkVu0Zl3lFxZu2NC+wJSei9htysp7su2/CwWeuVv0BlQcdv7fQ5LHozQmWt9fb9Er1DvyT9uz6rQL+PIiILd21X2cf/0p/LREQq1o1T2Qlh9nFPeO8OlQ3wPcqsFensJEB4atM3du5rPP74pI0ya38wPv+MrYsyawfX6ulVqzrsiZ5Jwfqz3cqaWLNWmIoFAAAAAACAI4mNHQAAAAAAAIdiYwcAAAAAAMCh2NgBAAAAAABwKEc2Tx7/p3VmXvXq8Sr7rnWHWTsmJlrXPnuuWbtHdOPIWbnzzNqV/XWjsUN+dgMo+XyznaPbFH4RYOYpxyapbOS+PLN27fGtKlu08I9m7bhdCSrbOajKrJ2fmmjmPYlGybac0Dwz33KoSWXJgzeYtU+8oLO77h9u1ra/e1ifg3+tWfv5WN1oeVyG3YRQpMpFjs7a36o7BYbNsxuwTw4IVFn4GLupYH7lEJXlfGU3Zd751QCVVY21//+mrVXfq/Kn+5i1Iwr6mTmc55PM1XZupjRJdpp3V9xi5idVhqpsVVaBWTtzwwiVLfpzmFk7sPVklfVP3GLW5hszAfZO32nWome5evazhgUcevpVszZhrB4scu+f5pu1VW2T9GsF2IMJSqv1wkk7709mLc+wPW/OPH8z/3x1vMrC1laYtZNi2lVWeEKRWZuyZpjKYvvbz0RJ5Tkq842zPweKnm/iSHxjBwAAAAAAwKHY2AEAAAAAAHAoNnYAAAAAAAAcio0dAAAAAAAAh2JjBwAAAAAAwKEcORVLRtmTO1Ke0931o86wJw1VjehQWfRauwN3cYSebPTDod1mbeqoNSq76XqzlO7tR8CWKfYEhsivUlW2alywWRtcpdfU+u//YtYWBE5V2Uh/+9euY+F9KvM67a9mLWunZ+09WGrmiQETVFbw+hSz9vXhb6jsp9V7zNrWkTprKtSTAERE4jL1NIEHNlWZtayb7uOVs0llbTPt2iFNu1R2MGSQWetfX6ayuIV6qqOISMg4PYWizPtHs7akRt/XfIfaEycTtxgLEt2qMOcmM+8/+O89fCadwzWnZ7Uv0VM7RUS2e+lJV/1S9bVFRKTu2hCVhW8aatZmFekpa4eGNpi1Y1L12JlxJy4za1k3vdfek+zJn3PGvKayncufMGu9F8eqLHSWnqolIpJw3j9VxvroPQoP2c8j/Q7oz+qFafqzt4hIbIieFJq+3f7uSfGQbJWVt9iTuaIbIlX27j77utdX1hTf2AEAAAAAAHAoNnYAAAAAAAAcio0dAAAAAAAAh2JjBwAAAAAAwKEc2Tw5W7LMfFhGqMpO+lQ3WRIRGeUf1qXn9P/zjY76SkOmvmBI5TQz976qUGWhm+19zwHHP6+yz25IMWtDg3VD1czFk83aWQt1o2TWTu+QGJNk5qsy9PVl1NF2o+Xffd+mQ7t3sgv2tczCuuk+rn626enpOnzFPsaBp3WD7Uk++8zan+bq4+YW1Zm1e77IVVnw/HCzNrBGN2tuXlNt1m4u2Wrm6D7LlunmosD/JGrk92a+ZnO9yq4r0w3URUSixjzZpef0S7hXOc+4LXaz3JwfH1PZ4Nn3dPr1WCO9W0ioPVzhhDHNKiveqwcMiYg8XevBC2ZaYYtZulx0o+S+vp74xg4AAAAAAIBDsbEDAAAAAADgUGzsAAAAAAAAOBQbOwAAAAAAAA7Fxg4AAAAAAIBDOXIq1jCZYeZ7U3apbOQ2nbnS1ztlQ+RgiZ5+JSLiW3pYZaMj3f/1OOfFA2b+3IVHq+y2hSvNWtZf71XSarfsnxAaobLSzfluH5f3vG+76DI7T7lzhQdH+Vgl/3roBLMyLmCryiIX+5m1Q+bqa1beD/a16dRFOmPtdrNye/LZl9dcobIzXn2re8/FDayH3iEp4RIzT5j4tcoWHBjh9nF5f/Hf1lTbU5BGBTWoLH/N7WZt0lHPqow15kyBtVvN/P10L5UNjzzJPsiSb1XEevjf4Rs7AAAAAAAADsXGDgAAAAAAgEOxsQMAAAAAAOBQbOwAAAAAAAA4lCObJ+dlrjVz3xLdAHd/TFB3nw4cJK2+yMx/WnucyqYcs83t47pq8pWenu52LXqvLeWBZj6p/xSVRXodsg9S2pVnBCc4N9PHzMfN91dZ9aGzzNrHdryvsisf+r5zJyYi8qGLdWrgmtXzRvsVm3l9VIjKnvrwNbP2rguuVhnvZd8W5afXh4hI3v6JKqtK1s3/gf/Jiem7zfxAix4yEb1/QHefDo6wyqF2fsrCYSoLPlk3SRYR+WhJV57Rrxvf2AEAAAAAAHAoNnYAAAAAAAAcio0dAAAAAAAAh2JjBwAAAAAAwKHY2AEAAAAAAHAor4yMjI4jfRIAAAAAAADwHN/YAQAAAAAAcCg2dgAAAAAAAByKjR0AAAAAAACHYmMHAAAAAADAodjYAQAAAAAAcCg2dgAAAAAAAByKjR0AAAAAAACHYmMHAAAAAADAodjYAQAAAAAAcCg2dgAAAAAAAByKjR0AAAAAAACHYmMHAAAAAADAodjYAQAAAAAAcCg2dgAAAAAAAByKjR0AAAAAAACHYmMHAAAAAADAodjYAQAAAAAAcCg2dgAAAAAAAByKjR0AAAAAAACHYmMHAAAAAADAodjYAQAAAAAAcCg2dgAAAAAAAByKjR0AAAAAAACHYmMHAAAAAADAodjYAQAAAAAAcCjfI30CgNN43XKiyjpe+M6sbb7jTyoLeObPXX5OAAAAAIBfJ76xAwAAAAAA4FBs7AAAAAAAADgUGzsAAAAAAAAOxcYOAAAAAACAQ7GxAwAAAAAA4FBMxUKfFZx+vsoaMj4ya+PnXKyykmXvmbVN9QkqC3BxDgPXHlJZkYtaS8CM08y8efVCD44CAAB+rdLT04/0KZgyMjKO9CkAQJ/BN3YAAAAAAAAcio0dAAAAAAAAh2JjBwAAAAAAwKHY2AEAAAAAAHCoPtU8meZw+L/FT9NtivNc1FqNkn2nnGTWtozNV1n7b+y1F5sYq497mn3ckMbJKuuIrTVr9xhZ07X2OUyuPEFlP3fYx43/+BUzh41rDrrKxNfeMPMLpEZl3zaPMGu9EppU1j8n26ztP+MolT09a/YvnSJ6qa64DnHN6Bs8WQvDxvYz8+ztnox46BxX58t67B14xsH/FmvnyOAbOwAAAAAAAA7Fxg4AAAAAAIBDsbEDAAAAAADgUGzsAAAAAAAAOBQbOwAAAAAAAA7llZGR0XGkT8JTrjptF78WoLJFHw0xa8Mb61Tmm2C/3tGNoSorGths1oYcLFXZoEV6qolI3+/M3VPS7r/EzDMfe1dlkZdfatYmZRlh40GzduP8GJU1Jx42a4Oyc1QWuHq8WTt6on69HRuHmrVjTtHrLPPxL81adJ6ra86mLfrymTjiJ7O2cGOkyg4n2NNHJjedosO2bWbtGv+BKpuRFmXWcs3pHXrrtAhXWDc9rzesEd733s2TNXL0OH2fWLltf1eeTrdjPXYfV2vpzssGqyyz38lmbctSPZVx/2VtZm3Ek3rtJQa2m7U1Y/XntWWfbjRrWSM9z9XaaT3dX2Xvbw0ya5sHVKssToaZtVOG6s8/9c1VZu1n8REqu/9F/VoifWft8I0dAAAAAAAAh2JjBwAAAAAAwKHY2AEAAAAAAHAoNnYAAAAAAAAcqtc3T7aaMj1zephZe15Erco2lo8xa0OCdUPjUO9Ks3awb4vKNsfphmIiIiH7dZOv4SH5Zm3/93TWV5o39aTcR39n5nM+3KmyAxmrzVqfOdepLG5omVkbXaYbxLWk5Jm127bo5t0DR9v7qYer9FqvDra6OosEt+tGiCGhm8zacK9Ale198RuzFvY1p6Nqq1lbFDFOZf1y7EbaUuyrs5GNZmm97gMvTZX29emwv35/o+KizdoALy+Vcc3pPq6aCn6wV99266sKzNra/rkquy3xaLfP4f4Vi8x8yLDhKju0L9Gs/dPMYJWxbrpOb2iU3Fmsh+7TF9ZHd2LtecZaTxfdeJxZ+2Oubmh8ks9ss3ZPnX7mbm6xm+WWjFyisrFVyWZtan/9uSora6JZu3TxmypjfXQda+18fJVde2K+fg7dXK6fQUVEvPulqay1w34+Tp6cqbL8Q/bAkKp8/dx9arZ9XP99JSpz4trhGzsAAAAAAAAOxcYOAAAAAACAQ7GxAwAAAAAA4FBs7AAAAAAAADgUGzsAAAAAAAAOZYxpOTJcdf1/bIa/yvpnRJi1C/x05/SEIN3lWkTkcJifytb4xpi1O8fvV1nUEvschjTsUllmqt3p/aOrmlXm6ufgxM7cnRF/1nQzL1mwVmVzv7bf46q0ASpLS7/QrN2aqo/x2tWXmLUDtm5UWVj/k8zagOF6IsDOE+vN2rPPXqiy1hH2pJyUwdkqy3pyi1lr/3Tgidjb7WtDufcOlYVOrTJr63aOVJlPqD31LLw5XmWVpaFm7ZAOvRZq44vMWvQOmS2LVVbcPNmsfd2DCViWx2adYubHl61U2fhae4IjukZvmG60660bzXz1VD3pZt5B+/4j7bEqGsizC+BYYTX2NM8ZFQ0q25z0pVmbtEY/t6ccoz8/iYgULE5VWc0xelqxiEjCikEqO5C216xF13B1r3pjTIjKcrb3N2v/MEe/R2Ne0hN9RUSyYw6pbGTAQbN2ZYWe1Na6Sn+mFxFpT9CftyqCS83aT6fr/QYnfibnGzsAAAAAAAAOxcYOAAAAAACAQ7GxAwAAAAAA4FBs7AAAAAAAADhUr2me7EqCj27oFTPabnwU2qSbJw0eqBsUi4h81qyPcWGhbtAlIvL9vwNUdtnJlWbtm6t1dn2x3QBqYZ4ZQ+wmySIi/R46W2X7R+r3R0QkrWWIykpPtJvKLj/1Nyqb0H6mfW6T9Zvcr7HRrG0NDFZZy+pCszb7jTSV/bzmd2btHWufUZnPvWfZ51Ck928PluqmziIiAxe9a+a/doUXeZl5fVSqyiLDdVNaERE5VTdgztqvm7WJiIwK3qBfa+yxZm3xNn0taxg3xaxNf8o+NfSsR0cf36m/f8zZ9nWhfVKVypb94VOz9sdY3ZT5x06dFXqbFR/9XWUjknPM2sPxu1WWr/tZiohIapG+Hna8f5lZ62U0n+zNjSeBX6OvFtnPIselTlNZwt5AszbszH0qyy7WjdZFROKGzVVZdLN+7hER2VSv70zTC2aYtYvMFF1lVz/djPjJwXYj69e+1U2V/SbazbR9jENMGutj1qbm6PUXEp1n1v5gfH1l1mVhZm3mS0lGag846c34xg4AAAAAAIBDsbEDAAAAAADgUGzsAAAAAAAAOBQbOwAAAAAAAA7Fxg4AAAAAAIBD9ZqpWK6mJKQbExW2/u10s3bXHj0dJi+qw6w9eeJUla2qTzBr4zatV9mHY3W3bxGRmgnz9TnUjzBrT3/wJpUxLeKXFT30ucoKTvy9Wdtw9C6VjdlmTzNrz2tRWW2/arO2puRElVUmf2/WHqoLVdnhEfZEKp/ooSpLq/3OrN2cOVNlA+przNqgcD3axHvRZ2YtbP7HWd3yf33iG/REBBGRkuCQHj4TZ5h8361mnuqTp7KD2/S9TkRkSOQWlWV42VNJyvP0pKsTL440a2sCq1Q2zLfCrN1WZE8eRO+wY+XbZu4dXqWysgx7wl9ppb7f+bXqe5KIyKYwfV8LiN35C2cIJ/nyzhtVdsbT/zgCZ4KeUlj+g5m/4yI36VtVt1mY/U3PvdivkCefyQcdb0/pTBqeqLKIbflmbeEp+v6TK/ZnmvYR4SqL2m9/fj82Un/e+mST/Z2WB3KfVJkTP5PzjR0AAAAAAACHYmMHAAAAAADAodjYAQAAAAAAcCg2dgAAAAAAAByq1zRP9sTeRt0kWURkbEq7yj7IXmvWjnn4gMr8Tz3WrM0d1Kqyk7bYTSa/q8pW2ethP5q13aXaR59vRJtfj55DTxrRon/mIiLNeRNVFrrLbnIsu6z3s/NNs1Y/cKfKZlz9dKePa8mNG2vmiQ26YXTImVebtdlfvNal59RX1O3MMfPQ0YNVdmNUillbGakbub+Xe9CsLd+8TGUxE+eYtZPHpqlsaFOtWfvhnv1m7q76KBd/0Nypw/YJk95dorKW6DKz9vqlP6tsxYovzNqo03Sz27AGey3kVehzqPfX90URkVOqY1S2cFCDWdsy4Eozh2tWk8nuMvDAVjOvyc9UWWywbrAtInK4ZrrKIvv9ZNbWtfmrLHPP+S7ObqOLHL0VjZJ/fVatfMTMZx79QLe83s4Vj6qsf81RZu3eQ3erLCOzzqy98m96aAq6l6/YQzVqfXST/fX5X5u1o2P08/Gu8GvM2gOl+vP7MQfsz+RFuTtU1lp12KztK/jGDgAAAAAAgEOxsQMAAAAAAOBQbOwAAAAAAAA4FBs7AAAAAAAADsXGDgAAAAAAgEP1mqlYriZI5D16lcp2JNrHyN/dprK/vLbcrP3XS6erLLgi3Kw93StaZfXj7PEw9171jspe+dtlZq3Ibhe5e3JKq8w8wUtPwCpObbFr60I6dQ497fCVj6ustNSekjal1MUELDf94ZtPzLxljN4PfWrgOWbtjEfcn4D1bJbuLL8lKM+sfSd1jMq891XZB556qoqyn/yD2+fVV7m65rTXFqhsT9Uht4978flxZl4brY/x3mP2MfIK4t1+vdfT9HWvZZg9/erDh90+rCmwNcDM7ZkIvy6Jwd+obNiCQWZtWZiedFVjLxvpyNPTImKb9FQIEZEBBXpCWqPYUyjqBuhpWYH2EC8pS0swUnsyF3reW9kbzLyyVk/IvOd0e/JZ2vD1KstZbD83VHygp/Z5p9jTKeGZnpym9kbNHjPfG5yssr/6BnX69R4p0musNGeIWfvCDD21zxXrZ5aR0fmppk7nai0d3KMfPEoP9+zv76jgFSpbv1tPdRQRmXaNnqxX8e5ss/ZKYSpWV3C1dhZ9d5PKWr2rzdoTvv9KZUFLi83aR2brz+Qzfezn2OQ9/VTWmGo/m956ywcqe/kPw83avoJv7AAAAAAAADgUGzsAAAAAAAAOxcYOAAAAAACAQ7GxAwAAAAAA4FC9pnmyK98c0o1BTyrTjd1ERHbO36Syn/50uVl7oFY3VmsIGWzWtvrpRsnfHNCNMkVENj33vMryI1ebtZ3lFRNp5uUNujmib5aLrpjJzmqe7Puve1U2Pt1VszS9Hj544/dm5YVXvaKykOnjzNq6rBzXJ/j/553L7lfZpW/bHXM3Ruj3aHz/PLdfK2WM3Wwwk0bJHilala+yEUk+Zu2+zbo5+5CJdlM/S1P7PjOvXK6vRT9U6ia6IiLjo3Qj3u7S4O9v/0GTbsT7a1O9PVZlOcfoZsYiInsW65/XZ7n2cY8dqacFTEsYadYGDl6ksqJ6+7721+/2quy2ofb/9WzbaTSBPtssRTcrXXqJyuLmvmvWHnpGN/U/UK6vbyIi/Q8F6ix6klk7c9FzKvtp3+/MWnn5dTvHEdfgYzdhb97s/v/5fvuHR1R20qMPmLWB4UkqS/XTw0nQvQqWNatsqtcos3b7urdUNnbaFW6/Vs2W98x8Rd3PKhtQYzd2r1v1L5W1uxggIGIPzEHXqNinPxfFZ+smySIijw4eq7LFD9nXlsJg/UxTV2x/bj2xtUllWyLtz4EH/nGsri1xMalC7GbyTsM3dgAAAAAAAByKjR0AAAAAAACHYmMHAAAAAADAodjYAQAAAAAAcCg2dgAAAAAAAByq10/Fuv6lt1T27TkXmbURtakqW1bZz6ztCA9TWf8JO83afat1B+203faPbuOYl1Q2bv0ZZm1nDXK1LRcabGQp3XIOPa0kXU/5yJjqoni9jqzpVyIin806WWXnRA93+7z+9cF5Zl4/tlq/1tgzzdpzBgxU2ftun4GIhB0246KLb1BZv/de9OTIvyoDTtQLqva7L+za4/T15ZP2dWZtWp2eWvZ5VotZe+HUEpU1ltabtR0VS1WWVTHNrB09NMjM3VXlIg/o1FH7htNj9ESPlqoCs3ZgcK3KXjnO/ilubNPTtrY1rTFrQ8r0FMngjiqz9roBesLZoIgBZu2Ejo1mjp63OU8/e2x961qzNuF8PfXS52P7uOv36al7k0r1dUhEZM36+Sob267vX+g9vr7pFpWdGnKc239/6ROXmXl5hL6Hfb/Avv+cEGxfX9Czpl39sMoavrrVrG3/Rn/QKH32IbO2fLy+NtVvrzNrmyfraZ79zrUnONav26KywsBGsxbd69Ib9PTDH/+oP2OIiJy6R98TigbbUxk70vWk6tjteiK1iMiGtT+orHxrullbEzxCZaEBnXsO7u34xg4AAAAAAIBDsbEDAAAAAADgUGzsAAAAAAAAOBQbOwAAAAAAAA7Va5onZ2ToxkkiIunpuiFSzuBks3ZkS43KTvLRjSdFRFpCdVPbw2t1M0kRkaPv/8jMLQX36Sa8+yfopoQiIvKB24f1SG2VflvDIu3Guk4Tn/GZytpmXm/Wdlyu14nXv38ya8tubVXZZxfdZtY2F1WqLHtRuVkbuyNHZZGB083aL+5PVFl8TalZO+MfugPm1rpAs5ZGyTZPrjkdUcPM2ppyH5X9JtpuEHlg32aVXRhuN3HzCh5l5pZdzV+rbFSrvRY6Kzm8ycxLmuxr56/JHTfphpQnPX+1WRsUP1dlYRW6+bKISFm1vnb7Z9u37oRk3SR/W5CfWTt2ZrPKcteEmrXeJ/Y3c/S8gMNjVRY8+qBZW7dpnMoyj91m1o7K0mtqb6O+J4mITK3Uzzk/N2WZtegdIibsUtlrL08ya6f6XqGy0PLdZu3Gn/V1ZMaEKWbtZ6fNUlnbrDyz9ry7PzVzuM+TZ5ztDdFm7aSTqlRWU6rfcxGRukA9AKB9/x6z9vjLXzdzy777FqjMZ7J9HUPX8GTt5FbY70Vqsm6+n1egBzyIiIytGa+yQ4n6s5aIyG8+sRow202ZP7nyXJVtTjcGDPUhfGMHAAAAAADAodjYAQAAAAAAcCg2dgAAAAAAAByKjR0AAAAAAACHYmMHAAAAAADAoXrNVCxPjIzeZ+a1FbpT+5bhA83aiNqNKpvYav84PnzxZpWlr64wa7MC5qisJNKeJtBd+soELHf5rHrJzDPT57t9DK+P9eSYA2fY3fxnr0tSWUp6qll79D1/V9mCR8rM2phmPU1pY3KEWWsZtc6eVJDt9hHgSlC0PQ2qfleYyjIH6klZIiIdlSN0OLjWrN3Skauy8avta1nptqUqa5yip7F1hZISpl95ona/PR0mKlbfP/b5rzdrq3L0epp8/iCz9uF/6GPcf2mIWRuyXU9eKxyv152ISGblMWaOnjc+UE8aOTi00aw9uGynytqrhpu1Maf+XmWH3tATRURE1u09XmUhQ+xrGTxjTaOxJtF4qk4iVdYeYT9fVGYVqaxq4jqz9s57N6hs/1EnmLUbz41T2fi2GLMWPasuz76nfH2Knnh06sf2tDyvYH29OTQ0wazNfU9fb1KLJ5u1B5pWqCxFdIYjY1yB/Zkzy+eAyhq9ppm1Vc36c9GhxcVm7caXnlPZfn/72SVC9PWp3/v2BLi+gm/sAAAAAAAAOBQbOwAAAAAAAA7Fxg4AAAAAAIBDsbEDAAAAAADgUI5snjwguL+Zf+9fo7KIeruh3/Q9uhFp02i7AVTVbt1IrjTWbmTqF6obOJXsP2jWdpdwryqV1XRE9ug59AoZP+jMRRPC5MRYldWsKTRr10XrdeK1r9WsffT+R1QWkG83T86aqRuqzlnvZdZasje853YtPNPuFWnmTZGDVead9K1ZG1wzXmX1FfYaqyrUayzbz26OPXzqsWburq5ozGk1/IRI0ij72r+6fKvKQpfaDXD9T9LNBg9lBpu1fzlls8oyP6g3aweKXnshLUPN2iGTW8wcPa91VIfKijaFmrUFAfr6FDZRP8+IiBx6T98/8ju+MGvrY3VL/vTDKWYteocVkfpxf6ZXqVm7Z6ReI3F5p5m1n70zWmU5uyaYtTMb9dCSgrACs9YT3H86b2q6/dxS8pW+16z1jjRrZ817TWXrv37SrG0c3KayVa/YzzjRl+uBJbL5VrNW5GIXObrL7ll2A/TQ5XrwQ8jFS8zaGbv0c87KSfZ3T7YX68/ZQYn2OUTmnaqyzEu/MGvlZzt2Gr6xAwAAAAAA4FBs7AAAAAAAADgUGzsAAAAAAAAOxcYOAAAAAACAQ7GxAwAAAAAA4FCOnIqVG7rFzEdGn6+y6n9tMmt3XhCksvMvfqVzJ+bC9T9dbv/Bo93ycr/OCViddGh4mMpG104ya4MD9JqaffPVZu0uI8uSQLM2dqxeED+MjzNr0bNaa+yJeakNxSpbuy7NrI0L2q2y0EHHdO7EROTT5etVNr5FTyMQEdnSoaesDQvNN2sDQoar7PCTF5q11mQtJpWI7Ohv//4+UxChstrL8szaCQ0HVBawZqtZG9eib+knzLLP7ZtovUYaDtiPBJWFeuIkjoy4SU+orHDBh2btrD17Vbb5qmfN2txYPdkxqS7crG16SU89Kk/eZ9ai8zy5lrqachgToKepjd0+yqztaPZX2VEPXWOfm7ykslqZb9buu1NPwIpJLTdrzdfintJtwiJCzLytXj/PxNXZ09T+vebvKpt61E2dOzERKTpLr72KkdyTeovmugFmHjpFTyZO/cieBLvxpASV/eaqxZ07MRH5/pp7VTZ+YLKL6g2dfr3egG/sAAAAAAAAOBQbOwAAAAAAAA7Fxg4AAAAAAIBDsbEDAAAAAADgUI5snty6/1QzDww4qLJhU1rM2qzNRSrb/Du7Majfsbp5ZfpFq8zav9wUpbI/zvu3WesJVw3xukNfblDn6t9m/Xw/e/w+szaxSTfeOvTce2ZtcUmsyhpC7OZhASW6seBdD31h1vbl96g3WhCom92KiJwoP6nM3+c4s7ahY4TKMpbohpYiIvtT/6ayUxrnmrVeo8eZeU9iPbqwxb7F3vHZNpXd8Fv7/1kKtlarrHHcaLO2eJC+31UV63uSiEj74j0qe61a3+tERIIic430frP216Yn782utDdsNvMlp1aobNbEa83akD260ff2xgC7dow+7pjBb5i1XBt6lifPONPu+pNZW+vzjcqyTioxa5tH6WtRyMzPzdrUrXpoyXEXfWvWsm561tKOYWY+sDFPZS1T7QEgJ2fo+0f1Q2vN2oDj9TCJLVn6vigiklCjz6Hc3z4H9Dyvmplm3uyjB3NUDRho1vpF64b8C/+pm7iLiHj56meatkF2A+eab/Wa9Nmtn336Er6xAwAAAAAA4FBs7AAAAAAAADgUGzsAAAAAAAAOxcYOAAAAAACAQ7GxAwAAAAAA4FCOnIqV521P7hi7V08baoywJ4IEx/9GZYEh35m1tcEhKlt+w7lm7ey/f6KyJ2+1u4Df/fx+M3fXR+PHm/nBM/JUlnhQ/xtERC7816FOnUNf1nxAT6MREZn+0ksq+/TpiWbt3ugTVXbWsf3M2hGT9FQRJkP0DifFbTHzylj9/k6UVvsguV4qqkqsNUsTGvSUgaqSkWZt3b7lKgsdMtusZT31rKjB+8y80sgi1g43a6/L2qWyK6barxe0r7/K/ALsaRH/qNbXN1fr48q3T7dfEL3CgQj7PT5pzJMqK7nenma2P1JPMKk8wZ5KMnfwEyrj2uI8W1usaXciN76wUWVf/9WefFPRkamyyspGs/aWv3yqMtZN7xAdZr9n/t6DVFb3vf3ZpTFVT/4sO9t+xgnfoqfATo+zP9sdaB+qsjEn6mubCOvpSBgVtsLMvU+KVpnP9zvsg3yzXUXF/ZrN0kLfGJX5Fei1JyLiVVyqssvf0dcskb6zdvjGDgAAAAAAgEOxsQMAAAAAAOBQbOwAAAAAAAA4FBs7AAAAAAAADuXI5slJ3g1mXhiarLL6OXajpqsn/qtLz+mXuGqS/OHdwSpLT093+7j/aNtq5icsCVDZkkNVbh8X/xE7OsfMv/jTXSo7886nXBxls0rudVHZVxp39UX1frp5n4hIw5v6PWs8dY5ZGzxYN0/uLqyl3mH5Jc+YefoT+jqf07DXrD3laJ29pfus/xc9QMDOPFsj/7rsK7dr0fNiCnWDSBGRVUseVVn8MX9w/8CP2THXl75hmNSZ+Zv/uFBlp974Qqdfj3XTe9VuLzfzygT9HDy17lKzNviC47r0nH4Ja6n3SBoTaua7t+umymE/jzNrj1qyUGVP/mGeWZtcovcAYsLt5+v57+imzH197fCNHQAAAAAAAIdiYwcAAAAAAMCh2NgBAAAAAABwKDZ2AAAAAAAAHIqNHQAAAAAAAIdy5FSsoSfYnfxr361QWUvQFBdH+UklPd0p25qA9fbxdm3U4Ukqqw3aadauadXTtl7d12zW9vXu4J2R0U//zEVEJvx0UGUfv2Ovs/Mu3aCPy8/ccRo+jDTzsRf7qCx/VbHbx2Ut4L8NSRxj5r4N21Q2aNZIs/YfK3apjDXWvXrDc8Ow2CSzdlC5vj598PzjZu2Ft+p5jaydvm1fvzAzn1gyUGXPXvq8WXv7O7eqjHXjPAPyysy8Nn66yjZO+9nt47IW+r793+4z8z0xM1WWdmKNfZAlOrr7Uf053VO/xvXHN3YAAAAAAAAcio0dAAAAAAAAh2JjBwAAAAAAwKHY2AEAAAAAAHAoRzZPPpRVa+al01NVdniPbnTbW1hNnazGiP+xyYMjN7r1WvhlsWHLzdx/8FSVlTZFuziKbp4M5xn++yIzX7ZHX4tGjtSNJ4H/SeEueyhAVbzOxvtXdvPZwEmKD9hrpy5KN7VMnNHa3acDh5hUbq+FqiF62Mb0uBz7IO905RnhSIkPnGjmNe16GMSszfXdfTpwkJrTEsx8VInOm/YNdnGUz1TC59b/Hb6xAwAAAAAA4FBs7AAAAAAAADgUGzsAAAAAAAAOxcYOAAAAAACAQ7GxAwAAAAAA4FBeGRkZHUf6JAAAAAAAAOA5vrEDAAAAAADgUGzsAAAAAAAAOBQbOwAAAAAAAA7Fxg4AAAAAAIBDsbEDAAAAAADgUGzsAAAAAAAAOBQbOwAAAAAAAA7Fxg4AAAAAAIBDsbEDAAAAAADgUGzsAAAAAAAAOBQbOwAAAAAAAA7Fxg4AAAAAAIBDsbEDAAAAAADgUGzsAAAAAAAAOBQbOwAAAAAAAA7le6RPwAnS09Pdrs3IyOjGMwEAAAAAAPg/+MYOAAAAAACAQ7GxAwAAAAAA4FBs7AAAAAAAADgUGzsAAAAAAAAOxcYOAAAAAACAQzEV6//iavrV0udPUtncW7/t7tMB0EscPOkoM0/+dk23vF7zVRepLOCN97vltQAAAHoj67MZE4gBG9/YAQAAAAAAcCg2dgAAAAAAAByKjR0AAAAAAACHYmMHAAAAAADAoX61zZPNZlx/tGtrQmu6+WwA9BYtv7lJZSfNGGLWHrz4LJVVv7fArO0/7UyV1Y6ba59EXpiKos473Syt/Pgr+xiGtht0E2ifF7unATSAI8vVQAh30aAU6Hs624zY1XWls9eLrjgujZadiXtV1+EbOwAAAAAAAA7Fxg4AAAAAAIBDsbEDAAAAAADgUGzsAAAAAAAAOBQbOwAAAAAAAA7V56diueq0/dbxOotM0hNuRER82xZ35SkB6MX6B6zX4cd6mpSISHL/bSprm/4bs3ZnfIXKpte/Ydb61U9TWeZP9vSr6ln6YjZ0VqJZW7jDnqyFntXZCRDdhckSvZ8na2fGHy5W2eyBK8zayg36uuXJa7F2gN7FkylTPT2RypNrS0/eL7tr4tevkSfv2+U/vaayVQv2mrWJ64I79Vp9/b3kGzsAAAAAAAAOxcYOAAAAAACAQ7GxAwAAAAAA4FBs7AAAAAAAADhUn2qebDVPuuptu3boRv1Pjzy+3qyt/CHcSGvdPoe+3qipr+oNDU5ZO10jcPq9KuuoX2LWtkw7R2V1U7aatVs2zFFZWtRms7ahYbLKSoaHmbV+RbpRcuIlx5m1Y0YMU1nBjlCzNiZ5lcoOT7DXef0W1l5nubqGnHXRXJW1NR02a+sbElSWEBtj1gaP1VnVtgN2bWGzymgc2Xu4ei+uvvR3Kjt++HCzdnWwfqYZVDrerC3bUqKyJy85xT651iEqYu30br3hecbC+vBMdzU57ora7vj73YnPa13D1Xt87TsPq2xOXZVZ+9FKL5UN215s1qbN0M+8TVOeMGvnevmorK/fq/jGDgAAAAAAgEOxsQMAAAAAAOBQbOwAAAAAAAA4FBs7AAAAAAAADsXGDgAAAAAAgEN5ZWRkdBzpk/CUq47W/7xIT5ip8k00a4dvzFdZ4yMhZm1g03kqW/d6rlnr17xbZY+uyjZr+0oH7p7kSYf97poS0Bt017/NSWsy6Tw96Sr/48fd/vtBN55o5vE+h1TWUjTdrA3MLldZ7eQWszZmTaTKOtLtSUiVGTtUFjfUnlBzcPIilZWvTDVrq1v1hKSRiePM2vZyPSWnIDbNrA1662kz/zWxfs/GxEw1ayccf6bKWmIqzNqMAj2B8aq6tWbt9oIglXlPbjBrS+v1VKyg+glm7afffqjPy0HXit7OWjszzn/IrG0bvV1lR/3Q36z1OeGgyhK2WVM+Rfal6ekhJZk6ExEJSC5SWVl7rFm7+G96NClrp/u4ut/fPuNKle3PrDZrky7THwu2tNprbECznrxWOUg/B4uIDMrUkyH/+cnfzVrWiGec9gzbW7Hufpm1zp44Sk+/EhHJCtDTO/2T1pu11SekqmzADntwd9H2bSpLu3SXWetdO1tlFRvs+9pTr/1DZU5cD3xjBwAAAAAAwKHY2AEAAAAAAHAoNnYAAAAAAAAcio0dAAAAAAAAh+r1zZOtRk2vXG03Pgry0k0BU728zNqD20aqrCZHN1QWEZl8x3yV5W1eYNYWHAxQWfvAArP2tg905sRGTd2huxrBdXTo5qIiIl5ejd3yet2lfmOyykIm60aZXaG3rsmOy85Q2QCxrw2VXnoPe0e53bh4ZKxunjwiqMmsba0dorKiGN0wTkQkuURfGyTGfs/2VRSrLLLS/rfVeB2lsoAW3UheRGRA3fcqy0+2a5OGDVVZ5mMvm7Wwr1m/nXuLWRsWohtTb2uzm/cv++71zp1YD+ut14vewNV9bc5FZ6nsmFL7OrJutB7c4N90glnbUPS+yob7Hm/WFlbphpQDAuz7ZaL/MJVlBOomuiIi5QPaVfb9s6+Ytawdz1jr6fz0R83a3cm6EekJk382a/dljVVZXrkeFCAiErtT38PCZowxa31Gr1TZrtX2Ot/6s75XsT5oknyk/NrWnssm7G//RWUTPswya3+MuEBljbGvmrXHB+rG6pub7efjfrujVJYTNMisbTta39dmZ+h7kojI5vWBKnslSzdUFund64Fv7AAAAAAAADgUGzsAAAAAAAAOxcYOAAAAAACAQ7GxAwAAAAAA4FBs7AAAAAAAADiUbpPvABllo8z86J0tKjswLN6sfaegWmWTp/ibtU2fLVfZlyn2MLFBw/Vkk/LmNLNWJNNF/uvSk13+nTb9ypXumoBlcfX+HOmu8F5vf6myQhe1/c7S/4YoF9va8WWnqqxi5Hqztm5Lq8r6l240a7+9dbjKqvLtaTanvqKnxnz094vN2nmvH1BZ8Z32VJKq25JU1v7Jp3atmcITe45bZ+YDD+j70rJXjTGJIjJuyBUqS0//1qzN26GntG0O0Pc6EZFz2georGy6Pflm08YRKhta+rVZa10vjvS14kiwfg5Dz33QrI0euVNl/oP177WIyLeP/GSkVmb7Uba6XeuJ806NM/PY0mtVdtHN55i1rJ3Oa56pp0mJiKR7n6Ky/Tvt56GilO0qGxOqJ7eJiOQfpSfUNLXvN2sHhOtptBMn6QmQIiJb7YFdv3qufh+YltU1fo3XG2vtPH/yXLN23cv7VOZ3frNZ+/atp7t9Dp+I/TzRaV/oaMizfzNL6+v1s9KfjtETAkV6972Kb+wAAAAAAAA4FBs7AAAAAAAADsXGDgAAAAAAgEOxsQMAAAAAAOBQjmyeXNRmN3zrGNukMp9j1pq1VwQfVtnyA7q5nIiIV5puVHnUnmPN2viQdpW1HdBNU0VEvqJ5creyGll1RYO53cufV1m/dj+zNnhnjcp2+uoGtiIi/v3/pbJRpy1x+7xoqufa7vZpKmsLqDJro3fpJm6v3X23WXvOgQ9V9u71d5m1w/asVll4ZI5Zu+7vukF8SvAEu/a83SrbUq6vhSIiTx7Stb2j3VvftOoB+/6zyoNjbNv3lpG5qrYbkVrekR061D18/8tmlZS4/Ur4b+eGZpt5qa9uPHz/nz4xa196Yb7KEqPsZsTTI/VC2bfbbmy75XCwyqYMjzBrgyP0Qkk77gez9ndzIlUWF6cb7qJrxO8/yswrgkpVFnBSolk75tUwlRUFfGPWBlfoZ5/qOv3cIyJSleijsn5+tWYtbH3lea7gvWtUllcRbtbOuOnpbjmH3tLstjc60KifmUVEvk7XQ0tqb91l1q49Uzce3tdSZdaW+uphARFtepCJiEjuQb0HMCHVvqfkeevhILfdfrNZe/ZnD6is9k3787uIbjDfW/CNHQAAAAAAAIdiYwcAAAAAAMCh2NgBAAAAAABwKDZ2AAAAAAAAHIqNHQAAAAAAAIdy5FSsQWWTzdw78ZDK9i20965yBuju6yfE5Zm1mcUJKgtMsjv5Z3XsUVn8noNmLbpGd3W2X//djWbeUuqlsrKIfLO2Yozu3l4R32LW+u6Zq7KORYPMWq9T9AQtV7prOlhv1HHdVDPvJ7Eqi61udvu4Xtvs93fLk8epLMyYPCUiUpoyTGX5hXvN2ul+Ifq1KhaZtfOT9KSR0RWtZu2TZorusmj97WYeuUlPIJoRlWvWltcPUVlR8GCzNqJCT16rG5Vn1noH6GMUNtnHnTtPT4Xz5LrbEh9g5v4l7v8O9gXLBtjPI6vvf8ntY1x/izV9yp5I1Ru8vuwOHS7r+fP4tbj9BXuS2Q8frVNZvwj9LCMiMvNeff/Z+8YkszbukmqV5W60J9SExenpOfXxQ83aT96wJwr+mvTW57TmNX8x8y3fRqps+p9vMmsHXPyqympW/MmszX3uTpUNuq3zk7Ksn29+ZpZZW9mhJyn3Za1j9TRoEZHaF+wJWJbpX3R2cpSeUOtSFwyp+vycRzp/kF6Ab+wAAAAAAAA4FBs7AAAAAAAADsXGDgAAAAAAgEOxsQMAAAAAAOBQjmye/NTqj7rluK97VF3oQW2lZyeCHtey4HGVHf+h3VjwwWtrVDbsgN1Yrb1GNxGsyRlg1p77L90Et+P2KWatiPvNk39NhoXoBsUiItUDd6oscon7zfBSxuhmkiIiFUW6SfGmpfVm7RmxVSrzTxpu1m7J1k2348NLzNo/f6eb2Nbn6zWKnteemmjm43f4qezH3LfN2tryj1U253h9vRIRKawNVVma1/Vm7T9+/p3K/CoqzNrOimsKM/NqcX7zZFcNTn9/4kMqC933iVmrW167tnPxBpX57D9g1pbGJans6NOnuf1a6/a/aeati/QAgJaJbWbtsdPt9Wd5/pL+KnP18+2uoQlOV7nPvq+d2X+kyh5Y/ZZ9kIpSFfn+8xqzNDVjoMrSUuxm6a+2l6ls+Gv63oz/8GSNd1ej5dxv/6qy5S26EbeIyNzCmSrbtOIps7a5sUNlQeX6vigiUp8Wo7KMJx82a9PvftDM3XX7Vw+Z+R9Pe6BTx+0NXK2R0568RWVx6+NdHMX9LsUr1n6lsqwQe9shMVQ/854y6By3X6sj7z0z//daPagi1Mtuyvyb899w+/VOfVM37+4t9yq+sQMAAAAAAOBQbOwAAAAAAAA4FBs7AAAAAAAADsXGDgAAAAAAgEOxsQMAAAAAAOBQvWYqlicd3S+7JsXMUz7Vnfgfqch2+7gPT7DPIXD4aJVtm9lg1r5/80K3Xw//YXUM74ru4tYxVm+wJ3Ss89aTqg4nDjVr7324SGX/evR7s7Z/np6sFe411qyVMj3ZxOvRSLu2k1z9HK2fmZOmj+x92u6MH336aUaaZ9b+818Xq8y7wr7mxMR9p7LHP1xl1g6/WU8VGRamJ0OIiLR1xKnMt9KeLPTmWz+q7O93jDFrP16cZeZwn6trU+b6h1TWUKGnwIiI7PbX15b599mTjfL/eZXKKvMKzNrm6HIdri02a2/6oz63xXfqSQ//caeL3D1F+/PMPChKT/HqKwKal6jsmQ93mLVv/l1PLBpbO8E+8Cj9fv78mT0FL2i+nl6z4a93m7U5/fS0k/Af9VQtEZFXFr6lsjkJF5i1nljhc5SRft7p4zqdq2vOo189obLM/eFmrXeazt7+nX1tuO7N81VW+U6VWdtQmqCybbPsyTmPnqOfkz5fZU+cFD1gCdJ9069cKazSn3U+32Ffx16cuFJlD4b8w6yNLNqrsoZ9sWbt3w9fqbKWcL1Gu8I9V91j/4E9lLRPaAqsVdmfPn3BrN309ESVfee12axdVRatsh8P2teG29v1hNjXLjRLJX6LznZ/PtuszU/YprJTRxsXQw/dGJipMnvWVs/jGzsAAAAAAAAOxcYOAAAAAACAQ7GxAwAAAAAA4FBs7AAAAAAAADhUr2me7MpT/XWTyX7lunmTiMiec9fo8BX3X2vAbN0ETkQkN6ZdZYMOLHP/wPBYdzXsHRyiG3SJiDT+WzeZXPXEZWbttNNOUFlA/hlmrW/DRpXFRP5sn1zWffq1zr/ELF2nD9slnNQo2RNhARFu107ZNUhlW3x0U0ARkYEtp6rsnVd1w2wRkba1OstrtvfWwwPrVOY/zG6u+/Zzutmzf1CTWYvuk1DaqLKijkCzdsWQT1SWu/SPZm1irm4y+WrKYLP2hA7d6LLmCqPToIjknX2vykq/0k27u0LSIPt8y6v6bkfK6JSzjNR+bhgwaIbKmu3e/TKgNEdl586uNmv3naGbkQ5aYjdhr2nXDeb3zrGvI7e/f63KktvGmbWeGJrVPeuvr5rmrweGJLba15yD2ftVtukbe5hE4V59vxw8dpFZ+6m/ft/HVNpDAb577t8q83/avj6JPO8ih8WTISSemBSg72sz7rSH0tz52nEqqztor5uoUD2QIjPOHkrzip4fIJe8YQ8Q6KykEvuaVyJ+3fJ6vcGpm5JVpkdy/Mf2J6JU9vkjdgP0v4QsUNnlh+37REZki8pKAq8wa8sm7VHZvLH7zNrU+q0q27zvZLPWE21L6jt9jO7CN3YAAAAAAAAcio0dAAAAAAAAh2JjBwAAAAAAwKHY2AEAAAAAAHAoNnYAAAAAAAAcyisjI8NuX9/DPOne/sdxU8w8em+wykqG2lMohs/UHdk3lNkTGWYf3KQynxR7Mtehnbozd2z7RWbtJTteVllfnUp0JHiypt79s54O8WLlhWbt63O/U1mjv91JPzdZTyDpV2+PO7n8tWKV/XCLnogjIjI0nbVjSbtrlplnPrVCZZ6sj8wHTjfz71rSVDZ9lH1JDfxC59vT9HVIRCQs8SOV9R+jJ9yIiGwv0hNxhrba09/mX/KSylg3nvFk3ZSdc5OZ+92k/0/F95Cevigi0jZUXy/0TIj/6KjT09SSouz7Wm3IYZWFby0ya/ud/2eVebJu4gOizbykucLtY/QG1nt/8/Rnzdq/rb29U6+1cMEVZh4/6ByVla34xqzt51+rssaAILO2uEhfiypGlZu1QYmjVXbS+5vN2phn/2nm7rr01Xlm/s41P6msr17LPLnmVL1xp5kvb9HXl9mx9r0qZ0erynLjd5u13g36XtMx1p4g1LSjRmXTQivN2iFX64k6ffX97QpdMQHLkvn5DSo72DTfrE310e9PRLm9FsKS9bU/tEHfk0REyvL0pNLqdHsy19CTXzBzd53x29+a+SO3d+563tOs9TDt9/a1Yd0rT3fqtWZfaA/YvqNM32sGjJxm1tY062lbm6P0ZyIRkb2H9USq2aH6c7qISM4BfX3yz4k0a+9Ztt7M3XX3SXrqn4jIk99errLuvJbxjR0AAAAAAACHYmMHAAAAAADAodjYAQAAAAAAcCg2dgAAAAAAABzK7nh0BLhqJGQ1gDr9Nt04SUSk8kvdJKllrf16kYW62W3ZvlKz9oLtRrjGbhR4d5LOMn670z6JHXaMrmGtKVcN5sanj1PZQ5WfmrXLMxpVNjvQbtqbFLtFZf3ifjRrXzpFNw/Lqm4xa2GzmiS74sk1J+2Rr8zaZ9/S16K9oQPN2o4R+ppTdMhuTnrlo3bTd8uCv8xW2a6AQ27/fXjGk3XTev65Zm124ScqGzzavh37VeuGo9tX2w0pr7z/D2ZuWfXFH1UWlaevbV2hujHP/gPv8G55vZ7klZHXLcctftleZ9HP6ob8Ca0RZq1P2CiVlc3YYNaeM1yvB1cWPPFXlX10rItiu7e02xq3DnHxJ7p5cl/lyTXnwA77+SJloh46UjTWbtieuUc3NA5om2PWnn/nA2ZuWf2cboSdvdtuxCuimyfDM56sG1cqa6eqbHq73dR2ff88lSWE2df4JuOzUnalPSAirkI3gS9N6/zHV+vnE11lf9+hQuzfFSeZWW2/F+s6edzfLtRDRERE6ufq+9KqDnvQzMCSpSob87X9LH1XgW6U/IqLc/t3pG7gXHiZPSRC3H/sNgUn5nbuAF2Eb+wAAAAAAAA4FBs7AAAAAAAADsXGDgAAAAAAgEOxsQMAAAAAAOBQbOwAAAAAAAA4VK+ZiuWJgFC7o3XEdN2RenCh3QV8z8ES/fcTBpu1n6afo7Kh8xbatZ/r6Uo3J/mbtW+YKY6ElBLddX9Q24lmbfict1V2KMSeJjN/oh4Jkr36RrPWV6JVNqkx36xF73D7Fe5PZql9R7/vm/MSzdoPrj1bZWNaD5u135THqeze57m69AY+PlvNfOCQQJXlNlabtWG5+v9fTph4pllb/NRNKmsYrKftiYjEJ+uJbg3B9jl0VnMfmH7lStXcLPsPFnXuuKUneJn5smtXq+yc8f3N2rGD9TG8SvXaExFZ/vsvVdY/TWciItkNmSqrft0Yc9MFmmvtnwNsG0fMNfNLIvTEoQ8/2GbWxkboaY0nHbTHuPZ79EyVBQ7X9yQRkf4NVSp7z9eecgvPuJqA1VkD/beq7JMOu/aENj3xaLfXaLN2/NjbVbbzj/ZUx/JAfX2L3dQ966Yi0vnTr1w5NDKnW44bcaZ9D8xfMUCHcXrKmojI9h+rVBY0QE8VFhH59ny9Hj4eoP++iMiCVXUqm1Q03qwVOeAid09muH3d62l8YwcAAAAAAMCh2NgBAAAAAABwKDZ2AAAAAAAAHIqNHQAAAAAAAIdyZPPk/AV2g8fp45pVFvz8bPsYn+gGhEdvCDFrm0N109K8N1LM2kkXbVBZcbHdLAq9x/7YKpW1F+o1IiIyOmuGysJD1pi12T/er7L4kkKztjY7XmWxSQPNWjhP2KX/ONKngB5W4LXbzA/u1Q2Np0UGm7Vz3/tCZYPj7eMmS4PK9i63m2r+uLDUzN2Vnp7eqb8v0n0NP3tS1SD7uaGz6nfXmPlpR+m1s7K92Kzd90E/la2tsc93UNozKktae71ZGzFO39cqjtLN/0VE5As7dte0GPv5aaG80rkD91E+eg6EiIjk5evGnscPSDBrM3YMUVnpcVVm7eEDxtCRFfZ6XDnBT2VzO9mwFK65ukZb111XtRuaR6gsbYhuSCsiEtmivysQXl5l1i68/0GVDRxsD8YJ+e2jZt5ZntzD+sK9ynd6ULccd9lhe7BH+j16oFFYg32Birj6GJV9499q1s7cpD9/nxdjX0dWn6GHBQzd95VZ21mj8lq65bie4hs7AAAAAAAADsXGDgAAAAAAgEOxsQMAAAAAAOBQbOwAAAAAAAA4FBs7AAAAAAAADuXIqVjLYwLMfGJKm8paf9RTqkREyjZ4qew2F9NDRNzvhv5Rrp44cWa0Pd0CvUdcfb7Kcpp1N3URkQ+HJaps5AmXmLUDRE+6WSd67YmIHP/a+yrbW+pv1qJvuONoOx/irSfMZOTbE0xezsnqylNCFwovsSddHT++UmW7fKaYtQ/eVq+y8095rXMnJiL5C7apbOcU+15Xu2W8ykadal/Hij/TE3XmbrGnj3gZU0mcNn1k2LLUbjnuiPHHmfnGDP1zP37yVrN2a/AmlW37dotZW/iczrwPLzdr06ufVdn4sUvM2s7aVvF5txy3rxo6wZ5Q07L7e5UV+9qTzIadP0xl8TOe6NyJicjPX56vsi/89ZQ3dI2uuJZOjStXWekue/pP84SZKvvwirPNWu+S8So7rXmrWfvVcj2hdryf/blqX5WeOpsUE2vWbo0bp7L+N51i1loTtJx2r/J6qb17Drxinhnnz9NTGUNK9D1JRERC9Xv8ySOHzNJPxJgK+pN92CsfOlllIwa7+jl07v0MWWV/ZuxpfGMHAAAAAADAodjYAQAAAAAAcCg2dgAAAAAAAByKjR0AAAAAAACHcmTz5PYDukGXiEhOzjKVfdtmN0lq9Rmuspeu0E3CRERW505S2dn1ZWZtaV2Fyv7cTze/xJHhqtlZP6MxWu5nT5u1oyt107bcL/5q1kYM8FGZ1+r59skNTlbRsHl3maVOa9oG2zMrXf2Jvo7YGXqznal28/OiHN20tGFes1k7srJWZe1L/mnWejV2qKx1s31c/7N048ie5rTrmHW+VlNNEZGbz7pQZX9b8IHbrxXWNNrMEzK3qmzDoFKzdkzDHJUNmxNh1s48P01lNdvsBtl1B9/Utf1CzVpP3H7NnSp79lX7Puy0tdNjltsNPAP7R6osIGquWbsrUDcy/fGPeriDiEhTyA8qi/axn7vrhuj8mHX2s3TnWzXDE65+n5KN61vhysfN2vqSVSq7+V8XmLVbvFJVdqvfOWZtyuwZZt6TnHa98eRe9eR1k1V298sb3X6tpMkHzXzMS/oYdaPsIREdo3eq7KLLdeNjEZHA2l0qO7PSfj7+vOhnla3+vvNbH6fM0JNP7l19nVnb02uHb+wAAAAAAAA4FBs7AAAAAAAADsXGDgAAAAAAgEOxsQMAAAAAAOBQbOwAAAAAAAA4lCOnYh1XUmLmL5yhO2hH/2x3o04ZrDtwb68Ya9YmNespEoemN5i1xZsbVfbILXbHcKd1Wf+18YpsMvPIeQ+orPbDt83ajUF7VTYrtdB+vXl6+gdrpHd449E7zPyqPzzTw2fSOaynnjVjnz2BqKkuX2UNb+p7kohIdkqUygIC7UlXof7VKquYrf++iMjnHyxW2dkXHmfWsm48F5l8qFN/f4x/q5m3XaGndPosCzBr3/H9UWVnjxhh1u73Wquy1KaBZu3hAeEqu/FmPRHHlacvusjM7zQmYLH2PNORZq+FkjA9Ma8oe6lZOygvXmW5ScvN2voEPWF2ZPEWs3ZApl5Pg65i6pnTVFYnmPnoU+5VWfVrl5u1re2JKvt6eqXb58D66DpfH9DTE0Xcn4pVNHSCmacEFqispH6/Wbv2oL4+TY2x10PKqhyVvR9nX/cC4/VafSn3gFlrOeHeP5r5osf/orLesib5xg4AAAAAAIBDsbEDAAAAAADgUGzsAAAAAAAAOBQbOwAAAAAAAA7lyObJu/pvM/Nzd/qorLR1n1l73RtWut39k9B9Bl3qLQ2V4Jn2PXaDuOXbb1NZ2NjLOv16rJPeK7XNbswG/JLS4S1mPjgrSGXrpw41a0+afnOXntMv4RrkOVc/s/T0dJX96S8Xm7V//uN7Kts1U2ciIqO36PWwJGaAWfvZc3t0Jjpzzf0Gmq7cfP79Krvz/cfMWtZf5+1ZV27m4VP04370iFqzdsJ88wG5W/CeO4/PSPsD0O7116gsYuqrLo7yb7dfjzXSNTy5V/35nYfM2j9dqvPGzB/M2radenhE3vRos/a9V4xM1pi1pr32QAlZ436j5Bdv1Wvyhsft5t+9eU3yjR0AAAAAAACHYmMHAAAAAADAodjYAQAAAAAAcCg2dgAAAAAAAByKjR0AAAAAAACHcuRUrGltc808q75KZaNSRrg4ym6V9OYu1+h5eT5FZj47W3dfX/miPe3k6Bv0ZBPWmfP4thaa+dMv6gk1d97wt+4+nf8Ra6x3iCn1M/NdfnqCY1RisdvH5f11pupdrW7XDr9znJlvv1Pfl35zuMGsvd7tV7PNO0NPtBIRGZWmp5Xs2aQnvYmI/O0jPQGL9dt9Rp9svw87N+vri/c+e5qahfcM/80/Y56Zx9Xr593dbz9h1o647B6VscZ6j7Kdh92uTYkfbeaZGufDwQAAIfBJREFUY/erbOK0zfZBPnH75UybfvuymQdEZansD+32c9kNz+sJWE5ck3xjBwAAAAAAwKHY2AEAAAAAAHAoNnYAAAAAAAAcio0dAAAAAAAAh3Jk8+Q1UQlmXiKBKiseUdHdp4M+KkVizHx3RIjKxg61Gy2jb8gakmvmkfljVHbbK3eZtc/9/imVObExG9xXVW43y42OiFJZxcro7j4dHGHFNSvdrn3nuBlmft6+SpXl+x38X5/Tf0s/60mV/bTgbrP2py/dPy7XuJ7lnRFg5qnH6gEPBauWdffpoA9K3upv5kuHn6uyGN8t3X066AYF+e43Vk8dMNfMvd75i8r27pns4igb3H69iVc9rbJJb1zn9t93pa/cq/jGDgAAAAAAgEOxsQMAAAAAAOBQbOwAAAAAAAA4FBs7AAAAAAAADsXGDgAAAAAAgEN5ZWRkdBzpkwAAAAAAAIDn+MYOAAAAAACAQ7GxAwAAAAAA4FBs7AAAAAAAADgUGzsAAAAAAAAOxcYOAAAAAACAQ7GxAwAAAAAA4FBs7AAAAAAAADgUGzsAAAAAAAAOxcYOAAAAAACAQ7GxAwAAAAAA4FBs7AAAAAAAADgUGzsAAAAAAAAOxcYOAAAAAACAQ7GxAwAAAAAA4FBs7AAAAAAAADgUGzsAAAAAAAAOxcYOAAAAAACAQ7GxAwAAAAAA4FBs7AAAAAAAADgUGzsAAAAAAAAOxcYOAAAAAACAQ7GxAwAAAAAA4FBs7AAAAAAAADgUGzsAAAAAAAAOxcYOAAAAAACAQ7GxAwAAAAAA4FC+R/oEAACALT09vVN/PyMjo4vOBMCvAdccAHAmvrEDAAAAAADgUGzsAAAAAAAAOBQbOwAAAAAAAA7Fxg4AAAAAAIBDsbEDAAAAAADgUEzFAgCgB3kydeakW85WWezaNrO2Y5T+vxpPXotpNr1fZycWdRfWTs/rrrUQdOdclQW+F2bWJsRGqqy7zos1BgC/jG/sAAAAAAAAOBQbOwAAAAAAAA7Fxg4AAAAAAIBDsbEDAAAAAADgUH2qeTJNBQH0JK45+CWu1sdRZ56gsrbYbWZt3oHRKksZssSsLa2PUNmsa64xaw8X+KnM1fmynnqeq/di4OnzVHZMmI9ZW1gzQ2Vhx3xt1kaV6obc1bsSzNq6kGkqY+10H1c/2zEXXK0y35/Hm7WVAWtUFnXwkFnb9mOzypauXWjWjnv8RJWN9L7ErG0NMl4vItKs3ZfhpTLWWO8QmfaTmfdr0w22C1sLzdqwbP29gsh0eyhAZuaZ7p8ceg2ej48MvrEDAAAAAADgUGzsAAAAAAAAOBQbOwAAAAAAAA7Fxg4AAAAAAIBDsbEDAAAAAADgUI6ciuWq03a2HjQiOwqTzdqwgQdV5t86xKw92jdaZa8P2mPWXpZbrbIAOvk7Um/o6M4a6R1crYVjx/xWZd7xpWZt7ZaRKhv1m91mbZ1/ucridw43a3O99OsxPaTnWT/z2Tfo9SEikrxHT6+qaNITRUREYqP3q6wkJsCs9d43RmXBpdlmbYRPu8pSjjvLrLX+baylrmP9fP2vsGun+eusJdheDyExehJS81txZm3FqMMqK6sIMWtD4/X/CV5+9KVmLWun+xTU5Khs5MC1dnHlJBUNnDbWLF3Z8rnKhky1a8+aUKuyT9oTzdqpQZEq27C5w6yVUWk6K9Dnhe6VVvxvlbUm2Z+rOiKLVRZbZt/XgtL7Gan9GSwtbZXKMjNnmrXoeb3hs5In+vrzMd/YAQAAAAAAcCg2dgAAAAAAAByKjR0AAAAAAACHYmMHAAAAAADAobwyMjJcdC7rHawmR7lH2bVbTxumssMZdWZtaHWRyiISB5i1e8RPZWnbx5u1o4bvU1lOqd2QKf07nfWV5k1O09nmX5V59q9RVKpXp47rCuuk+1hr4bpHLjFr1y8MUlnE1ceYtV4731eZr0+bWeuXHa+yDB8fs/bCoBqVldTYe/b/+upjfVzWkkdcXSumnnS2ytLq7d//6mbdAbfk+EazdkyhbnK8LafMrI0erxtKVmTbzZOD++sGzrs+LjFrB76UoLLVF79l1rKePGetqf6XjjZrE/yOVtnRxQfM2n8sMh4yejHWjmesdVPZ4eJZxEtfi/KW2LWpx+jatg49cERExMdLN9Jt69BNdP9Tq68jHR32dc/LS99bWR/dJyn6FTMvHjBH10q4Wduem6WyQr8Ks3Z4kh4QsX9NklkbP13fqwJL88zaHSV2E3d0jc5+ViopWG3mdYvfVNngy17r1GuJiOQ/8ZDKku7RmStOvObwjR0AAAAAAACHYmMHAAAAAADAodjYAQAAAAAAcCg2dgAAAAAAAByKjR0AAAAAAACH6jVTsVx12l5zis6+bbKPEVEzRGX1zXpKlYhIWqXO6vRQLRERidlpnNdx/c3auK9TVTYqbK9Z++0gPdnkueX22+HEzty9UWc7unuqJlu/n+HDmJTVm1lrZPLY48zahNOmqyxu17dm7Y7A8SpLzKk1a4sC9CSJSUlxZu3ujVUqC77Qnkry1YObVca6cc1aC9ecb0/dyEvao7KBe+1JZq99aU+GONJOfPBEM2/KOayy6MH2evz84Q9Uxhr7ZdY6mzDXfi/CJ+nJQsue+bdZO/qa2SqLfbXArK27IFVllR/aD0VHH/ORynblDjVr+/XPV1lHQ71Z+/W2apWxdlzr7PNMxIlTzNyroUVl1fkjzVrfWfoBefCBQLP2QEyqyvpvXmPWHvTX67911+tmLWuk89KS1pt5o7f+XW3eGm3W+o7S94TQuMVmbetu/YzjF2uPPC5p1e9vZat9DiOSR6ksM1Nn+N/x5JqzdZGeBJtaFmbWvhu8XGXzdzWbtcP/+DeVbdryuFkbtUVPjCyPsZ9dppzxsMqceG3hGzsAAAAAAAAOxcYOAAAAAACAQ7GxAwAAAAAA4FBs7AAAAAAAADiU75E+gf/J8u1jVHZ86g6zdmmEbvBot4YTWTJENxU8z3+7Wes1uUplt+UVmrXf99d50jy7cVdYhm4UKKKb1sG5uqtRMnrWxu12A0BxlZs2qWSDi8qrjKanL76qm9K69KD7pa6a4TmxaVxPONTPbhJbVBqish++/KdZ++99ulHlqQFLzNr2RN20NKSy0axtCThaZREr7eb9m0aGqmzywMlm7Zm//4PKAhdZ9y90lS1Lv7P/YKn7x9j5qm5I6dKH1jqxr2+55lK1m69KnvungM57OD3RzMuzdPa371zdgSzbzLQ1R2e7XR5Dv57x1/+L3SgZnZcW87kOs+z7REOC/gwWOKDcrA3xNYYFNPqZtX4xJ6hse4x9T0mXSJW1N9uDCUSs5xaaJx8JiYF6SERhxzSzdorxWDUsLMX91wo7aOa1o5JUNiFQr+m+hG/sAAAAAAAAOBQbOwAAAAAAAA7Fxg4AAAAAAIBDsbEDAAAAAADgUGzsAAAAAAAAOFSvmYrlagKLNbGlavNjZu3IjRUqa/dvNWtP9NWTRtr2nWTWLklq0681R0/gEhGZ/89wlRXmbzZr/7xMjylgEk33qn/QngIRPPwnHe4dbdbWNHaozG+OnmIkIuJ14F2VHS6ypxCFBusO8gcqzzNrk4fnq8yeFYfudF+gnrvX0hRp1qaM11McbtlqT755w4NpNueHna6ypAEDzNrCUn3c9yt2uv1afv72/wW0trS7fQynS9mwzMwXrf7Z7WNcPmRqV51Oj/jilUdVdt5pw4/Amfx6NC94wM7L9aTFg3H6GUVEJCZOP6dUF4SZta3zClQW8W2QWbu3OV5lUxrs2tAbblEZzzndaHCpGVcU6+eO62bo91xEJMZLP+PUV9rPLalNej3ljdZ/X0SkcYB+Smk8YJbKv9+uURnrpotEGVOBMv3N0pjpetrj1q8jzNrWdj3jLGpArFm7tVivkd/4F5u12ft0NjjKGPMmIkXz5pg5us+ef9vTP0PL9OfviiB7ul76QX1f29pqf3au+OAaldVm6HUqIuK9e7/Kto+1p4r2FXxjBwAAAAAAwKHY2AEAAAAAAHAoNnYAAAAAAAAcio0dAAAAAAAAh+o1zZM9sWej3W1tyOBpKtv12odm7ZYi3VBp8kVD7BecFKCPu8BuUJezZLfKKlLspk7oXqN36cZd9e0H7eLZx6lo6KI8s/RPe36jsstGr7WPe3CizupyzdIxa+ar7Pcr7UZwN77yscrSllWatZlzouxzQ6d5N+nf7RFir7G0lrON1G6efOCd51SWcultZu2EeN2EsMPFGots0GtMxP3myUW10WYeE1Dm9jF6I6tJv4jImTf9SWURrW/ZB9G9z+WnNnstzPNJdvfUPLK8Y5XKWlbMMGtD1+p/28o6uwn2nX/WzZOzCxPM2uOOm6QyVz9fmqG6tsjHHvww3q9cZR9/t9KsrZ+nB0Kc6mt0IhWRsV/rBsxbRumG7yIize+/obIMFw3b0Xmufn8sD37Z4uJPNunoC0/OwoPfVRePQ53FdaSL+BqfSabbHwd/Xqwb2Das0Z+1RESS/fX7UBU/z6w9a1CRykr22Z/tak+coLKCNfb9J/qQXnxlvkeZtXDNk2vO8Muv7cYzObKceM3hGzsAAAAAAAAOxcYOAAAAAACAQ7GxAwAAAAAA4FBs7AAAAAAAADgUGzsAAAAAAAAO1WumYrnqPP3loldUVupVYdYGba9W2aynvzdrdy25V2XRZVPM2rGvZenXGjzUrJ30xT0q27buArNW/mbH6BreWwtUVtVmT/V54MTJKms862Wz9iXft1VWcdc1Zu0Zbz6ssvvvutusDUh6XmWfXvZHs/bMXD0RoKVfnVkLm6trzo8ffKKy4y8816xNkZkqCzm3xqxt2G9PLbNs9LanWlkO+jaq7OzZG8zagqxmHW51+6Wkf3GOmbekhLt/EAepKclW2eMf2ZM7mjLzVBZQlNTVp/SLZq0brrKD45eatSmz/6Kyos8+MGvvNLItG1eYtc+fcb3KFpuVvz6urjmrXvmzyqbviTRrc5PGqOzhl183a/fH6YmIh+bMMmujCvVEtGN3RZi1Xs/q34stb9n3VnSfS0aerrLYxC1m7fM/uZgI2knTjEGL6S4Gwb6+oFtOAZ4qPayi8g3TzVK/DD0tr6LpLrM2d6++3/12tD2VMbuf/l5BYIB9Divu1B+WRgfbz7uTL7pYh5lmKf4Xvth+u8om+/mZtUmjnuiWc2j58RaVFbfWm7XJJ9v3xr6Mb+wAAAAAAAA4FBs7AAAAAAAADsXGDgAAAAAAgEOxsQMAAAAAAOBQvaZ5sivTqkpUFpFSa9aWxOSprPWrW83aih0BKtuVajcAzb9ENycd816RWdv6sW72XO6/w6xF12hbYjcLlPhhKlqw6kazNPW3o1RWcOd1Zq33hDNVtiJ1u1kbcZdunH2wYIhZu2XHeSpLOsluUpcySTf6LmwKNmuHbNeNeHeMTTZrIZI2fJfK6r571KwNPfEPOtS9l11a+4Zumioikpy2W2VbnnzDrJ1w91Uqe1H/9f+yVCUZGRmuipXGSbppt4iIT6m+RvYFBbWFbtfuHqqbKg/JKjNrG4qqVBbcL9Lt19q+RTevFRHJCde5T2WTXbvsS5UFzNbNWP/jQrfPbXmEvU7h2owx+n1btfpEszZx5kqVbXrvT2atd22Dyjr2JZq1m+ZsVdnA72LN2jdW6mamwV767//HOhc5OitpxlcqKz2sn2VERB6aG6+zpfr52pUXk0eYea6PbsTr16bXnYjIP6Z3qOzGtfaztMWTexVcq43VP8eGeC+ztmVYpMouf8D+DPbRs3NUtsrXvgem7NPDborH2p/Bbv18q8o2/9tuzNsodhNddI1UX/0e+a2xtxIOLdGffxKP+dDt1yp4+1ozzw8OU9mgYnvtrNugB9BMm6IHR7jixGsO39gBAAAAAABwKDZ2AAAAAAAAHIqNHQAAAAAAAIdiYwcAAAAAAMCh2NgBAAAAAABwKK+MjAzdpv4ISE9Pd7t25dsPm/n0Wfqf4v2pPR6m9Uw9HelQkd29vbQoUGVTIz42a/fn69qI2vFmbdQtV6vMiR24j7TBb7WbeXBaucpqKqLM2u+X3aayj4f+1awNyLpMZccs1a8lItJ8aovOcnRHdxGR2ye8pLInfr7GrL37sndUtmZknFk7qL1KZWXpekLGr40n15y2r18zc+/CKpWtra0wazu89TSbSL+TzdqCSj0pJGGinuQnIjKgOVplh/bal/Wxd92nMk+uOd6B9u9ae5Nz/o/Aet9/c4f9Pnz6zDedeq2OTfb7sCdI/xyHJ+81a9tL9ISZA2H2BAjfA7o2Xl+CRESkaqi+ZsXnt5q1XhOPtw/iprMvuN3MP//wWZX15XugJ9ecTZ/ZE0GKEvQ0mWivcWZtSmGoynaF2+ts6ED97OK3sr9ZuzkpSGUDI/PM2vRpj6msL7/HnWWtkerVEWZtxAy9Fn47dKRZO7ihVGVbjk4zayds9VFZXX97elVTsZ/KDvkfNGtDgvS9MS52vFn79KKtKmPdeMbV9aZjx3iVte67xKxtHqUnvu5fbN9UxnjrtVfQYj/vNgXr47bEzrVrd+apbPy5E8xar6Fnqox188usdVK7wa4N0wN5Zcu3T5u15cZzYYm3/YwxoVjff5b2zzFrz/bS51tXYx93sG+VyrY028/SEy/VzylOXDvOeRoHAAAAAADA/4ONHQAAAAAAAIdiYwcAAAAAAMCh2NgBAAAAAABwKN8jfQL/zVWDIqupU+mWV8za7Ul3qazxt6fZL/itfr2pyboRnYjI4HPvsY9hyMx+VGWBO7e6/ffhueAJdqM+Wa8bADaI3YwrxqdJZUM33WDWDupfoLJ3J9iNi5NKD6isdoTdTO667OtVVpRSadbWjo5RWdribLM2LFs30Cz7m1n6q+LJNSer2W4a3DxdN6vt+CnTrE2Z/JDKtuVvMWtPueEFM7fs2PkPlXmF6EbNXcGv1l67zX713fJ6PSXzmzEu/qRzzZNrt68w89KhXiob9pW/WVt5zzAdHtxh1iZPnuX2uf2Uu0b//Qltbv99T2z3sn8nfm08ueZMLNP3LxGRzSVHqSz/5BqzNqlaN8huPjjYrB04/2Yzt+xd94XKBiTucfvvwzVrjUR40HR7wDlJZn5wZz+VeQfp5xMRkdIo/X++qUUhZu3tu7e5fW53Jp+tspJQ3UQXXcPV9cZrjLWetpq167+8X2URIzabtcvy81R2ONwe1DE2oE7XRtjPsAUJeghOZkn33Kt+jax1EubBNefQTrtxcar/XJX5Jz5n1vaPGa6y8zN0Q2URkej7f+f2uRX/83GV1U9vdvvvOxHf2AEAAAAAAHAoNnYAAAAAAAAcio0dAAAAAAAAh2JjBwAAAAAAwKHY2AEAAAAAAHCoXjMVyxNJoXoikIjIqBf0tKzaU2eYtesbE1S299RgszZ7sZ62VZ+sO3iLiDSuLFPZNz8uNmvRNaoC7e7tkfMKVZa7097LfGvXOpU15keatfui9ASgYeH2VKzXvtPTlK453e4gH36c/nUM2nLYrA3rWKvDsfaalLnOnljUGwRHrjfzgUv1pJDapDlmbXzDizqMiTVrS569UGWbIu2pfY1eeo0crk41azvL6dOvXDllkD0lYVdW545bOXqimSeN1lNFtk+yryEhGXqSX8PeAWZtUU2LysIL7ekhvkU/qmzNgPFmbWfFhvqZ+d5uebW+oXq0nrgnIjLYS0+66veTvXbyQvTzyJjp9vSqioLfqyzz6/FmbUrjIpVVLtevha7hyTS1HXvt583xgck6zLY/AqTG6klG+XX2hM75R+kpa2Nr9pu1LcP1GvEPc+THEEez1pO1lkREBlbodbM/Ks2sjU6PUFlVxZdmbfy8z1RW++EFZu2ADv1M1VLC9aY7eXLNOfWO+8za6sf1ZOGQcPv3vaVCf66vGJtv1u5ZeoLKdpbriXsiIjnJ+rNS+gfHmLV9Bd/YAQAAAAAAcCg2dgAAAAAAAByKjR0AAAAAAACHYmMHAAAAAADAoRzZtSy/OsDMN0/QWfLK3WZtSfxKXXuZv1mbFaobyfnEf2vWNk9uUlmUn90ACl0jsvkt+w9WHKeiowbZe5mfZ/morOrYYWZtW7VupBtffMisvXaobhpaH2A3wfVeo7PQ8slmbVH4FJX1e99uACuDjF9zu08eXDgYaDc5HiT6mrGvrMKsvf2ZXJWFj9RNdEVE2lfVqaxjVn+z9o0rbzVzd7lqmugJV432nOJgsYvfnU7aFbLTzOfn91PZwHrdaF1E5PqHb1RZca19Dan89BSVxVUWmbUpAbrx918v0415u8IwH7t5stECHv8lo3GgmR+9rlFlZaMyzVrvuhSVxZSlmrV7Sqt07Xi7vbVf83yV7cwxmvOKiMgCFzm6Q0Km/Xxc66ufUaqi7WvO/lY94KEoYIRZO9xbN+P2Dokya1sCSlUW9A0t1HuzyJhBKgvO1c8yIiI7J2xSWcBBe918s/welVVW2bXtafpzVdt2PQAHvUtm+miVddTZzy79o6tU1nTY3qJIaZ+p/37k12bt4X16gMXqeS6GgDxhx07DN3YAAAAAAAAcio0dAAAAAAAAh2JjBwAAAAAAwKHY2AEAAAAAAHAoNnYAAAAAAAAcypFTsTJLDpp5UD8vlXk1xJi10QN0J/9xT3XuvERElsw4TWVh54S5qN7S+ReEZI4928zTsqtUVllvT2uYEKwnkGwosDv/zxgYrbL7smvN2mOqIlVWutbuyN7vND2Zq2VNh1kbXqXzohn2ZK6ykxmB1VnV2+wJDLsmNqgsZWebWRtfpX/f//amByexp8yMC7/Qs4VymkLN2hlB+twWJYWbtd65enrB2AUnmbVJxmQtJ03KihhjT4cRPeTDIzMOpJr51mY99Sxghs5ERB646keVJZ7p6p6S5e6pycH1NSpri+ueCUYxuXrKDn5ZU6u+H4iIbDpG/25nNdmT+AYEB6osdM7tnTsxESn4QB8jcZg9jQk9a1jcDDM/UJajsvHh+83avTv1JNiPcn/q3ImJyLMB+jkp+277GV3uLu7066HzsqOWq6zdp8SsHbxdT+GLu+KOTp9D/btXqexgQkSnj4vuNfOUG1RWuPQdsza8XE+wHnJO58dUbcvR96XoDfZ1r6/gGzsAAAAAAAAOxcYOAAAAAACAQ7GxAwAAAAAA4FBs7AAAAAAAADiUI5snn/ibO828Nu9jlbUNLjRrgwp1c7hFD9j7XDU/R6qsfqz9o8uZXqWywD26SSV6gH+ViqIa7AalF535rMoWr7ebMm/N1g1oL/Oeb9ZWzvpBZdURdrPAQTt0U+Xrbr/frC3JWqWyftOONWvtlrvwRHTSNjOPDYlT2abh48zasIP6mnH7uKFmbUP4MB2W2c28+5853cx7kpMaJVvnmm40fxYROeXGK1W26B//cvu1DkbZDUDH++r7jxS2mLU/nVCqsr25dgP25MY8lRW02lcAn7G6oXF+wVFmrSfmz7xEZc9//65Z66R109PiinXzchERn73JKhvqb6+dCG/dJHL/RzeatbtidTPS4bsjzdr+wXrt7OzgTtMb1LfbzfsDJunrSHyJXksiItvi9L3moQ77uaUxWefDQu31uONnPfRhXL2fWStC8+Se5OpanGbcGztW/t6s3RFcrmvfnWPWfp9wucpSqu1nnH0V+to09nj7cyD3lJ63acnvzDx1y9Eqq5y81axduUo/S9ctvsms3VU9UWU+stOsrV9bqbLGdH1e//GWi9xZ+MYOAAAAAACAQ7GxAwAAAAAA4FBs7AAAAAAAADgUGzsAAAAAAAAOxcYOAAAAAACAQzlyKlakvz3pavKES1X22mcvmrV1yakqC9tuT0zyCRmusn4JetqEiEjRt5Equ/ijFWYt3du7V+ZpqSob9NI7Zm3IWfo9nrpcrycRkevWvKWy20bvMWvb04eo7JwDZqlcv0xPFPjdpZFmbVionmaRmeJqugQ6K6BinpmXlTWqbKK3Pc2j4vvnVPbeA5+atfMn7VJZcX62Wbv7Bj3RbcSNt5u1XHM8c3h3UKf+flBDqv0H1cZF4ER/szS1MEBlQ3LsKW114e0qqwiMNmuHb9RrYcCUuWatZcrz15n5D7e+rDLWnecqg+08Nv1HlSU1nGXW7i3doLLwMns9HHc4RGXrYnzM2sNeSSobc8aFZi3vfc/yDdHvuYhIU2WqynbW6YkxIiIDvPQ1Z2OCPd01PVg/+yzJHmzWBjfraVnXbrafpVk3vdeBrEAzT7v6BZVtWmw/c/fbqu93ZUfFmrWzf3OLylgfvceQHD2RWkRExh+votjn9WciEZFhY/TUvhYfe8JsRL1xXxtkT/grD9Cf7UanX2HW9pU1xTd2AAAAAAAAHIqNHQAAAAAAAIdiYwcAAAAAAMCh2NgBAAAAAABwKEc2T05qaDLzzY15Kht19nlm7azj/uLBK+7Uke5f+F+2qKSvNGTqC3Kvtxsip6enq+zoqfYxXjta11690sV7/Ge3T81cJ7tdVse7f2B0WlR7g5l7R+u98YMxdkPK82c+qrK5N4aatXlf9FNZ04jZZq3VKJlrjmdc/bys68L0c+wLw9rP1utsunHvEBGfYN08ua483KwdPfgEM+9Js/44U2UrjCbJIqy9rhKRbDcuLl2jm0EO7Sgxa5Nv+WeXntMv4X3vHfaE2P9fO6AsVWU18bpJsojIi19udfv1vjbTHLf/PuvGeVKG/n/t3c9L1EEYB+BdpDWTaGszIsQSwcRANvPSj2MRRIfoFN27dOraKaJ/wXN16myHoGMEohCKsXVQFKRaMFMwTdMy7RQEM8Zarjrb8xw/O7wM7Lvsl5cvM4Vovj5yMciyxfgz92bokd1tsLE3ml9eCv9/Zq7eia4tFm9v5Zb+qNb7yRs7AAAAAIky2AEAAABIlMEOAAAAQKIMdgAAAAASZbADAAAAkKgkb8Wan+6I5p1XDgbZs/n9Fdet9ZOy2ZyTTXujeWHiRJDdP78QXXuvfzLI9Fl6yrnwFqNMJpNpKe8Lsq/1hyqu+6L3SzzPjIfheCTL6Kft9v34mQ0+CW/FKsyuR1dmZ7qDrKNl7F+2taFrXfGbIXuOZIOsbmI4uvbug/4g03fV1frqcDSf7gmfczJ1gxXX9b3VtuW1xWje+HYkyPZcaK64rr7hl6ls/DbPpdeng2xgLN5jZ9sfB5keS1P7j/g10W+WbwVZ8/LDiuvqh7/jjR0AAACARBnsAAAAACTKYAcAAAAgUQY7AAAAAIlK8vDkxtxaNH832hhkDbnKDxWE37Utx38eL9sngqxpbrLKu2EnrbbORvPct/Bw3IVjKxXXdThcetpH56L5UCTLf/oQXVt3KjwYNztX+UH/G7nUfTPI+oafRNf2baKuPt1+Q23x55ylcvhdLBYbqr0dEpGvz0fzhpbOIHuUn6nybqhFR1e6onl5dSrICqWmam+HHfZ54EY0P3DufZB9fH59gypPt3BH/zdv7AAAAAAkymAHAAAAIFEGOwAAAACJMtgBAAAASJTBDgAAAECisqVSKbzWBQAAAIBdzxs7AAAAAIky2AEAAABIlMEOAAAAQKIMdgAAAAASZbADAAAAkCiDHQAAAIBE/QQgpDratDlgPQAAAABJRU5ErkJggg==\n"},"metadata":{"image/png":{"width":1142,"height":1213}},"output_type":"display_data"},{"name":"stdout","text":"||A - A_noisy||_F for 500 images =  41.711047061456455\n","output_type":"stream"}],"execution_count":null},{"cell_type":"markdown","source":"In the above plot we see a representation of the images containing noise. The noise is represented in the plot as random pixels in the faces which are given random amounts of noise, corresponding to random colours, polluting the skin colour and appearance of separate features in the faces.\n\nExamining the norm of the difference between the matrix containing the noisy images and the matrix containing the original images, $||A_{noisy} - A||_F $, equal to $41.7$, it is obvious that there is indeed a difference between the noisy images and the original images, also mathematically. Nevertheless, the norm is not neccessarily the best way to describe difference between images from a human standpoint. For example, two face images with a minor difference in the colour of the skin can have a major difference in norm, but two face images where the eyes are completley different can have a small difference in norm. The norm will not necessarily reflect what we humans consider similar, but it will reflect wether or not the values of the pixels are close or far off. This must be taken into consideration when computing and interpreting the value of the norm in denoising processes.","metadata":{"tags":[],"cell_id":"d68246ad9995447bbeb4b088e6bd4237","deepnote_app_coordinates":{"h":5,"w":12,"x":0,"y":229},"deepnote_cell_type":"markdown"}},{"cell_type":"code","source":"def ex3b():\n    d = 64\n    Wnoisy, Hnoisy, opacityMatrix, norm = NMFImages(noiseWithOpacity, d, maxIterations)\n    \n    WnoisyReshaped = np.reshape(Wnoisy,(24,24,3,d))\n\n    plotimgs(WnoisyReshaped, d, 8, filename=\"W_noisy_columns_images.png\")\n    plotimgs(W_reshaped, d, 8, filename=\"W_Columns_images.png\")\n\n    \"\"\" Reconstruction, \"denoised\" images \"\"\"\n    facesNoiseRGB = noisyFaces[:,:,:3,:] # Lagrer rgb verdiene til rekonstruering\n\n    reconstructionNoise = Wnoisy @ Hnoisy # (1728,500)\n    \n    denoiseWithOpacity = np.zeros(faces.shape)\n    denoiseWithOpacity[:,:,:3,:] = reconstructionNoise.reshape(facesNoiseRGB.shape)\n    denoiseWithOpacity[:,:,3,:] = opacityMatrix\n    \n    plotimgs(denoiseWithOpacity, d, 8, filename=\"Noisy_images_reconstructed.png\")\n    plotimgs(facesWithOpacity, d, 8, filename=\"Reconstruction_images.png\")\n    \n    noiseReconResidual = np.linalg.norm(imagesWithoutAlphaReshaped - reconstructionNoise, ord = 'fro') # Calculates frobenius norm\n    reconImages = facesWithOpacity[:,:,:3,:]\n    reconImages = np.reshape(reconImages, (np.prod(reconImages.shape)//N, N))\n\n    reconstructionResidual = np.linalg.norm(imagesWithoutAlphaReshaped - reconImages, ord = 'fro')\n\n    print('||A - A_noisyRecon ||_F for 500 images = ',noiseReconResidual)\n    print('||A - A_Recon ||_F for 500 images = ', reconstructionResidual)\n\nex3b()","metadata":{"tags":[],"cell_id":"5e837a2f1c8640548b7e87a3bf74fc0e","source_hash":"e7571a8e","owner_user_id":"6994fb84-46cf-483d-91ee-5452102ea79a","execution_start":1649449904414,"execution_millis":83948,"deepnote_app_coordinates":{"h":5,"w":12,"x":0,"y":235},"deepnote_to_be_reexecuted":false,"deepnote_cell_type":"code"},"outputs":[{"data":{"text/plain":"<Figure size 1152x1152 with 64 Axes>","image/png":"iVBORw0KGgoAAAANSUhEUgAABHYAAAS9CAYAAAAiHt73AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd5wV9fX/8fc2trEssPSOIAJKsQAC1mDX2DWa2EsMllgw1lhiNFFji7EksSs2RANiwQoioIAgVXovyy7be7+/P/hxv7t8ziz3soWd5fV8PHw85OzZubN35s7MPXfuORFLliwJCAAAAAAAAL4Tua9XAAAAAAAAAHuHwg4AAAAAAIBPUdgBAAAAAADwKQo7AAAAAAAAPkVhBwAAAAAAwKco7AAAAAAAAPgUhR0AQJP3wgsvaNCgQRo0aJAmTZq0r1dnv3XvvfcGt8O8efP29epgL2zdujW4Da+88sp9vTpAs8VrDUBjit7XKwA0BSeffLK2bdvmxCMiIhQfH6+WLVuqZcuW6tWrl/r376/BgwdrxIgRio7eNy+ht956S/n5+ZKk66+/fp+sQ1OyYsUKffvtt5KkYcOGadiwYY36+BdccIFWrFghSfrrX/+qs88+u9b8rKwsHXfccQoEApKk0aNH69///vceH+eaa67RnDlzJEm33HKLrr766rqtOAAAQD1Zt26dpk6dqlmzZik1NVU5OTlKSkpSSkqKDjzwQA0fPlxHH320OnToEPayV65cqYsuukgVFRXB2NSpU9W1a9f6/BMA36KwA9QiEAioqKhIRUVFSk9P17p164IFhHbt2unss8/W1VdfrZYtWzbqeo0fPz5YiKKws7Ow8+KLLwb/3diFnWHDhgULO/PmzdtjYWfevHnBoo4k/fzzz6qoqKi1UFheXq5FixYF/z1ixIi6rTQAAEA9KCoq0jPPPKMJEyaosrKyxs+ysrKUlZWl1atX67PPPtPYsWPDvnatqKjQfffdV6OoA6AmCjvAbi688EJ17949+O+ysjLl5+crIyNDy5Yt04YNGxQIBJSRkaGXX35Zn376qR5++GENHz58H6419qXhw4frrbfekiT99NNPe8zf/SssRUVFWrp0qYYOHer5O4sXL1ZJSYkkqWXLlhowYMDerzAAAEA9yMvL09ixY7V48WJJUkxMjA477DANGDBAycnJysvLU0ZGhlavXq2VK1fu1WO8/PLLWr58uWJiYlReXl6fqw80GxR2gN2ccsoptd7xkZqaqvfee0/jx49XWVmZUlNTdf311+ull17SoYce2ohriqbi8MMPV1RUlCorK7Vt2zZt2bJF3bp188zfVdgZPHiwli1bpsrKSv3000+1Fnbmzp3rPN7+5Prrr+fuNKAedO3aVUuWLNnXqwGgGQgEArr11luDRZ1f/epXuvvuu9WpUyczPyMjI9hKIFSrVq3Sf//7X0nStddeqxdeeKFuKw00UzRPBsLUuXNn3XrrrRo/fnzwO8KlpaX64x//qJycnH27ctgnkpKS1L9//+C/a2sqm5GRoXXr1kmSjjvuuODvVS/cWKrfCdTYXzUDAADY3TvvvBO8fjn11FP1zDPPeBZ1pJ1tDHr37h3y8nd9Bau8vFx9+/bVNddcU+d1Bpor7tgB9tKAAQP0zDPP6PLLL1d5eblycnL0+uuv65ZbbjHzi4qKNGPGDM2ZM0fLly/Xli1bVFhYqLi4OLVr106DBw/W6aefrlGjRnk+5qBBg0KKdenSRV988UW9P351Gzdu1IcffqiffvpJGzduVFFRkaKiotSqVSt169ZNhx56qEaOHKnDDz9cMTExtS5r9uzZ+vLLL7VgwQJlZGSotLRUrVu31sCBAzVmzBidccYZZv+ZF154oUZvHUl68cUXnZgUWlPjuhg+fLiWLVsmaWeR5pxzzjHzdi/Q5ObmatmyZVq4cKHKy8vN56qsrKzB++tMmjRJ9913nyQFv/9eUFCgDz/8UFOnTtXmzZtVXFys9u3b68gjj9Tll18e8sVZWVmZJk+erGnTpmnlypXKyclRbGysOnbsqOHDh+vss8/e41fLqm/r2rZlbm6uJk2apO+//15r165Vbm6uAoGAEhMT1aVLFx188MEaOXKkjjzySLVq1Sr4e1dccYXmz58ffKyjjz56j3/XunXrdNZZZ0na+Zr7/PPPFRnZMJ+XpKen63//+5/mzJmjjRs3KicnR5GRkUpJSVG/fv00cuRInXLKKWrTpo3nMgoLCzVx4kTNmDFD69evV05OjhISEtSlSxcdeeSRuuCCC2p8DXVv7TomWceh3c2bN09XXXWVJOnMM8/UI4884uTce++9+vjjjyVJr776qoYNG6a1a9fqvffe048//qi0tDTFx8erd+/euuiii3TSSSfV2A4lJSX69NNP9fHHH2vTpk3Ky8tThw4ddOyxx+qaa65Ru3btPNevoV4Xy5cv10cffaSFCxdq69atKioqUkxMjJKTk9WjRw8NGzZMI0eO1KBBg+r97rytW7fqlFNOkSQdccQReu2110L6u7OzszVhwgR988032rZtmyoqKtS9e3edcsopuvjii5WQkBD8/UAgoJkzZ2rChAlavXq1duzYoVatWunwww/X1VdfvcfXeyAQ0KJFizRr1iwtXLgwuL8GAgElJyfrwAMP1FFHHaXzzjuvxuPuyeeff66PP/5Yy5cvV35+vlJSUjRw4ECdd955wdd8OPtvIBDQ119/rW+++UaLFy9WVlaWKioq1LZtWw0ePFinnHKKxowZo4iIiFqXU1JSoo8//ljTpk3TqlWrlJubq8rKSsXHx6tTp07q37+/Ro4cqZEjR9a6v+7JlVdeGTwH7Wo6O3/+fE2YMEGLFi1SRkaGEhIS1LdvX5122mk655xzat3/rONyRkaGPvjggxr7SceOHXXUUUfpyiuvDLlp7tq1a/XOO+/ohx9+UHp6uhISEtStWzedfPLJOv/885WYmGgeGxpLZWWlJk+erE8++URr1qxRUVGR2rVrp6FDh+rCCy/UYYcd1mjrsq+Ul5frpZdekrTzA677779/j/t6uF599VX98ssvioyM1EMPPbTH60lgf0ZhB6iDQYMG6de//rU++ugjSdK7776r66+/Xi1atKiRt3r1av32t78N9kiprqCgQAUFBdqwYYM+/vhjjR49Wo8//niNN511Vd+P/9Zbb+mpp55ymthVVFRox44d2rFjh37++We9+uqreu6553Tssceay0lLS9Ndd91l9qVJT09Xenq6pk+frtdee03//Oc/1atXr/D+8FpUf3Mj1X2ywrBhw4JvkGq7Y2fXz+Lj43XwwQcrJydHb7zxhoqLi7V06VLz63yLFi1SaWmpJCk5OVn9+vXb6/UM1cqVK3Xrrbdq8+bNNeJbt27Vhx9+qI8//liPPfaYTjzxxFqXs2TJEv3pT3/S1q1ba8R39a5as2aN3n33XV1wwQW6++676zRpbt68eRo3bpyys7Odn+Xm5io3N1fLly/XxIkTdfnll+v2228P/vy8884LFnb+97//hVTY2fW6l6Szzz67QYo6VVVVevHFF/Xaa68F94Hqtm7dqq1bt2ratGl688039fnnn5vLmTFjhu677z5lZWXViFd/Xt566y39/ve/19ixY+v976hPH374of72t7+prKwsGCsuLlZWVpbmz5+vadOm6e9//7siIyO1fv163XTTTdq4cWONZWzZskVvv/22Pv/8c73yyivq27dvSI9d19dFIBDQU089pTfeeKNGA3Vp5xvFkpISpaWlad68eXrhhRf00Ucf6cADDwxp3RrSokWLdNtttyk9Pb1GfMWKFVqxYoU++eQTvfrqq2rTpo2Kioo0btw4zZw5s0ZuRkaGvvjiC3399df6+9//rlNPPdXz8a644gotWLDA/Nmuc8zs2bP18ssv68knn9QRRxxR6/oXFhbq1ltv1Q8//FAjnpqaqtTUVH3zzTc6++yz9cADD9S6nOrWrl2rO+64Q6tWrXJ+tmu5X3zxhYYOHaqnn37asyCzZs0a3Xjjjc4xUpLy8/OVn5+v1atXa8qUKTrxxBP11FNPhbyOe/L000/r1VdfrRErLS3VvHnzNG/ePE2cOFHPPfdcyMWkOXPm6I477nCOMxs2bNCGDRs0adIkPf/883sserz99tt64oknalxjlJaWKjs7W0uWLNEHH3ygZ599NsS/sv5lZmbqpptucr7SuOt4/Nlnn+mqq67SBRdcsI/WsHF8/fXXyszMlCSddtpp9T5IZM2aNcGJob/73e/MDzIB/B8KO0AdXXTRRcE3eEVFRVq8eLFzkVlUVKSSkhJFRERowIAB6t+/vzp06KC4uDjl5+drxYoVmjNnjioqKjRr1izddttt+u9//+u8URw3bpwk6aWXXlJeXl6NWHW7n1zr6/Eladq0aXr88ceD/+7fv78OO+yw4IVfdna21q5dq4ULF6qoqMjzedu8ebOuuOKK4BuFVq1aafTo0erVq5diYmK0bds2zZgxIziN7LLLLtP777+vzp07B5cxatQoJSQkaNmyZZo6daokaeTIkeZdR4cccojnutSHww8/XNHR0aqoqFBaWpo2bdqkHj16OHm7CjtDhgwJNhiMjIxUVVWV5s6daxZ2qhe+jjjiiAa7K2SXtLQ0/eEPf1BGRob69u2rkSNHqm3btkpLS9M333yjHTt2qLy8XPfcc4/69+/veZfH4sWLdc0116i4uFiSlJiYqOOPP169evVScXGx5s6dqyVLligQCGjChAnKzMzUM888s1frvH37dt10000qLCyUJHXs2FGjRo1Sly5dFB0drYKCAm3cuFGLFi3Sjh07nN8/6aST9OijjyovL0/Tp09XdnZ2rXe/lJeXa8qUKZKkyMhIzzu06qKqqkq33367vvrqq2Csc+fOGjVqlDp16qRAIKD09HQtXrxYq1atUlVVlbmcb775RuPGjQtOKmnbtq2OP/54denSRXl5eZo5c6bWrl2riooKvfDCC8rLy9Odd95Z739PfZgxY4beeOMNRUZG6uijj9bBBx+sqKgoLV68WN9//70k6bPPPlOfPn107rnn6tprr1VaWpp69+6to446Sm3btlVqaqqmTp2qvLw8ZWVl6fbbb9cHH3ywx0+C6+N18c477+j1118P/vvQQw/VoEGD1KZNG1VUVCg7O1urV6/WokWLahSu9qXU1FTddNNNys7O1sCBAzVixAglJSVpw4YN+vLLL1VSUqI1a9bojjvu0H/+8x/ddtttmjVrVo39rKCgQN988402bdqkyspK3XfffTrkkEM8jx27CgMdOnTQ4MGD1aNHDyUlJam8vFxbtmzRzJkzg5N2rr/+er377rvq06ePuazKykrdeOONznH00EMPVUxMjNauXavvvvtOkyZNqvU1X92SJUt03XXXBXuFtG/fXiNHjlS3bt0UGRmpTZs26bvvvlNubq4WLlyoyy+/XO+9956SkpJqLKeoqEhjx47V9u3bJUlt2rTR6NGj1b17d8XGxqqwsFBbtmzR4sWLzcJPXbzzzjt68803FRUVpVGjRunggw+WJC1btkyzZ89WZWWlli1bpmuvvVZvv/32Hu+MWrlypf72t7+puLhYgwcP1uGHH66kpCRt3bpVX375pfLz81VQUKDbbrtNkydPVnJysrmcDz/8UI8++mjw3507d9Zxxx2n9u3bKyMjQ9999502btyom266qVE+5NhdcXGxrr32Wq1evVrSzuP/yJEjdcghhygyMlJLly7V7Nmz9corrzT7CU7Vi7e7rntnzpypiRMnaunSpcrKylJSUpJ69+6tY445Rr/5zW+UmJgY0rJ3HSfKy8vVtWtX3XTTTQ3yNwDNCYUdoI769++vpKSk4AXe/PnzncJOUlKSbr75Zp1zzjlKSUkxl7N582aNGzdOy5cv15w5c/Tpp5/q17/+dY2cK664QtLOO4N2FXZ2xWpTX48vqcabkkceeURnnnmmubzy8nJNnz69RiGm+s/GjRsXLOpcfvnluvHGGxUXF+fkPfXUUxo/fryys7N1zz331PjawNChQzV06FBNmjQpWNgZOnRoSM9JfUtISNDAgQODDQTnzZvnFHYyMjK0fv16Sf/XJ6dVq1bq16+fVqxYoXnz5um6665zll29/05j3Gr+0UcfKTo6Wg888IDOP//8Gj+75ZZb9Ic//EELFy5USUmJXn31VfNT7pKSEt15553Bos5hhx2mJ5980vnk95NPPgmOMP3mm2/07rvv6uKLLw57nSdOnBgs6px33nn685//bN79s+srHrm5uTXisbGx+vWvf623335b5eXl+uSTT3TppZd6Pt6MGTOCbz5HjhxZa0+BvfWf//wnWNSJjo7WHXfcoQsvvND8asSmTZvMr41kZGTo/vvvDxZ1TjzxRD300EM1ir/jxo3T66+/HrwTYPz48Ro5cqSOOeaYev+b6ur1119Xhw4d9Nxzzzlf5/nss8+CBak33nhDCxcuVHp6um6//XZddtllNb4i8Pvf/16XXnqpUlNTtXbtWn399de13kEi1c/rYtfxMzo6Wi+88IJGjhxpPlZRUZG+/PLLer1zc29NmjRJMTEx+tvf/uacE6666ipdeumlys/P148//qh77rlHs2bN0mmnnaYHHnigRjHgpptu0s0336zvv/9epaWleu2113T//febj3nKKafo2GOP9SzIl5eX61//+pdee+01FRcX6+9//7tefvllM3f8+PHBok58fLyefPJJ5468zZs368Ybb6xxfvOSm5urcePGKT8/X1FRUbrlllt0ySWXOMebwsJCPfDAA/riiy+0adMmPfroo85XDb/44otgUeeYY47RE088ofj4ePNxV65cqbVr1+5x/UL11ltvqU2bNnruuec0ePDgGj9bsmSJbrjhBmVnZ2vNmjV69tlnddddd9W6vPHjxyshIUH/+te/dNxxx9X42Y033qgrr7xSGzZsUGZmpj744AOzV0pqamqND44uuOAC3XXXXTXugr799tv1xBNP6J133nHunGsMzz//fLCo06pVKz3//PPO4INFixbphhtu0Jtvvlmvj33yySdr27Zt9ba8ut6pvOt6R5I6deqku+66S59++mmNnF0F2Pnz5+v111/X448/riOPPHKPy37ttde0dOlSSdKDDz7o+boA8H9ongzUUURERI1b5VNTU52cAw44QNdcc41nUUWSunfvrueeey5Y3Jg4cWK9rWN9Pv6KFSskSX379vUs6kg7x12eeOKJ5idqU6ZM0fLlyyVJl1xyiW6//XanqLNrGXfeead+9atfSdp554rX7flNQfWR91Yz5Opf0apeoNlVCFy0aJEzxrO0tLTGxVP1x2hIN998s/PmVdp5181f/vKX4L+/+eYb8/c//vhjbdmyRdLOT92ff/5583b+M844o8ZXol566aW9GmW6a7+Udr7J9vpKV0REhIYOHWp+PfC8884L/v///ve/Wh+v+tewzj333HBXd48yMzNrfEXikUce0cUXX+zZ76JHjx669tprnfj48eODReABAwbo8ccfd+7oi4iI0JVXXlmjkPX888/Xx59R76KiovSvf/3L7NFy2mmnBd8w5OXl6fvvv9fll1+uyy+/3On70LFjxxqfAH/99dchPX5dXhc5OTnBN/GjR4/2LOpIOwvFZ599tjp27BjSejW0cePGmYX+Pn361Cikf/rppxo8eLD+9re/OXd4xMTE6M9//nNwW3gdOyTphhtuqPUuy5iYGN12223BAsKcOXO0adMmJ6+8vLzGhwH33nuv+TXL7t276/nnn3e+Rm158803g+f5cePG6YorrjCPN4mJiXr00UeDd8J8+umnzpvyXedBaefkv9revB500EE67bTT9rh+oQoEAnryySedoo6082vmTzzxRPDfEyZMcL5eZfnrX//qFHWknQ1zq98F6PV6Gz9+fPBO3+HDh+u+++5ztklMTIzuvvtujR492vk6Y0PLzc3Ve++9F/z3Y489Zk6zHDJkiP7xj380+vo1pkAgUKOw9vTTTweLOoMHD9Y111yjm266Sb/+9a+D55zs7GyNHTvW/Pp9devWrQv2bjrnnHNCKgQB4I4doF5Uv6V49zsBwtGhQwcdfvjhmjVrlpYsWaKysrKQLjTrSyiPv+vrHla/j1C9++67kqS4uLiQRlhfeeWV+vbbbyVJ06dPr5emhA0x8nfYsGHBT42tC5ddxZ74+Pgab1qOOOIIjR8/XiUlJVq0aFGNO76qfyWjbdu2jdJvo23btvrd737n+fMDDjhAffv21Zo1a5Sdna3t27c7d6zsamgpSdddd12t372/+OKL9cYbbyg1NTXYO8OrL5OXXXekSDJ7SYXiwAMP1ODBg7V48WKtXr1aS5cuNd9cpqena9asWZL+72tN9W3SpEnBv2PEiBF7/Yau+nb44x//WGsPo+uvv14TJ05UcXGxfvnlF61evbpJ9Hep7vjjj9fAgQM9f37sscfqxx9/lLTzDeDVV19da+4u1QuDXur6uqiPfXRfSElJ0YUXXuj582OPPVb/+te/gv/+/e9/71mA7NKli/r166eVK1cqKytLaWlpdSpenXbaaZo+fbqknXfL7n6X5I8//hjsAdK9e/daP4zo1q2bzj77bL3//vueOVVVVZowYYKkncXB2vYHaeedWZdeeqnuuusuVVZWasaMGbroootqLG+Xxt4nRo4cWesdoMOHD9eRRx6pH3/8UeXl5fr8889r/XsPOuggnXTSSZ4/HzVqlBITE1VYWKjVq1ersrLS2U+q3+1x/fXX19qI94YbbggehxvLl19+Gbz2Oeyww3TUUUd55o4cOVIjRozQnDlz6u3xr732WhUUFNTb8ry+DheKgoKCGse0BQsWKDo6Wg8//LBOP/30GrmZmZm6+eabtWjRIlVUVOiuu+7SZ599Zl7f7voKVllZmdq1a1fjgx8AtaOwA9SD6p9M7umkW1lZqbVr12rdunXKy8tTcXFxjU91djV+3dVL4IADDqjXda3r4/fr10+LFy/W5s2b9dRTT2ns2LFh3SKbk5OjlStXStr5qc7uPQcsBx10UPD/d92a2xTt6tlQXl6u9PR0bdiwoUbD513FnsGDB9fo53H44YcrIiJCgUBA8+bNq1HY8brLpyGNGDFij/1GevbsqTVr1kjaeat19TewZWVl+uWXX4L/3lOD5cjISJ1wwgl66623JO28QAy3sHPQQQcFv+9///336+GHHw55+kp1559/fvAOqY8++sgs7Hz88cfBC9ozzjijQaZ0VH8zsGvyVri2bNkS7CfUsmXLWu8Q2ZUzatSo4J0UP//8c5Mr7Oxpal+3bt2C/z9w4EC1bt3aM7dVq1ZKTk5Wbm6uMjIy9vjYdX1dtG3bVu3atVNGRobmzp2r8ePH6ze/+U2Tn/IyfPjwWtex+nMeHR29x7sKu3fvHjwHZGRk7LGwk5aWplWrVmnHjh0qLCys8Way+h0DGzZscH63+jTB4447bo8Te44//vhaCzsrVqxQTk6OpJ1v3EPpd9a/f//g/+9+/qp+R+tjjz2mf/zjH+rZs+cel1kfxowZs8ecE044IVgoXbRoUa2FndqKHNLO43yPHj20fPlylZWVqaCgoEZhYfPmzcEiXHJy8h4/wBk0aJDat29v9kxrKAsXLgz+f6jPX30Wdqy7BfeVXV99ru6GG25wijrSzuLws88+q7POOks5OTlKS0vTlClTatwlu8sbb7wRPAffe++9TeLrqIBfUNgB6kH1E5zXnQn5+fl66aWXNHny5JBuad71O/Wlvh7/qquuCo50f+211zRhwgSNGjVKhx9+uAYNGqQBAwbU+iZg1apVwULS3Llzw55yYE08airi4+M1aNCg4NfF5s6dGyzs7NixI/jGY/cCTevWrdWnTx+tWbNG8+bNqzGVqHphp7G+hmX1Rdpd9QaIuzfJ3rZtW/DrVB07dgypIWn1r9ZYX6nYkwsvvFDvv/++CgoK9MMPP+jkk0/WYYcdpmHDhmnw4MEaMmRISE0bTz75ZD3++OMqKCjQ1KlTdccddzhfE5w0aVLw/60L0/pQvZfG3k4Cqf489uvXL6Sx2QMGDAgWdnafJNUU7GnfrF5kD2U/TkhIUG5ubrAXVF0eW6r9dREREaGrrrpKjz/+uAKBgB577DH95z//0ejRo3XYYYdp8ODB6tevX4M3Rw9XOM95cnLyHgv91fNre96nTp2q1157rUaRuDbW+ar6ayCUIuWecnYVpKSdx4Hqx4JQ7H7+Ov300/Xf//5XaWlpWr58uX79619r0KBBGjFihIYMGaIhQ4bUWpysi+ofmHipXniyCmfVdenSZY/Lq77ti4qKahR2qm+rvn37hjQ2u2/fvo1a2Kn+HFQv2HkJ5Tn2q93PiwkJCfrtb3/rmd+2bVudd955euWVVyRJ3333nXP+XL9+vV544QVJO4tiJ5xwQj2vNdC8UdgB6sGuHhaSfWvr1q1bdfXVV4c91aK+pqLU5+OPGTNGf/nLX/TEE08oPz9fhYWF+uqrr4JNXuPj4zV69Gide+65Zi+DXZ927q1Q3oDtS8OGDQsWdubNmxf8CsOeGiAPGzZMa9asCY42j42NVUlJSY2vizXWHTuxsbFh5e/eR6D66yHUKTPV8/bm64xdunTRv//9b919993avHmzKioqNHfu3ODzHhUVpSFDhujXv/61zjrrLM/iY0JCgk477TRNmDBB+fn5+uqrr2r0Fvnpp5+CBY8hQ4bU+x11u1R/Dtq2bbtXy6i+HUJ9c1jX7dDQ9rRvVn8zGMrXWHflh9ILo66vC0m69NJLVVRUpJdeekmlpaXKycnRp59+GvwKSlJSko477jhdeOGFZu+OfSGc57w+nqNAIKAHH3ywRh+rUFhfDw73NbCnnLq+JnY/fyUmJuqll17SnXfeqeXLlysQCGjx4sXBOxYiIiLUv39/nX766Tr//PNDnigUinCfj+rPpSWc15skZ4rf3hyvGqro5WVP13q7a+z1a0y774uDBg3a4+S04cOHBws71ftLSTv3h/vuu0+lpaVKSkrSvffeW78rDOwHKOwAdVRVVaVVq1YF/219anXPPfcEiypdunTRRRddpMMOO0xdu3ZVy5YtFRsbG7zguffee2v0xagP9f345557rk444QRNnTpVM2fO1MKFC4OfRBYXF+vrr7/W119/rdGjR+upp56qcbKvfhv9gQceWGvPA0ttvVqaguHDh+s///mPpJp9dnbdeRMXF2fegXHEEUfo3XffVVlZmRYvXqxhw4bV6K/ToUMH9e7duxH+Av8aMmSIPv74Y3333XeaNm2a5s+fH2zgXFlZqQULFmjBggV6/fXX9eyzz3oWZc4///xgH42PPvqoRmGnelPlhrpbB83bddddp/POO0+ffvqpfvzxRy1cuDD4Fd78/HxNmTJFU6ZM0VlnnaUHH3yw1r5IzdFHH30ULOpER0frnHPO0XHHHafevXsrJSVFsbGxwbvP5s6dW2sfpfpWfXz14YcfbjYKro01Pa937956//339cMPP+ibb77R/PnztW7dOgUCAQUCAS1fvlzLly/X66+/rieffLJeeszBnyZOnFivPXbOP//8vb6miomJCX6VVVJIvbKq7/+7f8g3adKk4Fcn//SnP5nDFgDUbv+6WgAawIoVK2qcaHcfdf7LL78E7+Do2rWrJkyYUOt3huvz61cN+fitWrXShRdeqAsvvFCBQEDr16/XvHnz9NVXXwW/Uz5r1iz95S9/0WOPPRb8veqfcqWkpOyT0eQNaciQIWrRooXKysqUkZGhdevW6YADDggWdoYMGWLeLXL44YcH/3/u3LkaNmxYo485ry/V969Q79Cq/hWFujR0jI6O1pgxY4L9D9LT0zV//nxNnz5dX3/9tcrKyrRx40bdcMMNmjx5svkp84ABAzRw4ED98ssvmj9/vjZv3qzu3buroKAgeGdaQkKCTj755L1ezz1JTk5Wenq6pJ29Wvamz8C+3A5SaHfBNPU78BpKu3btghO7qqqqtHLlSs2dO1dffPFF8C69yZMnq0OHDvrjH/+4j9e2cb399tvB/3/yySeDUxEtezpfVe/hFsprYE851e/A6NWrV72dvyIiIjRq1KhgD6mcnBzNnz9f33//vb744gsVFBQoIyNDN954oz755JO9vouvunCfj4budRLutgonr75Ufw5CuXurvtfvpZdeqtdx5yeeeGKdPizr06dP8PoylK/O1WbXxEBpZ5+8+++/P6TfO+WUU4L/P3bs2JAGcgDNVdP6IjfgQ9UbLbZs2dK5G6P6qOqzzz57jxdHuxpv1pfGePyIiAgdcMAB+s1vfqOXX35ZTzzxRPAkP3Xq1BoXQNXvkqh+p1NzERsbqyFDhgT/PW/ePKWlpQX7B+xe+NslJSUl+NzsKgJVv+Onsfrr1IcuXboEi1fbt28P6eK2+lSi+mwe2qFDB5166ql67LHHNHHixGCxYsuWLfr+++89f29Xk8pAIBC8S+fzzz8PFiJOPfXUPd52Xhd9+/YN/v/eTm+rPiFo9erVzlcfLPWxHXY9L7v3mLFUv5jfX0VGRmrAgAG6/PLL9c4772jcuHHBn02YMCGk7dZcFBcXa/Xq1ZJ2NmWuragj7fl8tftrYE/2lFP9/FW93059a926tcaMGaMHH3xQU6ZMCTaozs/PrzE5qi5COf9Wz6k+CKAhVD/erFmzJqTCcH1fL+1J9ecglO3fkPtIU3DwwQcH/z8tLW2P+dVz6qM4CaAmCjtAHSxZskRTpkwJ/vviiy927sYI5zvZK1asqDHlw0v1W/Orf7XJ0hCPvycnn3xy8AKoqqqqRhPWTp06Bb9SlJWVFZy4URfhPB+NofrdNXPnzq3RANmrsFP9Z4sXL1ZOTs4+6a9TH1q0aFFjJPWXX35Za35VVZW+/vrr4L8PPfTQBlmv3r1717jLprZmoKeddlqwCezkyZNVWVlZo1HqOeec0yDruMuIESOC/z958uS9Wka3bt2Ck8Hy8/P1ww8/1JpfWFhYY3zw3m6HlJQUSTs/0d5TUa+xxxX7wWWXXRbc93Jzc0Nudt8chNvDpPpxw1K9T9Gusei1mTZtWq0/HzRoULC3yC+//LLHhsL1oV27djWmIdXXY+5qkh5qTvUPLBpC9+7daxw7dt0J4mXJkiWN2jhZqvkchPL87Wn/DNeuO/rq67+uXbvWaX2qNzdevHjxHov51e9C3n3i5EEHHaQzzzwzpP+qO/HEE4Px5tysGggFhR1gL61YsUK33HJLcPpPmzZtdPnllzt51W/drm26R1VVlZ544omQHrv6rbN7uh24IR4/XLs31Kw+OeGxxx4L6ZP9XaxP8arfwt0UGr5Wv7vmp59+qtFfZ/DgwZ6/t6uwU15ertdffz24b3Xu3Fndu3dvwDWuf9Uvvl5++WVzNOou77//fvD28vbt2+9xpHV92X2qR3WJiYk69dRTJe38Otebb74ZvPutb9++Df4m56yzzgqu35w5c/T555/v1XKq9wd67rnnavQI2d2///3v4B1JAwcO3OtR59UnnNX2xmbp0qX67rvv9uoxmrPKysoak7Fq20+bm1atWgXv9ly3bp1KSko8cydNmlTjDjPLkUceGSwWbN68udb+cVu2bNljETUmJibYEL+qqkqPPPJIWB8mhHIXyp6E26Day+zZs2vcFbq7n376KVgMjomJqfGVl4Zy2mmnBf//xRdfrPX5ev755xt8fXZ38sknB5//+fPna/bs2Z65c+bMqddR503RoYceGvwQr6ioSO+8845nblZWlj788MPgv3efeDVmzBg98sgjIf1X3bhx44LxUEbQA80ZhR0gTKmpqXrmmWf0u9/9LtgDIzY2Vs8++6z5CWP1RodTpkwx38jk5eXpjjvu0Jw5c0L6nnL124GrfwJiqc/H37Ztmy677DJNnTrVsxgTCAT09ttva/369ZJ2Frx2b1J73nnnBUeFrlmzRldccUWtt4WXlJToq6++0hVXXGEWp6o/H/Pnzw/pqwtbt27VoEGDgv+FOzGsNoMHDw6+GcvKytLUqVOD8domh1S/m+fdd98N/r+fvoa1y5lnnhksRqWmpuqmm25SZmamk/f555/rH//4R/Df1157refEqtpcffXVevPNN5WRkeGZs2DBAn3yySfBf1fva2Sp/in5s88+G/z/hr5bR9p518tVV10V/Pc999yj9957z/NN5MaNG/XSSy858UsuuSR4XFq6dKnuuusup8gWCAT05ptv6o033gjGbrjhhr1e9+oX7M8995x5h8HixYv1xz/+sUncYddYfvrpJ40dO1YzZswIFm13V1FRoWeffTa4jQ466KAm3zC+PsXHxwe/3lFcXKyHHnrInM44adIkPfTQQ3s8X8bExNTog/Pwww9r5syZTt6WLVt04403mpO1dnfVVVcFm8D++OOPGjt2bK3nj/z8fE2ePFkXXHCBcwfbn/70J7344ovBJu+WtWvX1njDbB23Jk2aFDyXhdr7KyIiQuPGjdPSpUudny1btqzGVwIvuOCCYIGsIV1yySXBu9XmzJmjhx9+2HmtlJeX69FHH9WsWbNCul6qz3N9cnJysLAnSXfeeWew4W91S5Ys0Z/+9Kc6951p6iIiInTrrbcG//3888/rs88+c/IyMzN18803B3u49enTRyeddFKjrSewv6B5MrCbqVOnatmyZcF/l5eXKz8/X5mZmVq6dKnWr19f41OkLl266OGHH/YcTdu3b18dd9xxmj59uiorK3XjjTdqxIgRGjhwoBITE7Vp0yZNnz5deXl56tu3r3r37h1s0OrlmGOOCZ48H3zwQf3000/q0aNH8CtJLVu2DN4xUZ+PHwgE9PPPP+vnn38OTnc68MAD1bZtW1VVVSkjI0OzZs2qceF04403Om/UY2Ji9Oyzz+qKK67Qtm3btHz5cp133nkaPHiwBg8erJSUFJWXlysnJ0erV6/W0qVLa22y2rNnT/Xs2VMbN27UmjVrdPnll+uoo46qcSfPkUce2WCjqXcXExOjoUOHBr9mtqsIVtvXsKSdd6vs+juqF878WNiJi4vTo48+qmuuuUbFxcWaN2+ezjjjDB1//PHq1auXiouLNXfu3Bo9oH71q1/poosu2qvH27Jli/7xj3/oySefVP/+/TVgwAB16NBBMTExysrKqjFCWNrZcHFXcdHLoEGD1K9fP61atSp4p0tMTEyNu2Aa0nXXXacVK1bo22+/VUVFhR555BG9+uqrGjVqlDp37qxAIKC0tDQtXrxYq1atUpcuXXTttdfWWEa7du30l7/8RePGjVNlZaW++OILzZs3T8cff7y6du2qvLw8zZw5s0aviksuuUTHHHPMXq/3CSecoAMPPFCrV69WZmamLrjgAp100knB7b548WLNnTtXkZGRuuaaa/Tyyy/v9WP5SSAQ0MyZMzVz5kwlJSVp0KBB6tOnj9q0aaOysjKlp6drxowZweJkRETEftc4WdpZpN31ZnHKlCmaP3++jj76aHXs2FHZ2dn64YcftGbNGkVFRemaa64xC5rVXXrppZo2bZoWLFig4uJijR07VsOGDdOhhx6qmJgYrV27VtOnT1dJSYmuvPJKvfbaa5K8m8G2bt1azz77rK699lrl5ubqhx9+0Omnn67DDz9cBx98sFq1aqWysjJlZmZq1apVWrZsmWchLyMjQ1OnTtULL7ygvn37auDAgercubPi4uKUnZ2tlStXat68ecEPK4YOHRr2JK7anpc333xTl1xyiUaPHh0sqP3yyy+aOXNmsOjau3dv3XzzzfXymHvSpUsX3X777frrX/8qaWePqe+//17HH3+82rVrp8zMTE2fPl1bt25Vjx491K9fv3r/utOe3HjjjcF9MCcnR5dddplGjRoV7K+4bNkyzZo1S5WVlbr88strFMybo13n7ffee08VFRW688479fbbb2vEiBGKi4vTxo0b9e233waHjCQmJurJJ58MTrYDUH8o7AC72TXmeE/at2+vs88+W1dffXXwO/deHn74YV133XXBgpF1i+6AAQP01FNP6cUXX9zjY5988sn64IMPNH/+fBUWFtZo4CztvDiq/lWY+nr8qKgoRUZGqqqqSiUlJZo3b16N/jHVxcbG6o9//GONT7eq69y5s95//309+OCDwe+q7/7me3cdOnTwbP58xx136Oabb1ZFRYUWLlyohQsX1vj5X//610Yr7Eg7izG79w/aU2FnV071nkS7luVHgwcP1iuvvKLbb79d27ZtU0FBQY2eVLtERETo/PPP1z333LPXn3DuKh5WVVXpl19+qfVrh2eeeaYeeOCBkJZ73nnn6e9//3vw38cff7zatGmzV+sYrsjISD311FN69tln9eabb6qiokKpqak1bmevzmss9pgxY/Tss8/qz3/+s7Kzs51b4qv//rXXXlvnqSIxMTF66qmndO2112r79u0qKSlxvgITHx+vBx98UO3bt99vCjvVt09+fr5mz57t+VWOpKQk3XfffXUqsPnVCSecoOuvvz74VZxt27Y557j4+Hjdf//96tix4x4LO1FRUXr++ed1yy23BM971rnrzDPP1A033BAs7NT2lacBAwbo/fff17333qv58+ersrJSc+fOrfUO2p49ezp3bFb/0GPNmjW1NgMePXq0HnvssXp7Q/zb3/5WkZGRev311zVjxgzNmDHDyRkwYICef/75Bm0Uv7sLL7xQJSUlevrpp4PHvN2/4tOjRw89++yzNY4dXl9Z3P3rXHV9/hISEvTSSy/pxhtv1LJly1RVVRUs2FZ35ZVX6je/+U2zL+xI0t13362EhAS98cYbqqys9LyW69mzp55++mn16dNnH6wl0PxR2AH2ID4+Xi1btlRSUpJ69uypAQMGaMiQIRoxYkTIFwjJycl66623NHHiRH3++edas2aNSkpKgl9TOvnkk3XWWWeF/BWU6OhovfTSS5owYYK++eYbrV27Vnl5eZ79M+rr8Tt16qRvv/1Ws2bN0oIFC7Ry5Upt27ZNeXl5ioiIUFJSknr37q0RI0bonHPOCd6u7qV169Z65plntHLlSn3yySeaP3++tm7dqry8PEVHRys5OVk9e/bUIYccotGjR+uII46o0XuiumOOOUbvvvuu3nnnHS1cuDD4hrI+ehrsjd2bHe8+LcvL4YcfXuNNd/fu3ff4PDZlgwYN0pQpUzRp0iRNmzZNq1atUnZ2tuLi4tShQwcNGzZM5557bo2+LHvjgw8+0Jw5czRv3jz98ssv2rx5s3JyclRZWamEhAR169ZNQ4cO1ZlnnlljkseenHHGGXrqqaeCX9E477zz6rSe4YqKitKtt96qCy+8UP/73//0ww8/aMuWLcrLy1NMTIzat2+vfv36adSoUbV+BWPXXX4ffvihvvvuO61bt065ublKSEhQly5dNHLkSJ1//vk1pgjVRa9evfTRRx/pzTff1LRp07R582YFAgF17NhRRx11lC6++GL16NHDszDcHB166KH68ssvNXPmTC1cuFCrVq1SamqqCgsLFRkZqdatW6tPnz4aPXq0zjrrrBr90fY3Y8eO1ZFHHqm3335bP//8s7KyspSYmKiOHTvq6KOP1nnnnafu3buHvP+0bNlSL730kj7//HN9/PHHWr58ufLz85WSkqIBAwbo3HPP1XHHHVejR9uevgLXtWtXvf766/rpp5/05Zdf6ueff1ZaWpry8/MVExOjtm3bqlevXhoyZIiOOuooZ2KmtPOrK/Pnz9fcuXO1ZMkSbd68WZmZmSovL1dCQoI6deqkwYMH69RTT63RUL2+jBs3TkcffbQmTpyoxYsXa8eOHUpISFCfPn10+umn65xzzvEsGDekXXfBvP322/rxxx+Vnp6u+Ph4de/eXSeeeKIuuOACJSUlBe8Ckby319q1a4P/P3jw4Ho5n7Zr105vv/22Jk2apE8++URr1qxRUVGR2rdvr8GDB+uCCy7QsGHD6vUr3k1ZZGSkbr31Vp1xxhmaNGmSZs+erbS0tOB15oABAzRmzBidccYZe/VVawChiViyZMm+edcDAEATt23bNp1yyikKBALq0qWLPv/8c8/iIgB/+/nnn3XZZZdJkk499VQ9/vjj+3iN6teVV14ZbJg8derUOk9F2tdOP/10bdq0SVFRUfrhhx+C/Xmqe/LJJ/X6669L2llI2x/vggOwf+DqFAAAD5MnTw7e9XX22WdT1AGasepfRxo4cOA+XBPsyfr167Vp0yZJO/sAWUUdScFC1oABAyjqAGjWuEIFAMBQXl4e/FpcVFRUo0zDArBvbN++vUYvn+OPP34frg325F//+lfw/722VWFhoZYvXy5J+v3vf98o6wUA+wqFHQAADOPHj1daWpqknQ1d/dzrCNifvf322/rqq688+9CtXr1a1113nfLz8yVJRx99tHr27NmYq4j/b9WqVXr++eeVmZlp/ryoqEgPP/xwcHpnXFycLrjgAjP3559/VmVlpfr27asxY8Y02DoDQFNA82QAACStW7dOP/74o8rKyrRkyZLgG4fo6GiNHTt2H68dgL21du1aPfroo2rTpo2OOOKI4Fd38vLytGTJEi1YsCA4Ujw5OVn33XffPl7j/VdxcbH+/e9/6+WXX9bQoUM1YMAAtW3bVqWlpdq4caNmzZqlvLy8YP5tt92mzp07m8s66qijtGTJksZadQDYpyjsAIBPzZw5s9bxuKG44oor6mdlmoHFixfXGG2+y4033hjSeNaCggJNnDixTuswdOhQDR06tE7LQPOzcOFCLVy4sE7LOP/88/c46am5y87ODhZsLb169dI///lPz0IBGk9FRYV++umnYI+c3cXGxmrcuHG6+OKLG3nNAKBporADAD61a3RvXVDYse0aPX3FFVfouOOOC+l3cnNz9eSTT9bpcceOHUthB47Zs2frxRdfrNMyTjzxxP22sHPDDTeof//++umnn7R+/XplZWUpJydHUVFRatu2rQYOHKjjjz9ep5566j4Z743/c/DBB+uFF17QrFmz9MsvvygjI0PZ2dkqKSlRcnKyevbsqREjRuiCCy5Q+/bt9/XqAkCTwdkLAADtnHp19tln7+vVAFDPUlJSdOGFF+rCCy/c16uyT7322mv7ehX2KDo6WkcffbSOPvrofb0qAOArEUuWLAns65UAAAAAAABA+JiKBQAAAAAA4FMUdgAAAAAAAHyKwg4AAAAAAIBPUdgBAAAAAADwKQo7AAAAAAAAPkVhBwAAAAAAwKco7AAAAAAAAPgUhR0AAAAAAACforADAAAAAADgUxR2AAAAAAAAfIrCDgAAAAAAgE9R2AEAAAAAAPApCjsAAAAAAAA+RWEHAAAAAADApyjsAAAAAAAA+BSFHQAAAAAAAJ+isAMAAAAAAOBTFHYAAAAAAAB8isIOAAAAAACAT1HYAQAAAAAA8CkKOwAAAAAAAD5FYQcAAAAAAMCnKOwAAAAAAAD4FIUdAAAAAAAAn6KwAwAAAAAA4FMUdgAAAAAAAHyKwg4AAAAAAIBPUdgBAAAAAADwKQo7AAAAAAAAPkVhBwAAAAAAwKco7AAAAAAAAPgUhR0AAAAAAACforADAAAAAADgUxR2AAAAAAAAfIrCDgAAAAAAgE9F1/bDQYMGNdZ6wAeWLFkSci77DqoLdd9hv0F17DfYG5yrsLc45mBvsN9gb3Cuwt7y2ne4YwcAAAAAAMCnKOwAAAAAAAD4FIUdAAAAAAAAn6KwAwAAAAAA4FMUdgAAAAAAAHyKwg4AAAAAAIBPUdgBAAAAAADwKQo7AAAAAAAAPkVhBwAAAAAAwKco7AAAAAAAAPgUhR0AAAAAAACforADAAAAAADgUxR2AAAAAAAAfIrCDgAAAAAAgE9R2AEAAAAAAPCp6H29AkBTdVdKlhl/NLOtE3ui3XYz9/aMTiE/XmRkhBuLcGOSVFFZFfJy0URYR9uKRl8L+E2UcQyoDDT+egBAKLw+MuayxX+ijFhlwzyUfbUrcbbzpyjjONDYb12Mt1WqauY7FHfsAAAAAAAA+BSFHQAAAAAAAJ+isAMAAAAAAOBTFHYAAAAAAAB8isIOAAAAAACATzEVC83WnzpscGL/SO9l5j7SNs2JxVbarf/vaL3FiZWUxZu5d8WlO7GkdsVm7r1bejqxqjDmAURbLejFBK36EBFtz2sIVBjbJ5zRDtbECa9cr83o9XihLhdNW4CNhuqs4zzHePx/1hgYyT6ONNShJZzdkVFITUJkCzteVebGvC5b6josy3OTc8hr0rxewk3hrYc1Aau5D+3jjh0AAAAAAACforADAAAAAADgUxR2AAAAAAAAfIrCDgAAAAAAgE/RPLmexRk9dEvsXrnYC/9MWe/ESqK6mLmllblO7G/tS83cmKgCJ7a9LMbM7VrkNkTeEpdj5ia16u/EIrbkm7l/ab/CiT2ww/19yW5WRpPkhhOoDKOTo1dqXTsLhvt4aB54WaMGd4e4ZOwwMzMi1f3sLifRPddJUrsotyVqmw5G51RJTz3hnqtQX+rYKdbqFlofPDvmGusb6bG+VpjmyU2C5x5mXAZXljfkmhirYOwjjbwKqIXXHSINdclbV839koo7dgAAAAAAAHyKwg4AAAAAAIBPUdgBAAAAAADwKQo7AAAAAAAAPkVhBwAAAAAAwKea/FSsxT07OLFOre32/EWlbZ1Yz0R7slF2QaYTS8gtMnMrYrs7sej4BDM3qtUGJ7Yuz277n5vh1tWGZ242c5kQsNPNmb2d2L29SszcuB3uBKwMexPrl8BKJxbh0Tt9vTo6sR4R9v6wPMedoBVQlpnbaoc7Pu2uWHcKmCQ9Wuo+D17DJSKjrPqtvUNFRLhLqahopj3kvcra1p/b2K8/a2OGsw5eE0ysZTTTzQs0S+3c0PgX54X++3GxdjzKODgU2lOx1MmIbQ99FVCbhjkgJ7ZwY16bV4lGrNBrycb6evwJ1mmp0uvCBY3La4SRcViIsN9WKRDOqKpuRmyHnVqe3NIN5ntcEBV77qhoIPUy/SqsYw5qwx07AAAAAAAAPkVhBwAAAAAAwKco7AAAAAAAAPgUhR0AAAAAAACfavLNkwdvdJvPaqNH567oDDdWEU43Ly9uo2U0rD/3yDPjHYrdbZ9hNB2WpNhAkhOLj7IbF/eo6OvE8mXse5JiEpKdWHGR3a22RaLb/atjYXszNyupwomVltidBR+Kd7vM3V9sL7eyMpxmjPtRl26PpyXCOCp+8q7bmF2STr/A3p/qrK6bwaOb3edvdnVip162tY4Ptn/x6vUZqHPH6wYSRpNwr57b9dIcEfXDuMwJS5Q7VECSZJ1G4z2WYR0OaZ7sraEODWEst7DMOBDE2UezyEL3FV8fLZ3N4wgHF09RUe72qaxsoHNKZSuPH7jX4oH62Bm2hJGbXlAPD1g3xqZQQ22K+mCd9ht9ToaxEhFRVpdkKVDYfDslGzNpFGjAfYc7dgAAAAAAAHyKwg4AAAAAAIBPUdgBAAAAAADwKQo7AAAAAAAAPkVhBwAAAAAAwKea/FQsm8ekK3eokO9Ee4xcqWjC3dcbwsNb7A79DyS6Hfrjo8vM3ECV22U9tSLfzN2mNk7szHEvmbkRpZucWGZlSzO3Kt5dh0CmPWUtpU0XJ7bomafN3HYRJWYcdRcwjiMNNf2qZ99+Znxj1io36LEKpx4zyIl9PmOJnRvGBKzIaLfuX1XR6HMVmhzvQ3ETPUiHsckYUONPET3tC4fARnefjHUH40mSSo1DTkqKnZv5S6hrJl181dFO7N1Xvw99Ac1BOIcG46o8yuPa1pzKE2fPtktoEefEivLsSTTWIcNzGqD1cGEcSFp4xM2rOo+ViDA+og40g4NZVVVjnlO8tkQ4jIlHrTymHZmDb1t7LDfHiIU+w7Fepj020aGXXqxVC2NAZoOtRKC8cadfWds+yuONdlkd32h7Pb/WozXk4Yk7dgAAAAAAAHyKwg4AAAAAAIBPUdgBAAAAAADwKQo7AAAAAAAAPuXL5sl/u8JtFipJ977uNgzt2tpexpac0B/v7hO7O7G/f7XZzD3IiB052G5K9sZitz3c/tYkWZL+0WGdEysvTjJzcxIznFhEaTd7wYFkJ7RcX5up2+KHOLGN79qLTd3mxryaTJ55cGcn9sb3qWZu+/ZurNsx/zNz0+bZzXH3e15d8qzuZY3cbP37D+52Ykd1MpoNSlq91W1nt2rdGjN3Syf3tRLt0W1zyrTlta1iDWajZM8OmiEvFpLC68Ronabt7Xvl+ac6sXbRdiP6f7z3vsfjuaxPgGijXX8uvO1IJzbh4x/N3PZG3/wdZhddaeARrZ3YLz/lmLld27qxrQVmqiIPdGNVq+3cqkT2FEukx7kq0jg0VITT/bXKbssZbzRK9jriWK93z5anxsO5bZp3skY+2KMvPHiscFinHx81wQ0Y6+W133hs9jC419ZevHdHYy8xmyR7yQkjN/Q/2Csz0tjRvY5WlT47jFm7dEPt5p5NmZvA68ra9pUN9Ebbcxdp5OeBO3YAAAAAAAB8isIOAAAAAACAT1HYAQAAAAAA8CkKOwAAAAAAAD5FYQcAAAAAAMCnfDkV6x5j+pUkdTFixTl1fzxzApbHdJhVRvfrlcb0q/oQ7dGbviKMbvFNwZ/SDwg5944It+t+68hcMzeryJ04tCXiDDN3c7EbizFikl0NXZdp5z4/w52A5bV18tPd2KZ0a46E9I0GeCylbqw9yl97k4dGnID1wyuXmfE5k5c5sU9alZq5R/R2t8TsLfa+0G+7+5p46PxTzNxwpmKZmsCUg+bBfSIn3HOJmfm/OYud2LvfuDFJem3i507sj78fbeb+4/IRTuzuN+aYuY08QG6/s/YpdwLWAHegoiQprpMbK/rZzj0gP8ddrscEx7XGgf7mC+3cj41hjZuM9ZKkb2bPsn+wPzGuF72mGNV1utFN5xgjyyRlrnHHlqXH2svoaZxqthnXJ5LMC4QWHsu1hqz1SrSn9r2yLIxxStZz1kwnONZ9+lW43CvegOeT2FBPbsOMMqsyxhh5vSnmHOjtlbtvNuOnX3KiE2sfV27mLstIc2L9EuytkZnvbrg2beyDTnaE+4KJjLbnV3Xse40Z9xvu2AEAAAAAAPApCjsAAAAAAAA+RWEHAAAAAADApyjsAAAAAAAA+JQvmyd7yVZrJ1asHDs5jC6xbSNjnFhWld0Aymrn1cFerLx60YWqwu9d4P6/h9q4nfpaZOebuQXxbrPZnAKrJZ+0JdrtKLnZowNavBErjrWbU7cIuDtKnEd/bGuX8up9Z8XL1cLMjZb7gPXR3M33jZLD+QO8ytp2X7WQjbz6zZBzvY4Nj9VtFSTZTXDRNASmv+vEOt1wm5l7dkSSE7v2xIPN3IzSrU5szU92c/lPEt3j5vmHDzNzv/h5nhPL9nqdNEyfy2bt+LtOcmJPPPqlnez24/f0ibHpPXoc65c33U7JbS+bEPqDedle90X4XiPu/2N6HWrGjz5tuBN7Z8rbZm7HBDd2we/sxqK/fewDJ3bHuWPM3P9M/siJ9Wjl0STZnTUQHo459cS9Bu0qe5BDjhGzr+QlJRrd4Qvtg1t/Y2OWe3THXlvHDU+T5PBd+fcX7B/8/Z91W3CEOwBHkhRwB4bg/3DHDgAAAAAAgE9R2AEAAAAAAPApCjsAAAAAAAA+RWEHAAAAAADApyjsAAAAAAAA+FSTn4r1x8vdTv4rsuwxC19O2RT6gsNonH54/x5ObOaWtWZusdHgv67Tr7zVcXxPE3F/dpwTe6SPO/1KkuLT05zYvYW9zdwju7V0YoOLrPlX0rqsYjdYao9YamOMVCuKtHMP6O6+xFZstPvuV5rTZDzGbTWQqCh3JSorm+l4iTBePheddaQZf2/yj3VahUJ34J4k6czD+jqxskxjVImkVSWLnVhegZ2bkVMU+sqh7uzNoBcmfufECvPsiSBvpLgTGFsttifJHHHgEU5sxboNZu625G1O7H+J9vGmNJxDQDM9XDSk6VOXh5x7VLQ7uey6CnuC40/q48T+KXsSUjgTsO7SrU4s2mP+zWfG4y2Qcb5F2EYe3NOJPTL+EzN3yj/OdGI3TbSXu+aVU5zY2hX28en9b93Ra60627n/+cqNffWvX9kr8eG3dhz1oJcR2+CR616vbvbIjJU7wdFzLlYYJ5UVRqyduntkh/E+EPUiLsreliVhjdk17jMJ2O8D+8e671NuOd+e6PmHt+eGsxLNAnfsAAAAAAAA+BSFHQAAAAAAAJ+isAMAAAAAAOBTFHYAAAAAAAB8qsk3T07a7jaO7NOmi0d2GE2zjMapw0Z0MFMztrnLHXhUspmbNsttJLfFDdULr6qc31oqP9JpqxMrL7abZiXFGc3ZPHqzdY5p7cQ2xueYuQVeK2dIk9sRLDrG6nws7djhNobuIrtj7pZAthPzai9nt1+2WfuJ3/aRfa1jkd1UtpMRs1u721q6hzdJUmIL9/HaDLCbhE+dYiy3s0eT5JwQVww71fXFU2m/1u/95N9OrMCjI2VMywwnVp5pH/03p7jN5VM9+tSW5BjB/m5DZUnhNUS2+viG1URx//PTQq92pK6/VhzkxCZrvZl7VPRQJ/bPCrt58ltXu7FLX7HXIVpus+f+Os7MTZa7Dgv0g71ghGX1xiwn1iZgv+AH/PY9J7bp09+auRvXuM3Zj77ZbsrsjqiQ3nnb3r53Gg/XOdpquAtJkjlQoz4WbF3xer0dDP1qs9S6GO+SYidnG++3KryaqrtvojJokrxPWLtkSaW9j9x/pTt46KHXPd4QB9z4+cPbmqmLN7jXRLNWLTFz//WXe5zYTQ/8zV6HZoI7dgAAAAAAAHyKwg4AAAAAAIBPUdgBAAAAAADwKQo7AAAAAAAAPkVhBwAAAAAAwKea/FSsR7742YkNbGtPIEpo4XZfjyqzu3XHd3I7cK9fkG7mRnSNd2Lt5thjPirbux3+uybbo2+2biox4/ube7d3DTn3oQR3JMBDHqN+7l/f2okNaGeNbJEOSnFrnDkek2eyE919qmWZPaogMtKdPmDP+5I6t3JjUR7jujYbk3kiouzXRVVl6GMUKsPIba5O+JU75+OfXy0wc488xu3anzCj0MzdYmz5gUd3NnNTW7pTrUpL7ck3vz15pBOLjXQnrEnSa6krzDg8BKzXlP06M8dlldrH/q7R7j6W4/Fir1ob68QOHNDGzC0tc3PbtbQnum02DkRtPHYPe2/ywASsBhXZ0d2ejx7Q08xNkztx0msgVUqFNW3UnpJ2XqcznNjQ1va+/u6KU40oU7HqQ0aBO4UoMcHOTRnhnmsGPTTRzO1W5k5gPOiwA8zc2Cx3Qo3aJ5q57211r7/mvfWTmQvV0wQsi7vNOh17spnZN8Kd7Li9nX3d0ibJfU+TULTFzA1UHOzEymLdKW+SVBbt7jedK+3pSp++/bEZR/0IZ5d85DV3clkLj1zrKuXjucaxxSN3Vbo9Ue2Tec17ApaFO3YAAAAAAAB8isIOAAAAAACAT1HYAQAAAAAA8CkKOwAAAAAAAD7V5JsnW35/6+lm/JnnPnNiWQV2J7nIIrd5ZWk/u/lf7jK3KdMOj3WLdvs3a5C9WKutYViMVp3NxqPxdrvOqviVTqy13G0pSXL7zyq2yK5l7ohxW4JVJdttwuJK3cZxidpu5m4uDr3VWM9ityFqZITd+FRyG/QGaHxcL77+1qNjtSH9F3c7ZHe1X/AHl7n7aWZ6qpkbu9CNlbSyG8nNz1/jLrel3VzX5NULmN1JChhPQpTHE2MdkD1Su7d1G5F262M3+i8LGI2027pNkiXpmEOOcGItit3m/5L08+q5TiwQYZ/Zpr5vNMBkv9knjk2b4AbTQv/9Z8cONOORka2d2Jyx7czcQ1+80Q3ap0A0sq3GdY8kJf3inmta2ocGpUVucGKRO+y2p+mVbgNnbcgzc1u3j3NiC3O9rnHQmLav+8KMtzn8Eie2o9h+sWctd7d7qwOMN0WSNkx5LuR16zzSfc+XGtcj5N/HvtHeuEjY4fG+KjnSbZCdVOE27pakLfmhDx4qk7vc9tEe7wMrPN6s+wx37AAAAAAAAPgUhR0AAAAAAACforADAAAAAADgUxR2AAAAAAAAfIrCDgAAAAAAgE/5cipWQsBu5T9m4GgntnTT92ZusTGSarXHmKpRfdyu2jsK3JgkpW91O/wfc/ooM/fnCbPtB4TuMiZESVJ0mVuL/Esbe1qQNRUrpb+d2mJ5shNLj6s0c5OMpu6lLexO74O6JDqx7Fx3kpIkBWLcTu+tquyXaGS2222+qspeh6go9zmrrGzOM9UaT1xbd+reYVXuNpekQGd30ltkXCcz9+uV7tSJIR3t4163ig5OLKbUnrZlvlI8JgSonH3EZB8W7I9JPCZE9SlwJ6+tSLAXHJfkLjgh2z6GPPHnN53Y+ccfaOaWbXOPeX16GdOvvDAVa5+Yf4U7Ue2jnNZm7siAO7FofZm9n53yins98tyVB5u5n/5hkBOLy9ts5o55J8eMo2HYs/WkPGN4Vb4Rk6SoyFInFiF7epU1n6/M461FcZ57jVPqtcJoXPbLV6u2fOXERp11mZmbNcS9woiZm2XmDvnNdU6suMTex8qicp1Y9uSXzVw0Hduti4F8+9hQZhy5cgL2ucq69IiRPbWv0jhu7ajwuohrHrhjBwAAAAAAwKco7AAAAAAAAPgUhR0AAAAAAACforADAAAAAADgU75snpy/2W7q2XZwjhNrndTHzJ2zdq0btPsha/Fat9FSgWcHTdeU6WtCzkXtnuzsdvvbElFu5kZGui22CtbEmLmJXdzGWyVVaWZufKL7sskr6GLmxpTkucGc9mbuDu1wYqkeL9GqsDqUurlRkXZNt7KKhrnhiCqPc2KbqtzGk5KUt9VteNuhjX3Q6d/FbWwbsbXYzP2meKMTa2dmeiin2229COOlk9fP3e4pJelmbvtWKU5s3TS7YfyZRq/bxHT7/DN5pbvdv11ppto4VOwTa0vda49hfez9ocJoKNnXuJ6RpFd+7ca6JRjnL0mTtrjHoi7LcsxcNA3WVjfmKkiSIo3XdnFY1xx2R+Ry+9SIJiBCXc14gtzr6wXrvzNzt/44x4l9v9geEpO62b22TU6ymyc/8sYUJ7ah0r7uRxNXZR8brKtbj7fksvokl5XZ+87+iDt2AAAAAAAAfIrCDgAAAAAAgE9R2AEAAAAAAPApCjsAAAAAAAA+RWEHAAAAAADAp3w5FSunaJsZr0xJdGI98tqYuYe1KXBiC7LtKUhupreDkns6sZ7dDjRz16V/HcaSIUk3b3G38TOJmWZuVZU7xaH8gFgztyDL6MkeafdkLyxz66H5OfY+6c7wkrz2qFYJbqyyxGMShTWRxmPSVVXAnQ4WiIz3WG44ezuWrE91Yp17ufuoJMWkdHd/f+nmOq9DF2PI2m+OPtLMffqjH40oU7Ea26AOHZzYkoU5Zu7Eb7c4seIye7JR+Tb3dV1szpuQ2hqHt3NPH2HmvvyxO+0E+0ZWsjsBq3OpfZ2TvcTd9hO+22rmHmScEv5TbB+fzji9rxObVmRP5rKEc+Fpz1CBF/dsv5MxSEalHpPt7CNG3TFIr+nqN3yoGV8591MnFrHenuB49s23O7Hp/32yTuslSep5Zt2XgQbkddSp27Wl5+zpOg/Aso6G9bLgJoE7dgAAAAAAAHyKwg4AAAAAAIBPUdgBAAAAAADwKQo7AAAAAAAAPuXL5snzly8z40cEznBia8sXmLm50W5b28PaGV1IJZVFlTqxTR49ZgvjCp1YfPsSOxn14pbClJBzCzbbbQHjO7gNb7tk2HXPBTvcbXxAkt0wt6rI7VCak2I3GisqyHXXIdFuH7bB6spcZbcmNNuX0SS5wfSMtbdZRW6eE+verrOZWxXjNnJPL7cbf6/f4e7TdpNkNBV3/HeWE7tmzAAzNyV6hxMrTbaXG1/p7guZxXYT+B3F7n5Kk+Sm7w//ds8/X1/vDm2QpNRWG5zY6Ve0NHOj1rjnhC6t7EvEnzZudGLf2vMDTDREbjhe7UrDec6tK59oj3cLZcaC4zyWy5Vw09WuX28zvqHtiU6sa47dZDaj1D02nXTFw2bupuQsJ5a9xL423jHffc9X1eMgM1ebVtpxNJi4CHsYS0lkkRuM8VhIGAcHq/VxWG2PE4xJNZJURPNkAAAAAAAA7EMUdgAAAAAAAHyKwg4AAAAAAIBPUdgBAAAAAADwKQo7AAAAAAAAPuXLqVjbVrnTZSRp9ZbPnNgR19mTZE4febATm/TNWjO3qMBdRrckd1KJJB0z5gQnds9/vjZz0fiq8jxqmSmZTiihyp7tcFSfcie2YZPdTf3ATq2d2I7cHHsdurZyQktX2/s6mq4lW+z2/oWFbvyoLvY0gS3R7nSI2AR7opsyQl83NF3tO9qjrn4xBksc6TG8IdM4ZHVsa09pS90a6pqhqctsYW/MP0xxd543Dutr5hZ0co9P7TttMXPfdy+10ETYV7ySO9tVsmcQ2ZO1yuzDiKy3ESWtPGZwcTnTZP1gTGWVpOOP6e/EVrxvTyYu/sGdSFXW6mczNzvb3cs6dLT33rS27gQtrWf6VVMRk2BcpEiKiHQnchbnex5IQlbn2VVFOXVeh6aMO3YAAAAAAAB8isIOAAAAAACAT1HYAQAAAAAA8CkKOwAAAAAAAD7ly+bJhR7d4SJi3UZNM/5jN3H7Kn2eE2vdLsbMbVnmPk2RkXZj3ak0Sm7S4jrZTb4KUt0mtjvi7Wa124we213aJJq520vcxytqbe/AG2mU3CwUWl0qJcnokzxz2/YGXRf4R0SCveM8/ODZTuzPD06yF1IQYgzNyo40u/HptBvd2PHPrWngtcG+lOARtxqOejVPrrKCVkdlSZJxjc2ljO+MSXGHd0jS1mx3b+g5dIiZO/uNp51YahjrsMOeX9O4wukoDklSRaEdL2vtPpnJLVuYubkF7hGqY6x970lFtLtPBqLs3Kw882jWrHHHDgAAAAAAgE9R2AEAAAAAAPApCjsAAAAAAAA+RWEHAAAAAADApyjsAAAAAAAA+JQvp2JFxtvTqzYFcpxYXkIPj6VkOpGcjHIzs6R1pRvL2f86bTcHeUUtzXhUR3fKWfsMe0rNNmNmxLZsuy38tjDWDc3DgN72XJLU1e6EtJwGXhf4R7nHJJmA3Il7j9x3qZl771/fqs9Vgk8ckDLSjOemuBNIpl//nZl73Av1ukrYR7yG91hxBv1gl+2r7ZFUJdHutKy2rbxGRzUDvCjCVmq/JVd0uTsxr8QeNmxKK/V4n22+NeM9+S7csQMAAAAAAOBTFHYAAAAAAAB8isIOAAAAAACAT1HYAQAAAAAA8ClfNk9uE+c285Kk8sIoJ5adt6nOj0ej5OajKqHAjCdsc7dxUVG8x1LsRsmAJLUtb2fG86Lchu1dO9n70rKt9bpK8IFNxTlm/MCAe5qu8Gi0jP3Txoj1ZrxHek8ntqPnYR5LWVCPa4R9xW3R783rk12uePc/eR6XtS2i3JPNz2XcE4D/k+TOF5IkRRj7VHKCXXbYWOQ2Wsbe4dUJAAAAAADgUxR2AAAAAAAAfIrCDgAAAAAAgE9R2AEAAAAAAPApCjsAAAAAAAA+FbFkyZLAvl4JAAAAAAAAhI87dgAAAAAAAHyKwg4AAAAAAIBPUdgBAAAAAADwKQo7AAAAAAAAPkVhBwAAAAAAwKco7AAAAAAAAPgUhR0AAAAAAACforADAAAAAADgUxR2AAAAAAAAfIrCDgAAAAAAgE9F1/bDQYMGNdZ6wAeWLFkSci77DqoLdd9hv0F17DfYG5yrsLc45mBvsN9gb3Cuwt7y2ne4YwcAAAAAAMCnKOwAAAAAAAD4FIUdAAAAAAAAn6KwAwAAAAAA4FMUdgAAAAAAAHyKwg4AAAAAAIBPUdgBAAAAAADwKQo7AAAAAAAAPkVhBwAAAAAAwKco7AAAAAAAAPhU9L5eAQAAAABA85GQGGvGiwpLG3lNgP0Dd+wAAAAAAAD4FIUdAAAAAAAAn6KwAwAAAAAA4FMUdgAAAAAAAHyK5smAJCnCiAUafS3gLxHGbhNgt4EPREe5sYrKxl8PNCDro7uqRl8LAPupoqJ9vQbA/oU7dgAAAAAAAHyKwg4AAAAAAIBPUdgBAAAAAADwKQo7AAAAAAAAPkVhBwAAAAAAwKeYilWNNRdJYjbS/oGtjPBZE7CiYuzcyvKGXRc0T8bwKk/hDLViAtZ+gAlYAPahyECFGefQBDQM7tgBAAAAAADwKQo7AAAAAAAAPkVhBwAAAAAAwKco7AAAAAAAAPgUzZOroX0uAItnY/WoWCdWWV7asCuD/Qo9jtHkWB8J0g212SjJ2eLENkTabdwTs1o6scgye1JA135tndiOymwzt31Um9pWET5RxYEB9YzTT+24YwcAAAAAAMCnKOwAAAAAAAD4FIUdAAAAAAAAn6KwAwAAAAAA4FMUdgAAAAAAAHyKqVjY96yRQw01osyjlBlvPF6x1zLCWjf3j0v2WECuEYvyGMdUyQi3RuX5dFcyAQvhO2DA751YYcUqM/fow7o5sYnvT7YXHOtOaevetr+ZWn6wO81m+9dT7eUC1TGCpMkqKSkx43FxcU7stodfM3O/W+VOxUrq3NHMLUtyL1Je+/dEM/fuF153Yky/atrGjBntxLr1aW/mvvHfSUY09IvV31x6gRnPLk5zYl9OnBHyctG8VMma0Mf80F24YwcAAAAAAMCnKOwAAAAAAAD4FIUdAAAAAAAAn6KwAwAAAAAA4FPNvnlyikc8spUb25FXH4/nNpLLbLBOwM1EIz49fZPsWuaa0hZOLKLEfnkEVBDGI7p/nNUk2QtNkmvRmE23vcQYsfJGXgeExToCNFwvWPe4Iknrl7/pxAIeO87E1W5TwNYxCWZuTmmGE9ucOtNetVQ7DMC//nzzPWb8pMFDndjPH91t5s6cdqATSwzYR8m+gw9xYtPGzzFzkwZXOLFRp48wc2d/6i4jK1Bk5raNsI+HqLtvvpnlxI7N62rmtkl2Y9lhXPD+PP0DM16+I/RlwJ+sd1vu0WIXGiXXhjt2AAAAAAAAfIrCDgAAAAAAgE9R2AEAAAAAAPApCjsAAAAAAAA+RWEHAAAAAADAp5r9VKxMrx/UwwQs+/EYY9SUrfHs0F/iRAJRHqkx7ssmucTu3249XMvW9mKrctyYPQPCQ4w1JkpSeTPdJ5vCn7WfTcDyekn4aUZBZBiTzOo6LSshqYsZryx1x3wkV8XZuRXu8Sazwt75kyLdI0a+xx8REeEut2unzmbultTN9kJC5fURUsONIwOajbL8HDNeWerG77/zVjO3e1f3xbZotX3MiU/e4MTWbM43cxMrtzmxyE72AbVkdZITO/WseDP3mc//58S8pl+VpJU5sbiO9kRC2D75sx0/pPPxTmzd6mlmbpfLYp1YbEyimZtf3NqJVSRuMnMPLXancE36aaOZe85bZhhNhn0VWemrq8imjTt2AAAAAAAAfIrCDgAAAAAAgE9R2AEAAAAAAPApCjsAAAAAAAA+5cvmyYd0OsiMfzvhdie2scBuKNu6jdtIrm/H9mbuxY9PcmL/veY0M3dVaYETm/3pIjP3j3971ozvd6xN1GCNce1unZ2M2HavXl6VbqPkcNr0WU2SpTAbJVuaa5NkNBnNob1dRSM2vG538Ggzvnmz2wS0rI3dDDJnqduQUjH2OaX1wMOcWP5KtzG8JAUC7hOxJdVt6lwv9scmyY16XrNZn9zZrWqlwoZcEdRJi6TWZjyrOMuJbUruYOZOmLLdifUZZl9L//TpB04spf2xZu4n2W5T5UMOcZvdStLS9e6xqPSHlmbuWb/t6MSy8twmyZJUVpFjxhG6x38eY8Yrl7jnhOJNfczcqq9znFjK4YeauSmJ7klh2wa3ubYkdWnXzokNOOBwM1f62IjZw02wL9hXkc3j3YvHAJtG/uu4YwcAAAAAAMCnKOwAAAAAAAD4FIUdAAAAAAAAn6KwAwAAAAAA4FMUdgAAAAAAAHzKl1OxlqWvNOMdjrm20dbhvX+/0WiP1exZDcO9mouH+vthcudFhCecWTJ1nn7lpWk0ZN/vRUfZ9fI/nX+kE/v7+7Pr/Hj9Wrkz2VZ5TA9B49q0dLn9gwh3IlXO1l88lmLM7CsrNTM3L1xmRO1cKdOI2RN1sBca8bjbyyPuzl6TvPaycHQ3YtbeJDXg+W4/kl6QYcZXztvqxPq16W/mHn+Me176duKLZu6Is91r6XmTPjJzr3v6707svVt/b+Yec1CcE8uKP8fMnb1pqRM78FB7wlKrVu5xK844L0pSCedG04aFc834pq3u1DNP1si9pV+bqb2Md5+bPY6ZldYgpXDeI8AH3GODZE/0DIt1GGiwQ0DTeLPFHTsAAAAAAAA+RWEHAAAAAADApyjsAAAAAAAA+BSFHQAAAAAAAJ/yZfPkQFUYyV5/YUV9rAkaTFg9qELvGrzgzYvNzMMuezecBwxZ4Me7nFiXIx81c/t3dGPZafZyF5oPFvJqoQFVVFpN4KS/v283fa8rGiU3XQvm282xDzvIeLFHWx0iJVW4DVIVYzRUlvTIPc87sXv/cpu93M7G4xUk2rlh9M80hfMRUjjnd0iS1p+ZZMbfqHQ33BWf2ss40Yi1tbokS3puiBv7b56de+8MOw7b1hL3iewQ18rMzc9ymyq/+NIKM3fJeqM5rsfLfcWkl5xYlb2LadG3051YgceCZ2wvdIMrPzRz/13g7jjXn3WJmZtR6F7Qt+todfKFJEXHRDmx3HCaJHspDj11g/UezOr2LknurAE7hto1hQErXtcCVaE3Snb3Xsnj6qkBGyU3XdyxAwAAAAAA4FMUdgAAAAAAAHyKwg4AAAAAAIBPUdgBAAAAAADwKQo7AAAAAAAAPuXLqVgHtLG73a/LNlqyM/1qP2C3dP/sykOc2GP/m1rnR+tjDKRZu93OffIfnzixVI/lphoTsP5wkJ27sGEGLCFMxYsnOrH4wRd5ZLt9+7959gEz88EPpjixu++/zsw97UQ7jsZ1+4RsJ/b5sliP7JZuqCLXIzfFDZW703AkaXVeayOaaS821RhjdEhXO3epHQ5VlMekK89JFvB0iXta028+tifaDDculf5ljb+SNHONG+t+gJ17nntaUz87FWHqakzAKs2zt+/6ze5ooElTl5i5eTt+dmItjUOLJOXGuLH2OXbugsXujlMpY/qVJPVwR2slL7H/tpUL3WmA6eX2tV73Vu5bmUWzF5u5Q0YNttdtP9KznXvk3e51YRoO4x1lgsftA0XWtKKielgHeGsKk3O9pl5aE7s81jesqVhWlcOr8hH6YK4mjTt2AAAAAAAAfIrCDgAAAAAAgE9R2AEAAAAAAPApCjsAAAAAAAA+5cvmyVusJsmSUmLdToGZpXYumr+vtrkNRvt3627m/vDUCCc2+ja70bLVKHnR2781cxf9sMKJzXrxPDP31/dMd2JvrPRofIrG1c4ObwoYnbQ9OrZHJw1xYr+68gQzd4vRNe7YAcd5rZ0rwm3AKUkKGA1zUS+SOridHyO22y39zrv9707swydvtRcccBuRXn7bO2ZqYhv38c574GUz98O/3OEGNzXMZz2VZmdEqWl0c/SXPgPdhtx/WVpq5p57lBvb7vGUVxlNLeMKE8zcGUaX09H2YhGm4kp3ikJslNt0WJJWrN7hxLoHFpq5y4zL/YLMRHslEgqc0A6P9qSRmZudWEykez0lSeVL5jgxr5bxlqQE+3o+r8h9Htq17hLGkvcvGTluzKPddXiMSx/6ITd/VjNjKczhCGFcCsSFsQ7Fxj6ZlGxf5+SXeHV29hfu2AEAAAAAAPApCjsAAAAAAAA+RWEHAAAAAADApyjsAAAAAAAA+BSFHQAAAAAAAJ/y5VSsFi3seE6l2/66hT1MQFH5bqzCY7mty9yY16ytMmP4R4XXFAqPZaB+PP2FO76qcytjpJWkz6YsdWLXDrGnKqyNSnVzb/nUzE0tKXdiPfIXmLknJrsTltJ7m6matt6Oo4G4A9YkSf999yMn9s6HL5i5bVLc7fvAc+PN3Ogkd57Af2a+Yua++tGbTqx3S3vGxfEnjTXj+z2vjzjCOEg/cFxXJ9b7ty+Zuf1j3JPKYRc9Z+ZWRJY4sTm5WWZux1R3mk1uhJ17wPk3O7GW0Z3N3MXvXWTGQ8f0q/ry3Wx3Ata0MXbuB8amX7vczo1u7cbmbrRn2rxi7CbveFxraZVHfD+XV2BPKCzMd18r6wrTzdyKVS2d2LIMjzlEHY1Ymj2Tqn1RGye2IynbzI3Md6+Hyj2vkC3uNFtJ6tjKnX2TlGZP1yuLcJ+HuFiPXON6fn+TG8bmiTPGDZXG2LkB4ylv5XEOLTByW3q8Bys3tllEC3v7FuVxrmlsXtOvrElV4UzKinIHQEqSSo0hkDH2YURWmSOQb0+ubS64YwcAAAAAAMCnKOwAAAAAAAD4FIUdAAAAAAAAn6KwAwAAAAAA4FO+bJ5c4NX8LMptVFvp9pKUJMUZjZZaeDQU2xHaau1chtFUrKrcoyNYgC5uja3S7leo/BS38+OHqdvM3M5GR7CKGLtD3OYdbiPDzR7r1lJuc8Lkcq+XaPNu/uUXU6cvc2IfTv7azE2odLdlkUfjyA2rZoW8Dr0OOdaJbSsLp0UdGqqT/fqP3zDjsUfd5MZa20eGrAz3PNEqwW1uKknf/e+qkNet11X3O7FApse5qsFYny0xVqA21uXE7bM9ko3TRInHKaXEON15nWXe6+g2Li1aRdPScLRq2Srk3Owd9pYoHxR6F9xuxkstwu3nL0lKjHS7lraKTjRzu/RIcWIbVruNjyWpoI3b5LhdG7vR/+oVRrPmKPt5KEpyu6lO/3aumXvYsKFmHLYy43gRaTSvlaRK4xCQZ+8KkjsTQHlGzEtcCcebpq6D0VC/KN++nyQx0d2eFaX29UhpsnscKCq194fkEncZbdvZjbcLst0aQjjdnu2lNv7oCO7YAQAAAAAA8CkKOwAAAAAAAD5FYQcAAAAAAMCnKOwAAAAAAAD4FIUdAAAAAAAAn/LlVCxPVvfqGHvqTFWFO03AGHYkSbL6cpd59L+uKDf6XzP9qsmI9Whbvik914mNHtLVzN2YttWJtcjKN3MHtjOC8UareEmJBe4+OW8L06+ashW/LHJiI1KM0XiSoiPdiSD5Abtf/gbj+HJotwFmbkZhphNLzEo3czkSNbIE+/W7YuodRtSYyCCpU8+TnNimJI/pVb/6sxPqkLvRTM37xj1mbdj4T3u5DYYJWOEqMU41sfYpRWXl7nGkl3WNIulTIzbAY6JNZa67jFyvjwnZxHUWIXucZ0IY41baprrXwlmt7ONIfqQ7TrYqwn678P2mTU4som0fM/fAHVuc2JZADzNXxpTQwmh3ApckpSQ2r7cyTUmVxwQsS4xx6VPhMenK3HW9jiEB90BUEghjhBb2iayAO12vbZwbk6Qdhe4xLjHC3vly3bdr6u5xCMho404m3uoxLTucCViWpjKnjTt2AAAAAAAAfIrCDgAAAAAAgE9R2AEAAAAAAPApCjsAAAAAAAA+1aw6jkXIbbAVKLcbbMW4fUxVaPeu9GC3SapqKt2TYIqy+9oqstCN/TjbbZIsSXab5HDUfQloGioL3Rf87Kg2dnL2YjfWymPBEYlO6OctGzyS3eZwaCLSszx+4Da89tqO2ze+bkS9dhy3AaHdRrupsLrZcxKtTcwON1Zgz4hQWaX7XLbtYueOTHaPOeVxxolR0pq1bsxtoYu9UVbsHgdaxCfUeblt27kdtlMS3YENklSY7XYXLcxLNnOr+rsXVe1L7WOZdThskW7vOdYSWrXzaOA87UsndvTxbtN51BO7/63KjeazkR5vMyNauO/Xqoym3ZKkEhol+1FMmXv+KQ7Y55SOxrVAutF8WZJSot39IT/GPka2qHSPcXER9jVGmnWriw+b/3PHDgAAAAAAgE9R2AEAAAAAAPApCjsAAAAAAAA+RWEHAAAAAADApyjsAAAAAAAA+FSzmooVkNU5vYWZW1hQ1iDrEGk8XpUa5rEQvlyPDudWuLFnDbU2usLnxHpMiClt4JVBSLoMbO/EUpfbc4isYVkV2V5LticHmOKMyUKdOti5G9JCXy7qQYVH3BpjFM4Rx51+Fba2Riwr9Glb9YMJWOGaZ8SO9LiSa9/NPTZMWu31nId+zOnT2fhMMLUexocwJK1eJmBZyo1RsOsScszcVsal9Jq8XDO3ywo3tkqpZm5n93SpyigzVdru7mMtWthTcsYYE7DsK39xNV4fSt2JVpLMWwWqzPdlkso8JmAZoo0DQ1SyPQqwNJcpoU1Fixj31RYosvedQmM/WdzCntqXX2ZcY0fZ04bPzO/rxFKb+TmFO3YAAAAAAAB8isIOAAAAAACAT1HYAQAAAAAA8CkKOwAAAAAAAD7VrJonW+I8WqV5tPMKg9Xlj0bJTd2Y0+2mst9/5jbjivboe5pvNN4KeJRII4x+kl59u3Ksn9AkuUnbtmS9E0tslWLmVuQmOrGYSPtIVBxX6cQiYu2dLJBt7GQ0SW4irA7Fkv2Zilfz2ro2g3T3O0mKyXIfr71HQ8ptuQ3VPBnhco8MUozHeSLLOFmd1NXOzcx1r2kC0fbZakF9NEq2NPOmlvvSrNR1Tqx7UUczNyfXPX8c6NGNuKqTG+u+yQhKWrtju/cKukt2ImVldjNVNDb7uiWphbuT5Hs1Wm5hXe/aB7IK48BQQZPkfSKc/vbGJYZa2pcjahFwp4sML7XfZ5e3dmMJHl3YrcbbKvVYY+sY5zX/ooFOgfWBO3YAAAAAAAB8isIOAAAAAACAT1HYAQAAAAAA8CkKOwAAAAAAAD5FYQcAAAAAAMCnfDkVy6OptgqNv6bEq6N1nTG+wY/SvnenX0nS0cPbObHPZmWYudb+VxBpd2SPM2aYFHt0U080OrIXMmStibC781uTjArzvOrlbq5nZd0YOtGizD7mMDit6Yo86QIzXvXlG24wxuvM1sUNlW8xM6ONHafCnKMklXc8yIltS1vlsQ4NxHoBVHm91jjnelnhcZ7YbgwhOq6XndsyxX1+C+zTmpQTylqhqevQPdmMzzemYsW1tJcRl+nGNqTk28lGLnwoxg7nl7gHIq9rnCouXHwpnKlYlsgo+3okKy/biSXGeiwjxwi2tHfKtNLQZ2BHGufRJjz8yhN37AAAAAAAAPgUhR0AAAAAAACforADAAAAAADgUxR2AAAAAAAAfMqXzZMLjSazkiSj8VFsgp1aWlRvqwMfSfdoBtkh0m2UfPJpfc3c/322xg1W2A3BikNeMxolN21e7eGMg1Gyx06W64a8GrNFGT8orfLqZNpgHeJRR1Vbje61ksz9ptxr+xrHGw/2nuDRPDBtZcjLbTDGfh7h8VqjdbK3cC5nZmywm1NX8Qzvd8p2rDbjx5zY04nN+Gpj6AsudAcFoBkpDz3Vj81n4a2u2zPZY+eJk/tmPT2MN+qFBfZ1TjjNnpvLvsodOwAAAAAAAD5FYQcAAAAAAMCnKOwAAAAAAAD4FIUdAAAAAAAAn6KwAwAAAAAA4FO+nIplTb/yTGX6FapJbGXHV3/vxtoMbth1QXPgHoxatehiZuYpJ+Sl2jPWmH7lN0kHDDTj+ckpbnD2Pxp4beqbPV0prPlVxiICDGcK2+Ht7fj3O9xYRZOefhXODBPUVURlohkv2+TGTx7dy8z9YtaGelwjoBFxuGl0WQV2PDbZfbPetjzGXkZR6GPZ9sfNyR07AAAAAAAAPkVhBwAAAAAAwKco7AAAAAAAAPgUhR0AAAAAAACf8mXz5GiPno2VUUaQfqOopnOuHc/u6MZSM9Y07MqgWapo1df+wY6tRjD0JnDwn7LuyWa8c7zbxb3Lrx4yc+d/e3O9rlP9qYe2hPtjZ8MGkJFhxzuHsYzN9bImdcUO0ZjSWpaY8TYt3fNSZWpDrw3QyDjcNLrEKvt+kojiFk4sq8w+PqF23LEDAAAAAADgUxR2AAAAAAAAfIrCDgAAAAAAgE9R2AEAAAAAAPApCjsAAAAAAAA+FbFkyRL6ggMAAAAAAPgQd+wAAAAAAAD4FIUdAAAAAAAAn6KwAwAAAAAA4FMUdgAAAAAAAHyKwg4AAAAAAIBPUdgBAAAAAADwKQo7AAAAAAAAPkVhBwAAAAAAwKco7AAAAAAAAPgUhR0AAAAAAACfiq7th4MGDWqs9YAPLFmyJORc9h1UF+q+w36D6thvsDc4V2FvcczB3mC/wd7gXIW95bXvcMcOAAAAAACAT1HYAQAAAAAA8CkKOwAAAAAAAD5FYQcAAAAAAMCnKOwAAAAAAAD4FIUdAAAAAAAAn6KwAwAAAAAA4FMUdgAAAAAAAHyKwg4AAAAAAIBPUdgBAAAAAADwqeh9vQJNSUSEHQ8EGnc94D8xsVFmvLy0spHXBAAAAACwP+GOHQAAAAAAAJ+isAMAAAAAAOBTFHYAAAAAAAB8isIOAAAAAACAT+2/zZONRsk0ScbeKi/16LwNALuxjhYNdvrxOjRxvgMQoiiP40glxxEAPtLcL4m4YwcAAAAAAMCnKOwAAAAAAAD4FIUdAAAAAAAAn6KwAwAAAAAA4FMUdgAAAAAAAHyq+U/FivCoXQWq6pjr8XjNpa12M9Cok2c8dwhgp6fy5zux1lOnmbmVGwY4sWv/dHq9rxP2jVe6u/tCZqDMzA1EuMeW6Io4M7e4rMSJdUyyl1tc6Z7vbtp8lJmL/VNKfJQZzyyubOQ1wb7G9CsAzUE4hzLj8mvnMprw8ZA7dgAAAAAAAHyKwg4AAAAAAIBPUdgBAAAAAADwKQo7AAAAAAAAPtX8mydbjY/rJdcOW5WyMJaKehROb6toxTuxChWHsYS6N5OMMfqhlru9UNGEzJ6+0okVJ683c9fNSnZiPRJ7mLlr2rtNS79Y8a2ZG7HF3U9POoFGy03Bv7rMNuPFeTlOrEVkezM3L7rUiSWn2KfuQJF7HBp43tFm7g9TljuxR7r/ZObeu/kIM47mLa/Yo3OkOZnA63NCroAAv+o6arITi4jrYuZWRBc5sUBukplbGZPnxBIq7ONNRZtYJ1ZaaudmfjvCjAN7oyk3SfbCHTsAAAAAAAA+RWEHAAAAAADApyjsAAAAAAAA+BSFHQAAAAAAAJ+isAMAAAAAAOBTzX4qlsdMh7AmJllaeMTL7HERdXw01BuPHSIyEM4ELFeLJHvyR1l+6MtgAlbT9el788z49JUfOrG2cYPN3EDsc05sZcuRZu7B2W5s0cZPzdx2XUY5sWmLFpm5xw8ZYsZRd3d2XOjECpLsA8DqbVudWKUyzNxItXZiWxNbmrmBqgInNv99e785ot9BTqz7L1vMXOyfYlRhxsvNSxqmXzVlt5w/wIkN7XGImfvyp+uc2KYtq8zcTYXuMe7FcRfaK5HqXmeNfWeKnYtG1fFX35jxramdnViXLu7UTknaUexOwEoMtDJzIxPdyVpZ0fZb0vKt7vmyQ/de9nJ/NcNdr2+PMXOBvWW+0/ccIun+INCA47a4YwcAAAAAAMCnKOwAAAAAAAD4FIUdAAAAAAAAn6KwAwAAAAAA4FO+bJ7s1RA51ojVRz9a60kq88ymUXJTlhhh7/JF0e52S46oNHNLjH6SpR5NklsmurGCQju3ldt3TnlhNF9G/XjtXbf5XnbqMjP3oEPd5seZdq9AHbhxoBPbsSbXzE0f7rZn7z7zSDO3dU4nJ5aVtdzMfW/2RCd20ajzzdxmq4H623cNuC/sJSvTzdwWchsXVyjNzM2T20m7/QZ7ueWxbZxYbLR1ZpSmf7vAifWNtc+uf+/p5rbOtI+PWYnuAfLeNLtJOPaG1Ti7yMzsZjQ0zkpKMHOLIt1zY7voPDN3S6b7mWCV4sxcr3VDw9i60T5XJXfs7sTSSu0muL+6w23CvmXjejP3u0njndgV9z9j5m4u2uDEAs/9x8yNaOs210X9aD9qjhNLq+pg5ka1jnFi29Lt6xYlJzuh4tgsM7W8zD1/JOfbY2kKWrvLTdtmN/pvX2mfl9C8NdSgJC/mcj0eLNDIdQHu2AEAAAAAAPApCjsAAAAAAAA+RWEHAAAAAADApyjsAAAAAAAA+BSFHQAAAAAAAJ/y5VQsr/7S4UzAsipa7vyInSpkTQ6g83pDioywpzVURRnPuzGlykthCzs5qcSd6FEcbW/jKqNxf1yCvb4FWcYyPF51BQH3B7GyJ5iUyphWEuVRp6302rP3b3P/950ZXx3R2on16rrDzB193BX1uEb1572PXjXjiUWHOrGFq6aauUP7nVKv69RkGCeQ+pioUBnjvs6iPD47aZ3gTgopi7Nf692y3LXIVDszN7k0x4mtKXUn3EjSAcZfne0xJadPsbuMmDb2tK2ele76Pt57rpl7x/rhZrz58jhGRxjHaM+dz9qe1qQsaYtxVdQ51l6HNvnu9KrSUnu5Ve2L3WC2x/SrijDG0DXQxLr9ycix9ijNql4bnVhhlT3ftXSbOwmpaKvHdUT8yU7o7jHz7Nz+pU6oUwuPMZJQypnuzh9R8oOZm5hkTFrMdLe5JBVkf+XEEqJPN3OLCta4wVKPi+617v5UnuhOapSklL59nFjmZnt/jJQ7hasscbGZu3XRpfa6ofFHRzUirz+hbZR7LMuqLG/YldnHuGMHAAAAAADApyjsAAAAAAAA+BSFHQAAAAAAAJ+isAMAAAAAAOBTvmyeXB/CaicbaTTApR9tg6oKeDSnDqNRssmjw3a+9QOvxzLiFSVhNNP2WG5VgfsDs0myF5okhyW738FmvCz7Syc2+qg/mblHnuXGLm032Mxdne42+8ufYq/b08885MQee+t+M7esrRu76NyrzNz/TnSbWrZaaDeG3p/UR0/BW7ce7cT+fondHPjut5c4sQPj7ebJq5XpxNx2gDv9YVRfJzZxudH8UlIP44/uO7Szmfvat6kej4jweByjw9jR3Db/UonZUFlKiXdj2Xl2bpTZt9TOTTAOGREJdqPlwgp7GaZAOGMtYLk86TYz/srbs51YnEcPUasPdrLH4x3bp7sT+3jtZjP3gPlubF2p19EMmR+7B+kDT8sxc8sy1zmxioDdxDp30Z1O7LO7fjJzX97yoxPrU9LazN2Q4zY5bp2QYua+9Nn5btDjWFFlnAOfvNz+28YtMsOQmkWT5HBZjZLjPQ45xc2kpzJ37AAAAAAAAPgUhR0AAAAAAACforADAAAAAADgUxR2AAAAAAAAfIrCDgAAAAAAgE/tt1OxwtJAQxliFOXEyhXGdKX9kDW9pkk3ek8yYvkeubFGrLQe1wU1lMseSXXlUVeGvIwfJxsxudOvvBhDayRJk29xJ2BlhLxUb78/f6QT+9dfx4b8++3a2rNRMrLcaRh+0lBzd54YP9eMp6ibE1udGfpzWK5WZnz8bHeqiNdwv3RjvlLGt/YUPvdMpTDPVPUxd8z/IiPscRxVAWMcR6wx7k5SSWmWE+vk8XjWBV6ctTElbTW2UWuP7ZNj/Bmt4jxGTlp/cq7HShh7VbTHvlOxn+07oXrigzlmvLiOBzmvo9PHW+wJWJZ15vWM1yga313tNYqqVvbzVb7dnWqVtuC6kJd72qMfmPGWxuu3rNze5tadAhXaZC9XPzuxcM4pd7/RUG9fOVftC7NeusuJ5cbY58CDervxHZnu5DRJGtHRPfBFjL47zLXzF+7YAQAAAAAA8CkKOwAAAAAAAD5FYQcAAAAAAMCnKOwAAAAAAAD4VLNvnjxuRGszXlDhti39z/zUOj/eub3d5qLRLey2cxNW0ig5XA3VvqyFESurjwV7NUq20Ci5wcyb9YkTq5i7MPQFWE2wJbU12pZmVW63k4vcULHHwxUbjW0lj+ak5t5rH1siEto4sflb7NPAzMXvO7GjBv/GYx1gsdv5SZLbADfe2kHktY/YTY6zPeKWAmN/ijT3O7vRf2UYrS6jI+wjd0Uz6EcZehtgjybJHhYumG7/YJ3bDDKhh32Ayol0Hy+ww+rSL+UVLXJiPVt2MHPjq1KcWHoru6Fq+y4HObEeXXqZuVbf0opIj52EyydTcVUYT0x99Imt63WL5zrU7eDQXFvglkfYr99tC37fII9XXO5eH1R6tuQPndvm35t1hVLhsQ5REe71UGUgnKt5v+8h/jT62kedWOtE93pVknIKsxt6dXyNO3YAAAAAAAB8isIOAAAAAACAT1HYAQAAAAAA8CkKOwAAAAAAAD5FYQcAAAAAAMCnmv1UrL/efJ4ZXzJtuhP7z/y6P96Hd17ixN6e/aKZO2GlO90CDeuAHu4UI0lat8ljklEdDejpTg9ZvtF7Vk7orFksjAnxMq+FOzXm+iv/bOb+tocb63LGoWbuE2/97Abt4UZhGR3pTiya5Xm4CH3iQ1wrd7mv/+dpM/f+y58LebmQDu7ixvI8tlnmdve16rXbJBhDUIpK7VlMHdXKiaVFe4ytqXAfMdpj8lpd54RUeExyUcD/owDDO+qGPkNrW2qOmXnAge45pd9fPWYARRjHhhR3H5Gkd09wJ5AUHzfKzO2jRCeWrkIzt1+etfd4PGthpEKSO9zVjknWIL76GQBkvbTDeVk30BCi5jrbaNO79us3HK3aurFka/+QlGNMNMz3eHIj3MOCAvZhISzhzOCKDlgTHMPhdb8D79cam9f0qynP3+fEfn3DXxt6dXyDO3YAAAAAAAB8isIOAAAAAACAT1HYAQAAAAAA8CkKOwAAAAAAAD7V7JsnJ/z2lUZ9vIg/PN+ojwdvx3R3u/rN8GiSnBTldn2rjLG7vhUZ/UU9X0gtEoyg3Tw50aizFno2bKOjZDgGbYkJOffqS37lxJ4t/tbMbWv0LPXoQajo9m6sX9FZZm5JnxlObGCO0ZlQUlbaVieWO6S/mVu8fI3H2rkKSluHnAupIjPZicUm2ftdkTJCXm6R0Yg0uaV1XJEqqowdstSjk2mMe7wpK2+gBpFV/m+SHD73+Y30OG5bz/oFJ5xg5n78nTHlIcmjIf9mo1lz4XoztTTPPTe67ZR3Wmc0Ss6Sva9nFIdxrjI+aoyqsj9/rKSZqVTshtq1sJ+vDOv5ivNYrt1D3RRlbPbK/fHl7iPtotxhEkXR+WZufoW1P9lXvIFCd8MnxHucA4vLvVcwBB7t4lVqvSjC0nyPKxEeT1rAaIYd5dHnv7KObz16ecTzjJjXtfTc+SudWJdO3c3cbds3OzHjUlyStMMjXmfW896A3d25YwcAAAAAAMCnKOwAAAAAAAD4FIUdAAAAAAAAn6KwAwAAAAAA4FMUdgAAAAAAAHyqWU3F6n/8UCdWWOR2xJakFsWdnFiV7K7w0QG3pXVVO3ucQEKSWytLTLVnS/w4b7YZR/2Ysdnt0H/TWUPM3OnfLXNilR5lz4IObiy2oK2ZG1OQ68QObGu/7GLz4p1YaoW9T3rMQNnvzfh4uRk/+swBIS9jzN/cCVjjx99g5v7w9HgnduQoe9pD4qaeTmxr6+lmbla0u98E8rLN3H7H9HZiBV+tMHMXhNGKf/DxlzixVz6abOZefa493Wt/srLU3WaD2rSyk42xDB12tDZTC+SOp4ipso8A8UVuLKB2Zm5yC3cy1/oKj1EYgbqNwmhh/A2SVNYMpvt5PGOqNEZhtPDITYhxp5xllRsbU9L6Zauc2I+XDjJziyvdtVu6arWZW9a2qxPbOPlrM3dgR3fiZFahfU2UI3sKlynCPelGtbBHuVSWhb7Y/UlGrj3VxxzM4jX9yrr28Th1WAPvojzeWVRWeDxeQ/Aam9SA02iaHvsidt0O97qyXbT9PiUi1r3u6Bxhb+Ac6/c9cjsY69Yywh6nlhrjXhsHYuzpVyX2MFvInn7lpa7TryTpgjGHObEPvlkQ8u+fc/qxZnxLaboTO/OEw83cf493awANNv3KSyMfc7hjBwAAAAAAwKco7AAAAAAAAPgUhR0AAAAAAACforADAAAAAADgU82qefKGn93GqfGt7EamsfExTqxNpt2Nb3lGVsjr0LKL21m3ZcGmkH8fDeuQvilmPLXoADe4zW0QKUmR8cb+0N1+vAmztoa6avrdSW7zuoPijS6rkj6cvC7k5e5PMtrYDfXqqscyu+vjDXd2cWIp0+xjTuHhvZxY9MHucUiSxv1tccjrNriF2yB19F9HmbkL7psV8nItESle3TZhKW7p7h+S1CbL7exZ4dFhryzOeM5b2ceFjCKrLaDbJFmSKo2eyp0qks3c7amhnwMtZfEenRgb5uXaqLx7TLo/8Xr1lBiNkqM9ujI/+cC1Tqyihdt8WZIiS7Y4sYgko/u/pCS5DSljPJo+ZhgPl7spycxNK7YHAJgq3ca/Zf7vr90kRBn7U5THhIjSKrsBsyVgnO68Npl1RVXaUF2O96smyV5C344lbezhDCl57jmhKMa+Nk6ucs8T+bH2+6qsIncvSffYZm3j3BNFXFmimbtNdE/2EuHxUrOe9hYe2yKcnvXL1rvbqG1fd4iIJFUVuseixfPTzNy1241rmjb2sIHB/YY6se1V9oVH+pqVZjxUXgWVxuwZL3HHDgAAAAAAgG9R2AEAAAAAAPApCjsAAAAAAAA+RWEHAAAAAADApyjsAAAAAAAA+JQvp2LF2sMXVJpT6sRKPBqkJ2i7E8vweDas6lfAbgqvom3uZAl6tDcdBQV2N/TR3Xo7sVk535q5Ldq5YyCyMu3Hu3W4G9vh0W0+M9+dnjYk0e78D9tBBUsaZLmRo+zJLsUz3Wlq03r/bObGrljrxOI2WVOMpIeOO8WJdS6eauZ+sGKNE4tM6Gvm1lWHiCENstzmqmOFPQ+hIOCeVdJS7JEVLeLcA0bLbS3M3NYp7tS/6GJ7SluJMegqMmBPlqizZjD9qkEZ1x4eu44yu7r7ySFF7vQrSdrQ0o21ybX3s3nuJZFGtrHPP53auGOx2qTYVzoFqe7jFVfZJ8HQZ/ggXBXGqKqA10SqBHdCpwIeO2Spe26Mr7L3m7I2xj6SY0+GVCCc+Tuoq1YxcWY8Ny7XibWMMvYPSXlR7nkpqtzeF+Ii3Clc8Qn2vQYB43hRGeHxJox3XJ4CXpPijMOAfdVgT7bzOm4Hyt0pUy1yOpm57fpudmIl+R09luxOxRrQup+ZWZXvHkc6JNrX8+679/A09vQrL9yxAwAAAAAA4FMUdgAAAAAAAHyKwg4AAAAAAIBPUdgBAAAAAADwKV82TzZ6te0U49apIsvttk4lRqzKq1uUuRJ22Ks3FZqGnPzVZryF0VR56IFuI1JJat+ilRPL677KfsAit4ltz3hr75Nyt7vdDQOl9k75j0vdBmR/esttzru/2dK1f4Ms9+tZP5nxTjvinVjryHZmbmQ3t+3chq3tzdzyzm4j7by0HmZudqHbsm3aarvRcl1F77D3XdgyPM4pcVFuQ8rYQqPTraSSzDx3uXJjklRlNXGP92iQWuTVfBINxeuCK8rouuhxiaHuxe62X7XNbjKZ1LLAia1uk2bmDjf6ZudH2Y1Ily404nbvVe8unGgQER47WYyxj5XJ6KgsSUXu8Smc1tbFXg1s3X65kmiS3BRUFtnbN9nYb/KL3OOKJBWWG+eUaHtARGvjzVKhx25jtvSPMbr/Y+8Y28LrcF5h3A7i8TZbMRkdnFhsrH19nLZ0hROrbG2fBTu0dBtyF6TbE2w2lxrxVK+/rm4iPS61PGYFNBju2AEAAAAAAPApCjsAAAAAAAA+RWEHAAAAAADApyjsAAAAAAAA+BSFHQAAAAAAAJ/y5VSsFh7xji3c1tzbPHID5Vb76rq3rk6MjHFihWGN20J9efIcd0JSZqW9R6xNc2ucXXLtl8fW9u5UkYcmeq3FGs/1292dJ7md3qt2RJm57Vp6tF/fz+VmDW+Q5XbMGGbGV3Z1p6H1WNDHzF3b0u3O/8LCr+wHXBjyqmnMMec5sVNSMszc2b8scGLxlfbxKWDMDswocH8f3lpG2ZM7Uru40yLabbKnh2wrdieNVHnOTDIU2+e1Fsb2jfKYWFFcyjS0+uB11C41PmKL8Zg0Mn+l+3od2caeUrOw0h0zU7zcXu7cKON8l2eMxJGktu40wIhse8JSwJx6ZJ/XZExp8vr0MfQZTfuXQIX93JYlG9vHGn4l2Tsfl7HNWlmkx3SyOPc9TUyEvTMklbvvzvI9DiE5VtDjHWkb4xQW8BhslGOsmtd7xvJI9+gS8BxhtH/NPPa6wqgK48B7/g39nNijby01c6PauPtZy/XrzVx3hrGU7jGJLyHavX4qMudi111jT7/ywh07AAAAAAAAPkVhBwAAAAAAwKco7AAAAAAAAPgUhR0AAAAAAACf8mXzZI8WX9ps907y4HY5CqcdrVfrPxolNx3FMe4OUbg9z8w9pL+79XescZtuSVJ5dBcndtdZ9jrEGHtVeWu7+1h+qhvv0sHuPLcjltaRlguPs1/Fk36Z5cTOHjg65OWmxC404zen93JiE1rZ3Ukjyt3mlZf97lQzt5XRGDA/Z4uZO3XOaifWa6hHc7iyfCdkNaKTpNfeetuJXXLp7zyyYcnIdBsCSlL7AjeeU2J33ouOcdsYJra0H68ox42VBuzXRIVxDiyPybYXHEavZnjzvDqocj9jKw+jPXBRC/vip0uxe4m3Oc7eH1JauGuX2sLOTchwc4vk0SXVZDdatnCmC5fHc2s2SrbbykaUu1fZgTAaXsN/Kr36yVa4r/XSSLtzcZsI90SRb19GK77EPbbEVdj7Y7Z1AnIvZTx5vWcMqxPwfqY++gDf/8RHTqxdRLKZ261DKyeW3crePhXRbrx3hX2Rsj5v/7t44Y4dAAAAAAAAn6KwAwAAAAAA4FMUdgAAAAAAAHyKwg4AAAAAAIBPUdgBAAAAAADwKV9OxfKqRlnzG8Lp1x+V6NH1v9RdSkS8Pe1E+UzFairatk5wYpsL3JgkbckqcmKte2aYubHZbjzT/XVJUpnRWr7DGju354B2TqwgyV7ftkXUZMPRuWXdevz3b9/JjG/Ld7dDx8oDzdwd+VudWLesZWZuZrQ7HSI79iAz97/3pjuxs8YuNnMt8+d8b8YPH3F0yMuALaaNPWokOteNt+/S3sxNiG7rxIpWbTRzY2PdcVlRCfakqwPadHZiS9dtMnNRTzwHC9VtOsumNDuebUyq6upx6ihv7cb6RdvHzVVhTcBCY4ryuEKuNOeL2fOC7K1e9+lX1u7PTK2mIanS3m8CMe5+U1Zin9es6912HoeKoig3ObGFvTfEGaM7U+3Fop608HiLW1rHt7g5kUlmPCPNnfraxmMZJcbleHSZxwp7z6Jstnh3CAAAAAAA4FMUdgAAAAAAAHyKwg4AAAAAAIBPUdgBAAAAAADwKV82T65bm0FvFYVhtHGjSXKTd/1/V4ac+8CxRqNlo6GyJPXuN8SJ/fmsHmZuzNpSJ5bQ2mrzLT32tdtcN6bK6BonKbukoV4FzdOIHkc5sXmzp5i5w0b92ok9tG2VmXtbf3dfWLN1iZn76mR3f8yyexB6sLtuvz0x9CV8+pXbVPnwEYPDWQmEIdJo4C5JMZFuc+yCUrsh8uZ1bmfcFpH2ZzKRAfeYVZVnr9vSbBolNzqPS4wWxmdsZWFc6WTH2/Fktx+/tm72WMh2N+S2Za+FfVrz6sSLBmI3SfYS5xE3TkxeHwObDxdOA2c0BRmt7M7usZVuPLLC3m+yKvOdWNuYRDM3qYV7bZtf6Z4XJSmXZu2NLuDxFjfSOM5XhXGMjwjY72ks9tgHmeeq4v2wSbIX7tgBAAAAAADwKQo7AAAAAAAAPkVhBwAAAAAAwKco7AAAAAAAAPgUhR0AAAAAAACf8uVULGBv/fG8gWb8Lx/+EvpCZi1yQtGF9gStAV3ciQJrZ+aauXGx7vSAQE6ZmXvPZK/RJgjVmpj+IedeXTHGjL8//Qsn1neYPfkj672QH8409z13OpIkdevq7iM/rZth5p5+IhOwGlNKZF8zHp+U5cQiog+zF7J1gRMqq/KYLmMfLtBE2DNf6j4t6MCOdnyHdVpK9liIfVoKHdOvmjRraFnAmn7lJaxdlOlXfhO7w/6cPz7B3Zblce70K0kqcofAKqu40MxNMI4XRSX2dTQan9eQw2hju4Vz2dGnoz0Va0VqyzDWwt7/sBN37AAAAAAAAPgUhR0AAAAAAACforADAAAAAADgUxR2AAAAAAAAfKrZN09u3cFqyCTlpBc08pqgKYhoY8dvvfhYJ7ajcJ2ZO/5jt3HxXRNW12m90PiKcpaEnLuwS3cz/vukoU7sja1eXUjt5seWR2e4DXOHH+PRIRVNVtZat9G6JFW1dTvYlmXREL25a6je1kkRncx45xZuk+6qCLuF88xcromaM3pbo1Zt7LeDFVFu8+OEqNZmblZuTsgPVxRG3240PqMPdr0oiXLfa0mSYozr8ZZ2o2Vl19/6NEfcsQMAAAAAAOBTFHYAAAAAAAB8isIOAAAAAACAT1HYAQAAAAAA8CkKOwAAAAAAAD4VsWTJEprlAwAAAAAA+BB37AAAAAAAAPgUhR0AAAAAAACforADAAAAAADgUxR2AAAAAAAAfIrCDgAAAAAAgE9R2AEAAAAAAPApCjsAAAAAAAA+RWEHAAAAAADApyjsAAAAAAAA+FR0bT8cNGhQY60HfGDJkiUh57LvoLpQ9x32G1THfoO9wbkKe4tjDvYG+w32Bucq7C2vfYc7dgAAAAAAAHyKwg4AAAAAAIBPUdgBAAAAAADwKQo7AAAAAAAAPkVhBwAAAAAAwKco7AAAAAAAAPgUhR0AAAAAAACforADAAAAAADgUxR2AAAAAAAAfIrCDgAAAAAAgE9F7+sVAICmL8IjHmjEx2uoxwIAAADgZ9yxAwAAAAAA4FMUdgAAAAAAAHyKwg4AAAAAAIBPUdgBAAAAAADwKZonAx6iIuy6Z4TRxLYi4NXY1m2C61VNraI5bpNlbXOpIdsZN8ySo4z9sZL9rtHFGGfecq/+3EcnO6Fbbxpkpj593TInFpeVY+Y+8JfTnVhlSYyZ++e//s9j5dDYrN0kMS7KzC0oqazTYyV4nKyKq9wYRxEAQH1p7JElzQV37AAAAAAAAPgUhR0AAAAAAACforADAAAAAADgUxR2AAAAAAAAfIrCDgAAAAAAgE8xFQuQFGG0X68MePVkd0eCeHdvN/q3e5ZTjR9UGeNH0MDcrWlux6bMc/Saz/4On+t+S38zfu5jHZxY5x9SzNy7bnYnUj390Ewz98zn3WlZwzuONnO7DR/qxJbkeExR+qsbeujWM83U+5/+2F4GwmKdkyQpIdJ9cZfUcfqVl4oq+0ASHeWel8obZhUQJibJwA82GLFejbwOaNo4Zu0d7tgBAAAAAADwKQo7AAAAAAAAPkVhBwAAAAAAwKco7AAAAAAAAPgUzZMBSQGzS1fo3SDDafLl3Q+ZRsmNq7HbTLY2Yjn1sNwkN1SVb2ZWRlnBelgF6JKc65zYyPhyM3fTis1O7JO1aWbumLHHOLFvHpxh5qavdh/vh7KtZu7swtVObPDQYWbuK4GHndjVEX82c1FPPA5PhZXGecKzWboVDD05Ito+J1VUWZeOFR7LRWPyXcNRr3ch7E7NQlHrfmY8LWdVI68JsH/gjh0AAAAAAACforADAAAAAADgUxR2AAAAAAAAfIrCDgAAAAAAgE9R2AEAAAAAAPCp5jUV65DD3NjSBWbqA/ec6sSGn3m6mXv8iEOcWELEcfY6JBujLHJ9N6dgvxNtbLaKgD2WpEVcjBMrKymr71XCHlhV6fDmitXH69LdF7zHTBXUw+NZ7AlYJmvVmEoSlqsKLjDjB5WUOLGvC7abuf878ysnNuK+1mZuXpI7yuz4R+zcis7pTmzHQvvYVJwf58Q+mzTezL3sjvOd2Ktr3UlZkrTlX4vdYMJyMzcq8UAndu+9H5m5+xuvo1PnNu7+kF9kH3MKSq2ox1HSOA6Uekzmio1yDw6lXscRTo2oDeeZZmN5Um8nVlq8xszt0dArA18J53q+7tf+zRt37AAAAAAAAPgUhR0AAAAAAACforADAAAAAADgUxR2AAAAAAAAfMqfzZNbtrLjSxeFvIiH/v6NExv8zRYz98Jxfwt5uRFFXZxYIKXITs7MDnm5aFgVZqdKu32l1Si5hdvPcmeuVx9d1FlYzdLCKWGHseA2Lds4sV9SZ5m55T/PdGI9jrky5MeKjW1pxreOf9yJ9b3wejM3x9qlPXtIW51T/d8IPsY465V7NPB8cccYJ/ZzRrKZe+cTbzmxo7rayx1ykxvL3Jpj5qa3SHRiFS0LzdxWa9u7vx9hN+1OzHdfFN06makqiFrvxFYmufu+JG17sJ0Te6v1EjM3NtqON1WRxkuiqoFeEon2y12p2Q10UrEW6/G3mT2ZG1mUcUyvpIMmmjmPfuZN4sw8IN89TwT6DDJz09f669iPhmUdunM2bzNzW3d332eHoym/huoDd+wAAAAAAAD4FIUdAAAAAAAAn6KwAwAAAAAA4FMUdgAAAAAAAHyKwg4AAAAAAIBP+XMqVieP3tVrjLEOHuOKAmXuZKNFqSvN3JUPnecGPaYgBcq3usFMOxd7w+1nHhFp7w+BKqNuGW2PzYgywgGPCRtWuClMv2rund7rpI7TUuI84lkLP3RiaRMmm7l57TOc2OK3/2HmDv7dn5zY92//3czdkeDG1nz9rpnbbszFbtBz322me47xZ/3u3pPM1IqEwU6sbZS7HSXpgofPd2KZX35m5kZnuHOFEtbbn7McXOROwIoytrkkxbXY4cQO8ZjMtSY9z4l17xZr5gYKyp1Yzw72bKQPHpriBj0+QvI6ZjUHscbVVaXHay3KOMAU5bXwWLJ77eIpyXji8z0OhuG83K0rR6/fNzZyvOy/rTLS/dvK3F3Pa7HYByJi3FjAY5uh7pr2WfkUJ3LvFaPMzNMO/IsT+zYq38y994VpTuyHaa+Ht2podNbb5HDeKnlNv8pa706wbtu7W8jLbdqvobrjjh0AAAAAAACforADAAAAAADgUxR2AAAAAAAAfIrCDgAAAAAAgE/5s3lyid1gy9Kmjd1lMqfAbUgZ2Go3JexV3t6J5R5k56b+kuvEDhl5gJm79Id1ZhzeIoy2V1bjY0mqsDrmVngs1yhxelU9rYZgHos1lxFO8zC7lalktS0NWH+EZHYKi/ToPFnl1TF6P1fiEY/oe3SjrcPw828KObfRK/bW/tREO9SV93Rj3+V/a+a+fe2XTuz2R4abuREF8U5se062mdtudZITiy890MyNXL3MieVX2keczYXu0aV/opmqlge4R5dt6fYlQYeT3CdtUZR9Djz6lguc2Bn/r73/jq/srO6/73Waetdoeh+P++BGB9PB9CS/OCQQEhISUgihJkAIgdBJSIDQQklCSKF3QgdjjMG9jqfZ02ekGY16l059/nCe++Z+re/l39kjHY0u6fP+c3l5a0tnn2vvc815fdc722TvRx8mAsH3Lt01qCyu6fpQiq9a6APviYYZcdzOTtk7nhbX1FAgUFkEJSeJZA4G8odueFUqZvX5psVx6wOL2dwSGFgQF/U0oQPQ0yIRub6rW/bODJ2ez0lhydslartl58aLfHj/Td/V99Z3f+1nrvb+a/X9p/fAGVd70TN/S/Z+9nufl3Usvlot0UmCklcivrEDAAAAAAAQKTZ2AAAAAAAAIsXGDgAAAAAAQKTY2AEAAAAAAIgUGzsAAAAAAACRinIqVt1JXe8Qof9n+qufoBWy/5RPerdT1f//TL9aOGqoSJIBHRk/7MHMzEqF6n6Wmd4NDfWqVHg1VSvUG5h1oiWYaKWmu0RnvpOYQtvaCYbyXNt0oaudnNYX2UbxA79s91T/wwKeZ36a0kCDnqe2Ztb/0b4RmHAhBSYs2XT1hzjX0vV+2lBpRowlMrN3/eMTXW1Pv75wpjf4qTHXdPy67D10692udmrguOzNtK12tVRxUPa2iSk3fSf0RKqWdj/rrTzuJ0CamaUn/BSvujG9OjV1+hX5A098l+z9u7f6v88bfvMrsnepmluAtdTP0jT79Of/RPb+/jVvm9fPCt1TWi7Z4GqTe0IPOvObXFaY51QtJNdzqV/LBhq7ZO+WzRe42oY2fV/bf/KIq21ed77svXN20tW2z4jnazM7/K2Py3rVMoEnrRLj1JIRzweB5+jpwWFX+8m+u3XzVv/x87Vv0vcfM/+h77N9dwR6sdiO/MEHZL3Y4adS33JITwrdf+Cgqz36YVfI3p61fqr1vjv82mJmlikN+f9/2+Nk7/YNfr/gsvf/seydWcLLCN/YAQAAAAAAiBQbOwAAAAAAAJFiYwcAAAAAACBSbOwAAAAAAABEKsrw5FD43xkVpgr8EhWSbKbfCKF8RxUbGbr0VK5mKUHzcsg4rpn5/nHml/9pZmbd0z5w9MuBZPWLLXDxCe9/zYtd7bUf+C/Z+y1b64uzdbL3xTKiO4GpQGpigt/tXCvv8+F9b/jGY3Rzgy+t3q4DRwuHfcDwT9/yI9l7+IQPHJ2q07fjwrAIStbZyVLHBaOyPvp9Uawclb13/r0PJvzVD75I9vaMbXS1J/3NM2TvG54ZV1DyYvr9580vJDmpyT29i/rz5ktF4y7hPMvF499+Zma2edMZV3viRc+SvbfP+mD1H3/0VbL31JH9rtZf0AvU9/71qKvdmNVP9Ie/JcvVIyR5YWxb72uTfbI13eZf97amFtk7PtHoi1tCgde+1NnihyCYmY3s1+G8WBgDH/+Bq137V6+VveNt/lPUXccOBY7snyEv7hXXnpntHffhyV3WLnuH1fdXbvqo7H26PczVpv/+m7I39frny/pSwDd2AAAAAAAAIsXGDgAAAAAAQKTY2AEAAAAAAIgUGzsAAAAAAACRYmMHAAAAAAAgUkt+Kta1l61ytRvv0Yn7p32Q/4LYKobOjAamkoyGRilh0bWJ2kwgdL8wzwEKgcNai5iqMx0Y65ZnBFbtqC3swFSs//n0G1ztN/7iI7J33bBP519b2Rs4iUcF6t55jxVX7wdC3T9zlUtsm+zMWXfV56A0BaZfTc/rqOfeq8+/Sdb/eOjVrpYZ1v8e8qXL3+9qv7ZLv+ZHpvxUrNSUvnmouRBjgRXnYdv9InLrgcCF3iNqgftaw5xv7snq8X6d2WP+vH7o3ydmZo9/xZNd7Z0f+Yk+iWXs49/6oKud332+7H3KY589vx+2Rr9ub3/Ph13tLa/8G32MyXM/eYaZRwEndfmOwbtd7c7v+pqZWUV8NHjdJvEgbGYf+fCbXe3/vOA5svcHH/ykq9XLTiwVG2c6XO1kQU/FGuydcLUdW/QrnDvm7wk7O/RD8M3+lmIjzed+DVqJ8n2jrtbTISacmdkDpdtcrXPDJtmb6fbXyd57D8reejGHuGvHVtk73DXmauubrpS9+b1+6utoRk+YXcr4xg4AAAAAAECk2NgBAAAAAACIFBs7AAAAAAAAkWJjBwAAAAAAIFJLPjx5aNoHbLW166CmyZkZXwsE1SpdHbp+9LTf/1rVGQikVCmic9WfAxZOrlUUA9dDWSQxBsMZRW5pJtBcFJdJJXDpoIYS/M3Tle2udts/f1r2XvqCF1R93NN2i6t9/qWvkL2Vo8Ou9u9ve4ns/b23fsbV9pgP532oerViD0kOedPfPF3WW6/zQdjHrt5R9XFPVHwYn5nZdJevbfcvuZmZjYrsyemiXnBOTPufVwpc/I8a8LXT+hTs2Df3udr4B54mezcP+5+XF/dxM7NiRqTLr0C//dyrXO3u6/fX5of164DSG4/c6otLICQZCQXeUlvWPs7Vjh39uez96D/8nat96vYv6AP39brS97/7P7JVrQL//vEPyt5r/+TV+udhUTU+sskXvxlobu90pfpO/XmtrsEHMA+cVg/tZmY+lJmvJdRW3xv0i5y1IVd79lP16/blL/tay6hfL8zMdqz210noo3O7+XtYf3lcN9/mr7PWXfqafPu1v+pqlUqz7B370O3+vF75cH0Oi4y3BgAAAAAAQKTY2AEAAAAAAIgUGzsAAAAAAACRYmMHAAAAAAAgUmzsAAAAAAAARGrJT8X6yQN+0lVboFfN/qhL6V+xUF90teyYTr+2Np/lXwoEcKdE2PZGHxRvZmYnQiNIkEjl0E5ZT+14wNWam/VeZpMYVTWlh4dYpiCKdbo3lfIjtDKheVvi1OotJVsny4GTw7w9+6Uvd7VPv1JPpHrOtRe62mV9a2Xv/e1+LfrU0d2yt2f3Hlc7eFyvfH965dWuNtQ3KXu/ePouWa+eniZg5tfpmLz7HT+U9f/zLT9JZs9/HKr6uLffd6OsX7LKj7ra0xWYATHhJ1117lCLkFlDv18vepr04nRLSYwI1MuN2aw4rX++U7bue7KfkLG1VU/NePff/zjwA1eW1pR/D7/2fR+QvX/wpj93tXzfQdk7lfPPNI3be2Rvc72fBvjb//Qq2Xv67n5Xa+k4T/Z+4wPvlHXUiHivmpkdO+onIr7wMc+RvZ/+qp+0eN8vAlPauv0D7tQBP4nGzOyZ65/gai97+wf1cVEzV65pd7U7+8dk7/B9fiKiPaxDH3edP+6hn+ibSqGnxdW6R7plr13kp2Ktnz5ftvZN3K+PgURKJX3PzuX8s95Tu18te9cVDrjahp6NsvfI/X5qbJLP+q3DeuJrZt16V5vZI65pM6t7hP+dUxNiDLKZVdYFFtolgG/sAAAAAAAARIqNHQAAAAAAgEixsQMAAAAAABApNnYAAAAAAAAiteTDk5VAbrHMfaxkfUiymVmbyD0aNB+SHPqBI4FzsEkfdHlmUgddYmGokOSQqSkVu2VWLzJh6wMZxymRRapySM3MJkJByUKzOHAhcP3aHOHJteNfs8ZVOqD7ohM+sG3Neh22tqbDh0zed1wHvn3qtkFRVTWzLdf6sOZKKOT4o2ovX78ntLhDkkNe95dPlvX8z/37r/h0fdt85A2/5Wr/+YTPy96Tgz4oucNn/JmZWf2Iv6fMHfIhlWZmQ+IaKQaWoK5Of9xSWg8QGJsddbW2p+i/w2ef/T1Xe82rfMg4Htr7//I1sv7cf3yZq22ov1L2ZuaGXS3dpG9Wn3zVX1Z9bn/0lle6WmFq6YZJwizd7QOvP3f7t2VvR6nB1Yr1gYecoUBd+EHfz1yt3MyzzGILBSUrhRkfKHv5pJ78crTPPx+MNQQ+/4z654775vTQh8aivx5zTYHPa1gQdVv1MIdK7ypXyzXqmOP0Kv/an+r1IclmZtt9dr8dDORgN23wtYZRf42YmdXP+CD3TKvuvfwJT3S1qd6jsrd579LdPuEbOwAAAAAAAJFiYwcAAAAAACBSbOwAAAAAAABEio0dAAAAAACASLGxAwAAAAAAEKmlG+t8FlS2fqYkRhiZ2biJJP/QNpcYGlNnevJN0XwK+FxWTxqxIqnuS8WcGPajrxyzgghU9/NlHtTsBwrYrA6bt4IYrZWvfqgWaui33vJXsv73r7/W1Y5P6yltI4f85ICJjT2y96Mvf4Sr3XtAzf0za7vXL1xrWs+XvV+1W0U1yVSs5ekf3/cTWX/HW3/N1T781K/J3hf+z0tc7RUv/RXZ+4Ub/M+bGtDzHidyfhHY1K0n0Rw95WupXL3srRT99bQ6ra+Fv/rjZ7nae/7mBt375mf63nf6SVk4O//zuk+52js/+mey97oj/tmj/pB+dvnT973d1fomB2TvqWF/3G99+D2yF0tDy5BfRybWiwcUM8uVu1wtU9ITi0oDQ67WYC2yd3aTeMg+EZpzi6WgWO/XgNF2f32YmRXu6XC19nY9gWtsyl83512hpyfOHJ92tWNrAg/SWBCVOf0skNnh14GJ3YEPKukzrjQV+LC076Cv5bL6Ouvt9dMeW9WoazNbLw4x1egn1JqZFYcm/Dn0NMnebNfSvf74xg4AAAAAAECk2NgBAAAAAACIFBs7AAAAAAAAkWJjBwAAAAAAIFLLKjzZzIdBlso6ZFIKZIiqoORC4E9XMREiRUjykhEKRFYvfSi3uElcZ/lGFd1tNiMCSuvyuldFf6UC71B9BCy20rAPps31rZK9X939DVfb8BMdMnlvpw8cXBdYRq6X2ZM36mYk0j/uAx5f+/qrZG/D9Udc7d3/pgOGrdUnCK4OLE6lvP/3l+FBHyZpZrYu46+9gSa9kl3R3Ohq4+0iGd7M3vOJ7+qTE7LP8sd4xx89R/b+zSe/XfVxEfbmt35U/4fB6o+REv/OV+kJPBTpTGUsYcUm/yxSGfBhoWZmAwVdr9as6aBlOzGvw+IcmJ5od7X0Gf3cUtrlP2/l+vx9xsxs2w4fSjt01Ifimpmlsv4+vL6gg3X7ZBVJZUYDi/ysv090btKB/HbUPwu0dwc+WZX94KGuvL4eOratdrX0nB4SUb/NH6N9t/5Oy3Tehz23TvifZWaWPqOHmSwFfGMHAAAAAAAgUmzsAAAAAAAARIqNHQAAAAAAgEixsQMAAAAAABApNnYAAAAAAAAitcymYqlZQT55/UF6qoiSl/ORAsneIig7ldPp2ZXAdCTUTiEQZJ4TL0VontrsrG8OTdBS16SafmVmZnX+7ZjO6xMumU+Qx+L7q3/5b1f7xJ/+quy98haf2n/drJ9+ZWZmp3zpQOActm7wtaMD63VzTsyMSDC0T88dMJur/hBR+cgH/FSrl7/zUtn7/jffUfVxtzetcbXJQlH2bhb//nKqoGd/VFb7MUgbJ/wELjOzY03+uKm20CtcvXe88+vzPgbMcmu6Zb3Q7yfEJJl+FVJRsyEHVto7fvmanhYPOYFPAGrFCD9xqIPotUwLTZfh+XhJGPJThQ6v1RdOz4x/zQaG9HSlYbGMhT6XbRJX5IaHbZK9fQ8wsm8h9LzjJbI++E/fcbViSn/Ovvgx/hnj53frT0BP2uxre0/qc7t8zE/tG2vwE63MzKzPjxtdndbXb5O1utrkrH5+6nzfE/XPWwL4xg4AAAAAAECk2NgBAAAAAACIFBs7AAAAAAAAkWJjBwAAAAAAIFLLKjw5I2ql1IxurlUumzguIclLR6e6SMxsXGT9+citBxXVuyaUpV0RAaUymtCsnPeBlKHoyuqjv7EQPv6Xz5T1dTPrXO2r/af1QYZaXOlXt+hroa6wytXOZJpl7/Un7nW1NWkdINifn1/QJZGpZh97833zPsbhfp8K2HyxD+4zM+vc5EN01x7UwZG5jX69mUwdk71rfSam3XvLEdmLxfeud79F1t/y6le52qzIPTYzGYyey+q7SiEjxgXMJXnHE4Ibm7qUv8+YmeXrRRp38FIQ949U4FqoqGuB6yM2qYz+XDU66ENtO9P+GcnMrGWTD9xNz/Xq4075wN0TP77zoU4RtVL0zyO5sr4evvTob7vazrufLnv3pvw60tm0UfaebPLJ21PNq2Xvujl/c/zrp75P9qaz/vm4ddpf02Z6v2Gp4Bs7AAAAAAAAkWJjBwAAAAAAIFJs7AAAAAAAAESKjR0AAAAAAIBIsbEDAAAAAAAQqTinYgVGBZXUbzPVIHtT5lO8K+lAznU5MPII0ckHpoc0i5d+stwoe1tK/tqZCAx2yJn/gfnAeImMGCQxzcCIJaE+q9eA8aGCq12+RoyiMbNHfOBaV/vefx/SP3DniCt1HhZjjMzsh295pas9/WUf0sfFkjV7Sk9fODDi66sfuV32tg34a2RqUk++OTEgJt9gyZg92S/rb/rIB13tLS95tT5Iu7+pFMYC442qH44XwM0qNvm6wBqgb2FaRvz7cCXwoMUlsixsmdX3qqOjvrah8ZTutc2uVr9Bf7gbu8NPxcK5sep1j3K1M+/9d9k7ubXL1Ro722Tv0fv9s0vPk8WkRjMbL69xtanDk7J33wm/xm1/sf5sVxKzrrrf8TTZK78WE5pOucj4xg4AAAAAAECk2NgBAAAAAACIFBs7AAAAAAAAkWJjBwAAAAAAIFJxhicHsv9szgcFpk2HL8mMozLJbstdLnDFl8Vlks36kGQzs/EEIZP66tNKXH5L1v2n9Cu5uXnU1UZncrL3ba/5mKs1isBsM7PC7b6Wa9CBb18jKHnpCv3TiXjdN+WaZWt/j08yPXPrYdl7ptrzWnSBC12mqYb+aEskmXCRzDbpYQ5rJ32o8l995n2y9z0v+UtfDAyfSGXqXK0yneQOthQkuc5gUwvw9yqtrPclzIZCl4eYVXOffow2O3bclSaPnfUp4Rxa/cbfq7q3aYOuXyJqt/1k/k809eJxYtW7nid7U+K6Tkd4S+EbOwAAAAAAAJFiYwcAAAAAACBSbOwAAAAAAABEio0dAAAAAACASLGxAwAAAAAAEKk4p2IF+ZjqcqJJGqT7L3elBFuZ5VLtzgNxufL882T9VH/B1Qb7j1R93JkEyfrF2dB4CSxZCW4pvVN++pWZWfu0r1VMT16bNX89Lg1JRkhwHzYzGzY9BS8/5B/b0rmR6g8cmCpaSTTDcZ4S3IdTZT2WpCKvqSU8qmQpqr9A1+f2L+55ICqllsB/SG31tdnRQHOojuUsdOlMiGeaDYHnmd4kP1DcPkKDrlLivjSdYAryUsE3dgAAAAAAACLFxg4AAAAAAECk2NgBAAAAAACIFBs7AAAAAAAAkYozPDmUfCRy89KB37AcYSAS5q8cCI7MiOukEMphJFR5xal06EVn1VCbq+2f1KGnwENpD2QGD4p1qGnJhiRjobSXB2R9UmSoD50are3JLLQE+dg6JBkLIR0ISSa+HA+lcHx94L+oUP84P2aiNjrG62R9QIT3j4Qus77qf97cCvy8xjd2AAAAAAAAIsXGDgAAAAAAQKTY2AEAAAAAAIgUGzsAAAAAAACRYmMHAAAAAAAgUqndu3czcgAAAAAAACBCfGMHAAAAAAAgUmzsAAAAAAAARIqNHQAAAAAAgEixsQMAAAAAABApNnYAAAAAAAAixcYOAAAAAABApNjYAQAAAAAAiBQbOwAAAAAAAJFiYwcAAAAAACBSbOwAAAAAAABEKvtQ/3HXrl2LdR6IwO7du6vu5drBL6v22uG6wS/jusHZ4F6Fs8Wag7PBdYOzwb0KZyt07fCNHQAAAAAAgEixsQMAAAAAABApNnYAAAAAAAAixcYOAAAAAABApNjYAQAAAAAAiBQbOwAAAAAAAJFiYwcAAAAAACBSbOwAAAAAAABEio0dAAAAAACASLGxAwAAAAAAEKnsuT4BAAAAAPNzetNFsr72xL6a/Ly9V1zuahffdXdNfhYA4KHxjR0AAAAAAIBIsbEDAAAAAAAQKTZ2AAAAAAAAIsXGDgAAAAAAQKQITwYAAJZOp2S9XK4s8pkA+L8Z3SWCktNl2TtbuczVGnvvkb37L9zuau2Dbfq4o76Wv3iT7G3cf9LVSoG1ZfTxF7tax417ZS+WhpyoFRb9LBClJlGb0a112Yyr5QulhT2fiPGNHQAAAAAAgEixsQMAAAAAABApNnYAAAAAAAAixcYOAAAAAABApNjYAQAAAAAAiBRTsQBgEax6yq+6Wt2ZvOxtND+d6NB9317oUwL+P5JMv0qnAhO0KkzQAhZDOT3paun8atk70eRHzJxYv1P2ViZnXa2xrU/2TlXqXa1u7wnZO3Dx+a7W1KDnJs0e0/dGzF+D+Og3a0XZ2yhGXc0ERl0t6gSsXEPgJPy1i1rTzwJm4lkgHfg+yZyY5pfx06/MzPIlMQErGzhuURw39JUWPVAwOnxjBwAAAAAAIFJs7AAAAAAAAESKjR0AAAAAAIBIsbEDAAAAAAAQKcKTgaVC5YSJjDDU1qWPfoGrFYbGZe90mw+OXJWakL2Tgz688tZ//77sffifXO1qO3Y9WvaWc42i2i57K0V/Dkfv1eeA2smK9/q/dR6QvX1tHa7WMntS9pZFoGRDyv//Zmbpxm5Xy526Xfa+ZPTx/mcRkpxcgoxJrEwj51/manPl47K3kl/latmWYdk7ccI/7k+1+fBlM7O2QqerjRabZW+mPOhqA9vWyt66kg+2zU/JVkt3+YefvrZLZe/6Pffpg0CalR/9dHiyDEqub9UHnhPPPq3+GcnMzCbmXKmrUyQ1m9nwpE+1zQZCktVvkQ0svPUZv/BO6bxeM7K8k1NfHSknSChOBz4AqUOEjqte+tApqN4I7818YwcAAAAAACBSbOwAAAAAAABEio0dAAAAAACASLGxAwAAAAAAECk2dgAAAAAAACLFVCxgqWAC1pIwWu5ztfqmNbL3xMlDvtatJzusGxtzte2/5adfmZlZycfzZ+v1dIl8uc7V1qT9zzIzG6n3005QO6nAFKR/2Hy3qw1kdHOb+ekfxWn9Om7qHnG1kRk9JecRT17vand/d5PsfVvXfld76/CFsjclf2k9WkL1lssRjqGo1jL+1RA2e8HDXK3hwL2yt/P+e1xt8EL9XuufPeNqG8t6etW+0wddrXRaj4fJNvt/822s+ImKZmYFsRZNtfpJWWZmpYnTrnb5w/Wa0zDi3ywd7WoCpFlhx8WuNt6g32zde/bJ+sqiJ0pVqz6n/7ZzDR2+ODaqDyIek8bqmmRrs/ioOmVDgbPzkyGLgd+3qJ65eQ5/UDrwvQ95f9bXQ67H1woTgW2HaTHPLDC9qs1aXG1cXzpm03rynyR+5SSDuZYKvrEDAAAAAAAQKTZ2AAAAAAAAIsXGDgAAAAAAQKTY2AEAAAAAAIgU4ckA8EtO3nqjqw1MjMventY2Vxu+VwdHdq1Z5Wqzcz4o08ysod6HRE5XfDCumVlTyodXnpqZ072NOoAZtfHe9r36P6z2yZGzh3QYZHu54Gr5QIjo3sGMq9XV6aDlG27y4a2XPmWH7C3f4APFTWcyW6VSfUJwkl4gVlN1PoFz/Irtsnd8eNrVZiZ0+OtFzf79c934lOxtzvnH/dFCIBm06M+hsU2/V0vm7409gRDcvjp/bmcO6eOuPd+ve+UxfW8dzvng1TV7TsjejPjn7NJSTkKdh2wgvL+uxd8nphsCzwYFfy3M7QwE0qqfd2vg5PzLa6UZPfSh8Rpf87/Bg8Z/Jt4r+vFNn+8yvRYSC/0d6sQfLS9Sks2sMODD3S0lQpLNzNLt4hz09TDe7J+7bUZfk9mcf1bKlXUQ/IxYDmO8HPjGDgAAAAAAQKTY2AEAAAAAAIgUGzsAAAAAAACRYmMHAAAAAAAgUmzsAAAAAAAARIqpWL/kwm26vv/I4p4H4rOuvU7WT43lXe3Kdc2y985TepoFzj01/Srk/Mc8W9bXXHqFq204/1dk75ZLnunP4ZLfkb2bdl3tazsfI3u3XfwUVzuy9zrZi/nbvkqvC73H/EiQ/kH97yyl5vWuNjKsJ8m0Wour3Wy3y96rBvwx7jzdoM+hy9c/tLlf9k6n/PS2jTk/BczM7MUH9RQuYDnpuW9P1b0n1291tfqcns0yWvDvq9wpPTnqqPlnkQ7T7/f7Xv5kVztR1JMWn/jhb7vaDX/+LNn7yL/7satd95e7ZO9v/KefKNhyXD+Mq+FG6cA/WwcGRS1LoaGD0yUxVXFATxVq8Y8t9oKv6QP3lfxkx+lf9dNAzcxuuEsUA9Ordn7ET7qaG9P3nztfvMUXd+vjGkMZH4Jec7JiclTR/OS08CH0s4CZuv4C79Y2P6UzU9ooW4uzJ32xRT+XNU36E562wBQvU1Pk9Bq52PjGDgAAAAAAQKTY2AEAAAAAAIgUGzsAAAAAAACRYmMHAAAAAAAgUis3PFlkJ4VCknes9rVDZ3SvilPSUbk6KsrH22ExqNcoFGWsouAKIiQ5ZH8gJLlLvBuHQ7ldWFRf+MBLZb0059P3XvTGT8/75/kIwrAkkdtJjov5GxjSaZC3jZxytZZAWOGBqdOu1hy4dd9iw67WZTr4+xbzN7FNo02yd2dps6utX6+TJwtjra42ZWOy91+23+Bqf3j4CbIXiFU5QUhruuTfr21b9fNF7uf7Xe0lf6zDiOs+4RNkD29vl72HPvdVV1vV2SV7G17yKFf70XU/lb3XX+zDUBvuuFP2vuG4D8cNBR/Lul5Og1GosZOfMwI5tU3T/tPHQOC4G9b62sSwDgNvX+Ovp5urnzsRtG3uhKs1VdbJ3jtFjq+OCDeriL/PnJ9rECX10hdC3+XI+gUqVacXraLPsTZr0MHbVhJrRto/o5iZNc35QO+K/ERtNnPKP1etb9EBzif844gVJ/R6mmxtEEHJoa/KBNaiWuEbOwAAAAAAAJFiYwcAAAAAACBSbOwAAAAAAABEio0dAAAAAACASLGxAwAAAAAAEKmVOxVLhGI/YptP5TYzu+fIjKutC4y6UgOPQvOSEgxKwP9S0w8W4u8oJwsF3h1DIjq9S4e3y+D0jsBx+8Rx1QQuM7PBQB218Wd/+2VZL4zpqUfzpWYTFQKjHZrElIJsgmsXtfPykStl/QN//jRX+/Y3DsvevvFeV7tkzfmy9+nr/SSZL/5E34EyPetd7REP65S9f/njn/viAdkakJHVlJWSHARYNgYv2CTrYxP+eTN3Wo2i0b75xYOyXsz5m8LUYb9ehBw9rafZnDhwi6v1h/7JWD1i763+HELPejxLB55hA8urXuW1A78Qtd++VDf7wWtBl11zhavd8/27ZO/nn7vT1TrEZGMzMzvkS6F3T72YgBWavBbbNSaHezUEfrtZ/4atFBM8LAaXJ7Vm6FFt01m/7llR1Mzk48SJycBkLvUrh3Y+xK8cuh7UElfO6oWvkl/csVh8YwcAAAAAACBSbOwAAAAAAABEio0dAAAAAACASLGxAwAAAAAAEKkow5N1DKPOCcv8w+tl7/U9PlqqaWZA9vY8Y5erbTqjg+RS32pxtdt36mSpx77qXa42NyZb8b8WM8AsF8gOU9FfQyIkOeRM4Lgqf3kytPVaoyyuWoVTx25wYjrwX9RqVH1iYWZEt07Xi5TJWR0kN5bzKYItlVBkO5aCd//Lj1xtoCvQPOpLp0d1SuWXEgUa+wPf9+Mk/3/1soH3BFneNSYTHhf9LCCUSvpJtnWDj8Htvq2v6uNO1+sXeG6k+ndbWn0yCPzvHe1trnZmSg8VqIRuo0JGXLwlLt4g9Vwa+mtV5NOmfoh987Of42rvtztl7zM6/LiP1d16skjbY9e42sU71sneO/qP+eOu0xHQN+6/0RcDj2Qp85/XKhYI4V0G6gIhx/k6/+ZOBR4hK3LbQC8OsrNVxjpbu0j/Dn0cXrXOPx9XevXz8YQI2S4HPq8Vxf2yEngT6UtKRy1XBv24m9Sq0Gic+eMbOwAAAAAAAJFiYwcAAAAAACBSbOwAAAAAAABEio0dAAAAAACASLGxAwAAAAAAEKkop2IFAs5lHnWpXyecX32fj8V+4ElNsvf9b/mYq1358Mfpkzjp07qvGgjMFZrQZdSOCEh/kNjibA+kofscfbMjgcOq3P7QYAgV1N4WOIdAuP28MQHL7DFX+PFELcUO2fvD3cerPm6PeNH0HD6z7Zv8C3/4YKC54McXTLaoGRlmNqknEqA2XvLrj5H1m79ys6sNVALvvmZfGhYTJMzMtrX62pEJcQAzs4w4SLtuDY6nqFIx8KiRSvlpGqE/w4oTeAtbkrcwQ4SWrDUHj8r60MUXi6qeivXs55zvagcP6QfL+0+fcjWxXJiZ2YQacpPRF2Rq5wZXq9yqp2JtE7XQs1OFizcRNWOtEPgT9oqnzac/Sd+rvnjLfle7atBfS2ZmX8/4+uaLHy57rzzmn1syB0Zlb9fuPa52Y49s1R8QA19hmC37z4ft3fpz4NhQgpFuS1Q+G/j0LO4pleD8abU46D9wR6Ovj8vFxSzbKX7eiJ6oNjTqHxIqbfoccmIdqVM/y8yKZxJcPGl/3N4jh2RrKeevs6FZvaZ3N6zXPy8BvrEDAAAAAAAQKTZ2AAAAAAAAIsXGDgAAAAAAQKTY2AEAAAAAAIjUkglPDu0wJYlPu+2fX+hqD/9TH3xsZmbXvMiVjhZ0cuSpsWOuVprero/7mZ/42mXP071kw9WUCkr2cW3/S7wWoWDbhnmew0iC/z/0s3Q0IRZCY52PvG5rUtHsZq0iSC6UiT4w42urAgGp0yLzvTMQbJsSoczDhCQnsxA3IKGpZaust60Vodt9vVUf9/xOH/BtZnZ0xK9wV+3QkfF3HAokMNeCCEnG/8Uiv4U3rt3kaidPn1jck4BNlfS9Rpnr80Gvl7bpp4MTLf5pYmIqMIZBBJivatZrTvGkf2+ft00HgB4cEIGhgWWoTIh6IrMybT10A/MhsT/8+d2yc9fmHa72s8AD6BVbL3S1u/beLntTQ762ZuMu2XvrGV97zNWrZO9NewZ9MfRnEPf95RCSHBS6DWdFmHAxyZgi/QeenvH1UCTz+Ij6efq1qBTFQAg9J8kyjb53Oh1adKoumvpNmht0ovfghP/dWkq1W+D4xg4AAAAAAECk2NgBAAAAAACIFBs7AAAAAAAAkWJjBwAAAAAAIFJs7AAAAAAAAERqyUzFWogBUZ/67C2++N6/lr0/az/kal//1o9k77rGza52z8179En8xnNc6V+368kDf3CPPgQWRnAClrBB1EIzatSckNWB6UYlEfTeE7jYxZCA4GQu1M51t/i1YVubnvKxblWbq3WVxfgrM6vMdrjaqmadzn90zC/N5/foffiTjb62M6uv/gdOhiYdrHALcAN6xYvWudpHPvM52btaLDjbLzhfH3h61JUGAwtDqs7P3Lu/t1v2rn+MH5HR3KdHrz1wbH7TkTKBQT8lJkMmdv6j/DSO4yMtsnfnrP8DTzfqteHi1f4OtHGTv6bNzO6ZO+Vq68f9WmhmdugoMxyVoV3nyXr3bvVsqWfJ/Piuu12tY5WflGVmVszXu1rDKn0/mB3w95rxkj6HwZnTrtZZ0fe19kZ/s8qm9fPx0DhjsZJIp/wYvfbAn1BOZi3o55aZ8n2+2Hqp7J0tHHW1rrV6XZhK+SltZyq7Ze/G1X4dGt+fZHqVngxpLWItXInLVU5cKKGRvJPqotJbCY1iDNeQeN3NzBoqfh0IzQfMzfr1JfR5LyfG7rUFRhOL4WthGb92dnSLaV3nAN/YAQAAAAAAiBQbOwAAAAAAAJFiYwcAAAAAACBSbOwAAAAAAABEasmEJy+EdPOgq73qhi/K3s/nfahgaVSHuOU7fKhgpmVO9r607w5X+/lQKIUKS8Ww2OJMB4I9c6J3yufWmZlZa7sPbUsVdMxX27QILAykuqo3buAUsAAGWnWwYHe9T83Oz+pXoifrw/5GA1vrwzM+we+W47r30g3+ahiZ0wGaZhOB+goXSulTAoGUH/msD5QNUVmF+SP6Bc53+9DS4Vm9hqxuFAdOHZO9TQ/4azc1VZvrI8mfF/8rpYOs64d7XO3Zw/oZ48gFPmV77b0dsvdbB1RAtg4ovTbn15fDnTtkr9ldgfrK1r37YILu6kPvpyf1a9Zk/jUbH9f3iWyLWAem1HgHM5vyz8KBbFKzbt/bkA/9+zJB/0mUxdIfWs07RG000JsXQf1rtopAZTMbPOFX+u5mvTal7/fPOHWBl/z4lD+J/q1JPlcFHuZVUHKLDxk3M7NJ/ZlvWZgRf58mMZXDzFL1/lk4O+dDkkO2B+qF7tWuVmnUccYnT/pa4FWzFvHonguE0cs1J7RLkuAD18yMb25sDEzcWQB8YwcAAAAAACBSbOwAAAAAAABEio0dAAAAAACASLGxAwAAAAAAECk2dgAAAAAAACK1rKZiTeWnXG26XSent7f43P4zgUEyX/qmn5Z1zfN1c7Hb1x45OKoPjCVDhcJ3hSYWiREvHX74lZmZnR7z02s2BY47J5L7A1n+y+uNG4G2gp7zMVxocbXUnJ6gVZxtdrV0QWf5r67zk01aW3XveK+YptbM9KtEApOu0mn/Zi9XAs1JzKxypcnKpGytG/H3NT8X6UFnKv5a6KrX10192l+nI+2t+sAz87ueiqGFDA9hTFZXXft7rnb/d34ue5und7na9GP99WRmZj/wU7Ge9vgny9b164662vC6p+jjfoipWIupMdch63PlUVerBJ4kGif9G3YuMMUlVefXw1S9XiNTE/4Yxbye4oX5C80qqmTEA2tJT1o8UeenIzWcCEwJ3ervNQdH9QQidYV06sNafqO/TltH9L1q2Px9tCmj/xLTagrXcp5+lcR04MVo8J+p0zk9UbptdYerFSb1dZYd8/e78Qb9Grek/Ov59MCQqfta17raVOOobj7pn/NTgQFaleoHgdV0ApbCN3YAAAAAAAAixcYOAAAAAABApNjYAQAAAAAAiBQbOwAAAAAAAJFaVhmsLXNrXG34xFHZm1q/2tUqA8dk76880e9/NQ4WZO/I1BlX68suQNgmFt1wgsDPfhXCFnAiwXFDO686fgy1Mubf1g/KiMDbwNu9UBbh7oF4w+a8X5qP63w6K5gPucuSR7kgyuXarN3tJX/cwYK+HWdFeGWxvUP2bp/1K8PUOh3c17fPry4jHYRuLxmBS++BHx10tcc89+Gy94bPD7va0566QfZedNETXW3spL4mP/Sln4jqP8peLK6m4qisN8/493tfg19bzMwmOsTrPqoHCNiMD1Ot1AcmkcyJ9SUweIKHnNoZCwQlK+l2/1lpZkRfC41TfnpM2/F+2dspgvqPDuhg9+ZNvjZef0r2KjIk2cxy9f7aLcwFHrRgZmaVWf/3CcVNHx0ZdbXzGvXoh8nigKsV0npx6FnrP3//8JR+ln7Fk3a4WnFMf9b/h5PjrlaZS/DhLqA44u/D2c6ueR83hG/sAAAAAAAARIqNHQAAAAAAgEixsQMAAAAAABApNnYAAAAAAAAixcYOAAAAAABApJbQVKyUrKbFaIjQUKGP/bzP1d70OJ08fXKvT6n+8kGdqq1mihQCZ/HUJzW72meu10nvWD4qv6KT3vdN+6T3jd1+coCZWdvnh1wtwQAt1FCutUPXJ0ZdbbZNH2Nq3O+jFwLzBOTMiim9PjXWtfta05jsHR71tUxa3wZKZfHz0n6KhJmZlVfQJInQP4ckeLMWW/zYstWB6TC5kXpXO1zS182YjfriPn1ifiaJ2YXtfrKkmdn+UT3ZpFoL8Cdbeeo6ZLlnzk8EGTmop3Ref+vLXe2i7ifN56wetOP5vnbom7J1e/sFvrhWr0+W9RN4Dud/Vfc+8PbAya1smYyedDXXnnG1jjH9zpzJ+bU/NPkmZX7trwQmC2W3+mlZlaP6nlIyJvTViv5Mo6XFBKFSu/689sBRP1UoNN1vLLAEKG33++vpdOA5K4lCaQU9t9RQY+AGPyOms460+s9EZmbrn+BHn5264YTsHTf/Odvq9Um89ys/crVLduhJoWbzn4Cl1HIClsI3dgAAAAAAACLFxg4AAAAAAECk2NgBAAAAAACIFBs7AAAAAAAAkVoy4cmZQMLWfMMV97brX3Gi94yrPeGKDtl7UdmnfD2QV9GTZqUJER6WhM+3+98Dz++wqK3UN3QgmOZDks3MVonaYOjniVro0kmL5nwg0A7ajAhJNjPLiwy21YF84YEJH4LbmJuRvYWMD5msz4skOjMbzfv1qTEbCofzEYkyJDlkJYUkhyxA4u/9ff5139ITCLFu869PV2WD7K1r9697S1oHH0/2+tr+Y/MLSQ4hJPks5Edl+a7dP3C1ax/5Qtm7rcuvI3tvv1f2Vpp9SOq6wDLSdd7z9H8QDo8d8MVgcOppUdPnC+1kRd9TmsVzQCXwT7tzE+L5Nq0DQLvX+4eJUlkHODeW/NCSySZ9EuP6docEAnn8ejhDQMG/ZJbr6tC9reKDSlZ/Jtos8m8HCvq4p86M+mLgo5b6nYO/b4JHn5UmHVgbymX/H2bK+qE3a/5NXNcvXngza23ya8bjtqyVvak6f4wbHzgke1/3Qv9c9Y+fC0WFLw98YwcAAAAAACBSbOwAAAAAAABEio0dAAAAAACASLGxAwAAAAAAECk2dgAAAAAAACK1ZKZihYY+qZ2nJAN9tmZ1tP4Hj/rateunZG/bjE/83pbXM4j+dV/VpyYnG1WYfrVihSZgKeo9kAps0+YZSTNvHYG/7WTW/4eJWf0Hb8n6aSX1gXENcx1+3Rqe0ZP4WlKTvneahSQ29Vk9ouPwqJ/zsXP9hOydLPmJe13jegrFwby+32GJE4v/vp/oETEN9U9zte/f+RXZOzyz3tX6i4f1OTSIKSizTMxbEqb1s2k57UeczWzolr1bpv3IvKk5P2HNzKw8POdqI9P+nmRm1tjW6Wrj035CLRZG4GPKvKfsth0ckXU177Vnh77/DB/a5I+7RYzgMrOZBEOMkkz8QlilHLp4vGxgK0E90aRNP3fccuR+V3vExetkbz7vPy09ZqOfOmtm9o+f8+vTP/yuX4fMzP7iP/R1Xa3v/d4aWZ9pFG+4Yb2e/toXjs/rHMz4xg4AAAAAAEC02NgBAAAAAACIFBs7AAAAAAAAkWJjBwAAAAAAIFJLJjw5pKK2nhKEwU5N6EClDzx/g6u95psHAkdRyV0+CDWpJCHQqC0VZN2timY2uAReuHrxvpgjJLlm+vUyYu0z/o8+57PazMxsSLw+jSKD1MysPO6D61IZfeDJkrogl8BFikRmR3SgX3fBRxDuO6ZiKrUTgbBCLB97D+0J/BcfqnzNpU+v7cng3OpolOWZERFofMKHJJuZHRO1rOlw7FLa39gygXTevnGCkhdTfSAkuU588pvQ2f3SWIMP9DczWz3ro4vPHArdf/a7yqS68HBOVDL6A0Wq7D8YlRt0eL/N+A8qJ1P6g1WTmBx02+FTsjeX8kHwhblQwrY/h1BI8ttf0ONqb/niQOC43j2n9JvovDX+Qf/esdo9l/GNHQAAAAAAgEixsQMAAAAAABApNnYAAAAAAAAixcYOAAAAAABApNjYAQAAAAAAiNTSn4o1z0k/h4t6nM0ls35CwN9c3S573/GzMVfzM2seFAihxxKnZgh1tOreIREAvxAziHJim7UQuP6ZgLW4eurXy3pTts/VTojhIyEzetCI6ZWE1WU5m8joSQ3NYsjN6sBQRmbOrEypNatkvdJ/dHFPBOfebODhQEyjaQ88uIyJJ5piYBxtVpQTDFhCDVUC0zwnApM7q1Vs89OvzMxWr/O1whF9DH23C/EPx7nA9RiajYSEKnp6VSXl/+6VwPNIs3iN6pt077AaEhV4Pi4mepWr/7CkJmB94bV6Wmn9bLerFQt6Wtzxk/5zwtu+N1r1eSXFN3YAAAAAAAAixcYOAAAAAABApNjYAQAAAAAAiBQbOwAAAAAAAJFa8uHJ87Wl1YcWmZmdzvuwwfR6HZ5s5sOTiTFd/k6JkGSzhQlKVkJByTj3ZjL9up72SXAdHTpAbXhkdCFPCctMiwoPNLPmDl9ryItEZTM7UwqkGGJZO79Jh5nuX+TzwLmXaZyW9exMh6vNrg+EkPYFFiOBoOSlKz/PkOSQztaH6Z935F5Xa9qijzFyLMlP9A/HhCTXWLn6DyQtga+ITIpDNLXo3kax5ISGFCWYTzJvv/n+UMx3svjvxcQ3dgAAAAAAACLFxg4AAAAAAECk2NgBAAAAAACIFBs7AAAAAAAAkWJjBwAAAAAAIFKp3bt312rIDwAAAAAAAGqIb+wAAAAAAABEio0dAAAAAACASLGxAwAAAAAAECk2dgAAAAAAACLFxg4AAAAAAECk2NgBAAAAAACIFBs7AAAAAAAAkWJjBwAAAAAAIFJs7AAAAAAAAESKjR0AAAAAAIBIZR/qP+7atWuxzgMR2L17d9W9XDv4ZdVeO1w3+GVcNzgb3KtwtlhzcDa4bnA2uFfhbIWuHb6xAwAAAAAAECk2dgAAAAAAACLFxg4AAAAAAECk2NgBAAAAAACIFBs7AAAAAAAAkWJjBwAAAAAAIFJs7AAAAAAAAESKjR0AAAAAAIBIsbEDAAAAAAAQqey5PgEAAFC9VFr/m0ylXF7kMwGwEqQDa06ZNQcAlgy+sQMAAAAAABApNnYAAAAAAAAixcYOAAAAAABApNjYAQAAAAAAiBThyVXJiVqh6v87lUrJeqVSOcvzAbBU5XL6/V4oJHm/+z33bFr//8Uy68hKQ0gygMVESDIALH18YwcAAAAAACBSbOwAAAAAAABEio0dAAAAAACASLGxAwAAAAAAECk2dgAAAAAAACK19KdiqQEzwSEwGVELJfknmSTjJ2CFdsTUT6tUQt0lf1z1K5hZ2bcCqInqF51Uva81lHRv9XP0zCwlVpLAkiVOweaS/CzUTkZPSLPANXLOBU430e0SwLkTeIYUj5tLQ5KHaQDAQ+IbOwAAAAAAAJFiYwcAAAAAACBSbOwAAAAAAABEio0dAAAAAACASC358OR6EdoYDgZNkA6ntrQShLWFW1VynT4vlVNZDgbJ5XytEjqLpZqSB8Sg+qTYlqKPLp4oLUB0sTiFYrBVrA3JopqxENSCniAk+eHXbJP16TG/zjdmArfuCX8tNG8el603fLfPF0O3jkRDDFBTdaKWr9VxQ4+IodUISIiQ5KWB4HxgWeAbOwAAAAAAAJFiYwcAAAAAACBSbOwAAAAAAABEio0dAAAAAACASLGxAwAAAAAAEKklMxUrLadJmeXlmI7g6Kjqf6BqbQ70qgEzwSkU1U+kUr9FKTDMJp3y/6ES+jOI/1AJTtCCmdnRT/6Vq239o/fI3h+/+/dd7alv+rTsfZuovTVwDoe/5P/L9t9QR8Cia9TlCTWjzw/KetBoq6+tbdG9p0/5WmB9Kk0xAWtRLcD0kM0b2lzt9tv6dfNG//o2jLTL1rmxSX9aE/re2rja3/5nTgWmHanfjSkq50aiCVjVT+nUx2X61ZKQ5L0WeHm/fZWvbVmrJiqaDR/2a85Ej+6tnPa9l1+s15yhgq9f9u0EF/QCPPojgHUbWBb4xg4AAAAAAECk2NgBAAAAAACIFBs7AAAAAAAAkWJjBwAAAAAAIFLnJDxZ5cCVGwPJXTOquBBJaT7htKcsglDNbEgkp5b1iZlZg6jNys6S/PPrsMK0+PMUg2FnJMmF7P3mO2W9si30enqXPvLSqnsvFNnHmb/Vvdkmn3pY+R8dtZx6LqHKi6r6y+Mheid86bSohUwlOAcsDHWzCgWZCo07dZJ2f4NY+08EroVTPrQ01T4iWzes8mv/ySl9o5gpinPbrgNS7bC4qEP3H/X3IZjzLDQF6tPVHyIrknTJQ17a1D+3ht4/IqP4S5fo1qsv8c2FXv1+X3Ohr+XLOqS/KK6nDU063H1d2V+7s9fqBbXhy+KXDj3aqr8Zj8FBLNHA8sU3dgAAAAAAACLFxg4AAAAAAECk2NgBAAAAAACIFBs7AAAAAAAAkWJjBwAAAAAAIFK1nYoVOHpFTWWYSRJhXxeo513l4bs2y87bdx93tcc8Rvf+7K5RV3vS1Tr1/5ZbBlytb1K2WlOzn1gxHZh8wyCLhdFZ1BMY1u16l6v13vxB2bvm0a92tdNfe4fsnZzqdLWbvnRE9m5+jp/Ydearfyp7kYyeTaT3tedqNU6jWUwgmdKTRtLme8umeyUxLcXMzMSQnGygV9Vn/RL7v1bQnI0El0cqq6fOzA0Pi6JfK8zMrOhvIDOVNtnan/V/81RKj2mr1PkpkKJkZmYXP26Lq93982O6eZm+7IuuMTD9Sr2ceoEzE69naKibfNnqAw9xczyR1EyC9eXVF/laIfDS/GCvX/zHxvQ1lhNr/7h/ZH6wd4Ov7f2FWN/MbMM2X3vYRn3cT1+zytV+//uDupkJWIlUFnOKWKdecWZ/9GNXq586LHs3vOjPXa3vZJJRpQkkWiBRW/o5x2x8Uc8iNnxjBwAAAAAAIFJs7AAAAAAAAESKjR0AAAAAAIBIsbEDAAAAAAAQqdqGJ9csX08neG7sbnY1FZJsZnZRmw+q/OZPde/Lrr7E1b56637Zu/NyH+w8dmMgIFUFG6b1H61CONyCyHVWn4DW2++DsM3MvvWVV7va2l/7G9l7+Ov/6Gp5nQ8n7RklpDKJxkBd/RXLi5y4WN/if95cICw9UVCyIkKSQ3KBt0RJLLMNgWPMLtdkwQS/1iOecL6r3faL+3VzWYQClkeq/2EV3VtQwY8TgWOI3nzgiWBqHevQgsgEkjlL4kJLkg0aCL1ubPQ/byYVuKhVjm5j4HUP/DxJBrXqUHGT694ySDNVv25ojU5wW+qo88+xV3fpYNFv3e9/4BMv0Mf9jMhFf75/DDYzs92jvvbCXbr37lO+tjFwiVUGQ3ebeVKvxTxvt9GZ56PPF//ldbK+efV2V3v0b/6Z7G2/6imudvq+T8jeuz7+z6521Z++UvaePDHPYN2IlpXlL/TGVE/6oRdO1UNTQJbHi883dgAAAAAAACLFxg4AAAAAAECk2NgBAAAAAACIFBs7AAAAAAAAkWJjBwAAAAAAIFK1nYq1ADJ+0FVwmMDUuB8x89cvuEr2Dh/0qdo9mbtl76eu3+Nqv/H7PtHdzOzuH5xwtcc+SfwSZjZ65xlXu3fS18zM5mo3YmxF2fCMN8t6vag98lfeVf2BA++k7b+qpwdU68kv/dS8/v+VJskgmcU2159gVNUimllpE/fUkJ3Q4J0Ef5sPffRvXe1fvnSv7F0762v37X9A9p7pH3K1I3N6qlBu1E+RWPukVtmbPtnvaue17pS9H/z4a12t52J9b1V/y1TgD1ypLI8pFFVT069qaGZmnj9vdAFOQr6HkowhWg7XiPg31AUYdfq39/rpeO8NPCpu3+gfUl7+w+qfKz8QqLeKX62Q0b0T4mWvH9S9c3bS1bJ+6KyZmRX12Eutotai5XCNLZ43vOmTsj4060cwdgUeys5v7nG1jZf+sexVr1j9Ov25CkvdKl1uEq/ydOiJftKXMh26tX6jOO6+wHGX5jN6UnxjBwAAAAAAIFJs7AAAAAAAAESKjR0AAAAAAIBIsbEDAAAAAAAQqZqGJ4fyKJPElJV8HrJZvU5QGynkXe1dX7wjwU/TXvn8J7jahz59XdX//wO91f+sJC9IcyCgbmp55D/VRDqQ2aj+7nNJDhzKIFQHDr0+lSZRVLHOZmY+NHFBkCuYkP+D1af1H2y9CHM8kuhH6X34lqwI0u3WV+/k6SQ/cJlSL88CXON/8fr3uNqr/vRVsvdvXvJ6VzswEggjFldJZusa2fm0J651teHPfFP2rhX/rlOwW2Xvqg79e0jib5nK6JtVpbSyhgKE/iVt/jG6gYeBeYZB7jv5M1n/4Ad8lG6qoh7WzD7+/u/P6xyWhcI8X+HAw3STeNllkLCZ9Q2L/xDIn83ol1IaTvSr+XvVXIIg7WLock5yDkUeaObryBkfkhzUpct3pgZcLZ/gups8laAZ54j/ALTJ9LVzYlpV/Wf6B4mLqhT4rDR9vygGApzND5SIEd/YAQAAAAAAiBQbOwAAAAAAAJFiYwcAAAAAACBSbOwAAAAAAABEio0dAAAAAACASNV0KlY4e15NtQqlXwtz1fe+4sc/kvWGNp+g/Q+PuFr2fuibN1T98177P192tVxJjx74u195lquFJollxR7cVEmPAsiI3tICzN2IzZOu2OFq6Z4G2XvdD/bU5By2n+8nXR1+QMa/mxVUfZEnODAwIiH/B5sLvNUmu8U++pBu3rLar0/HzgQmXRV8va2+U59EraapLVcZsSKX9JtkOuPvay94/htl74b1/rh1a/Wkhvy++/wpHNXz1O5N+XNrlZ1mO8R/GbUx2Tszz4WhvMKmX4WE7sKZR1zgapc9MCp77xxVkzuqn34lZuiZmdnW8za52oWBSXyf+OBPXO3Db/3Vqs8BCQXefp0d/j6xrlVPmdp3sPpnQHU1rQ0MnekVt6Wmsp7SNp1gApaSDTwgF5nmuTT4R27LHNKtz/qzP3S17/7rf8re/Ky/yDqesE72jt5wKnx+8+IvsnTgIlt5n7bURF8zsw5XOWF91R927aW6nhaL0Vjgrz6lrofx6s8hQnxjBwAAAAAAIFJs7AAAAAAAAESKjR0AAAAAAIBIsbEDAAAAAAAQqZqGJ6dSOumsUkkQlCz82uO3y/rXbjzsaq9+yk7Ze1fv7qp/3id+7wWu9sf//kXZ+/TH+UCv2d3VBzUFsgqtUE4QfJcSvSswSG6i4gNkG5r0tZfq9kGilaGJqn9W++YuWW9IiWTBze36IIdmRXGm6nOomVCi9wq8puZjIBCUrEyN6aDkao0fIyR5QQSCkpUtq9tc7WRmWPb29olroe9zsrdus/hZ2UfJ3sMpH9RfvvBy2fv5/Xe72qX/55Gy9/bBO2UdC6N0z5CrTQVyZp/yBP8aXXfDrVX/rFWrGmX9YK8PmXzcM14he8e+9VpX6811BH7ip6s9NSSUH/Ixx2P5btk7ZQPVH1h8MlAhyWb68WA6QZh3EkUy2Bddrt4H1RbmAheDCEpON+v1ZqrXP6N0dOlBM2f6/M+rXUhyiH8WqPBw/L90WLpZj6iFwpPFYJvTgXVkrfi8VdgbOK4SGi6yBD5vLQC+sQMAAAAAABApNnYAAAAAAAAixcYOAAAAAABApNjYAQAAAAAAiBQbOwAAAAAAAJGq6VSsSqU2yeBq+pWZ2V+8+BJXOy+1perjfvAVz5P12bV+WtHHPvAI2fuszsdV/fNEBriVdYC82VTVh115gewBd9x9u6tdOLNG9tZ1+ik1O9Z1yN70iB9XMhwIWc/N+DEOa8f0ZK7sGn9FnGz1k3bMzOxgggkX88X1ZO99/Ytl/fob7nK14ph6Z5t1dvlpAIP582TvQL3vXTO2XvZuHtzvakM9LbL31nuPyDrm787v/cTVXvii58reD/3n/1R93PxxXztst8heNUOiP3RgcZke6vPXs5nZEx5W/dSlFSf0z2PVD8Ezyw+6kp+T9aD6sl8zOi/epnsz/n7XXTcqe9u6m/z/n/U1M7NH//PPXa1j6pjsRe0MiDFR+RH9bNDS6d/wkyNqEqeZielTel6RWb0YDDQbGJIzXedrjXk9WWimyIPHYrrw4Y+W9Z2r/Geomyb1ZKMWMZF3a8ta2VsUz8FXbLlK9h54tL9G1gUmMd301e/Kei1UeDj+X4EJwt3ivT2k7ylyhWlapVuLY77W4CdSm5lZXk1w05MDwxO74sI3dgAAAAAAACLFxg4AAAAAAECk2NgBAAAAAACIFBs7AAAAAAAAkappeHJaZ6LpTMFK4FRSIsUtlFe1aoMrved1W2XrxGCrq82O61Db2/f5MLpW/6PMzOyf/vz5rnb05Kjs/ejXbnC18ow+br2oqUgoPLSBus2yvnrWh4bODutwtpK4gvOH9EV5z2T1r1LPRh9uuKagjxsMRJ0n9ZYlHs7sRb/157J+z74Xudpgh05An266yNXmiidk733fPCSqqmbWde2zXO28CR1keuu9sowFcFzk7oVCkrtEJnp9IKw9e2DU1U4kSewN3Ifb/C3Quu72wfBmZkcDPw1mVg78gee5cs4GwkFP7T3qak0terpCqXHa1Q7t0885M8URVzsQOLeuzT5QdXLU//9YfCJW1MzMUjM+KLnFRJqxmWVFebReXzdTKjdVPLabma0p+vfKdFq/T9QKF8ojz4m3YODRCQH7j56R9dmMD7DtLATWkDF/YzvRrIN1D937g6rPbdvFv+Jq5Sb97ISloz212tWa118me890+FDl9kl9nQ2duNMXRXC3mdklnX7Q0WiTDnDu7d0t67HhGzsAAAAAAACRYmMHAAAAAAAgUmzsAAAAAAAARIqNHQAAAAAAgEixsQMAAAAAABCpmk7FKgdS6VMpH2FfCcXoV/xkiLSVZOuafM7Vxlr0xIpLMn5CwGT2tOz98o9vdrW//5Nnyt6pQT9OYOOqLtlbn/OzribKeopSJsmIAASta9d/tDNtV7na0B49Qmj92nZXS6XU3DKzTVN+0tXYJXpuReNMj6sVO9fIXjs2qOvzxCAJLdvp0/3NzH7nN97paj8bu0f27r/96672VLtE9r7krc92tZ/v3yt7y1N+jXvJ694kez/7/RfLOhbX2KyfnFY3FJg0oopNgcXfD0GS91AzMxvw99Gj2UBv4J5brdrMjVoaavMXM5sMHGFyWDynBAZSNbX7KWczpXWBnygO0qDvPxOzfi7j2JR/psLS0SxfnsA1Jp6l9fwss4J6AwQu/v4m/45PqTXLkq0NxeWwkJxjdZPjsn7ykP/8092hV/TJEX+VzE37Z2AzM2vw07YyXXoq45HxW31t7yl9XJwDehLs5HP9xNaZG26Tvbkh/7kqs7FX/7jjfopx+3mvlq3pC4+72tDkb+rj9n5F1yPDN3YAAAAAAAAixcYOAAAAAABApNjYAQAAAAAAiBQbOwAAAAAAAJGqaXhySCUlks5C4Wd1PoWtrDMm7dgpH7yVbpjSvXX+Vy926pN456t80FJ5QId8bb7YByWnmvU55FL+F2nSGVTWnGpztfHChOydmyVJLqQypV+35sZWV2vquUL2nhjzYVxzY4Ew45S/zhqP6aDl46XDvjiz2HuvKhSP66l5qw53bx09z9XOu8sHT5qZvecz73W1b9t+2ate9Vmfrf2gAV860PGUQDOWglKdj0SeSZKHHggcTUJGZRZD6838ooCX8wpSWuTfToXY5iv6UW561CfmpuyI7K2Ix8GOOR2oOnqGoOTYTIpaKqXf15WKqAeeuxMR61aSd0+tgsphlp8N3IDEW70/yb0qlLqd98+apb7Q1aAHjigp8cxdqQSG82BhyOk+ZnX3nXS183deIHvvud5/rrrkBXpIUc8jfH0q3yR7/+u1j3K1YmAhueoiXY8N39gBAAAAAACIFBs7AAAAAAAAkWJjBwAAAAAAIFJs7AAAAAAAAESKjR0AAAAAAIBInZOpWFb2pZQaxmNmlQRJ/KOdPvn8ojn9KxY7NrnaO/7xv3Sv3eJqfkbVg977ul/3xfZm2Tub9wnw04Hfd1rPMEFC/Q0tsn5xl9/jHCroJP1sr3/d5qb15DNlRg8zM/MD1Wxd/WrZesoOiqpOhU82Qmc5z685e9PH9RiIUpdfCTZdoF+zNfVrXa1/7nT1JyGmX5mZWcZH/F/0uG2y9Ta9xGGRNcz68Yd585OyQsqmJ6+Zqal/oZkxflxJW72+AY3PVXVaK1Pg2aVWS6l+hUJTX/x9raIewALHGA1Ok1GTHRfgIpFDGZmFtBAaRC0duEbT4nWYDE03SvCyqyfhpsAbaEC8gUJvNfWUzxykMPUv+qFVQQnffcQrJD7nPKj6BbJOnHC+Xj/vZmbE826TXkNSc/7ABfMTcs3MrDQcPL8Vr6Q//8wc9bP4+tZ2y95X/OufutpHXvzwqk9hZ6De+wd9rvb+j/xt1ceNEd/YAQAAAAAAiBQbOwAAAAAAAJFiYwcAAAAAACBSbOwAAAAAAABE6tyEJwuVBQga/K9/u87VPvD8a2Vv2yU+jPjjv/+bsndKhPTlNnXK3oamo672+6/8iu4Vf/26wN+hIpLNCuTcJtZ4yz5Zv/+Kda6WntWBa1P5Xt/b1CF7yw0+JDU7osOMi8M+gOxUXZLg4yS9SOJTt9wu68/f/nhXu7t3RPYOiqDkCzdskb2lvH/D98+qYFyz8Ql/3K2VULwhloLZYvVByW2rfG1uUL++uWafcDpZmdUHFkn9hCSfhSVwH8506yDRukn/2s9YIIxYpDKnAg9mGZGYuyBhtRUVj0tI8kJQq0AoDzkn/sm3LXBLmRNrxlxgjkNRPKKokGQz/a/OofBkFfZcXALvy6VKBSVffMEG2bv3gH/e1U8iZnUdPng4Pxq614WO4uXbxNUwqp93y2J9K0+H1hBVJyR5wQx+wpUaZ14hWxsb/Q3orz78M9k7kPEx7E9eqxeoC87zn+1+9LlPyt7lgm/sAAAAAAAARIqNHQAAAAAAgEixsQMAAAAAABApNnYAAAAAAAAixcYOAAAAAABApJbMVKxaua/OT4wxM/vXN93oap9857P1QYZ8ynpH+5BsfeHrfuhqofk0s2KMRDaw1ZZWdYZFJJYv+2loZmZnjvhE9tUb18vezvW+XpzVyf+p3ISr1U/oaQBtG3a62qGjd8veWlFTJxguYZa79X5Zv+8e/7qve65/Hc3Mbj1+r6u97LLnyN5Vm/zS3DbeJnu/8gs/DXDrrotlL5au0MSX8UFV1eOr5qb8VBKrD9zmGyd9bYabysKp1WrqX8+6EX3/aU/5n5fP+okiZmYmpqeVsmp+jllxviOwQv+kWPbnG3pf6L9ksu6VpF7UQlOxJsQy0COmppmZVdr8UXLj+gWelLO5NHXlhZ6P5fVU5FoISYn3yd4+PWVq1/a1rrb7sO7Nj/rJrvrKM1OvQ09KX5EDYgJWYLaflXh9l7Tjh/XIvPf9+tWu9vLv7JG96X1jrvaL03pt+e01y36bw+EbOwAAAAAAAJFiYwcAAAAAACBSbOwAAAAAAABEio0dAAAAAACASC2dVKEa5ZylGnT9D5/sA07/6M3fmd8PM7NGsVWWCf1uojcdyq7UGYZIqBIIRF494UPbsvt1QHZ/ftjVWlsDgZRnfKjlVJOOfRs4uk8fowZSgeS5Son4ZGVz4O81vM4HtpV33yp7r3nMr7na1ReKsFszmyn5H1iX9dedGUHJy0VdIA5yTqXkp0I3ilF1AJwTtVo3fXLxTFmHjs6YSLwtqYDTqn/UwkjwPJPkr5gKdHMHM8uLB87GhsALIXJIBwLhyZYP/QdBPF7kQi+Oej4OPUvLX4NXPaSi/jYTIkzfzGbX+fvSrgt6ZO/uA2o4iQ5aVgYqoQXHXwzl4CKivq+Q5AOUvg+nxH24Qj53cpVRXc9e5Eofe/aFtT2XZYpv7AAAAAAAAESKjR0AAAAAAIBIsbEDAAAAAAAQKTZ2AAAAAAAAIsXGDgAAAAAAQKSWzlSsGqWIF5rXyHp71seZv/hZep/rv757oOqfVxbh6zOBiTr1oneO6Vc1NV4elfXVG9pc7dSg7rUzvjQxoSeNdDfl/DlMF0KnNz+hbVpxTVUCQ3XUVBEC/s2ODp+S9TUb/B+y2N5R9XF/tn/ibE8Jy0y5OXCjmBJv1gV5U853egiWjgSTiZaEBRgnIw5R4WYVVBHv7dFFvmwCK5zuFcvTbK2mtMGaV18u6w/cf6+rbVq1EBeOuBpC0x7F+7oSfOCd70Wi74EpseBUWHCSmw38zUri757eIVtT5UOuxivx/+IbOwAAAAAAAJFiYwcAAAAAACBSbOwAAAAAAABEio0dAAAAAACASC2d8OQaubDYL+sjRR/+ta2zft4/b04VA3lgshc11Ta3WtanBoddbXXDWtnba31V/7yhWgUlKwuQe0oAmba6XYccHz0662oD199d47PBclSYCQXKVi+VKFCWoOTFlyDhPoG2jk5ZHx8dmddxa2cB7jTcrOatrtwk63mbrsnPK4nXLPB4bAWCkhfVTL3+/LNx8y5Xm+sI3KsGb0vwE5MMBVjMe5U+Ce6WC6N785CsD42JNSetr8mKnlWD/8U3dgAAAAAAACLFxg4AAAAAAECk2NgBAAAAAACIFBs7AAAAAAAAkWJjBwAAAAAAIFKp3bt3M1sAAAAAAAAgQnxjBwAAAAAAIFJs7AAAAAAAAESKjR0AAAAAAIBIsbEDAAAAAAAQKTZ2AAAAAAAAIsXGDgAAAAAAQKTY2AEAAAAAAIgUGzsAAAAAAACRYmMHAAAAAAAgUmzsAAAAAAAARCr7UP9x165di3UeiMDu3bur7uXawS+r9trhusEv47rB2eBehbPFmoOzwXWDs8G9CmcrdO3wjR0AAAAAAIBIsbEDAAAAAAAQKTZ2AAAAAAAAIsXGDgAAAAAAQKTY2AEAAAAAAIgUGzsAAAAAAACRYmMHAAAAAAAgUmzsAAAAAAAARIqNHQAAAAAAgEixsQMAAAAAABCp7Lk+AQAAAAAAgJC7PnCJq13xmj3n4EyWJr6xAwAAAAAAECk2dgAAAAAAACLFxg4AAAAAAECk2NgBAAAAAACIVJzhyalAvbKoZwEAVUvn/MJVLoQWLbXnXl7Q8wEAAFgImXb/kbL0ir2y97F/cpGr/WJTacHPCedORjzGNtXlZO9syj/f7vnck2Rv+kjRHzebkb3TxZV3TfGNHQAAAAAAgEixsQMAAAAAABApNnYAAAAAAAAixcYOAAAAAABApNjYAQAAAAAAiFScU7EqgbFYKTFhJqsTuK1QWLjzOWvq92C018JRKenzT0hXV9RSuJpQO9m19bJeHJ3zxVl9jHIlyXs7wQSs5gT/+0yCUwAA4CGs37jZ1fpPHpe9K28+TTzSTfrjYHnaTyAKfSeg9OZbXO283zxf9v7inYdc7QmVHbL3BvVRSQ9B4iI7BzKBj+TprP8P0xX9aelbr/ZT0tYeb5C9o90nXa2Q0S+8GEa7ND7+1xDf2AEAAAAAAIgUGzsAAAAAAACRYmMHAAAAAAAgUmzsAAAAAAAARGrphyenRfJRWYeQ9qRWudpAYXChz+ghqZ2yYAyqCnsmO3kB1SZFbTFztzKBd2hJ5dmRJrcwRBhxcUr+wYNByVLgEPM2JWqNgd5msZ5OsegsCZnA+7fE+xcP7czAu2V9es5H/eeL47K3sejXgZbuFtnbMusXydy6P3+oU8QyVRTDTFixljjxXKlDkkP0M8MVv3mVq931tR/K3va373S1G/7u5/rHtT7Z1yby4dPDoioFHiGzzf4/XPeeR8vei9e2ulprvR5aUmrc6mo9q+6XvTPiuh4ZWd7pyXxjBwAAAAAAIFJs7AAAAAAAAESKjR0AAAAAAIBIsbEDAAAAAAAQKTZ2AAAAAAAAIrV0pmKJYS1mZpYWcdtZnZQ9XvETsFJlPxXiQT4VuyGljztTmfOnpUbnmFlD2s/Amq3o0TnlivjdQlttwdFaWBAt4g8/qf/o6k1Tq4FHevpVsLtGZ7FMtQXq6s9Y1H/b1uf9zNUmTrXL3rV1I66WWjUte0dP+Gtvg3XI3r5mv5Zt2t4gew98U0wk0INvzCYDddTGQky/SjSWEUvZ7OAnZf15X7jX1Z7x+SOyd23Ory+tp/Wzy9Ra/5xzurdL9k6s6ne1Byqfkr07Uy+TdSwPZ3qHzvUpIKQ+8MFqLsEkTDGs8QnH9P9/w6fvc7XH/ualsvcXH93ratv/8GLZe3jyx77490+VvXJg1/IegnTu6Y/O9uxnXelq//hD/SH34Rd1uNqOen89mZmNNvvn2+2P2ih7O1P+Av7edfp+WRjx98AY8Y0dAAAAAACASLGxAwAAAAAAECk2dgAAAAAAACLFxg4AAAAAAECkzk14sgjjkoFXZjKVtt50wJGuVp+apUKSQ8o2JevT8w2qDP0d1N+MrNwF0yyCkkNvDnVFhTKOO9Z1utrcKR+ia2YyjnswlEpWJ67V0KWutm9X2rXTKkIEK/oVzjb63q5t35S9udEtrjaRWS9782MTrtbQqdeclvXjrnbwlA49be7yxz0w3ip72x/5fVcbu+ka2Wut4u8zUauYcCwIgpKXjYY/f53+Dwe6Xann8qOy9e4zKlCyTh+3UaSl9w7o3rrzXWnnDw7I1iN7/s7Vtl3yBn1cRGftOv9wevrUOTgReCUdnpxp9a9ZKXBvf/isfwa94WO/kL1X/9nlrvazD/+77L34931Q8t7rD8veS164w9X2bN8ve+2lF/paYMmTz8HL5Nk4LZ77yzV6PthxoX6WvvvG3b64Sn9Q+elXfO3CCwLPvA3+8/eJY/rcbhz1tY7AwBDRuiAy4rUo1fBZjW/sAAAAAAAARIqNHQAAAAAAgEixsQMAAAAAABApNnYAAAAAAAAixcYOAAAAAABApM7NVCyVBh2aBiWUQttRZRF9ns5Xfw4B6seF/3fRXRf4M+fFuan4bDOz4soad5IL1AsZn/KfquiLp5LgT6Zy2kOX2bSotQV6RwMTsJQZUetJ699tIHBZS8sk5X9e8uLvmNZTILqfcLurNXaukr3FQyJef+C47C13DLla37Eu2dvaIH5eRR93ao9/T2xu19PUBprEtKzA9ZEVF3XRD+BCtNSq5aexofa+ce/nXO0XN79Z9rZd6Z9zDp5cK3vPe4Rfcx4YWS17L2j2r/2Jgl5Hzvynn4C16cWPlL3XjfS62vTQJ2RvU/cfyzpqo3jX38p6eqLP1T7wmSOy97O33O9qp0+Nyd6D//I0VzvvD3/0EGeIeQk8BJcmqn84vv1j17vaI190lez92ae+44uPf7bs3ftV0Xv5dtm754c/cbVH/d6lsveWl4pi6Hm5SXzSmK5+kvKSluDzj/qIGvrYUBKPzddu0VNYJ3f4qcBjx/Xksw0v9LXeU3r69JrzxP+vT8HSdX6yVmlKH/c/7vD3u4Y6/YesFP11Mhe4dPRsutrhGzsAAAAAAACRYmMHAAAAAAAgUmzsAAAAAAAARIqNHQAAAAAAgEgtXHhykoThBEHJSjhHWCRkBXqf9mgfNvijm0/L3rJKPgr+DuIHqpDkkNAvl+QcMqIWWYBuIRQ3VfK/dJLLqaFRxzLXzfjUqyQxokl6twXqKnfrZDlJSnJDoK6OEdrT1YHCS9GGl/pXvnHSBx+bmTV1nu9qZ276hewtTX/P1Yrpl8nekzP3uVprvX7NRqdFkHbKh1SamU3kNogD6KBla/VhqsfLt+ne237d13JqwTArjom1yOfQmZlZJudvJaXReK6l6ITS+BLdW8Wq1RhYF2ZWVnj/Yuuf8cG03x1+guztu2W/qz3sKZfL3kOHfYjtRE+P7P33wRO++EUfvmxmZuM+FNM+qZ+f3v0Rf+1MTo/q46Jm9v/X37naA73idTSzG6/39491F+lg23dv8EGk19x3TPZ+925/r/rh23Rg9tPfqgO2V7wmvUZnU/59VtQZsdprfyrLqx/7GFfrDQxR2PAMH5Sc0cuNHZ8Uoco6V9fs8U92pVv+wT97mZldvN+HKu+9MHBcFZQcnNwSqC9R6o7dKOYLBf//0ONbnX/4+PhdekjM2Inqh8eYfnSXLrnX1/YMh7r9m2B98MhzrjIbeKbKinpD4O876w9bU3xjBwAAAAAAIFJs7AAAAAAAAESKjR0AAAAAAIBIsbEDAAAAAAAQKTZ2AAAAAAAAIrVwU7FCUzrOsUcFfsODgQlYUoJJI89c7SfXHDyjR1IdND+xYiHOYb5Tx5YG/UskGb6mzIrpV2Zms7IamjIlukNp8/lGVzpiM7LVdyalfwst/ik3vV/1f/TzrhmQvf0HjrtaS7eI1jezQ7f8tS9Oi5qZfePvfsvVbr7zpOw9nPevz6PW1Mve197wKl88eKfsVa/7x3/3a7LzT/aI1z20dqthWav1BK3ScSZg1Ywao+eHKIWF/vlGLQFMvzonLpn2k64+clmr7P30LX6a2c3/9hPZ2znhn3Oe+odiGo2Z5X7oe2cO6PE36y/w6+lYm77/nN8/6mpt550ne5V0YIEqL48HnUVzwSXdrvaJr35T9v79p7/tas9/sv//zczSN/spkI+/QJ/Du779HVf78d+9TTfP24KMDlxyMmL6lVlgAlaCCU+PeNkTZevsGV/7h7uvkb1f+ZGfNPr0S18ke9du8a/PDfvul72Zb0+72hvf56dfmZnNJZkArD4fRjb9KomZJEN2Q/L+/dMSGAus/ryBOYuJhCdgVSfROQSuJ/XEW1zk6VchfGMHAAAAAAAgUmzsAAAAAAAARIqNHQAAAAAAgEixsQMAAAAAABCphQtPThJYpSxAzlmzSAqbKuokrEDW07zdf0akOgV+t2bxu6n8s4c6hrSM8y8X91dLEEYcDCXTQcnz6zSrExdEPvJQwMRG/Xt7uqLDk8vZ77vaoVvfrI+b4CJ7+Xs+72q9o9X//3es1wHdzX0vcLXg2pDz696f/GcgzLhF1HQesllB7PufDtwyiuraW8YL0WJKEpSs8DIsGaP9/yTrE9MnXO11r/yM7P3iD8UaF7hVqezUX7zRB9iambWJWug5afcBUVQ1M/t4/Vdd7dGPvCxwZC8VnEywRJIqI/HYF73e1W7aV30K6b98WUeOTp71GT3o0he8dZ5HCAnd2OIO+i+FHgTU2yRf/QeH276qnx//+KZdrnbN//jnKTOTC87XvvAJ2TqgTrgh8CCt1rev69ZD79N1Ke5LYcnoDcwBqpfvwfluFuhBM+HPT82uMhdMFR89q/P5f6QDa05F/M41/LjGN3YAAAAAAAAixcYOAAAAAABApNjYAQAAAAAAiBQbOwAAAAAAAJFiYwcAAAAAACBSCzcVa74WICF6yvyUnPsCvc3yV9cR6X/xG1tc7R++dEz2Hha1q6xL9vbbtKgGxlvM8++zAEPHlgjxm6T0b7Hmsme7Wv/dPw4ctzYTNjrEFKLR+Y6RMLO83JOdf9p87DqmVsv63lv8RJDgtCDxFnzcRatk6+7DfkTF9jU6n79DDHy4s0+/3ztEbb3Vy95ch79229TSYma71e8c2t5X9Ynq3yeZwKpTinDVWQz+LvMgtVzo+TTJPKHKn2VmducC/DxFXSHL+eooFfTUl/t+6teRn98WeJUTDGus2yyKx3WvmudR36zXnLWPanK14oBe97INfgJJ14SfVBLCXS2ZIz/9qKxf8St/4YtqSqKZXAhCa0NLj6/N6uGUVhSXUyV0/0kyJlT/tPkeIC6Vea6mgb/37gd2u9pjAoc4KYYQ+3l//39iLQytbS1idcrrj6+r1/lnlDOhU5CTxELNMDO7aqd/w08O6Pfa8OiIqwWWBil0l5hS61bwc5UaI+fvXwuivDTuVnxjBwAAAAAAIFJs7AAAAAAAAESKjR0AAAAAAIBIsbEDAAAAAAAQqaUTnhygTjAUT6QiikNRn5MiWO0p2ztl76HTba72rI16T+z2Xp9OekdlOHAWi2f5BFKK3yTwyxXu+Y6rXfGbX5G9d33hN1yttVWn6zZN+Fq/PgUby4rrpEkfd5VoHQwGghGerOz9dnv1zY3V72s/9aJtsn7TvttcrTDWrQ+yY8zXRnToXKnB16YLejWbHWt1tUyduEjNdMBcs4pNNbOp+V1PaRnHalZaaaGWVdJx/GZP2uDvS9f3+lBCM7PMjk2uVjqk4ytvELXn/vp22XvnV9RYgOqF3mmh/PLlqr5Lp5rXb/Pv7ZY1Hfogp6t/nkiLoGSRb2pmZu0iqXJ6Sq85x67z9a1b9XEz6R2ulp+oPhm3oUFfJbMJQqRXksZZcfMws8zo/NKIO5v0x4UZEZzas8k/M5uZnTox7mqhDyHcJRLKiAfh0B8xwQeCXwTC1hWV1Z5EMCx3Ul1P+pfrOJUgPBmJXbjVP4+cbNUfVA7cqZ9TquVj9x/ULV76ZAMlAtNFlgm+sQMAAAAAABApNnYAAAAAAAAixcYOAAAAAABApNjYAQAAAAAAiBQbOwAAAAAAAJFa8lOxVO75/f9+rez9z+/tcbUtQ02yN1v0qdj58/Oyd7z/tKtNza6Rvb+yzaf+359W87rM3v9TPa0EC2NYJP9PffnXZe+lf/BhV7vvX18je2cSzGuojPqJHqlA76Conf+I18re+297f9XnIKUCZ1FZPvPT/q9m9LSVl7+ow9Xe/lk//crMzM+jMqvM6Xz+3hMi4z+wAs8U/X8ol/Q+fF3Jv2Yn9FKmzXP6VUiBuSZBl190pavdu+9O2asmYO08b6fs7T/k39ezDRfJ3jVictr/XFeb+SErbfpVSP5MnaxfsuUCV/uv//4T2ftnz363q90amFyjZuNdfrXunT2y0dV2dujr4WivX2BOH9XHvfF6P3Gy2Fb9mlMqhB5TQ/O9Vo5dF/p7ytpr/kD2NmXEzKHSVNU/q9Sh1/OyGDBzajwwdabTT+zqzujj9g9y/0hEPR9UQiuvn1iZ2657C+3imXBWTx8dq6gpetWPrwtejRl/D2wKLSHrq/5x4YdxBP33D+93tVWBwarZVv8fihP6hcu0+NpoYAlIz/p1b8N2fT/onfTn0FDR9+HZgflNDlwq+MYOAAAAAABApNjYAQAAAAAAiBQbOwAAAAAAAJFiYwcAAAAAACBSSz48WTn/974s6z9795NdrbNynuzNN4262siMDz42M3vqJ75f9bnte9dzXW1ruw5qIjx58a0OZMnt+8pbXe3KP/hv2Xt81Mccd3bq1/iFj97hahd1r5W9f/udr7naqX95r+xVWWWl4D6t+KVXUkhyQh/77GjVvRmxgqa6de9Mv0+CazUdrN7U7WMEi0MqmNBsTdYHmR5fI4KazazQW6PAUXXprbTE3AR/g6c/x7/uz3/R82RvU2HS1U6t0amPr3/Gb7vazHCb7H3DbZ/3tUkd/P2KN14v60hmZo0OlS2Pdrra1i69RhfrfGT7rq0qJtmsJDJOm45ulr0XrPfrS6l0qewtX+KDvqdHV8neXJu/N87U64TTk71/62obN/gaHrR7f/XreZu4p7TO6PtPV4O/FlIlHSxaafSpp5mMvs7PVHyQbkYvOUiqIG42oUfClA+wvfIK3XpyyK9NExWdaptq8a/vlq36uOX7fG3OtsneoZ4jrjY9oZ+juzcM+GI2kLSsH6k0dcvlMdrMzAYDf95cXaOrNdX75xkzs7qKv6/NFHWc9pwIzu89rM+h2/w5zDToc6idxb14+MYOAAAAAABApNjYAQAAAAAAiBQbOwAAAAAAAJFiYwcAAAAAACBSbOwAAAAAAABEKsqpWCFXv+knoqpqZvv/+y9drWsqkPr/tYtd7YG8SF43szXt9a520TP/VfZiYdQFruK8CO4/WaenyWwREx+Od/TL3ss3rXG1MWuSvWs7Olztj273E0XMzLaJa2eqUR+3NK2moCRIWVdjtczMAun20MpbxPU00ix7Oxt8bbBJT+KbGPIX74Zd+hxmdvtz6O7T01LULIBUTl8MlUKCi2GlTcBSEvwNLr7brzf3X6EnNRyZ9O/rtgfWyd4Nf/YHrvbGNz5K9nbsX+1qpYv1fQ0Lo2vO3zvMzCbqxVTFUX1jS0/6f48r5fQovsZRv44Ux8dk7xdO+PrOq/TYmM6j/nxzGT8t0sysdcpPTbJCn+ytrPITTLAw0hP+PlEQExXNzMbTfhpNYVjfJ84U/D1stX6UtnyXvxaa0oH7TGAKFxII3ZPEP+kPX6BbC3X+NVvVqp81R3P+GbZpUK8h+8w/w7Zs18/cF/f6+92BuWHZ23uJuJ4aAh8SJvV0L4kJWImlhvwzjZ6XZ1aX9ddJoaj/6OpuN+WHt5mZ2cSIr+X98LYaW9yLh2/sAAAAAAAARIqNHQAAAAAAgEixsQMAAAAAABApNnYAAAAAAAAitazCk5O48Lffd65PAQ9BRxzrCCoVkhxSKegQq+PtPrSxaUyHsx1Z7QMwN5sOIfzQzfe72qUpnfJ1370+VqyU0+dglhM1HZgrEZK8IDpne1xtTAZbm7XM+mDBxpK+0k90+d7JQx2yd8xGfTGY1eYD6hKFJIfM83JcaRp+zb++aw4dl71P/rVnuNqNH71H9r7vJY9wtXJBhzK/9+u3+OLXZSvOwtjwW11t+kSb7G1a5RMeZ5tbZe+TX+PvP/d/5qjsPdMkgk8b9L3qGau2ulqh0it7+x5Y5WrHu07J3ruO+HOrC/ybYmnYL1w//cEfy94nPuMTsg4t1+Ef9ycDHwHSaf+MUtepg/57Ul2u1tagg48PHvNrkY7yRk2JUOVVfTocu7nTR9UemtT3lIkL/eveuls/X2xee5mrFYZ00PLuuf2i6p+9zMzqviOuqEm95mFhqMc/M/0ImEnrtX9u2r9G5cB9Ykg94I6Evqeir9XljG/sAAAAAAAARIqNfcGLxgAAJDBJREFUHQAAAAAAgEixsQMAAAAAABApNnYAAAAAAAAixcYOAAAAAABApFbsVCxph/5zdBYaXG1kVqe35874HHCGwySXMp3QX0kyzqnOH+Oxz3mVbG1oeLarjbYdkL3Ngz4D/id/9SJ9Di1+ooDl/EQRM7NNr3q9q13+lOtl78/e+Dj987CoLtzp0/nvmNYTQaYb/SiKwZHA6iCGoZWsv+rzeuwaP3HCzOwXA36aUkpMyDDTg7Wy+m1pRRa5RD7zqetc7QXPepbsfcOz/83V+ouzsrdJvD4HmYB3TrR3va3q3t6+f3C15syQ7K1r8VOxLnnZRtnb/xF/nf3gkD6HBjE9JDSx6CLzE7Ae/5TtsjfnB07aIx7hf18zPQ0zmw7NXEESbfX+GmlP98ne3pP++bY/OFjI3+8GRM3MzPyjtF298QLZesNB/fyF2hif1aM01671k/wO7r9b9tY94KepHRv3017NzKyoJzsq9Tn/HP3Slz5N9u7efqurZbfq+2XvhK9PNOr7sJ38r4c4w5Ut8AhpXeKrI0MN+iFyZlp9zyTByOPAWaTFXaUcHhu7LPCNHQAAAAAAgEixsQMAAAAAABApNnYAAAAAAAAixcYOAAAAAABApKIMT14bqJ+e74EP6aCmEREqGEKG6MIoJwlJDsn7Y9zznX+WrXON/+JqD/+dz8re4yO9rvboD31V9hYHjrta36wIVDazXLvfZ93//mfoXlHj2lt8379+wNUy9SoC1Gxt1gdSblvdIXsHUhOuNt4fCHwT6ce/6K8+mDBJjFyRIN4F8b27fe15v9Yiew+l/HXTeJUOIFw91ORqB4/6awlLy4b1fzGv//+Jl+prZ/xQs6ut1RnH1jrW42o7V03J3iPH/Lq370uHZe8Pv/R+/QMFtRYVytzZFsLuo0dcbW23SLY2s2Kbr29O63DS4oSvn6prlb2VMb8WEZK8+NaKx4OZ9fr1HfriDa7WutOvFWZmjZsGXS17Sj/vTl6w2dUqU6Oy91S/v3b/ue5zsnf7KX9vHH+1fnCZeLWqEpKcVOixcEhdUtOB9VztRoSyk/1tzeqm9HZGIVEA8/LAN3YAAAAAAAAixcYOAAAAAABApNjYAQAAAAAAiBQbOwAAAAAAAJFiYwcAAAAAACBSUU7FOva9l8v6+md+zNWGan0y0dCTepLNxFmasoGruCjC0Ct1M7I3M+rr+772Ytn7ju+dcrXPfeZmfQ6NF7la59io7D3477/lz2tCny9zQpauxkK7rPfOjbpaV7pe9lZs2tXacmtk73jhhC+mAu/3yjzf7yk9jcnSfi5CXUmfQ34ZrDmK+m2T/KbPfJj+d5Y/K/ijXHifnmbTvM2PobhyTZfsvbN/2NVCl01K/Hbl+V5LWDBzm+pkfe99/jXeldXXzlSDn1iUm9U/byhQR1wy6/0UPTOzsd3+yTnXI0bRmFlrzq8D3WN6bfAzk3AunL7M13bcr+8/d58vRht1+6l4Zma2z5dyq/W0rbb0fa42NBOYeaweeD+sW3ve4WuHO3TvfC3fT1XJdAY+g42Iz2DBv1mS4VV+UKiVTT+bNompWHrWYw3Jh8PaXT18YwcAAAAAACBSbOwAAAAAAABEio0dAAAAAACASLGxAwAAAAAAEKkow5MLaR3iVlE5cD6DdNkIRi+J7bp0WQcy6VizuKiQ5JDshN7LnFF/iZP67fHKS3X4ZC20NeZkvTHt0+RmRKAYFl9z66ist4z52umJ/gRHFiHJIaFg2wZxPc0miOKu+JBkM5P/RFAItC5X8428a+7eLOtzfT9wtfr1z9AH2a+K1UcFhi6byoqLg4xL4wPjsv6Sx7e62mdu9CHJD9JB/Vi+KhP64em8dTtd7eCpB2QvgcjLwyEVkhzQUeiQ9VHzn80KZ3pl79AZVU3wjBNwS8f8HjySRNpyV3xQs/5IbiPimTfJ3ywTCESuK/rPZpWM/gA0tYjPocFrR/7Stbt6+MYOAAAAAABApNjYAQAAAAAAiBQbOwAAAAAAAJFiYwcAAAAAACBSbOwAAAAAAABEKsqpWOmJvKyf+NErXK35sR+p9emcOwni25fD9KuQhkBdZY43d6+SvZNDfrZDenXgyDLNPwE1vc1MTnAbLwcmFjEBa8kql/R++VTKvwsvDATjy+FGC0FNwErp20C64iemBNeRgl+MmKSUzK1HxAgJM3v8Gj/FqDL8Rdmb6nqBq4X+9Ua9lkkmgmDpGEn1yPq2gr/Z/P5zumXvp799dCFPCREYH5uV9c51x13t8rR+Hrq7Vx8Dy1dDh55WZCk/ne9RY2tl6y12eiFPacFwr0tuONcm663mr4eJ0K6DGNBXMj3SakbVazb9qvqnouC1ow5RwwuNb+wAAAAAAABEio0dAAAAAACASLGxAwAAAAAAECk2dgAAAAAAACIVZXhyqegDmczMZk+2uNrNn/oN2fvol31pQc/pXKiQ8mVmZkmi+4aLOvm4s8vXhqb6z+6E/m9ESHIQIcnRmarXQaaNJX89jYTSiBfzdRchyWZJA9dZjObrwLFbZf1h1zzD1bL99VUfN8nryKsYp8KqKVnPrvXB2/33b63x2SAW65r1jSYzkHO12bK+T2DlGTutw3Kt9Ygr3WJ+DcLykhrUn8nbzX8mn2ic1AdZspfJAjwVLfKDFd/YAQAAAAAAiBQbOwAAAAAAAJFiYwcAAAAAACBSbOwAAAAAAABEio0dAAAAAACASKV2797NIAwAAAAAAIAI8Y0dAAAAAACASLGxAwAAAAAAECk2dgAAAAAAACLFxg4AAAAAAECk2NgBAAAAAACIFBs7AAAAAAAAkWJjBwAAAAAAIFJs7AAAAAAAAESKjR0AAAAAAIBIsbEDAAAAAAAQqexD/cddu3Yt1nkgArt37666l2sHv6zaa4frBr+M6wZng3sVzhZrDs4G1w3OBvcqnK3QtcM3dgAAAAAAACLFxg4AAAAAAECk2NgBAAAAAACIFBs7AAAAAAAAkWJjBwAAAAAAIFJs7AAAAAAAAESKjR0AAAAAAIBIsbEDAAAAAAAQKTZ2AAAAAAAAIsXGDgAAAAAAQKSy5/oEAAAAAAAALJXS9Uplcc8jMnxjBwAAAAAAIFJs7AAAAAAAAESKjR0AAAAAAIBIsbEDAAAAAAAQqRUQnlwXqJZdLR88RnHBzgYAAKD21L/d+WcfrEyhbNKj6y52tS19e2XvsavWu9rWO/pkb11dxtXKgRzUQqGk/wMiE7jIzL/w1XdiRSAk+azwjR0AAAAAAIBIsbEDAAAAAAAQKTZ2AAAAAAAAIsXGDgAAAAAAQKTY2AEAAAAAAIjUMpuK5RP3Q7Ou8qH4dSVJMLf6i4aGaqlzIAQcAJY3hhVhUSS4qOb9PMJMm8V29DI/vWrrPXp61YmLLnG1bfv26AM3Tld9Du2ncq6WCYzbKuX9pKvxi66UvU377nS1XFY945sVikzQWrIaAu//WV9ipVgBEtwmuKOcHb6xAwAAAAAAECk2dgAAAAAAACLFxg4AAAAAAECk2NgBAAAAAACI1DILT/YBao2BzplapS+FgpIVdQ6kRZ0bKpOPPD4AtUBQMs7S/Gcu+LBbM7O0uOGVE12oPKQstlzG/81DD/UqKPn0Betlb2FmztVuWtcme/vb/XVzxLbK3lXN9a42cPq07FWPZAd2nid7c2n/b9SNFf87mJmt2ntY1lEjIiQ5qaz4CkKRe+jSN8+bFXeUs8M3dgAAAAAAACLFxg4AAAAAAECk2NgBAAAAAACIFBs7AAAAAAAAkWJjBwAAAAAAIFKRTsUKjY7yOfozoTFVIkXfyksgZp0Y8HODCVgAgCVDzQUy0zerJOM09c2uXPHPRNmUfiaqiN5K4OGlzEPNvJ3ZfpGsr75zn6sN79gue39wyE+fuvlgQfZOd/vn5kynvh6HpkZcbbRPf7ToTOddbXu3ntJ25qq1rtZzxwHZm8mKnxe4dnM5/3sUCjwALgj1VYEF+FglJ2AlWR5xTqztaHe14Tk9rS4/Pb/xablck6w3Fv2aM15JMr46PnxjBwAAAAAAIFJs7AAAAAAAAESKjR0AAAAAAIBIsbEDAAAAAAAQqQUMT1bhfUlC86oP/8sEjlsKBSUrSyEoGcCyM7znb2R9trve1ZqnJ2VvwXxvrk7vw+dTft3r2fCOhzpFLEWEQa5YKfH4U6noF14/aSV51tLPPg3NPnxydkqvT/IYSfKbkUghrV+zMx0+YLjr0GHZ+6lMm6uNtuvjps+MudrMiA9CffDk/MKV7mqQrcMFf40NTI7L3ksmGl3tzLbzZG9jj/95zbfeJ3th8r26rlGHWJ+a1gHbkricQt8emPcnsEW+L873E+6yFlj7p8b8e7surf9qPuI4mUJhWtfnedwY8Y0dAAAAAACASLGxAwAAAAAAECk2dgAAAAAAACLFxg4AAAAAAECk2NgBAAAAAACI1AJOxZpnPngq8P+LcqIw9OCkBpUAvxD52epPmmBaF4BoDJ78a1e749hJ2dt0aLWrjWeGZO+F6/20k9PjekLNXGnW1Qbue6vs7bn0bbKOc++KwJiQu0Ttkkt07549vnb9f71U9j7pxf9W3Ymh5iriOScVeHgp12gWS37Wry91gVFtefUUthBDUJVlOnpm7KLtst61z0+1Wj8yI3vv6PLPsZ8e3SJ7x9N9vne7nnS19lJ/jIFR/Xy8fV2zq908ru9rL7qp19Va0vpiODE852qPGvS/g5lZ+YgsS1FNNxInG/qopP6VvhT4p/tGca9JNP0qICumeRbNv45J1YvPVXML8bkqwcWwZK+RWkkw5bAtsJNQzvn7x+R0bV63XOAcCuKyXu4DHPnGDgAAAAAAQKTY2AEAAAAAAIgUGzsAAAAAAACRYmMHAAAAAAAgUgsYnpyE2E+qhOKMEkUli+OG/sNCBCULOREMtRA/Kq324AJpm4EykgldkXWilg/0LpcwrpXu5PE/l/UP//ePXa2nZUT2nh7qcrV8xocNmpkdPNLvar1pHUjZctqvDfvO65S9Z468z9VWb/tL2buSLHaY3if++pmu9sfv+p7sfe9LnuZq1+2/W/busUFXC4Ukf+EtT3G133z7dbIXyaXERVUJXWkiPbkSuPpqFf5akXnIgeevBI8j+ocF6iqreZ6PgEtVuwhJNjMbvHSrq50c9QH5ZmbZOf/kkc/qp5F3rlrjag9bfZHsPXL4Jleby+sX+OQt/kVLrdVB//+1ptHVerb7oQJmZu846H+Pk5t3yN65SoOrlVP63613HN8t60uSeJ+kA/8eXxJvwGzgPamiuJPcA0O9CxGUrMw7KDnwSTclDlsJfd1hpX2uSnBTGQ99xi34P3Do2lkjXqPToZddnJsKSQ5Z7p/L+MYOAAAAAABApNjYAQAAAAAAiBQbOwAAAAAAAJFiYwcAAAAAACBSbOwAAAAAAABE6hxNxZpfvPjTdugk/x8d2jev44a8+89e6Gpv+ujndHONhm1ZeaVFsp97oeT02uT+Y6nYfddrXO3UST2V5NKN213trqP3yN4vftxPGtmoh2LZ4bZmV7vuhF4DOsWF+qfvuFr29g4e0D9whVvsKQlyAtaFuveNn/mRq731z66SvT+4xU/FevZOfVw1Aeu9f/R4fQ6fvFEfBMExH2LQlVlq/leaOkIu0OtnBZlNBJ76KmqgZ+jA4jlHTYs0C0yMTDAEdXR0VLZ2dHQEDhK31fcddbWjmx8ue1vrJ1xthx9+ZWZmT9jpZyHdecMPZG/2YX7S1bbedbL3smuaXO0rPz0he69aP+1qoyOnZG9T3RZfG9UX5OpOf0HljunpV1lx8RUjmpOjpl+FhGdJ+ZWhYvoZR31MrKQ6dGudeLfPjQfPwgstDC0JjiEWp6L+3eSrzketmgq904ITsJAY39gBAAAAAACIFBs7AAAAAAAAkWJjBwAAAAAAIFJs7AAAAAAAAERqwcKTVeRVreLIkoQkP+OuKVnvavH1z+9cLXt1ULLeE/vt4z79Lz2hg7v+85JGWQdw7vQ0dbnat270wcdmZl/5uQ9o/N43dHCk+exKC8UKnjG/PmUCQabDYtn6i1frUMzXvE2HcM5Xus7fAcr5eAIpF5ta+WcGA/GzO30g5ds+ekfVP+s7DwT+Q4cvvfFzhCQnluQyX4C3hMpbDwX6q+eyukBIpSqXEwyDkCHJZpYR0c7ltD5wRYQnz05MVn8SEQnFxKrs1tUzo7L3UNqHET+tt0/2NvX62nR9YM35hX81B+2kbL172NeKgZfs6+M+lLkxr5+Pf1I84mo7z/OBymZmjTP+73B3u7+Pm5ldNiZOeMVRf/NW2Xms935Xu/BXf1f2bs/4O9ue22/Wp1A840rP2HmlbP3BA3e6Wrt1y94x84HiwErCN3YAAAAAAAAixcYOAAAAAABApNjYAQAAAAAAiBQbOwAAAAAAAJFiYwcAAAAAACBSCzYVq1bzT564dZWr7RkblL2DI772g+sPyt41m9ZWfQ5PW7fO1X506pTs/e/v+QT4He27qv5ZAM6tuVk/seXUGT/BwcyspdVPfLlgmz5unRrQ16B7u/xAEBvcoSeCzNaJKRCNetrJRjVyJYHQvwSUC+IOEGye3zksVWrKTfnnH9O9L3u5L+4NzBXStzvp5U9+rKtdf+wXsnfv4eqPi7Mxv1mhoYez0AQsJTSpat7UyQWmbWXF7zwnpl+F1Dc0V98ckdCVcPJKP7lwrk9PjrrkqH++veK8Ntl73yk/g3Frs75CpsRAqYH9stUaxSEygV/ugkZ/v5xp1RfDO/v9gX8v8KYYS/vPCY+e3SN7M1l/YyoVl+lNKeBhYm06s0rPaevN+7/NzG0/lL0dL32rq/31s66Sve/62Edd7acDgdGf4t3S1LZJdo6NJ7hhYkH01OtrZ3DOv24LsVfwSPHS3xoYRrsS8Y0dAAAAAACASLGxAwAAAAAAECk2dgAAAAAAACLFxg4AAAAAAECkFiw8uVZ+etQHYV24ukX2DtqkL77mMtnbH0otFTZvFr06O9nsjx7jSocsFAiG5a4l42uTCYIjUTtjk6+X9TtuG3O1Nes6Ze9P/umYqw35jEozMztPHGJgWvdOikDKyhkdClgeEqnM7fq4HW3zC3IPRUxmU/5CL6d1oF65HEhZjVxrt1/nzxROy94rO9e72p3WV/XPuvqqJlk/NnzA1R6xQYep7j0cuFCxQERMpH5LyNZKoDeleqs+J7Ns4LEvJw6cE0GzZmbjBR8wHzKnUpVTgV+u4s+hsWnJP6aelVxO/2033nm7q53esb3q43Y2dst6ZmrG1Y5O6dexZcjX0oHH2IZW/zw+Mieexc3swJAPgW5drY+rrMnqEOnOEw+4WqpRP+OnSjWLFI/Giax/T+VzehX51098xdUKlWHZ+7Pbjrva1//9w7L3ybt8qPLOJ/+u7B2bfZWrzU3fLXu//o/3i6qaXIGz8fgt/kH2zmNicpHNPyg59Cm9b9TXVtisjofEN3YAAAAAAAAixcYOAAAAAABApNjYAQAAAAAAiBQbOwAAAAAAAJFiYwcAAAAAACBSUY4b2H9GJ+5vF4MWLtmmp2KN5Ppdbbxf52d/9tYzrrajXv/p2vMbXK240yfFm5ndq8LbcU5cIYbM9OsBDNYgXvqWZt3bIo5RCrzrDov6Wj+gyczMdq/EqPcFNje2StZXNfppQc2X+wkOZmYtTT90taHWetk7MDLnao2BAVFqIk6jmn5lZv0X+qkkXfv1Gvn0Rz9CVP3vkFSxLEa9rbBrdHzIT5hZ86S3y95HX7nF1S5+9FbZu6al1dVSGb04FcU1MpfTUyQf/mw/HWb1xFrZ+52fHZV1JBQYE9IglozZOT05ap355lPm1xYzszrxA1sDs0amK36yXV15Qh+3zt/wGor6HMbVFDwx/Spkorg8p+gVCnqBPL39AlfLVvT0qo0b/Wt23e4jsnfd2k2udmrKPwebmU1O+LWhS0y/MjObnVb3Gn2NZer8ujXhH6+DGos9sn7yCj8JbP2ePbK3XFxhNyZhpCiup1N6vfnX976yqtpC+MmPvluT42Lh3CgmYH3uFfr5+B0fvcPV2gPT9WbEI2RogvCMWHLqAoMWLxO3mtBHbz3bKz58YwcAAAAAACBSbOwAAAAAAABEio0dAAAAAACASLGxAwAAAAAAEKkow5PbAvV663K163vvkb1ZlfOX8f+/mdlsxQdSHtI5gZbO+qDktvt9+OWDfEgraiuQcWyFgk/euiCrAx77fF6hNQaCln8xU+WJmdk1IvzrMJdOzXSV9Ju44QL/Rz/eOyx7syKHcf20Pu6OZr9yHdR5yLax4l/gyXadDre+zyfM1Xd1yt7GNh1qOV8p8W8ElZWWnqxkxWJhZk2z/jUbU4GWZjZ6ykf6Tfc2yt4DxdNVn9rWzjWuVshE+UgQvVm5ZOj7T1nUmwO9hZS/4xVEgK2Z2cycDylWgZZmZqtL/sZWSlUfiJxEw/TyDE/O5fTasOnEA652/8aLZO9Ru8LVsna77O1P+7Whvk6vOa11PuE0O6pvVhUR/L2mSV9jwwW/bnVs0Q9Jx4752lReH3ft/r2uVtek17K8z4WGmTWY/sM0mx8IU7ABfZBO/xyQCXx/YGRkuupza2zz61glp6/H2aGqD4sF8txn6SFFX7j5Tlcbb9Sfs7dP+OfF3jZ9A7r+huo/AK36df88f0Ferzn/8a3lca/hGzsAAAAAAACRYmMHAAAAAAAgUmzsAAAAAAAARIqNHQAAAAAAgEixsQMAAAAAABCpKEdg6Bx/syMNfnLNbGAq0WYxYCad0ZNvJkQwd3vgHJrq/F7ZYGj7jHT+RRcYXmUt2/xEj9xgYApRwfcOrNPHrb/f1x7T4ydOmJmN1vlE9lUt+uJ5YDwwrgRVG2zTr0Nr0f9tN3Zskr3DY76WCbzf754Qk64Cg2QmVDGvm4spv8itmtML30BlUv/AeWICVoC4lszM7sz6ayF3v5700Ckm46WaAmMZxSHWXaBbC1k/2eTk6Q7djCWj3/xrv0Hfqmw25SfP5EMLlBAayjjU6KcbpWYCI/7mqXVdT02Oe64VCnptUNOyth3ZI3tHN2/xxcC10DYspnDV63tKc8YfZDDbLXtnS6OuNtmup8t0zfknsLkxPec2LdbI6Vk/IdDMLCv+ZvllOk2tVkLPxrPW62odzWtlb3POrzejaX1f27R+tatlC/q5Zarir5Ezg7VZb5Bcc0W/1/7gPD9R7XPDgemfxUFX2znVIntf/vLLXe0b9+gJ2LN3+2fTFz5ff2D7Dzsh67HhGzsAAAAAAACRYmMHAAAAAAAgUmzsAAAAAAAARIqNHQAAAAAAgEhFGZ4cyEO2OlFrDvSOdzS5WnFGh6k2dPqwwvSY3hM7Ma3OToeHYfHVB7Yyx0Um35oedUWZHT/ur4etDfq423aJnzWpw8O+9jfPc7XWSr3sbf2DL+sfiKp1pnVw5MSEj0ZvatZBfVvqRLxop4w+tplxH0jZlhWBlmY2XBAXVCYQdNnmj5sb0yHJGzf70NOFkBH/RlAiUDkoNevf13Wdj5W9HR3+dR9r0cn72wf96z6U18GGz17tw1tTG/T1+NkfyDLOgaxIx52q6LVhVtWndWivutNMhJJ4axSUDLNKxb8+2ax+HVb1irDPQCB/fcrH49YHXt5jzf5q6MoPyd66OjFKpKijePvLvt4hhgqYmbx7rOs7JXuVTFo/7JXK3JeUwCOsDFUenTote2fqfNjtnM67tik7U92JmVlKj5PAEjFTrz+ntO3ygetPu09fEKNb/LN004k1sndgwA86uubS7bL3d39+yNW+8oHlff/iGzsAAAAAAACRYmMHAAAAAAAgUmzsAAAAAAAARIqNHQAAAAAAgEixsQMAAAAAABCpKKdiheTrulwtO+PTs83MRkfEZKKcnjRiI36qiJ45ozUERnPNLu9g7iUpNBChMuZrA01++pWZ2e9fe56rveE/D87ntMzMrJTyJ3f3nbfM+7jQChU9B6JzrZ9sNzSip3w0bhST9GY79A8s+uvptlE9468p61eYOT3cyC7I+2W8xQ/9e/AYc3rSm6IGpgQGrjABK6FHXbjR1W7Yr9eQyoi/bvr2iQUroaEmfy1sfZyezGW2d94/DwujmPLvwpnQJCRRy2X85Bozs3px3L6ifkj51ve/6mqjvfrfCS995AZXS6c6ZG+24J/BLn73JbI39UVZjl5RrPNZPbDVisXq191cpsfVpiv6mber1a/+pSP6eahLTH09EroftPlS4Kk7GfFJppTgbwOzcmAuVi7rn30KgU+OcyNJPhlVTy1voSeZBbmekEhqfFrWJ8SNqadHTNEzs69/47irffPY6LzOy8ysU9yWNl20Tvbeu6f6qXtLGd/YAQAAAAAAiBQbOwAAAAAAAJFiYwcAAAAAACBSbOwAAAAAAABEalmFJzeM+aBkHelkZiLcra6iE+ryFkgtrRIhyUtHY6B+UiSurQk0V3L+OnnztT4g0sysLuMDvXdtysjejWt9721d5+uTsBOBOqpVSevVYUaEHFfSem24aZ9fc9av0j+vvtlfULtyem99ptUHzLXnddDy3IQPN/zFGX0OqQSBkqGgZMzf9755l6vVt+rwynyjf303BsKx+zeIIO3+wP2r3l97n/zk9boXySVJH09CHCMUGKpe+YaSDjidNL/GnScCts3MnnfN/wn8RNRCsTD/C+fk5ICr5fwjh5mZtZ3y95/Gxm7ZO9zkB5FcMq7va0fSo64WfkZPYH6P6DCzbRv0xXBswL9ChdlQeL+4MWUCH4BK6hoJXee+vqpDf3ztG+ViWGzfvumwrF979SNd7T++frfsHRr1tWsepp+7eyb8mnNzILf7oF/27KrK8v5Qzjd2AAAAAAAAIsXGDgAAAAAAQKTY2AEAAAAAAIgUGzsAAAAAAACRYmMHAAAAAAAgUstqKpafHRKWsZKr5Yu+huUlNIFB5eifOap7333/Pld77Qv09KqRcR/VftNhPWnk1R//T1c7Fkh6xwIo6ClEzalWVxux6lP0S4HWo7N+qtXl2/S10DTm59wUAvvw94mfd/y+t8veyYnQ/JzqpAN3jHJRnFs6MIGr+sFcK0uLfn0HT/la3dZmfYgBP3ltujIoe39wZ5I7JhJbxLFyKdPrSEXMy8oG/jkvW/aTRnoDN0y1DDCLJj5rxvXoz/7MuKu1lP2kLDOzVL3vHW3x91Azs+mRBCeHRVVq1JOu1m3218jxQ3pxK6X8GtKY0SMc5zL+eaicDyya4sGD6VdLR6FBP0t/87v3u9oFV+hnl/952otc7Xfe9gXZW9/hr8mnNKsxlGY//cDvuNqGF39C9i4XfGMHAAAAAAAgUmzsAAAAAAAARIqNHQAAAAAAgEixsQMAAAAAABCpZRWenISOSdbhS4uagoiamgvU60VtOpAt6qMCzf728z4kDEtbKpCVXqz4xNCm6er3wBt1jqmtzvnaXYdDYcbVhxxPD/+9q/WeGZC9dYV57uUH8wpFInLoRxGeLM2dqT7MOH9UJ3TnE4R8I1LiMaUp8IiisvfHeP/hf0016othS85fUAeHR/VB+nxp1CbmcVY4F2ZSHbLeNZJxtXXda2TvycF+f9z8/AY2mJlZmaDkpSw3p1P26zo7Xe3mm3bL3kd/7qcJfqIP3g755DIPSlb4xg4AAAAAAECk2NgBAAAAAACIFBs7AAAAAAAAkWJjBwAAAAAAIFJs7AAAAAAAAEQqyqlYrYG6mgeSbAAE06/w/1rfoutH1agRRKcyqcdXjbaO+WK5+qUy06Dr7SLIf4MfGmBmZneO+NpM/1tl70zZz2nbvLZL9tZ3/JUvhoYBinpwPVX/gUEWyZQYV4QqiMeU+sCbOMmtKiUOUeGRaFnLzuoXOCeWou2N+hiHqx9QgyWsLiXGdppZqcnfyPtOhubLYiVqnfOT08zMiu0FV6vv7gkcpXcBz2hl4xs7AAAAAAAAkWJjBwAAAAAAIFJs7AAAAAAAAESKjR0AAAAAAIBIRRmerGOazFS2W1tap5OeKot0UqxYKgpuKh1KlSVRcjlo3fbnNTluNnB5tK6t973jOrBQxZ42rnnbPM7qIYQuZy7zRXVJ+8Nlfc/Y7Yt8JlgKktx9KqlAmGmC9zBBySvPwKa8rJfP+PtSSy5wRc7oYyAuqVEfdGtmVqj3r2/3pibZO3BsdCFPCZHoa9afyhsLJVe76c69tT6dFY9v7AAAAAAAAESKjR0AAAAAAIBIsbEDAAAAAAAQKTZ2AAAAAAAAIsXGDgAAAAAAQKRSu3fvZhYCAAAAAABAhPjGDgAAAAAAQKTY2AEAAAAAAIgUGzsAAAAAAACRYmMHAAAAAAAgUmzsAAAAAAAARIqNHQAAAAAAgEj9/wAvNrw3+5zabQAAAABJRU5ErkJggg==\n"},"metadata":{"image/png":{"width":1142,"height":1213}},"output_type":"display_data"},{"data":{"text/plain":"<Figure size 1152x1152 with 64 Axes>","image/png":"iVBORw0KGgoAAAANSUhEUgAABHYAAAS9CAYAAAAiHt73AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAADXeElEQVR4nOzdd3hUdfb48TOTXgmhNylioSvFhuuCupavDctadlVcy1oWy1q/uquubdeCruvqqotrWVTsIjZQFESxAEoJSJVOICQkIT2Z9vuDb+aX+DmfMEMmYT7h/XoenwdPDvdecu/ce+fMnXM8eXl5IQEAAAAAAIBzvHt7AwAAAAAAALBnKOwAAAAAAAA4isIOAAAAAACAoyjsAAAAAAAAOIrCDgAAAAAAgKMo7AAAAAAAADiKwg4AAK3kX//6lwwZMkSGDBkiU6dO3dubgz1Uvw9PPPHEvb0pQJvGaw0AIpO4tzcAQPOdeOKJkp+fb8Q9Ho+kpaVJZmamZGZmSp8+feTggw+WoUOHyuGHHy6JiXvnFDB58mQpLy8XEZFrrrlmr2xDPFmxYoV8/vnnIiIyatQoGTVqVKuu/9e//rWsWLFCRETuu+8+GTduXJP5xcXFMmbMGAmFQiIiMnr0aHnmmWd2u57LL79cvvvuOxERueGGG+Syyy5r3obvhs/nkzlz5sh3330nixcvlqKiItm5c6d4vV7JysqSPn36yODBg2Xs2LFyyCGHtOi2AACwO9u2bZOPPvpI5syZI5s3b5aSkhJJS0uTjh07St++fWXUqFHyi1/8Qnr16hX1sgsLC2XcuHFSVlYWjj3//POtfs8BoGVQ2AHasFAoJFVVVVJVVSXbt2+XtWvXhgsIHTt2lHHjxslll10mmZmZrbpdL7/8crgQRWFnV2Hn6aefDv9/a99kjRo1KlzYmT9//m4LO/Pnzw8XdUREFi5cKH6/v8lCoc/nk8WLF4f///DDD2/eRjchFArJW2+9JZMmTZKtW7eqOdXV1bJ9+3aZN2+ePP/889KnTx+55ppr5KSTThKPx9Ni2wYAwM/5/X7597//Lc8//7zU1tY2+lldXZ3s3LlTfvrpJ5k5c6YsW7ZMHnjggajXce+99zYq6gBoWyjsAG3Mueee2+iTnLq6OikvL5eioiJZtmyZrF+/XkKhkBQVFclzzz0nH374odx///1y2GGH7cWtxt502GGHyeTJk0VEZMGCBbvNnz9/fqP/r6qqkqVLlzb51MuSJUukpqZGREQyMzNlwIABe77BTaisrJTbb79dZs2aFY55vV4ZMGCADB48WHJzc8Xr9cqOHTtkzZo1smjRIvH7/bJ+/Xq59dZbJS0tTcaMGdMi2wYAwM/V1dXJTTfdJLNnzxaRXdes+q+g5ebmSlVVlRQWFsq6detk2bJle7SO999/P7z8xMRE8fv9Mdp6APGCwg7Qxpx00klNPvGxdetWee211+Tll1+Wuro62bp1q1xzzTUyadIkOfTQQ1txSxEvRowYIQkJCRIIBCQ/P182b94sPXv2tObXF3aGDh0qy5Ytk0AgIAsWLGiysDNv3jxjfbHm8/nk6quvloULF4rIrq8innPOOXLllVdKly5d1L9TUVEhb7/9trzwwguyY8cOCQQCMd8utD15eXl7exMAtBH33HNPuOgyfPhwufvuu6Vfv35q7s6dO6WgoCCq5RcVFcmDDz4oIiLjxo2TefPmqV/fB+A2micD+5hu3brJH//4R3n55Zelc+fOIiJSW1sr1113nZSWlu7djcNekZWVJQcffHD4/3/+RE5DRUVFsnbtWhERGTNmTPjvNSzcaBo+CdRSXzWbOHFiuKiTmJgoDz/8sNx1113Woo7IrqeHxo8fLx9++KGcdNJJLbJdAABoZs+eLdOmTRORXR96PPfcc9aijohIu3bt5MADD4xqHfVfwerYsaPcfPPNzdpeAPGLJ3aAfdSAAQPk8ccfl/Hjx4vP55PS0lJ58cUX5YYbblDzq6qqwo1oly9fLps3b5bKykpJTU2Vjh07ytChQ+WUU06Ro446yrrOIUOGRBTr3r27zJgxI+brb2jDhg3y9ttvy4IFC2TDhg1SVVUlCQkJkp2dLT179pRDDz1UjjzySBkxYoQkJSU1uayvv/5aPvnkE/nhhx+kqKhIamtrJScnRwYOHCjHHXecnHrqqWr/mX/961+NeuuIiDz99NNGTCSypsbNcdhhh4Uf8Z43b56ceeaZat7PCzQ7d+6UZcuWyaJFi8Tn86m/q7q6uhbvr7N27Vp57bXXwv//hz/8IapCTUZGhjzyyCNSVVVlzamrq5P33ntPZs2aJStXrpTS0lJJSUmRLl26yGGHHSbjxo2LyVfMGjZD392TIVu2bAn/O0eOHCkvvPCCkdPwOKs/jvLz8+X111+XOXPmyLZt28Tj8UifPn1k3LhxcuaZZzbaj36/X2bOnCnvvPOOrF27VkpKSiQ3N1eOOOII+f3vf99kE8/58+fLpZdeKiIip59+ujzwwAPi8/nk3XfflQ8//FDWr18v5eXlkpubK8OHD5eLL75YBg8evNvfUSxfv3ui/rylnatE9H93VVWVvP322zJ9+nTZvHmzVFdXS48ePWTMmDEyfvx4ycnJabSMhQsXypQpU2TZsmVSUFAg6enpMnToULnooosieg2tXLlSvvzyS/nhhx9k7dq1UlxcLH6/X7Kzs6Vv375y5JFHyq9//Wtp3759xP/ur776St5++21ZsmSJlJSUSPv27eWAAw6QM844I9yfKprjV2TPz58NBQIB+fjjj2XmzJmyYsUKKS4ulrq6OklLS5POnTtL//795cgjj5SjjjpKunfvHvG/9+f+9Kc/hd+E1zedXblypbz22msyf/582b59uyQlJUmfPn3khBNOkPPOO09SU1Oty5s6darceeedIiJy9dVXyzXXXBN+inD69OmyadMmqa6ulk6dOskRRxwh48ePl759+0a0rdu2bZOXX35ZvvzyS9m6daskJiZK9+7d5bjjjpNzzz1XOnTooJ4bWtMnn3wiU6dOleXLl0tZWZl06NBBBgwYIGeffbYcc8wxrbote8u//vUvERFJSEiQ+++/P+bnqw8++CD81eQ77rhD2rVrF9PlA4gfFHaAfdiQIUPktNNOk3feeUdERKZMmSLXXHONJCcnN8pbvXq1/OY3vwn3SGmooqJCKioqZP369TJt2jQZPXq0PPzww5KdnR2z7Yz1+idPniyPPfaY8R1zv98vhYWFUlhYKAsXLpTnn39ennzySfnlL3+pLqegoED+93//V+1Ls337dtm+fbvMnj1bXnjhBfnHP/4hffr0ie4f3oSGb+hFRKZPny49evTY4+WNGjUqXBRo6omd+p+lpaXJoEGDpLS0VF566SWprq6WpUuXql/nW7x4cbgZ5J582hiJ559/XoLBoIiI9OjRI/ymOlrp6elqPC8vT2655RbZsmVLo3h9D6s1a9bIlClT5Ne//rXcfvvte23iXCS++OILuf3228OT6erl5eVJXl6ezJgxQ5566ilJTU2VoqIiufbaa2Xp0qWNcrdt2yZTp04N50b6FFZ+fr7ccMMNsnz58kbxgoIC+fjjj2X69Oly2223yW9/+1vrMmL1+m1N69evl+uuu07WrVvXKL5mzRpZs2aNTJs2TV544QXZb7/9xO/3y7333ivvvvtuo9za2lr54osv5IsvvpA//vGPTR7jt99+u3zwwQfqz3bs2CE7duyQBQsWyH/+8x+577775IQTTmhy+/1+v9x1113y/vvvN4rXn+fmzp0r77//vjz88MNNLqehWJ0/CwoKZMKECeEG8A3VXx/Wrl0rn3zyiQwcOFBef/31iLdxd1555RWZOHFio2OxurpalixZIkuWLJE33nhDnnzyyYiLMStXrpQ//vGPsmnTpkbxLVu2yNtvvy3Tpk2Thx56SH71q181uZxPPvlE7rzzTqNQvXLlSlm5cqW88cYb8thjj0X4r4y96upqufnmm2XOnDmN4lu3bpWtW7fK559/Lqeffrr85S9/2Tsb2EoWL14cPhceddRRTX4Fek8UFRXJQw89JCIixx133G6PGwBui987TwCt4vzzzw8XdqqqqmTJkiUycuTIRjlVVVVSU1MjHo9HBgwYIAcffLB07txZUlNTpby8XFasWCHfffed+P1+mTt3rtx4443y73//W7zext/2vOmmm0REZNKkSeHJDPWxhn4+pStW6xcRmTVrVqM3HwcffLAMHz5cOnbsKCIiJSUl8tNPP8miRYuafHpj06ZNcskll8j27dtFRCQ7O1tGjx4tffr0kaSkJMnPz5c5c+aEp5FdfPHF8vrrr0u3bt3CyzjqqKMkPT1dli1bJtOnTxcRCX+q/HORPMXQHCNGjAg3VCwoKJCNGzfKfvvtZ+TVF3aGDRsmSUlJMnz4cPF6vRIMBmXevHlqYafhG7eRI0eq+6U5gsFguD+BiMg555wT03UsWbJELr/8cqmurhaRXU/3jB07Vvr06SPV1dUyb948ycvLk1AoJG+88Ybs2LFDHn/88ZitP5ZWrFghb731ltTW1srIkSPl0EMPlZSUFFm9erXMnDlTAoGAzJs3Tx588EG57bbb5KqrrpKVK1dKt27d5JhjjpEuXbrIjh075NNPP5Xt27eH36BNmzZtt58EV1VVyTXXXCM//fST9OjRQ37xi19I586dpbS0VGbNmiWbNm2SUCgkDz30kAwcOFA9lmL1+m1NFRUVMmHCBNmwYYP07dtXjj76aGnfvr1s3bpVZsyYIWVlZbJ9+3aZMGGCvPvuu3L//ffLu+++K5mZmTJmzBjp06eP1NbWypdffhkuXjz++ONyyCGHyPDhw9V1lpSUiIhI+/btZdiwYdKnTx/Jzs6WQCAg27Ztk2+++Uby8/OlqqpKbrnlFmnXrl2TTwHdeeedjQpFAwcOlCOOOELS09Nl48aNMmvWLPnyyy8jfiMei/OnyK7X/vXXXx/+vWRkZMjo0aOlb9++kpaWJtXV1ZKfny/Lli0Lf4U0VmbPni3//e9/RWTX+XP48OGSlJQkq1evli+++ELq6upk48aNcvnll8uUKVPCX322KSgokKuuukqKiorCTxjl5uZKQUGBfPbZZ1JYWCg+n0/uuOMOOfjgg61Pyn311Vdy2223hYtNubm5MnbsWOnevbuUlZXJ3LlzZc2aNXLdddfJscceG9PfSSTq99k333wTjg0fPjz8dF3972/atGlRPU3moq+++ir85xEjRoiIyKJFi+SNN96Q77//XoqKiiQ9PV169eolo0ePlvPPP186dOgQ8fIfeOABKS0tlaysLPnTn/4U8+0HEF8o7AD7uIMPPliysrLCn95///33RmEnKytLrr/+ejnzzDOtNxWbNm2Sm266SZYvXy7fffedfPjhh3Laaac1yrnkkktEZNeTQfWFnfpYU2K1fhGRF198MfznBx54QE4//XR1eT6fT2bPnm28kaj/2U033RR+UzJ+/HiZMGGC8ci9z+eTxx57TF5++WUpKSmRO+64o9FXZQ455BA55JBDZOrUqeHCziGHHBLR7yTW0tPTZeDAgbJkyRIR2VXA+Xlhp6ioKPzEQf0TGtnZ2XLggQfKihUrZP78+XLllVcay27Yf6cl+uusXLlSdu7cGf7/WH7Vq6amRm677bZwUWf48OHy6KOPhgsJ9T744AO58847xe/3y2effSZTpkyRCy64IGbbESuvvPKKZGVlyT//+U858sgjG/1swYIFcsUVV4jf75f33ntPKioqZOXKlTJ+/Hi5/vrrG31FYMKECXLppZfK8uXLpbi4WN588025/PLLm1z3zJkzRWTX1+Quv/zyRk813XDDDXLbbbfJp59+KqFQSJ555hl59tlnjWXE4vXb2j7//HPxeDxy0003ycUXX9yo6Hj11VfLRRddJFu2bJF169bJn/70J/nwww/l8MMPl0ceeaTRG9trr71W7rnnHnn77bclFArJv//9b3nmmWfUdR555JHyu9/9TkaNGqUWOYPBYPhpk2AwKPfee6+8//77au7MmTPDRZ2EhAS5++67ja9q7tixQ2688UaZMWOGeDyeJn8fsTp/iuw6T9V/hXTQoEHyzDPPGF9pq7dp06bd9gKLxuTJkyU1NVUmTpxoPBW2fv16+cMf/iAbN26U7du3y3333Sf//Oc/m1zeO++8I4mJiXL33XfLOeec0+hnN9xwg1x11VWyaNEiqampkeeff17uvvtuYxmVlZVy9913h4s6Y8eOlb/+9a+NPiy56aab5IUXXpC///3vxlNhreG1114LF3WSk5Pl4YcfluOOO65Rzrp16+Tqq68OF85i5Xe/+11Ekx8jVf91vD1Vf70VEdlvv/3k0UcflZdeeklCoVA4XldXJ6WlpZKXlycvvfSS3H333XLKKafsdtn1X00UEbn55pulU6dOe7ydANxA82RgH+fxeOSAAw4I///WrVuNnH79+snll1/e5CdFvXr1kieffDJ8c/7WW2/FbBtjuf76T3b79+9vfVMoIpKUlCS/+tWv1K8Nvf/+++HHpy+88EK5+eab1T4KSUlJctttt4U/FV2wYIH88MMP1nXubQ1H3mtvgBp+RavhzWx9IXDx4sXi8/ka/Z3a2tpGN68N1xErDT+J93g8jRpBN9e0adNk8+bNIiLSuXNneeqpp4yijojIqaee2qgp5aRJk4zfRbx44IEHjKKOyK79eMYZZ4jIrq/ezJgxQ371q1/JzTffbPR9yMzMlNtuuy38/5999llE6z7//PPlqquuMr6qlpSUJHfffXf4dfTtt99KZWWl8fdj8frdGy688EK55JJLjMJJp06dZMKECeH///DDD6VHjx7yxBNPGE8reDweufXWW8Nv0r/55hv1dySyq1hy+OGHW59c83q9ctFFF4WLjxs3brQWPf7973+H/3zllVeq/bc6dOggTz75pHTo0KHRm1JNLM+fDb9+ddlll1mLOiK7rhFnn312k9sWjVAoJH/+85/Vr/r16dNHnnzyyfDrZvbs2bJy5crdLvP66683ijoiu55Euueee8L/b3u9TZ06NVww69Onj0ycONF4Atbj8cill14qv/71r3e7r2LN7/fLf/7zn/D/33bbbUZRR0Skb9++8tRTT7XI9MR4smHDhvCfX375ZXnxxRclFApJ//795ZJLLpHrrrtOzj77bMnNzRWRXV9h+9///V/56KOPmlzujh075G9/+5uI7Pqg46yzzmq5fwSAuMETOwAafYWi4ZMP0ercubOMGDFC5s6dK3l5eVJXV2f062lJkay/vg9Lfc+XPTFlyhQREUlNTZVrrrlmt/m/+93v5PPPPxeRXTf4tq9PRKNHjx4xH7k8atQoee6550RE1E8169/4paWlNfpq2MiRI+Xll1+WmpoaWbx4caMnvhYvXix1dXUisusrAQ2LiLHScJpbZmZmTJtP1jdKFdn1pvbnb5IauuCCC+Sll16SrVu3SmFhoXz99ddx0d+loQEDBsjYsWOtPz/mmGPk7bffDv//1Vdfbc0dPny4ZGdnS1lZmaxatUoCgUCTb8QSExPlqquusv68Xbt2cthhh8mcOXMkGAzKypUrjddKLF6/rS0pKUmuuOIK689/3iT24osvtvZ6Sk9Pl1GjRsmsWbMkGAzKqlWr1K+sRerkk0+WV155RUR2Pa15xBFHNPr52rVrw0WYjIyMJp8mzMrKkosvvlj+/ve/N7nOWJ4/A4FA+M9aD7aW1KdPn3AhVNO3b185/fTTw6+nadOmyS233GLNz83NbbK3VL9+/aR///6yZs0aKSkpkW3btknXrl0b5Xz44YfhP//+979v8vp79dVXyzvvvNPod9jS5s2bFy48de/eXS1i1dt///3ltNNOi+lTReedd15Mz8lNNY6PRP2TyyISLlredNNNMn78+EZPvt1yyy1yxx13hF8H99xzjxx22GHqhwwiu4r3JSUlkpaWpj7ZBaBtorADoNGbiIqKiiZzA4GA/PTTT7J27VopKyuT6urqRp/61fd28Pl8snnz5ibHdu6J5q7/wAMPlCVLlsimTZvksccek6uvvlrS0tIiXn9paWn4k9ehQ4dKVlbWbv/OQQcdFP7zz5vQxpNDDz1UkpKSxOfzyfbt22X9+vWNGpbWF3uGDh3aqHgyYsQI8Xg8EgqFZP78+Y0KO7anfGKp4VMLtjfEe6Kurk5+/PHH8P/vrvGk1+uV448/XiZPniwiu27U462wM3r06CZ/3rB5Z+fOnZssxHk8HunRo4eUlZWFm0g39cTEwIEDd9sfonfv3uE/FxcXGz9v7ut3bxg4cGCTvUKys7OlXbt24aL67ib7NXwzWVRUtNv1l5SUyIoVK2Tbtm1SVVXV6EmyhoX89evXG3+34TS7I444Yre/67FjxzZZ2In1+bPhz5588knp16+fDBo0aLfLjIWmCqT1jjvuuHBhZ9GiRU3mHn744bstSvfu3VvWrFkjIrteHw0LO7W1teEinMfjkTFjxjS5rE6dOsmgQYMaPVHZ0hYuXBj+89ixY3fbC+3444+PaWEnmkmJreHnfcDOOecctXiakZEhDz/8sJxzzjmyfv16qaqqkldffVWuu+46I3f69Ony6aefisiur702t/gEwB0UdgA0emNseyKhvLxcJk2aJO+99576hsv2d2IlVuu/9NJLwyPdX3jhBXnjjTfkqKOOkhEjRsiQIUNkwIABTd5cr1q1KlxImjdvnjquvSn1had4lJaWJkOGDAl/cjhv3rxwYaewsDD8xu/nBZqcnBzZf//9Zc2aNTJ//vxGT3k0LOy0xNewRHbd9NaLZcPc/Pz88JvgLl26RNTIs+G4840bN8ZsW2Jldz1nGhbGfv40wO7yq6urmyzsRDJmenf7srmv370hkj4/6enp4SJLNPuovveT5ptvvpFnn31Wfvjhh4i+cqOdLxt+VSSSp+169+4tycnJ4af0fi7W588jjzxSBgwYIMuXL5f8/Hw5//zz5cADD5QjjzxSDjnkEBk6dOhumxbvqUi+8tnwq4Ba4ayhSI6Tpl4f+fn54d46Xbt2jahodsABB7RqYafh8dSwKGcTSY7LUlJSGu3Hpp7sS0lJkYsuukjuu+8+ERGZM2eOUdgpKSkJfwVr8ODBcuGFF7bAVgOIVxR2ADR6HFibbLNlyxa57LLLjFHPu2O7uY9WLNd/3HHHyT333CMTJ06U8vJyqayslE8//TT8CVdaWpqMHj1azjrrLPnFL35h/P2GX/vZE029EYsHo0aNChd25s+fL+eee66I7L4B8qhRo2TNmjXh0eYpKSlSU1PT6OtiLfXETsNiQmVlpfh8vpi8uW/4uoh0OkvDvOZ8rbGl7O6rkQ0f/4/ka5QN8+u/JrWn645kec19/e4N0f67U1JSIs61/c6ffvpp+de//hXhFu6ifb2t4WugqaJdPa/XK9nZ2dYniWJ9/vR6vfKvf/1Lbr/9dvn2229FZFfxaNWqVfLSSy+JyK6vRJ100kly/vnnh3uVxEIkv4+G54OKigoJhULW5tK72+8/9/NiXbT7Kpq8WIl2G9v6VKyMjIxwYadXr167LX43HAywevVq8fv9jfqVPfDAA1JcXCyJiYlyzz33tPkeRQAao7AD7OPq+zTU024s7rjjjnBRpXv37nL++efL8OHDpUePHpKZmSkpKSnhm9U//elPjfqSxEKs13/WWWfJ8ccfL9OnT5evvvpKFi1aFP4kuLq6WmbOnCkzZ86U0aNHy2OPPdboE/KG/QgOOOCAJhu4aprq0RIPDjvssPA0ooZ9duqfvElNTVU/ZR85cqRMmTJF6urqZMmSJTJq1KhG/XU6d+4sffv2bZFtbvh1u/rjubW+joHW15zX777gm2++CRd1PB6PnHTSSXLCCSdI//79pWPHjpKSkhIufG7evFlOPvnkVtu2ljh/duzYUSZNmiSLFi2SGTNmyPfffx/u+SSya8LS008/Lf/973/lgQceUJv1Yt8wffp02bZtW8yWd9JJJ0X0ZKNNx44dpbCwUER2PRW6Ow1zgsGg7Ny5M/z11m+//VZmzJghIrsaicdL43gArYfCDrCPW7FiRaO+Oj8fdf7jjz+Gn+Do0aOHvPHGG5KdnW1dXiy/ftWS68/OzpZzzz1Xzj33XAmFQrJu3TqZP3++fPrpp/Ldd9+JiMjcuXPlnnvukYceeij89xo+0dShQ4e9Mpq8JQ0bNiz8VYqioiJZu3at9OvXL1zYGTZsmPo0zIgRI8J/njdvnowaNarFx5zXO+igg8JNfEV23eDGorDT8DiL9EmDhl8V0Z5+i0TDT/Sb+oRfpPUbxsaLPX397gteffXV8J9vvfXWJr+Osbueag2/zhPJayAYDDZ6KuPnWvL8ecghh8ghhxwiIrv+XYsWLZK5c+fKRx99JMXFxVJZWSk333yzvPnmm9K/f/9mry+S30fD80FmZuZuR8E3R7T7Kpq8WIn2nBrrry6//vrrMR13PmjQoGYVdvr379+oL9LuNJXTsGD17LPPhj+g2Z1LL700/OfTTz9dHnjggYj+HoD4w7hzYB/3+uuvh/+cmZlpPI3R8Pv348aNa7KoIiLhxo6x0hrr93g80q9fPznvvPPkueeek4kTJ4ZvoKZPn97oKzUNnw5p+KRTW5GSkiLDhg0L///8+fOloKAg3C/m54W/eh06dAj/buqLQA1voFuqv47Irq9jNGxk+tZbb+32a0GR6N69e7iItW3btojeiDQcv9ywEXA0Gjao3V3PoK1bt+7ROtqSaF6/+4L6c2ZKSoqcd955TeauXr26yZ83PIZ3lyuyq4dKU1/Bba3zZ2Zmphx99NFy2223yccffyxDhw4VkV3jthtOfWuOSMaXN/w3NmxE3xJ69OgR/lrOtm3bIvqQI5J9GksNj6dI9n8kv2OXNfwAoqCgYLf5DXMSEhJa/at0AOIbT+wA+7C8vDx5//33w/9/wQUXGE9j7K7/TkMrVqyQTZs27Xa9Db8TvrsRyS2x/t058cQT5amnnpJ169ZJMBiUDRs2hN8YdO3aVfr27Svr1q2T4uJi+fbbb40RwdH6+e9jbxs1alS4ODNv3rxGDTtthZ36n61du1aWLFkipaWlrdJfp96ll14q77//vgSDQdm8ebO88MILctlll0W9nKqqqvBXd5KTk2XgwIHhyUCffPJJuOeQJhgMysyZM8P/v6djqDt06BAuUK5fv77Jp4/mzp27R+toy5p6/e4L6s+Z6enpu+01Vd+byKb+CRiRXU/CVVdXNzkZa9asWU0uryXOn7uTnp4uF110UXjU+Lp162Ky3M8//1z++Mc/Npnz2Wefhf/c8HfZElJSUmTAgAGSl5cnoVBIZs+eLaeddpo1v7CwUJYtW9ai2/RzDX8Hs2bNkltvvbXJp1Aa/v5i4YUXXojp8prruOOOk4ceekhCoZBs3LhR8vPzm+yzU/80osiuRv0N753222+/iL/a+Omnn4b7VY0ePTr8da7hw4fvyT8DQJzgiR1gH7VixQq54YYbwlN/2rdvL+PHjzfyGn4i1HD0888Fg0GZOHFiROtu2Cdhd5+mt8T6o/Xzppa/+c1vwn9+6KGHoprEpE2nafgIfTw8XdDw6ZoFCxY06q/T1Bvk+qKPz+eTF198MXxsdevWrcVHrtY/sVHvySeflOnTp0f89ysrK+XWW2+Vb775plG84Y3yc88912iC3M+9/vrrkp+fLyK7Rgnvbmy1zcCBA8N/buqNTX5+fkxHAbdV0TaldV19AbykpKTJJ7q+++47mT17dpPL6tevX3jSW2Vlpbz44ovW3PLycpk8efJuty/W589opaamNnsZIruKrg0/GPm5DRs2NPp5tP2E9sQpp5wS/vOkSZOafHrqmWeeafUPEg4//HDp1KmTiOwaitDU01Nr165t8vfbFnTt2rVRQ+TnnnvOmltbWyv//e9/w///815Rw4cPlwceeCCi/xo2pb7sssvC8bPPPjuG/zoArY3CDrCP2bp1qzz++OPy29/+VrZv3y4iu974PPHEE+oTMQ0/wXn//ffliy++MHLKysrk1ltvle+++y6i74k3fCS9YR8WTSzXn5+fLxdffLFMnz7d+mYiFArJK6+8Ev5Ut3379o2+PiAicvbZZ4dH3a5Zs0YuueSSJh8rr6mpkU8//VQuueQStTjV8Pfx/fffR/Q1oi1btsiQIUPC/0U7MawpQ4cODb/5KS4uDhdIhg4d2uSEn4ZP80yZMiX855b8GlZDt9xyS/gpGb/fL7feeqvcd999TT7iXlFRIS+99JKccsop8vHHHxs/P/3008NFqa1bt8q1114rO3bsMPI+/vhjeeSRR8L/f8UVV+zxZK6GN+wvv/yyLFq0yMhZv369XHXVVU0WmtqaWL1+27qG/a7uuusu9Rj58ssvd/u0Sb3LL788/Odnn31WLSYWFxfLtddeK0VFRbu9BsTy/PnQQw/JxIkTm/wKbkFBQaN+Iw1/P/Xmz5/f6HwaCY/HI/fdd598+eWXxs82btwoEyZMCBdWxowZ0yqju88444xw4WTdunVy8803G32UQqGQvPDCC/LGG29E3POn4e+mvtC/JxITExs9Sfnggw+qxcX169fLtddeGx7f3pbdeOON4vXuejv25ptvyksvvWQUMOs/eFi/fr2IiOTm5sr555/f2psKIM7xVSygjZk+fXqjx6t9Pp+Ul5fLjh07ZOnSpbJu3bpGNw3du3eX+++/3/qYeP/+/WXMmDEye/ZsCQQCMmHCBDn88MNl4MCBkpGRIRs3bpTZs2dLWVmZ9O/fX/r27bvbx/uPOeYY+eijj0RE5C9/+YssWLBA9ttvv/BXkjIzM8OfbsZy/aFQSBYuXCgLFy4MT3c64IADJDc3V4LBoBQVFcncuXMbFUkmTJhgvEFPSkqSJ554Qi655BLJz8+X5cuXy9lnny1Dhw6VoUOHSocOHcTn80lpaamsXr1ali5d2uSY8969e0vv3r1lw4YNsmbNGhk/frwcffTRjZ7kOeKII1rtDWpSUpIccsgh4fHB9W+im/oalsiup1Tq/x0N33i3VmEnKSlJnn76abn99ttl1qxZEgqF5I033pC3335bBg4cKIMGDZLc3FzxeDxSXFwsq1evlkWLFjV689Dwa3Eiuz7df/DBB+Xyyy+X6upqmT9/vpx66qkyduxY6dOnj1RXV8u8efMa9YI69thjm3XTPWzYMBk9erTMnTtXqqur5Xe/+52MHTtWDj74YPH7/bJ8+XL56quvxO/3y+9//3v597//vcfrckmsXr9t3e9+9zv57LPPJBAIyLfffisnn3yyHHvssdK9e3epqKiQ77//Pny8XnXVVfLMM880ubwTTjhBTj75ZPn4448lEAjIXXfdJa+//rocccQRkp6eLhs3bpTPP/9cysvL5cQTT5S8vLzwk2uaWJ4/y8rKZNq0afLSSy9Jr169ZPDgwdKzZ09JT0+XsrIyWbduXfi1IrJrpHSsnkq48MILZfLkyXLNNdfIqFGj5NBDD5WkpCRZs2aNzJ49Ozw+vmPHjvLnP/85JuvcnczMTPnLX/4i1113nQQCAZk1a5accsop4f1fVlYmX331laxZs0ZycnLk2GOPlXfeeUdEImveGwsXXHCBzJo1S7777jupra2Va6+9VkaMGCEjRoyQpKQkWb16tcyePVvq6upk/Pjx4bH1bdWAAQPkj3/8ozz66KMiIjJx4kSZOnWq/OIXv5Ds7GzJz8+Xzz77TIqLi0Vk1zXq4YcfjvsJmwBaH4UdoI154403Isrr1KmTjBs3Ti677LJGPVQ0999/v1x55ZXhgtF3333X6LveIrtuTh577DF5+umnd7vuE088Ud588035/vvvpbKyslEDZ5FdxaaGj63Hav0JCQni9XolGAxKTU2NzJ8/3/rpY0pKilx33XXWnirdunWT119/Xf7yl7+Evy6zZMmSRm/wf65z587W5s+33nqrXH/99eL3+2XRokXGUxr33Xdfqz55cNhhh4ULO/V2V9ipz9mwYYOxrNaSkZEh//jHP+TNN9+USZMmybZt2yQQCEheXl6jnj8/179/f5kwYYL88pe/NH42dOhQ+c9//iM333yz5OfnS0VFhfoVAY/HI+ecc47ccccdzX6TdP/998vvf/97Wb16tfj9fvn0008bFSwTExPl5ptvluOPP36fKezE8vXblg0ePFjuvvtuuffee8Xv90tJSYnxlZfExES5/vrr5Ve/+tVuCzsiEp6UU/9U27Jly4z+LKNHj5a//OUvMm7cOBFp+itPsTp/Nizabdq0qckea4MHD5bHHnss3EOrucaOHSvdu3eXRx991Hos9uzZU5566qmIRlnHyjHHHCMPPvig3HXXXVJdXS3FxcXy1ltvNcrJzc2Vv//97416dNm+svjzp0fqny7ZU16vV5544gm58cYbw+v//vvv5fvvv2+Ud+qpp8r111/f5gs7IiKXXHKJJCYmyj/+8Q+pqamRNWvWqE+hdezYUR5++OEW71kHwE0UdoA2Li0tTTIzMyUrK0t69+4tAwYMkGHDhsnhhx/eZNPihtq1ayeTJ0+Wt956Sz7++GNZs2aN1NTUhL/mcOKJJ8oZZ5wR8SfjiYmJMmnSJHnjjTfks88+k59++knKysqsj13Hav1du3aVzz//XObOnSs//PCDrFy5UvLz86WsrEw8Ho9kZWVJ37595fDDD5czzzxzt2NMc3Jy5PHHH5eVK1fKBx98IN9//71s2bJFysrKJDExUdq1aye9e/eWwYMHy+jRo2XkyJHWm+JjjjlGpkyZIq+++qosWrRItm3bJjU1NTHpKbEnfn7j+PNpWTYjRoxo9CayV69ezRoHuyc8Ho+ce+65cuaZZ8qcOXPkm2++kSVLlsiOHTuktLRUvF6vZGdnS58+fWTIkCFy3HHH7fbrF0OGDJH3339fpk6dKrNmzZJVq1ZJSUmJpKamSufOnWXUqFFy1llnhfuRNFfHjh1lypQp8tprr8knn3wi69atk7q6OunUqZMcdthhcv7558uAAQNi+hW8eBfr129bduaZZ8qgQYNk8uTJMn/+fNm+fbukpqZKp06d5IgjjpCzzjpLDjrooIiPn6SkJHn44YfltNNOk7fffjvcID0nJ0f69+8vp512mpxyyini9XrDX/3Z3RMFsTh/3nXXXXLGGWfId999J0uWLJH169fLjh07pKamRlJTU6VLly4ycOBAOeGEE2Ts2LExfyrlwgsvlOHDh8vrr78u8+fPl8LCQklKSpI+ffrICSecIOeff37MevpE46STTpJhw4bJ5MmT5csvv5SCggJJTEyUbt26ydixY+X888+Xjh07yowZM8J/p+ETog01LDB07do1Jo3I09PT5ZlnnpEZM2bI1KlT5ccff5Ty8nLJzc2VAQMGyFlnndVo0uG+4MILL5SxY8fKO++8I19++aVs3bpVKioqpF27dnLAAQfImDFj5KyzzmqyeTmAfZsnLy9v77xrAAAAQJtRUFAgxx9/vIjsetLtlVde2ctbFFt/+tOfZNq0aSIi8vzzzzv/5MQVV1wRfjJz2rRp0rdvXyNnypQp8te//lVERO644w654IILWnUbAQCRoXkyAAAAmm3OnDnhPzec7ob4U1ZWJosXLxaRXV9hbdjEv6EFCxaIyK6vb5911lmttXkAgChR2AEAAECzVFZWyn/+85/w/x977LF7cWuwO5MmTQo3pR4zZoz1a2r1vW/Gjx9v7cMDANj7KOwAAADA6sMPP5R33303POnp5/Lz8+Xqq68O9+zp37+/HHHEEa25ifg/JSUl8uCDD1onk/l8Pnn66afDTYk9Ho/85je/UXPXrl0rO3bskPbt2++TjcgBwCU0TwYAAIDV1q1b5R//+Ic8/PDDMnLkSOnfv79kZGRIZWWlrFixQr799ttw8/uUlBS5//77W218NhoLBALyyiuvyKuvvipDhgyRQYMGSadOncTv98uWLVvk66+/lsLCwnD++PHjrQ2R+/Xr1+Q0QQBA/KCwAwDYK7766it1pGs0LrnkkthsDNq0NWvWyFdffdWsZZx00kn79KQtEZGKigqZPXu2zJ49W/15p06dZOLEiTJo0KDW3TAYQqFQkyPkExIS5NJLL5Vrr722lbcMANASKOwAAPaKjz/+ODxhZk9R2EEkli5dKo8++mizljFo0KB9trBz3nnnSZcuXeTbb7+Vn376SYqLi6WkpEREdo0tP+igg+Too4+WcePG7ZXx3vj/OnToIC+88ILMmTNHli5dKoWFhVJcXCxVVVWSnZ0t3bt3l1GjRsnZZ58tvXv33tubCwCIEQo7AAAAsMrKypLTTjtNTjvttL29KXvVAw88IA888MDe3owmeTweGTlypIwcOXJvbwoAoBV58vLyQnt7IwAAAAAAABA9pmIBAAAAAAA4isIOAAAAAACAoyjsAAAAAAAAOIrCDgAAAAAAgKMo7AAAAAAAADiKwg4AAAAAAICjKOwAAAAAAAA4isIOAAAAAACAoyjsAAAAAAAAOIrCDgAAAAAAgKMo7AAAAAAAADiKwg4AAAAAAICjKOwAAAAAAAA4isIOAAAAAACAoyjsAAAAAAAAOIrCDgAAAAAAgKMo7AAAAAAAADiKwg4AAAAAAICjKOwAAAAAAAA4isIOAAAAAACAoyjsAAAAAAAAOIrCDgAAAAAAgKMo7AAAAAAAADiKwg4AAAAAAICjKOwAAAAAAAA4isIOAAAAAACAoyjsAAAAAAAAOIrCDgAAAAAAgKMo7AAAAAAAADiKwg4AAAAAAICjKOwAAAAAAAA4isIOAAAAAACAoyjsAAAAAAAAOIrCDgAAAAAAgKMo7AAAAAAAADgqsakfDhkypLW2Aw7Iy8uLOJdjBw1Feuxw3KAhjhvsCa5V2FOcc7AnOG6wJ7hWYU/Zjh2e2AEAAAAAAHAUhR0AAAAAAABHUdgBAAAAAABwFIUdAAAAAAAAR1HYAQAAAAAAcBSFHQAAAAAAAEdR2AEAAAAAAHAUhR0AAAAAAABHUdgBAAAAAABwFIUdAAAAAAAAR1HYAQAAAAAAcBSFHQAAAAAAAEdR2AEAAAAAAHAUhR0AAAAAAABHUdgBAAAAAABwFIUdAAAAAAAAR1HYAQAAAAAAcBSFHQAAAAAAAEdR2AEAAAAAAHAUhR0AAAAAAABHUdgBAAAAAABwVOLe3gAAAPYlmQkJRqwiEGj2crULuj+av5/gUeP+QGiPtgdAfNA+xQ3GYLnmmUyk+WcyAMCe4IkdAAAAAAAAR1HYAQAAAAAAcBSFHQAAAAAAAEdR2AEAAAAAAHAUzZMBAGim7MQkI1YV1FsXa42SMy3L1T59KbPkaq2Psy25NUrMH6JJMuAK7fVuewXHolFypNtg+8S4pbYBALALT+wAAAAAAAA4isIOAAAAAACAoyjsAAAAAAAAOIrCDgAAAAAAgKMo7AAAAAAAADiqbU3FSlNi1ZbcdkpsZwy2IUWJ1cZguQDiTrISq2vlbYhmMgqaLzs5VY2X15lzpjp7tL0jUqDELras7xUldqbl0l0q5hSuQy3LzVFidzG2xgEJSkw/zkQ5HqJju0XUzjDmpDfERjxPmYrmCNOOpuYeoQDiU89hvzZi24qK1Vy/XzkTFHwR8boSuh6rxoMe87oU2hr5cl3EEzsAAAAAAACOorADAAAAAADgKAo7AAAAAAAAjqKwAwAAAAAA4Ki21TzZ1ihZE4tGyRoaJbcZG8v0nVm9cb0RO2jwQc1e35q8lUas/5DmLxfNZztRtnajZA2NkluO3pI28t94QUjPDSkNcCsty71PiW215B6gxJIs/4pSJXa7mikyN6ePERtTus6SjZbVmk2KaW3rnmw93L7MCA0bqqemKlMBvvs0ik3QhoiIyMhfmrE0y8V11udK0OxPD2Cv66lGty5fYsQCdUWWZeQqsQGW3OVmaPsqNTMU1IZd9LAsd4sl7hae2AEAAAAAAHAUhR0AAAAAAABHUdgBAAAAAABwFIUdAAAAAAAAR1HYAQAAAAAAcJSbU7EyLPHKVt0KtCGbKswpM5P/9a2am5KSZQZP/0pf8LSjldz31dSFG8zpNfOW/KjmHjZ0oL4+NFuSUu72BW3Z2sQh5lS1ZUGfT41re71WmX4lIlKtfKZylujLHdLXnOrw1jp9PMyfleXerWaKvCTmQW2bVzGLCVjAXhPVFSXXnH4lIjJksBkb/KR+0+z1mhNBvxutTa0RfbyeftqTgf81/yV+2aHmHvLbjkZs0Wf6cgHsRUk5ajhQV6VEO6u5OV3Me5ekLH28XuGa7ua6grZyhnlf5ZF2amaIqVgAAAAAAADYmyjsAAAAAAAAOIrCDgAAAAAAgKMo7AAAAAAAADjKzebJNElGjPXK1GqcLdQEd9ppavjX01pmdYhOdHvdzE5N1jN9yoI9Qb3LpD8QMGJaU2cRvbFzoldr6iziV9fn1xeMZp8BzhBzP+5arhmfaWk4+m2+2Si5zJL7eVfzYMi39AP8vXKIrNdTJUQ/cGCv0c/mlvNTqZ7bUenN3r693rDdl2QOiBg+VF/uD3PM2KBD9dxAVYUR65ytT0Mp4j4fcMI3s15S41OefNGIXXj3uWrus1+YjZavOHl/NffIa58zYiHb5IcK84Y8+P1f1FSP7SbbMW3jXwEAAAAAALAPorADAAAAAADgKAo7AAAAAAAAjqKwAwAAAAAA4CgKOwAAAAAAAI5ycyqWVTszlLFTT1U77idZlqtMDrBMnZF2ypyCik6WxRZa1ofWx9gX7OJXpkxFo6Yummx9apJGm35l4w/ajmcmYEVDO8t7vJbLZsDc8V9bllum/n1LbuSHiEyxTMDSbFUOEdtRo/0eOGMCrSOq16XlOjHrezO2+bQcNXenMmFm+yZ9ucNHHmzEfpi7Qs2tPN2ctpVtue3evFCPRyoxRV+wv1afBIYYUKY1eiwHr3qc2sa/eZRRo8GobrTQgs677FQ1vnHlViP2xGv/jHi5/9njLWqaJ+neFlpyfOCJHQAAAAAAAEdR2AEAAAAAAHAUhR0AAAAAAABHUdgBAAAAAABwVPw0T7Y1zdIab6Wn6Lmp3c1YsaV5siqKpmpZlm0oqVGCNEl2kdIHTkSiaXcrIklmY0Hx6Y0F05RYdTTrQlQ8lpNOKIq2sElZY4zYuP+5SM0tqTX35sypEyJeV6isQI2fedl75rqq1e7w8sUHf4x4ffsS2+VHU640SbZRmyTHCe1KZdPcRskxOZfuc6K5KUJbZtvjqUrM9rpOVT7GXR1Ng2LL4fjDglURL2L90ijW10w0SY6S5WP+TCWekvyYmvu7414xYo88fImae+hZNxux/z5mxkRETjjfHEDz26NeVHMf/3iREeM607I2rty2tzcBDfDEDgAAAAAAgKMo7AAAAAAAADiKwg4AAAAAAICjKOwAAAAAAAA4isIOAAAAAACAo+JnKlY0gx6qa/V4ZnnztsFjafsfUjZuZxQd9xkJsnfknm7GiqdF/Nftu0d72fj11B7dzNh6fSqWNgGLQ6fl2KZfafPu2luWkdYvaMTefP0yPfnqK43QljdvUlOveupNI1ZaVqLmTn3z92bw8hv1bYDKdvnJTkg2YmVRTMXCLpyvdidJibX2VJ9oZiyhpWiftppXmV30vaPfNdTUNPNVaDlJ5nbvbMRK8/UpObZ/R0tITNTf3vj9lnu1fZ1l51Qo8Qqvft8y8X3z6O3U4x01d1i/wUbs7bc+VXO37ZxnxB79WE3FXpDWXb9Drs4vbqE1xsP1Mn7xxA4AAAAAAICjKOwAAAAAAAA4isIOAAAAAACAoyjsAAAAAAAAOCp+mifbaD2Z9B6iIkGzefIRI/TUb8v7GLEES1PMpKydRsxTrHeS65ZTZcTWVvbTN+KntXocsVFhNj6VrhfqudtejmLBZvO9TqN+rWYWbyk1YqEeY9Tc4JbZRoymo61POwtUWnI/ffpuIzbkqOPU3LsONZuz/7h6jZqbsMNsEL9uTeTnixdPLFLjlzwX8SIgIuXNbJScZOnH74tmWEAUtNW10KoQU1lKrMKS27xj0uPNUeOhkHK9tF2BQjSqbClaD1utob+IiD5GRN9nWktl2/1Fh2wztqNMzy1WGiW3y+2g5u4s3mHEMtP15VaYt9JRoUlybPzm+AOM2KszV+vJ7cymtotXbFRTX/9ygxEb3iOKO14mi+wVnv0PNGLVP61q3Y1IzjFjdYWtuw1xjCd2AAAAAAAAHEVhBwAAAAAAwFEUdgAAAAAAABxFYQcAAAAAAMBRFHYAAAAAAAAcFf9TsZQJWLc/fKKa+rdbZxix74osY0lkvRGxNVMPtFPqXzV67oaCVDPoY/rVXlH3lhHKzJ2gptaIeUx1ylX2pYgEg+ZEkPJ8fWREO2WeUsivz7Ko7nqaGQxVq7k1BTPVOJpPmyJkebnLaSeZx82BPZWRIiIy9eE3jNjkUnPinohIoHOOERv3+9+qub16Zhixv15vrgvRa+5EqZaafmX9SEYbqWO7BDIuK44UG5GEtCFqZqB6pRHzJPVUcz1Bc7nBkDm5RkREkpWDypOjL9djTj0K1W7VlxvUz3GInH7HEB3t/labgyZin4Cl8SSax83OUnP6lYhITrJ5Mqqs4kQUz2at3G4GU25Qc387aroR+3p5gZrbLmAekTt3Zlq24gwjcvyor9XMmfOV91tMyoqZkDIBq8Pg0Wpu9frvjFhK9v5qrr/CPE6CGdq0SJHEUnMyZDDJvA8WEUndz1xfsHC5mrujrG1Me+SJHQAAAAAAAEdR2AEAAAAAAHAUhR0AAAAAAABHUdgBAAAAAABwVPw3T1YMyihX457OZixUqjdmS1Biqd21qEjl+sg7b3kyzDar6Xr/J6kqinixiJHZfx2jxk+8Nd+I7dAPM0n2mMdU0J+m5hYXmA29bVJ79jJi2Rm5am6N3o8OLSRNPzXIjjK/EQuW6Z0nfUoX2w4pem19a5HefFKTosRsTTERH7zKlTfkt3Q5Vs433qB+3AS07smW3qTa2mx9lrWezGhZBx91ghrfPN9siFzn0y9WPo95nCQG9ZNZXc22iLctMdM8UhLS09XcmgqaJzdXNOdz84q0S2KKedLxhPRXvHZNsbTcloq6yBuO1oTMY8+bpG9Dos9cru3fpklI0I/zgNK0F3ZVxeZ7mg5pz6q5M74xzzelNVVqrna5Ky4zh42IiHTJftuIfbPQcjRwsWp15/3NHFQjIvL8RSONWHWdMhFJRLwe86xTlWZ59mRr5G+AgsXmdS3g7WjJtgwAcAxP7AAAAAAAADiKwg4AAAAAAICjKOwAAAAAAAA4isIOAAAAAACAoyjsAAAAAAAAOMrJqVipaXoX/XadzPh+Y45Wc3/aYXbmTg/p7dR7npxhxMqL9Y77/tIKcxs6Z6u5CyZ/rcbRckaOO0eNv/HSi0bsyqeWqbldM83jIdGrT1pY3fsgI9ZfGzkhIp408+U48a7j1dwTj35DXwhaRGKS/nqvDpr7vdoyhSgpwfxBsU8/52QkmcdYpc+cTiEiEko0z3u1AcvECMu2oXUlKbun1mvZOSHl8xdbrnY42YZtJSjL9TNSJF6s2Knfnp180hlGrLK8Vs1dunGzEfNYhhgVbu1vxLJ76SM9k0Pmee9Xh41Wc1996W59hYhYnSWuTcuyvYKTE8yTTkaKfjNSVmPu31AUF4805V5GRP8kORDQD0jbhL5IMf0qNnZWm8dNsj68SvzKuMeQNgJSRCSk7Pd0875HRKSw0jy/hZSJf7t+oIfRcjpm6ueRS56ZY8R8sx9Uc6fOWmDE0oOWs8DAnkYo5NXPI4k+8/i94G/vqbmPn2VOJnYRT+wAAAAAAAA4isIOAAAAAACAoyjsAAAAAAAAOIrCDgAAAAAAgKOcbJ7cqe9QNf7LMWlGLL9Cb6hU+flSI1Zt6Zu0Y7XZwCkU0jt0pSo9DA8++3A112wVhb2l54ADjNhHf9ePs+PuXGTEbjihnb5gpXRqO3b+dsvFRuzETx7Sl4tWVW3pw6j1dku0NO/zK8vwWDr9BYJmd0JbFb7O0icZ8UtthmrpeupRfhCwNYjUeg3a+iwrjZL5pCd+pEiuGq8Lmi1zV+8oVHMLV20xYqOOGa7m9umlHDwe/eCZN/O/RuzV5Z+ouWi+JEs8mj6xfuVWuNKrXzyqtQtbreUiqKRWKw13W1JamnnvX11d3arb0FZ5lR3sS9DfOmq3th6PftykJpsNdwN+vQm8z9JgG/HBMndIklNSjVhtu5Fq7o6Vk8y/n2Cb/KBsg+V9lU85/N599xt9uW0E93EAAAAAAACOorADAAAAAADgKAo7AAAAAAAAjqKwAwAAAAAA4CgKOwAAAAAAAI5yciqWp1sPNf7DF88Ysf7D9AkQHrNZtwQ32tYY+eyB9oPMWtkxh+SouS9HvFS0tKMOG23E5i3QO6fff7Y5reTGP4xr9jZ4E3KM2AmH9VZzp3+zuNnrQ+T8Wmt9EdFmNdga+WcosQrbxKKItgquimaaTUj7+MV2gESxYI9y9Q8yYS1uVFXqNySfb+puxI7s0knNPffmS4zYY3+7uVnbtYt2UFpOfGKZpoRmi+blWqNcrDK8+r5JUMLWvRjNyayFMAGr5QS1i4JX3+mekHmUhCwDrWpEn4CliuYaiFa37oXL1XiXM580Yu2OPE3NzUq80oiV+5t/cvEmpRsxX6ptzmDbwBM7AAAAAAAAjqKwAwAAAAAA4CgKOwAAAAAAAI6isAMAAAAAAOAoJ5snt8/dT42/8vQfjNjf/vOJmpuQYsb8ll5e3mxlG3qmqblJYjZxu/SsUWru76+aoa9QobUljIOedc7p9Ys/q/EPJp5jxNZurVFzO2QlGLGH//GBmqs1jiuqLFFzH7nn90Zs+vytai5al1+S1Xiq1Bkxn+WFqR1NGZYebgGlU6XP0ixQa2qpb60oW4u4F0WTSI9yobBdJ0I0So5rB2VXqPHBY837n5y6YjX35vPHGrHOfd5Vc7Ueqf37mI2aRUTOPeVwNY7W1dz7Qp/lHKBdf7yWj4G1bQjYzlncyLYJttazQeUC5LHs4IByLHTK1Je8vczSgRlxoSa1mxpfsWq+EctN0duwl/vN8SIZiZVqrkc5v+R276zmbtxcZMR2rl+g5rYVPLEDAAAAAADgKAo7AAAAAAAAjqKwAwAAAAAA4CgKOwAAAAAAAI6isAMAAAAAAOAoJ6diTZ+pd04/6ZRDjdivTzc7YouIVNaVGbHvP9mm5gaUpu41heb0KxGR+fNvN2KJne9Xc6PB4IDYKC7TJ1KdeuMbRuy1v56t5nZK6GTESoJVam6CUjrtGUpXc+fP+9qIjRppHtNofSHLK9CnzJ/yWGZPdcgwc8tr9dzkJHPyWkJQHzVSqYzhYvqVe2yTRrR5ILYJNeZRIxK0XDz02RSIF5WF+v3I95/PMmJHHzlCzb3i72bu3yZOUHO9ysUqYBlvdOVdrxixZ+/9rZqL+OWL4iQQsky6iurelBvZNsEXjPzASUnWr2xJIfNqVVbLAeKihauXqPF+1eb75JpBJ6q5Nzwz1Yg9/odf6StUDpOKbdvV1LMeMpf7zm3j9OW2ETyxAwAAAAAA4CgKOwAAAAAAAI6isAMAAAAAAOAoCjsAAAAAAACOcrJ58nkX6A22vl/c3ohl9dObz8559bWYblO9fvv9rUWWi9hI7ZqjxresKDdil9zzrpq7+vPmN8OGa7QWtiIBteWt1sJWpKAyipbGflrb7mv0I0xn6aMtljAclORNUeNdO9QascXfmE2SRUTy5r1lxD588frmbRjihtosPYq/7/Ho8ZByi01bW+yJ2jrblS2aKx7i2catevzko9OMWNGGT9Xcx+94rnkb4dfDbb1RsoYndgAAAAAAABxFYQcAAAAAAMBRFHYAAAAAAAAcRWEHAAAAAADAURR2AAAAAAAAHOXkVKz3XnlfjY87+3gj9tF7XVt6c+CQHV/O1X/Q2Zw0svrzNS28NXCFPp9GpJbJDgBawLo136rx0vzuRmzEsBw1Ny+WG4Q2R5t+FQu2T4yZ2tc2eJP1eFC7HWKcWpvnKd+ixv/1YokRO+W43s1fnxLjMPv/eGIHAAAAAADAURR2AAAAAAAAHEVhBwAAAAAAwFEUdgAAAAAAABzlZPPkpGy9BduHMz8xYrfeOq2lNwcO2W/IMDWuHVHlqT3U3J0r3orhFsEFWrM2Eb2pck6qflotqPHHbHvQ9tiOMZoC7qOSu6nhEp95RHy1eH0Lbwz2ppZq0Z+amqDGq2sCzVouTZLbtqDtVsar3RFZrmCBulhtDvayzE691LhXORHMmPFTs9fHPVHTeGIHAAAAAADAURR2AAAAAAAAHEVhBwAAAAAAwFEUdgAAAAAAABxFYQcAAAAAAMBRnry8PBpMAwAAAAAAOIgndgAAAAAAABxFYQcAAAAAAMBRFHYAAAAAAAAcRWEHAAAAAADAURR2AAAAAAAAHEVhBwAAAAAAwFEUdgAAAAAAABxFYQcAAAAAAMBRFHYAAAAAAAAcRWEHAAAAAADAUYlN/XDIkCGttR1wQF5eXsS5HDtoKNJjh+MGDXHcYE9wrcKe4pyDPcFxgz3BtQp7ynbs8MQOAAAAAACAoyjsAAAAAAAAOIrCDgAAAAAAgKMo7AAAAAAAADiKwg4AAAAAAICjKOwAAAAAAAA4isIOAAAAAACAoyjsAAAAAAAAOIrCDgAAAAAAgKMo7AAAAAAAADiKwg4AAAAAAICjKOwAAAAAAAA4isIOAAAAAACAoyjsAAAAAAAAOIrCDgAAAAAAgKMS9/YGAPHA6zFjwVDrboNH2YZQK28DAAAAAMAtPLEDAAAAAADgKAo7AAAAAAAAjqKwAwAAAAAA4CgKOwAAAAAAAI6isAMAAAAAAOAopmJhn2KrZGoTsPr27aPmrlu3Plab04g2AUsZlLUrt0W2AAAAAADgGp7YAQAAAAAAcBSFHQAAAAAAAEdR2AEAAAAAAHAUhR0AAAAAAABH0TwZ+5SQpRtxv759jdjatetaeGt2z2PZXq3RMgAAAABg38MTOwAAAAAAAI6isAMAAAAAAOAoCjsAAAAAAACOorADAAAAAADgKAo7AAAAAAAAjmIqFvYptmlS8TABSxNk+hUA4P9kKrFqS652g1cbxbpsn/wlK7GaKJaL+Kbt92CrbwWwizYclltjQMcTOwAAAAAAAI6isAMAAAAAAOAoCjsAAAAAAACOorADAAAAAADgKJonY6/zKp3RYtE02KMs19Y8WZVgiQf2ZGvc0OzfGQCg2bQmySIilUrMdopu7qXK1jCXRsltG42SEU+4BQUixxM7AAAAAAAAjqKwAwAAAAAA4CgKOwAAAAAAAI6isAMAAAAAAOAoCjsAAAAAAACOYipWK1AGDYkInd7rab8HbTqTSHQTmpo9zakNT7/SJpGJcEwCQDyotcS1U3c0523bTZ8/imUAseK1TB8NtuH7LwB7zusxn0kJhpjlV48ndgAAAAAAABxFYQcAAAAAAMBRFHYAAAAAAAAcRWEHAAAAAADAUfts8+QeyWYLwi11LdM6loa0TWt2k+NYiKIj5aJ3rzRih5z1rJ4cD/82RTBOtwtoS3LS0tX4yi2LjVjn9DQ1d/mmIiPWvUuumru0oNCIpQXb6RvnMS//kx+9S019/NnJSnQfPIkkK7G6llmVfuTon8YlWXK3K7FsS27xbrcovniSzd9EqI4Gmq0uQTm/BHZG/NdpkgwgGjRKbhpP7AAAAAAAADiKwg4AAAAAAICjKOwAAAAAAAA4isIOAAAAAACAoyjsAAAAAAAAOGqfnYrVUhOw4CjlcAjMv0JNXVSkzCBJsSy3Rolpk1VEJDT/KiP20w49uf+xT1hWiLjlUUavRTUSzlaH15bB+S0elFZXqfEuuQcpUccmPWjHs0icjDlsGR7lNRhqof227pZuanzOyjIzt0y/APkLzVlX/XplqrlbKyqMWLcMfVLbqooEI9bFU6vmXvqVT42jjYhiAhbaNmVQndgG1Q0a1NOILVu2Wc1NUd6p1vqj2TK0pOGd9PgP5pDOmLj08O5G7Pnv8ltmZQ7iiR0AAAAAAABHUdgBAAAAAABwFIUdAAAAAAAAR1HYAQAAAAAAcNQ+2zwZ2J2EUZNaZsF1etgz7JmWWR/iQ3ObynosXQhbsVetpV0urZpFRP+cxNZY17FGyZo23CTZJmTrBNoC2qebDYpFRHyFlUZs1TIzJiJS296MZReYTZJFRPqZvUylZGe1mrvmGzP2o9nPskW15r4AsHvRvCRtjZI1NEqOb9E0Sc56SL9vKC9X3hjdrw8FiKZRcsbD5sFTWRbQky3rcw1P7AAAAAAAADiKwg4AAAAAAICjKOwAAAAAAAA4isIOAAAAAACAoyjsAAAAAAAAOIqpWBEYd/T+RuyDr35Sc2ne7qa7rhhjxO6dNDviv//ff16pxr8qrjJix3TLVnMv/P1TEa8P+yDbECJtVFULDSza9+YgRcMcCeK1XGGDLXWh0FbYYitDrKy67QAj9s+vV6u5/lIz9nSZvtzPzFsXWWQZCPLmSjM2Uh/MJf9Rpt+80U7PnRz58BvERA9LfEuLrC2351gjVrx5jiXbcvABcEKmErPdF2qzGstvO15PPvM/EW/DiO7mhen7fP3cUnnryWbwpJcjXpeLeGIHAAAAAADAURR2AAAAAAAAHEVhBwAAAAAAwFEUdgAAAAAAABzVpponpyqxmij+fl9tASKybu1WI9Y/Q89doXWLQtwrzOzdrL//0Gt6s8Bsf60RW92zeetC2xdVP2Q6GsetdE+KGq8Q87wQHctnMkpTW8S/xduKjFhmpn57tj3TbIZdMWmUmvvtG/ONWEmh3hE5GDLjBUl1am7Z00ON2EcvLVFz0XLadf0fI7Zz23I1N8mTbMR8IX3/ag4+wGySLCJSm3ugEevq3anm/rjxh4jXh7atFWc+IIZ8Siy6u5nZevjdPhEvoWsHZQBNfokl+1MzNL1LxOtyEU/sAAAAAAAAOIrCDgAAAAAAgKMo7AAAAAAAADiKwg4AAAAAAICjKOwAAAAAAAA4ysmpWElpWj91kVTln5OeqPXwFklLSDJilQG9zrUj2ZwmkNQlTc1N315sxiyTSoqq6AHf6tL1bugLVq8zYp4e+iKSEtKN2NqNa9Vcz/77GTHfltX6gjuaoZQcfXtr1xToy0CbwJmhbajw6fMikpLMaVk+X8CyFPN6l5KmX3+8dcrFRr9cis9vXhsDHn1iUihUZdk2xMKvXzIneozO0XO95uVHptyzVM3NTTSPk5qyajU34DGPvzWJ+vHw5NV5RqxHjpqKFrRz20dGLDdLn16V3aenEcssV6bLiMjWGvN4TOzcVc31F5aauZnmfY+IyG+OHWLEfixZr+YuWviFGkcci2LUlRr22qY9Mu4xXmh3NF7LPUZWphnr0LO9mlu307wuVVbr16q5Reb46Zxu+gRSX8i8BmZ6KtTcgq3mxEkX8cQOAAAAAACAoyjsAAAAAAAAOIrCDgAAAAAAgKMo7AAAAAAAADjKyebJmQl6N67kBLODk79Ob6hUEzCX4QvpDbrK1pdGvG25aWZT5tpES2cpqYt4uYiRKr3p8NqfzAZbXfYzG/2JiASVV02GTz/O1s1eEPGmdRw91FxXjX6M1ArNk+NBitlXXez1cvOcE/Dr5zJ/su2coWxDUMm1nMtqtd5wdGreC5SGyPopRIJB85oSDOhNmWstcU1ysrlCr+jNA+u4VLW6+aV6fJDSxzqYpDeZLFHOTzVm30kREVmh7mO9ofcwrf8lx0hcqNv/YjXuLX/LiFWm6yf/jGRzB9fU1ai5a1a9G/G2VdSdYsQSJDXiv4/W1y03wwz69Be732MeT+otkohsKVOuNZYmye2zzaUkp+oXzILt5ZY1oqUELfeQQeXyUfRTkZ4bRePtipLILzbpaeY9kd46ue3giR0AAAAAAABHUdgBAAAAAABwFIUdAAAAAAAAR1HYAQAAAAAAcBSFHQAAAAAAAEc5ORWrxNLS+qBOZqdsb6o5UUREZHuV2X09MajXuTp3NLv2B/XhIVLrM5fb0aN38KZ3e/zYsXx95MnaYRJNidSSWzR3iRGLfDYS9gat639amn5ara31GTGv17KHa8xxAImZ+nJDteZGhGyTrpiAFRd8PnPCjNernxi8ok88ilSi5SwS9JvXJb9tvAVane3mbKFyO5FjGRLSxTzliNeyi3+RbsZKLEPW/Mo92DJlXWh9daJPC0oacoUR69tus5obLC00YtWWi8fZt5xvxBasWanm+jzmjXNyjwvU3NX/HKDG0brKy8wxeiHLbUuSMpk4mtNCdoq+4IBy7+QLMoYv3pVXmfc0SaJPPsvpYO5729uqimLzXNSpnZ6r3WMXFNveWenb5hqe2AEAAAAAAHAUhR0AAAAAAABHUdgBAAAAAABwFIUdAAAAAAAARznZPNnGp3TpykjQW3cVPTnciJ1y/w+2JUe8Dd8WmLF1ZRH/dewlnXPNWKalG9falTuNWKcuSudJ0XvV2tp2FW6tiujvI34ElF5r5VWWpn5KEzevpctxQoIZC1XrHdvrlAbOiG9az2xvgt7o3++zdLCNkKXPvwiNkuNaNDdnpbZ4NP1Fo+lyyjknbg0adaga75Blfo5bvk2/b5n73gQjlmNZX55yRxOy3LmYd04iN068XM2daVkfWleSclnqnaXnHrmfud+79NJz1ftgj37c3HV2RyP2n1nZau6Vz601gwn6MwwB5QYuMVHP9fvbRmPd1mX+zmyXmcId5r63vVfS4kWleq5+Lmrb9z48sQMAAAAAAOAoCjsAAAAAAACOorADAAAAAADgKAo7AAAAAAAAjqKwAwAAAAAA4Kg2NRVrbakZO7CDnjvwWnMC1vIYTK9KVX6jnSzbULij+etDdLJyO6nxRE+hEasu1g+IfgfnGLG1K0qbs1kiIpKSZvZ6r61u293bXacNFrJ18k9Qcj8P6Pu3VGqU2CY19xLvQeZ2MfEorqnHTcAywkg7oKLavRwLLkq1nEjKotidiUnmQvy+ljkebOc9jr7WVTbvGTXuG3uvEevULVXN1ebzlVrXGPkeTlGOkvd+0K9riA8l1WaswjLa6HhlINtf3m3+Npx/RKURu/PVIjVXHdinjS+1YPpV/AglWZ498Sn7SBvfJqKPy27jeGIHAAAAAADAURR2AAAAAAAAHEVhBwAAAAAAwFEUdgAAAAAAABzlZPPknBy9HtUhxWyolJ6st/RbtMls+Hb4AXrzpaDSfKmwWt+G9QXmNtTQJDluVNSaTZJFRGrNXrXSsZN+PFTVVhixHpYmhCnp5kusttqv5m7JVzYCzvFauogmJJixsSE92aOEvQl6bkg/nOCYqBpee1PUsEc5cEKB1j2vqNsQooVutEKWj90yle6gZmvRXbRGybYmx+o2RJFL8+T4UBNQLjQi0rlyiRHr2rOdmqu1G0316ssNBs0DMsFyNASUo+G8Q/Xcv76qhhEHOlj61B7U1dyXFx2unwE8yuE0cr90Nbddhpm8tcq+fWgjtCbJ1tx9r0myDU/sAAAAAAAAOIrCDgAAAAAAgKMo7AAAAAAAADiKwg4AAAAAAICjKOwAAAAAAAA4ysmpWP6g3im7QOmSnuHVO7L/8iCzprV8nd5VO6AsIlH0bTi4txlbsUFNxV6QkKnH65TJQkXFdXquEu7dVZ8YEVImYCVapt+kKZMGqmn07pwk/VCQmjpzvydaJl1pk4VsU5NC0UxTQtsQ1E8M+pFg+/wmiokTUWACVmy0t+yeoHLKqLH8ytsnmcmFyqQsG9ukK20GZHXES0VL6tdBv29Z981HRiz9l6eouc9OM4+RK09PVnO9HvNoqAvp23DE+E+N2F9vOUrNRfzaZnmxX/GSedycOVLPDSj33J+v0UddXfdapFuGvYGJiPGFJ3YAAAAAAAAcRWEHAAAAAADAURR2AAAAAAAAHEVhBwAAAAAAwFFONk+uLNPjB/QxYxWVelunJStbpnFkAY2S45q/QI/vf4AZ25xvWYjSF3DDtto93ia0MV79nJOSZLaSq7U2Mm1e2zma2TlIaZgtIiJqM+KWuX4hfhRZXqxKz1HJsnxEF02jZI3tb9MoOX4FgulqPC2j1Iht+vZdNffKp46OeH3BUOQTHr59aUzEuYhjUdxgvLugRbcEccAyL0S9VikzYkREhDkxscMTOwAAAAAAAI6isAMAAAAAAOAoCjsAAAAAAACOorADAAAAAADgKAo7AAAAAAAAjnJyKpZtUsOq9WasaxZzYNBAZ72W+dNqc8rMmGPS1NzZc5gJAru6Wv2ck5RojpJIsZyBa/0tM80G8SukTr/Cvqp3ph7fVGHGdjAkDf8n76u5avygkYOMWDBtZ0tvDtqg7p31eL5l6izaNm36lQ3Tr1oeT+wAAAAAAAA4isIOAAAAAACAoyjsAAAAAAAAOIrCDgAAAAAAgKOcbJ7ssZajzOak1YEES2407Z7QZhRG3mVys6+r5SfrYrMtaJO8llNOIGA2x6VdLuolJyer8bq6ulbeEsQDv6XLZHflMOlkOZEsp1PlPseb1k6Nr1622Yh17q0PiACakhxMtfykplW3A+5JT9HjVbWtux1tGU/sAAAAAAAAOIrCDgAAAAAAgKMo7AAAAAAAADiKwg4AAAAAAICjKOwAAAAAAAA4ypOXl8dgFgAAAAAAAAfxxA4AAAAAAICjKOwAAAAAAAA4isIOAAAAAACAoyjsAAAAAAAAOIrCDgAAAAAAgKMo7AAAAAAAADiKwg4AAAAAAICjKOwAAAAAAAA4isIOAAAAAACAoyjsAAAAAAAAOCqxqR8OGTKktbYDDsjLy4s4l2MHDUV67HDcoCGOG+wJrlXYU5xzsCc4brAnuFZhT9mOHZ7YAQAAAAAAcBSFHQAAAAAAAEdR2AEAAAAAAHAUhR0AAAAAAABHUdgBAAAAAABwFIUdAAAAAAAAR1HYAQAAAAAAcBSFHQAAAAAAAEdR2AEAAAAAAHAUhR0AAAAAAABHUdgBAAAAAABwFIUdAAAAAAAAR1HYAQAAAAAAcBSFHQAAAAAAAEdR2AEAAAAAAHBU4t7eAAAAAABA2xGsfFSNezNuatYyPJZcTxTLRZxLTLXEa8yYEtpX8cQOAAAAAACAoyjsAAAAAAAAOIrCDgAAAAAAgKMo7AAAAAAAADiKwg4AAAAAAICjmIoFAAAAAAgrK3vYiGUmJKi52qQr2/SrmoqJRizZY5t1ZfL5QxHnxmIyF1pYkjIBK8Ey6qrWPP4SMwJqqr+yORvlJp7YAQAAAAAAcBSFHQAAAAAAAEdR2AEAAAAAAHAUhR0AAAAAAABH0TwZAAAAANq40tIHjVh6gv52MNFrNjQuC+iNakuVhsg5mTeruaGg2fx4p+VRg1SlqXKipdGy1iiZJsnxz5tiNkoO1mWouUkZZkdkXzDTsuSK5myWk3hiBwAAAAAAwFEUdgAAAAAAABxFYQcAAAAAAMBRFHYAAAAAAAAcRWEHAAAAAADAUUzFAgAAcMDg9u2M2NKSnWpudlY3I1ZWvrXZ25DkTTBivqA+KQfu0eYNmTOMEO9Kix9Q41mJ5lu/7SF9D3fLMKdaPV78NzX3nFDQiL1Vbk7gEhGZo0zFWljnV3MrvOYzCPfn3KbmBirMqVjapKyoKVO4vOk3Nn+5+5oUPRysVH6Qbk6/EhHx1aYbMU+iPv0q5E1TVlZt3by2gCd2AAAAAAAAHEVhBwAAAAAAwFEUdgAAAAAAABxFYQcAAAAAAMBRNE8GACBOJSuxuhgsV/tUx2x9ib3lIG3Hi8jG6qqIl+Gv3BajrWksLdFslJzs03Mr6brrHHaZewIVE41YeZ1+pUjINBsi71h3h77gTf9rhG4oKVFTb1Waqnf16ieGjUkZZtBXq+YmBZWrlWV7xxSsM2KzO/dVc7Uu4QmZN+m5iJ5WYfDr3ZMT0sx9H/ApjY9FJDnVvAbW1eq5kqQ0Sq61XFxjcme19/HEDgAAAAAAgKMo7AAAAAAAADiKwg4AAAAAAICjKOwAAAAAAAA4isIOAAAAAACAo5iKBQBAC0iy/UCZxnHnldlqak3ATL7/vEw195YnzWkPE6/XpyidOaHAiH32o7JhIlIeYk5Oa1vt06eHBEPa5Bh9v1UFzf2mZ0Y3CalMGR6Sav2ckFlr+5pUS7ymVbeibQpWPqrGtdevJ1F/i6dN0MqsKlZz033m6/eW1VvU3GU/VRixX/XrpuZ+0N9c7pUl+hXz4tKfjNgv9++q5p6Y29uIeSynJm8GE7BaVMC8hnmV6VciIoE65VgNKhOtRKQuwZyoliiVaq4/NUtZbrmaK5bJjq7hiR0AAAAAAABHUdgBAAAAAABwFIUdAAAAAAAAR1HYAQAAAAAAcFQba55sNo4UUbr8AY7TXrj+Vt8KAE2x9uJTOl3e9UxZxMv966SdarxHdzP26NiIFyvRtdBFSzrrxOPU+FvTP1Kike+3ltrDNTRJxv+hSXLLiabhb1n5IxHn/jdBb97/43KzcfGICrNJsohI5exCI7Z1vt6oNn9HghHbdLDS6FZEJh5jtnzvt1a/Bh6R29OI2Xr/ByrMRtS25vLeTBotW3nS1XD7bubghspSfRHBoPkOxm/ZGT2yzEbJ2bl67pYd5vFXFtCP9ZRU8x6s1tJnOZ7xxA4AAAAAAICjKOwAAAAAAAA4isIOAAAAAACAoyjsAAAAAAAAOIrCDgAAAAAAgKPa2FSsaCZgHajEVkXx9ztY4juiWAawZ5iABeDntuTv7S1ArOjTr2x6WOJbmrUNOZZ4qRrVPyc86ZSzjNj0D9/asw0CoApUmhOeyn21am4o0ZwgfGyy/vrd8M42I7YioI8r+tXlA4zYyk+L1dxz0s1t8/kDau6AXPP8tuC1TWruUYdrUX0slkeZgWWbfhVUJmgxKWuXdu3M6VciIrVFZuyyU4eruXdfNMyIFZXrI6mK8s399suje6m526uqjdiwcU/ry20jj7q0kX8GAAAAAADAvofCDgAAAAAAgKMo7AAAAAAAADiKwg4AAAAAAICjHG2enGWJ/94Mtbc06Uu8xYxl7K/nZiaYsfJ0PbfqCmUb7tdzV52qxxEXqh7R9/FxXx9kxL6ZulDNzUwxY9V6fzjZfLv5cjzhywPU3LxZy/WFAGhheuNIW4NGYE8kyzg1XidTlWjzmiTblEaVHVSj0z9cG4MtQUto7TNZknIr7dcPGwlxOlVpTZJFRP2FZSlNkm0OHHCrGi/ebMZSLI8EBJ40d7BPLDe8im776/fcW/+uN+fV3PzP983tKp+o5oaUF0BthZ5Lo2S7naWR5z79zg9RxRE9ntgBAAAAAABwFIUdAAAAAAAAR1HYAQAAAAAAcBSFHQAAAAAAAEdR2AEAAAAAAHCUA1OxtL79/Sy5dWaoZIMl909m6OClauaho3KN2MLHvrMsd5EZKmT6VbzLTDVjB96iz4zoI+YErNOO76PmfjRzvRHbf2C2mtv/3jIj1lmYftXaQj/eY8Q8g+62JLfMNvTqasY2bWuZdSFajGtBy3v17SvV+Dlna9eElS27Mc0S+WQetC7bmSxB+cg3YJle1Ve5TVpnWbBPGZCUbnkXUuXX4/u6hAx9OlPpzr8asawEZSyriCQoE55e+PNv1dyr7n/FiPU/UJ9MXFNu7uA1W5T3ZSJy6pE9jdgH36xXcw/Y31zf+p/K1VyfFvTo9/JaOCGoH7xBZRqZ17IvYNcvo78ar63cacS2SGGz19c5s48RC9XUqLmF/rZxk80TOwAAAAAAAI6isAMAAAAAAOAoCjsAAAAAAACOorADAAAAAADgKAeaJ2uNrKrUzNRjzeZhNZ//07LcEUYkqWMnNXP1l8+Y6zrpPDW3ZroWHWPZhtmWOFrbMUceZMQ+mqU3pPzk6nFG7A9L9MbbQwe3N2K1NXozyUoxmyf/8ZeHqrnXfWE2cEZs+FLNBoDVS25Rc9OGPNK8lVnOwF07mcfNpm0lzVsXgLj0zsNmw/azzj5Zzf1h5udGbPjxx1qWPMCIhKoXqZnfzTGvYcNHHqDmJnfQBgCMtGyDeV1DbGgtYWPR2l1rlKzMlxARkaQ0M+bRb9H1u3maJEdFa+IrYtnvURwMJRVm81oRkVoltnOF3ri4p9IXd40kqbnFxUqbY4/e7LlaaZR8UDc1VZZu1eOR8np53qElra1c06rr216xvlXXFw84ggEAAAAAABxFYQcAAAAAAMBRFHYAAAAAAAAcRWEHAAAAAADAURR2AAAAAAAAHOXAVCzNajU6uOs6I7Zq1G/UXF/XfxuxER1XqbnFub8wYu07ZKi5c5cfbsRSch5Sc2sXm7nYO9av2mDEQtdqMydEjvvWnEi1rVCf/BGqqTFi3kR9DMTyc83YOd/ok7nQcpL73WvETrzgaDW3Y/8uZrCdflpNrjb3e2mhPl1i1ZpSI5adpdfhyzLaGbGkRGXihIj4NleocbRhHv08JqFYzM9BLJx1691G7K+/u0HNtU/A0iw3Ip40ffJM8y1ooeXCRnsF3zREz83baU4nSi3SrxM7lEtYWnt9LlZCgXmP00sf/CmdupjXsIpE/Xj8YF21vpB9nDfjJjUeqDCnZYWiGIt14+MfqPERfc17nOXrCtTcrWvNa82gLulqrt9nTh8d0FmfoLW8wJzNlR/F9CvbJVD99Vhybb93IN7wxA4AAAAAAICjKOwAAAAAAAA4isIOAAAAAACAoyjsAAAAAAAAOMrR5sm67MAmI3ZY3wvUXH/aZ0bs67fMmIhIXckTEW/DMb9534hlpRSpuR8ujnixaGFVAbOLWt9XEizZ+UYklKB3XMvQurbVmY3gRET+Z6b5cgxInWUb0JrmLylW42kJQSPmVZok7/qBeTx17d5NTV27+CclqjdC3K+v2dSytko/tRcIzZPjgvaRinko7WJr/KjRDhFLk2Tt1GRttUmf5VbXt79+/emdnm3EKuss55wE8zzQv19vNfXb5XkRb1uXjPZGLM1vNkMVEVlfqw8WQMt41LIbT+xrnmA8XfWTS8egGfdm6Pct75pzJ6zGKb1xPX6z+TLsglVmk2QRsZz79f2rNVpOyNSbA2enmzvtsGE9It6EDrnmcAcRkf7DDozo74uIdJr9vRFL8erPJXz6gzIIxbJg7d/sL3/EshWIVm6WGSu3XKpSlMvdL44aqOYefbo50MjWIPvBW581YqmWt3bb28iliid2AAAAAAAAHEVhBwAAAAAAwFEUdgAAAAAAABxFYQcAAAAAAMBRFHYAAAAAAAAc1aamYs394G4jVlu5zpLdXYmlRLyuZBmixr+ccq8RC4WWRrxc7B3eFGUiVYLevj01IdmI2QbX/Lixyogd3F1vyZ6aYk43CqYqYyRERIpLLWtESyjerk/FSgkqo4xKC9VcX4YZS7JMa+i7v3lEbdykJ2/5casZtExpQ5ywTcDShJTzhdeyAG38hzeKYyHI+Kt40bODeT0QEQlldDZiRVWlam6Wv8SIrVq+TM0dP2y0EZu6aqG+DZU7jdjmqA5qtLYZ68ypZY+dqB9j84rMc07QMmHp7hPM+6GVhfqkq1Ci+Vny6/OZ1BgNb7o+vSpYGfmkK20qVrByopp75qmvGLEUv35fWqdMcQ349OPm4cenGrFxxx2u5uakdTC3IUs/doOV1xkxb0bkvzNbLqLXsUMnI9YlU7/HqK6sNmIrV25Ucz+eYE66OvBgc1qkiEiHzplGLFnS1NztZfq9u2t4YgcAAAAAAMBRFHYAAAAAAAAcRWEHAAAAAADAURR2AAAAAAAAHNWmmifXVv6oRG0N/ZYbEY+YDbp2yVWWul3NDIUKLMtAXPOYDd6Sk/Vm2jVVPiNWrvcKlPbtzJdYQZXeTK6ktFLZLn25aGWF29RwXbK5gzyWHuzBMjPmM/tOiojIBqVRsnKIiohIQOvx7acJblzzKA2RQ2ZzUxER8ZpxTzS7V2uobA8jTuTN+VSNlxWuMWJ620iRY44cbMRW5q1Qc79d870R65KoX9hWWdYHt9w4w3LjgjZBaw5s4824WY1fdc5xRqyqolbN7ZppnolKK/Rj7MITzGbttvvdo8b2N2LeJP25hGiaH/t95s2Tr+wRNTcp+5aIl4tdumebDa79OWYzYxGRlE5mQ+6dO/VjJ6edGUtI0O+f5q/4yYh16WA2+RYROWqlefO+cJi+XO3+yXZLVVurD+JpKTyxAwAAAAAA4CgKOwAAAAAAAI6isAMAAAAAAOAoCjsAAAAAAACOorADAAAAAADgqDY1FUtE6zxt+yeaU0lCEvlEK3uPa62te1dL7taI14eWtXZ9hRE7qG+WmltRY04E2LlT75yuzL4RvR+7BZNr4lqoTpleZdlnieaAAPHHYihJNJPTOJ7igzoBy/I5S9Cc7BjVbowiOVE7YYmI3zKwCy2nfbf91Xg3mWfENlqWsX7xUiO2usq2xsgnd5hzQkXSPfqIv82hqK54iFe264xyXZPqyBfrtSw4yMUqKto0qIBlKlZCNJOj/ObOTEnTX+slpebE2IVzvlJzExOV611An2I8cnBvM7UmioPMIjnntmYvA3YpvmIjVrVdv86UB8z36otXb2r2Nmh3VZtn6pPPfinXG7FqBwcH8sQOAAAAAACAoyjsAAAAAAAAOIrCDgAAAAAAgKMo7AAAAAAAADiqjTVP1pr0dbTk5iuxHEuu2cTN3vCtVInSJNlFQdEbuQWVV01Ort51VGuku7NG70Tqa34vOLSQpPb6691fo+xgS7O1Pj3MOvrajfox5lWOMb+tByk9JtsI/VhoTTRJjh8vvr1QjZ94zOFG7IOF29TcpeUbjNionmYjUhGRmnLzAjRilJ774sz5RqyYJslx4e3zctT42a+XNm/BtutMM+9baJLccqJpkmzz3NSvjdglp/5SzU1NN+9xRhw/Rs31+5XrnTIoQEQkMdm8/7rhb2+puWhZiZlmzG/2zBYRkRkrKo3YOWccrOYu+2G7ETtyWH8111dhNmDeVF6m5hZsNxs477/UbJIsIpLTz4wN0Xt/S97Rejwe8MQOAAAAAACAoyjsAAAAAAAAOIrCDgAAAAAAgKMo7AAAAAAAADiKwg4AAAAAAICj2thULEVCrh4PmFOxPJKtpoZkpxnz5OjLDZVGuGGId5uLqtR4dbk5xaFTp1Q1NxAwx8zkZOgvu8LqWjOoD2NiElIr81p+4d5UcwclaaPQRGR9gTnxwZukr08bDpGYoueqEwn2/oAlAM3QPsO87xARWbPR/DxuzKAsNfe4duOM2JeLPlRzvTntjdi8ZYvU3D+fdIwRu3/6HDUXreuw4/T429LOiJ39un6MAU3p3zdHjf/5n+8Zsd+eqE/QCiYok2QtjxpM+NsrkW4aWpi/QgnaHhFRboXPP/0wNfWcqU8bsaM6dFVzve3NG+d+2fpk4gJz2JZsvFh/Y1VoXgKluti9N1s8sQMAAAAAAOAoCjsAAAAAAACOorADAAAAAADgKAo7AAAAAAAAjmr7zZODttqV2Sg5JBsjXmwoRNO5Ni+oN81KyzAbbxUW1rTMNtj6dmm9v9zr8eWM2hLLD9LMX3pmup5as6N520A/ZGDf8foypeujiJzQx+zwuGK91tFS5KttU6NYo74+zY9baZQcr36Ym6HGzzq52Ig9U2s2VBYRuWoq97ew8wbNoSAiIg9fN86I3frE1JbdGOx9UdycBur8avyz1643Ysed/4893aI9Um2eIp3EEzsAAAAAAACOorADAAAAAADgKAo7AAAAAAAAjqKwAwAAAAAA4CgKOwAAAAAAAI5q+1OxQrZpRXVKLMWSWxujjYFLunfooMa37jAnRqRl6suortA7wDcbE7Ba1YGje6jxVXO3GLGd1S29NQDaun9dd6Uav/qJp5UoFwTssnileU0SEZE6c5raxadq98EiV02N4QahzSkr0W9yOnQyb4Qfuf4MNfeWf7wX022CGwrW6yNmux1qjpOd87o5KUtE5JjzmjktK9S2r5c8sQMAAAAAAOAoCjsAAAAAAACOorADAAAAAADgKAo7AAAAAAAAjmrzzZMTM09Q4/6KJ1t5S+CamspyNd6vU7IRC4U8au6ylmqejFYVCuSo8QOPMOPVVfpxs2nJxhhuEdoaj1f/nCUUDLbyliAeZGbmqvHJd/zJiD393gdq7tfLFsVyk+AAb5p+L5JXUGrE/vNXPRdoyvqCbWo8lNKrlbcErvlswTI1vn/3NCPmCXJ+2hM8sQMAAAAAAOAoCjsAAAAAAACOorADAAAAAADgKAo7AAAAAAAAjqKwAwAAAAAA4ChPXl5eaG9vBAAAAAAAAKLHEzsAAAAAAACOorADAAAAAADgKAo7AAAAAAAAjqKwAwAAAAAA4CgKOwAAAAAAAI6isAMAAAAAAOAoCjsAAAAAAACOorADAAAAAADgKAo7AAAAAAAAjkps6odDhgxpre2AA/Ly8iLO5dhBQ5EeOxw3aIjjBnuCaxX2FOcc7AmOG+wJrlXYU7Zjhyd2AAAAAAAAHEVhBwAAAAAAwFEUdgAAAAAAABxFYQcAAAAAAMBRFHYAAAAAAAAcRWEHAAAAAADAURR2AAAAAAAAHEVhBwAAAAAAwFEUdgAAAAAAABxFYQcAAAAAAMBRFHYAAAAAAAAcRWEHAAAAAADAURR2AAAAAAAAHEVhBwAAAAAAwFEUdgAAAAAAAByVuLc3AAAAAMDe94vQ74xYnS+g5nqUz4e/TX4x1psEAIgAT+wAAAAAAAA4isIOAAAAAACAoyjsAAAAAAAAOIrCDgAAAAAAgKMo7AAAAAAAADiKqVgAAABAG5XcNcOIHbrxHDW3qsZvxEIhj5obCPqM2JG+S9Tcb5LeMIPt9WlbUlKrxwEAVjyxAwAAAAAA4CgKOwAAAAAAAI6isAMAAAAAAOAoCjsAAAAAAACOonkyAAAA4JCkLilGzFegNx0evOZkI1ZWXqrmhgIhM2b5GNgTNHPFrycfUnaSEVvU+R19wQCAqPHEDgAAAAAAgKMo7AAAAAAAADiKwg4AAAAAAICjKOwAAAAAAAA4isIOAAAAAACAo9r8VKxjLPE5SqxTqp6r9PyXwfrgAfleSS63bAPix2Al9vmZem7lTjO2X0c9d0uhGcvM1XOnfG/G/rBez4WDPAlmLGQ5BecoJ6NS5cATEfEqywj6I98uAM445TAz9uE8Pdf3N/Ozu6Tbg2puaKY5schz/HQ1d/6d5nJH3acvF82X1EW/OfUU1BixxHR9GT/8sMKIpVbry60R8wa3a5duam6iVBuxbcX6DXKmVJh/P5is5iZ0NK9htUUcYwDQFJ7YAQAAAAAAcBSFHQAAAAAAAEdR2AEAAAAAAHAUhR0AAAAAAABHOdk8OaNHHzX+2v3/MGKBRc+ruU+MvNqIHXLRyWru5gqzYduPf79Ize3a60Ij9t7X89XcO/99pxpHyznIEr9T6Z7csZ3ehXDhhioj1qdntpobSCkzYolpWWpu3xyzzfYrlg3+7Uo9jviVkhwwYrW1ZkxERGo8kS83UWkyWRfxXwcQhx65Xj/5/6KrefK3NU+e74282ay/o34N05SlmMtd9JR+vTzkD+b1ErFRl6ME77AkL1xqhGrM25NduqUZoW0/rdZzs5WNKN6hppYmK58lP6pfrDzXmtvg7aRfL70ec7n+7WZjaQBo63hiBwAAAAAAwFEUdgAAAAAAABxFYQcAAAAAAMBRFHYAAAAAAAAcRWEHAAAAAADAUU5OxaosvVGNnzbhbTN4sD5ZIuWdx41Y+nB9nEDPg/5mBtsNVHMTtj1hxALVo9RctKy3fmlOVVi3olrNzexkxh59X5/mMWSoGfvvPH28RIk56Eqyc5WgiHTuoPz9rWqqfP4rM3bsp3ouYsCToMdD2pQOfaJVba26AH25NZFP9NAmYCVZzuw+c4AWXJRg+UwmEPkUJMS33/fTRx+2u96M5d+gL6P7bWas9gE9t/yZN4xYpWVwZ8aflb//SoaeLEzFaq5gQL8ejOxuTjJb2kW90Ii/xoz7lfseERFJUO6TQub91K54hRHK6ZeqppYWmvc+HstiD+xnXkeXrdUnaHHWi1+18yep8QSPudf8liGhCV7z+E8apZwIgZ9JTDJjfl/rb0dr4okdAAAAAAAAR1HYAQAAAAAAcBSFHQAAAAAAAEdR2AEAAAAAAHCUk82T/zZOb8a1cuFGI5bWLkvNLQqZTdw6ZOapue+vNTstXTQ0Wc2t6lxpLrfbFjX37ilqeN/jVZrNBi1NZZvp14P1+HKlJ99ZI/V9/NpCM/nmX+rLPe1NMzZpiJ67rNSMjRuVouZuC+gNEptNK/XSmVBELF39VC1z7EaDJsltHE2S27y6KD528xzaR40v/Md6I5Zi6Tn62ZVmrLM+a0AVXFcYeTJEJF2NJnU3b8s91vshs6m/v7M+2MOv3e4H9fuI+54xLyB9OuaouYs3mPfd3bL0g/em89oZsVCW/nsIyHojltBZb9DtUW4hPR59G3zb9OEVaL7Sr/5uxAJBS/N0j3JPFdCP84ByYxpa+Ky+2EOVExnavNQ0vZxRU63dK7Xt+yee2AEAAAAAAHAUhR0AAAAAAABHUdgBAAAAAABwFIUdAAAAAAAAR1HYAQAAAAAAcJSTU7H+/Io+vUqdW/PjziiWHHnugx9HsVgpiSYZMXLOF1GM9FAkeJRRWaI37v+TMv3Kpvd0PZ6olFn9lqkVLUcZLxEHU55ahPZPFdH/udH8CoaMVMMHdDvViFVX65PXNpcUGTGPx5yAIiISqjXPLwflrlFzeyab57jP5ixUcwHsPZ2v0+Pap3Hdxq9v9vqO04fMWJgnz3Z/bqPXiRajTwvy5ZuxxC6Zau6CH5V7y3YHqbnXPGDGPvl8iZr7hHLrs3+vjmpubmcz/tLnK9Tcbu+ZsYP7d1ZzZynTaKWjfowles1ro6+6efd/sNs+4xE1PnjcbUasuEi/j9befCq7cRflzd2aWY9bktGS4vUdQk01o2Dr8cQOAAAAAACAoyjsAAAAAAAAOIrCDgAAAAAAgKMo7AAAAAAAADjKyebJapNkm2hKV8EoNyRS0TRp3RcF4/MXEbC9OrT9qfeHi4o/mldjDNanitN90RISLCeHQHNPBHkL1PBqSzxS0eyZlVHGI5Zo6W7oj+qsjCQz5NH7aEtCjRmLxa87MVeJVeq5IaWHe2u3dd/XhCwv+Pg4Q8fHVrjNdsE3m4CGQpZGwNol7Khv1dSv0szYT9X6+bx9unky2rDebOgvIlK102wCna5milR5zZunTSUVluwMJWYZaBE0r9ler359D7bYjf6+o/OJt6jxjHSzyXeVZZ8lp2cZsbqq8oi3of+Zd1t+ou139nmscOaPfzyxAwAAAAAA4CgKOwAAAAAAAI6isAMAAAAAAOAoCjsAAAAAAACOorADAAAAAADgKCenYkXF1gy9NUtatBGPG6mWoT7ahJeQL4oFRz7gwj4lraUmXUEVCMVgUkInc8cnFGo7PcppfvGK6VdRCS19XY17Bp9n5uqHjfijuH5cdPrxRmzytJn6couVWGrk60Ls5LY3YymWKWlbC1pmG3KUKWk7LUNqoro2wkJ/wSd1TjFiPtu0yqB5Ph7bS0/dVmyO4kvooe/I4nxzCpdyiIqISL4yFcumspv57whG8fe9or8oPMoErEApN1QtRpnqKCJSWaOMcMw0J2WJiNRVmCeXVK9+AapJMZdbWq6sS0SYgOUm7ZVtewWHls4wYp7BJ6q52nmr2vIerCak/cC9N/A8sQMAAAAAAOAoCjsAAAAAAACOorADAAAAAADgKAo7AAAAAAAAjnKyebKt92xULY7or7VPSkzOUuM11ZYukZGyND5VW3FFc6DaSq8cvy0mUdlp1ga2SqNkW3vhyZMuNWIXXfGCJVvrThh5M8i8l09S40MunB7xMtB8CUMvjDw5Bj363v/0i+YtwNaPEi0qWTnPVxVGswSz4e4u2lgAXYXSTNu9tpHuO2TDOUbsh95vqbnatea8U8eouQ9O/saI+bfo23BAthnLL9Nze3XtYMTW5u9Qc+uU9R3cVV/ujgo9rhmu/M7mp70c+QIQHVvz9A7KjWm5njxwQEcjVrBDv+Gt2W5emJJ6WjZts2XbEBdsTdhLoliGZ7B+f6vR7qR3Wi9sNE8GAAAAAADAXkRhBwAAAAAAwFEUdgAAAAAAABxFYQcAAAAAAMBRFHYAAAAAAAAc5eRULFuPaq/X7GgdDEbe0dr2y4hmABHDiuJbhWX6VXKCGfNZdqbWNz0pQZ/VFkpVjqqQnltXrUw9cq8hu/OsE7Ca6aIrno8iO/IJWJqWmn6VkqJP36mtjXz6zr4kGNQngqSnmiecqoBlnpqyiPaZyWpqQo25jBzLxzc7M8zzUFqtfm6qquPK1pK2KUOEklL13PQk85oSsLz+gsruTLaMFfUpi0hUrosiIinKtlVbJkMGmbTWbMEPT9V/MOptI3TV07PV1EP2M6dXpVfox01pjXnSyM7W5suIVPrNZbRvrx84ZSXm+WltUeSjP4NFkV8XPR7LPVlUY0kx4MB2Rmz5qp16crG5zw7or4xYE5HaFPN4ysnVj8cd281Y+3L9Hdv2KCYBomWdfuKJRmzajBlRLKH50x6VQ6cJbeM+hyd2AAAAAAAAHEVhBwAAAAAAwFEUdgAAAAAAABxFYQcAAAAAAMBRTjZPtglF0ShZa6umNRoUEYlisXCV0ng71aPveI/SX8tjaTJZWaE3T9WkK70J/ZZeXnWWPqtoXXULXzNiSYn6Tgv6zcaPU6fOV3MnvvRmxNsw5+1HzHV59FN7ypG/NYNR9BqkSXJs1NVG/gLWPn0prdCbiEZzqfJWmNk1dGuPG76Q3j05U+tynGm5AClHT12dfk2q05ocWxoiZyWYTS2TEvTllta0jYaUrWV+2itGbGTVb/Tk6guN0IK0l9XUndXmfujfu4uaG/KYx03Acm5YnqAdJPqxO6SdeV2qs3Td3llQZMRGKf9eEZH5ln8zmq9P/55GrN/+vdRc7bajdEeZmpubv8WI2RpbDz5xkJlruTme9tlyNY7WVx4039Rcdumlam4wYF5T1qz+Sc398utPIt6GK353mRErqdSvVW+98d+IlxvPeGIHAAAAAADAURR2AAAAAAAAHEVhBwAAAAAAwFEUdgAAAAAAABxFYQcAAAAAAMBRbWsq1l5fgIg2m4IBRvEvqIw+81l2XJqyk4OByA8ebfqViEhIafLP9KvoeDz6aDvbtIXm2rhlpRHbtr5Yza2qNbv+Z2ZnqbnfrN9uxN66749q7mczzW1ITypUc6OZgKVp7d9vW+WP4teVnGB+/hKyTHCsVSaFJCfpE5M8ygWv1scEo7hh+dhtpz/diAV3Vqq57ZKadwHJytDjdcpkrjrJtixFn4qDyC1If1WNj7RMidIkJZuv9/zSCjU3NcU8Z9jmroW2m/s3u0+OmltRZU6jSVa2y8Z2/UHL8VdUG7Ee3XLU3IKiUiOWlZqs5k5bb56bTh3dV98Gvzmyz++LfOIs9o5Zn35gxlp5Gya98J9WXuPexxM7AAAAAAAAjqKwAwAAAAAA4CgKOwAAAAAAAI6isAMAAAAAAOCoNtU8ORpau7ZYtP+k162b/FHsuKqodrLZ7K/KR6PZtuLrecuNWOeMTmruqpoiI1a62a/m3nvNb4zY0s16E9K/PPv3pjYxpmiS3PpqAlpD48ibiNZZGyKzL+ObfnuWnGHGfZb+xCGlb2llteXzPKWpf3md5ThTJwvQJLm1LUh7OeLcTOW4SU2oU3NXFZjNuA/qrjfHzumXY8RClu7u6+vMc05yyDJNQjEvdXLEuYgNf9BslL4mf5uau6nIbHLsqdLvcXr1NZvA523eoeZu2GCeb5IyzGEU/7dGJca1bm/4n8MPMGKeJH1ffDJ3jREbO7SDmutVdnEopLd3n7HYHETS1vHEDgAAAAAAgKMo7AAAAAAAADiKwg4AAAAAAICjKOwAAAAAAAA4isIOAAAAAACAo/bZqVjAnlNasifpHdnFp0wESLG87Gr16QGIX0ee+isjtvnrH9TcbVvN6UR/m/RfNZcZDvj/tHNLNKP5OJqc5KtQw3UecxqMJy1DzS2rMqcbid82Ja15PAn6JKRQgOMvHhwxoKsRW7AqX80d0ts858xfVRLzbRIROf2oXmp8WqE+ISlStk+tW+bob7tmfbXFiJ12bF81tzjBnIr144bIp+V1scSTsnKM2OLJE9TcgePujXh9aFkffbfaiJ177CA199hhOUZsxqLmnQNERNKVy1JVG78k8cQOAAAAAACAoyjsAAAAAAAAOIrCDgAAAAAAgKMo7AAAAAAAADiK5slA1JTOW1qTZBFRGy3TJLnFhEJ6VzSPx9wPttxoHHDYZUbs6T9dqOZu2lhsxG6d8D9qbpI3yYg998o3au62Hdub2sQ951Wa9gajadqL2OB3vk/SexGLx5OspFqOEe1SY/k4z6PcDYbq9FwNTZLj27/eW2rERh7UWc31B8wWw8P7Zqu5Xq95oC74aWfE2zXt600R50aDJsktp8qnn28SlbeUAw7OUnNTks3c2pDZGF5EpGC52QSeJsluKtpaqMZ37iw3YqeOaq/meoLmOScnK03NnTzbbP7d1vHEDgAAAAAAgKMo7AAAAAAAADiKwg4AAAAAAICjKOwAAAAAAAA4isIOAAAAAACAo5iKBbQoJoXsa65+YIrlJ+YkiRsuuVzPrDGnivzmf85Qcx+bPMmIpZpDtUREpManRS3jd5iABew1CZaXZcBnTg9JStYnz4hXmaAVtIy6UsKWTZCQV7l1DDLt0TVJAf0cv+CnUiN2+AHt1NyQMnHy8AP0CVrfrS4zYskp+tuQOqaHxq2vv96oxquVw+mwQ7uruQHlfJGVYLlx8ZvnPLhpxTpzOqyISH6NefCc1EmfbVdTUW3E6ny816rHEzsAAAAAAACOorADAAAAAADgKAo7AAAAAAAAjqKwAwAAAAAA4CiaJwM21s6RrboViIFQqDV3mt7wTfP4i8+1yBboTZJF0lPNWFUNBzQQb5ItfUSrzb6REvRYmosqp6KYvNpplNwm1Ib0z3aPPKCjEftmdVGLbIOtSbLWVJmGyvEtU4nNW5jf6tuB+OVNVm5CRSTLV2HEpi82h4jYWYYC7IN4YgcAAAAAAMBRFHYAAAAAAAAcRWEHAAAAAADAURR2AAAAAAAAHEVhBwAAAAAAwFFMxQJsGBaEPTCqezc1Pj+/edMhbFX4yGdwiVTVNGsTALQSn2UAUFqaGaupav760pLNM0x1XTRnF7gmIPpBFgqZbw2O6N9Jzf12TWFMt6keE7DiV78+6Wp8/U/miUiblCUiYs5Awr6gulaPa1eaDMtNbyWXpSbxxA4AAAAAAICjKOwAAAAAAAA4isIOAAAAAACAoyjsAAAAAAAAOIrmydineKKIpybr2VV1dFVuCzweff+GQs3bv9dd+2s1ftU9/zZiPo/eSc5XY25DsJnbhfjmtXzMEqRR4D7J9qlbwGfGciwdSkvKI18fjZL3PTVVlmtgEscC7DJyuqjx/j02G7GQZQrJki00x94XjRrYS41/sWi5EQvY3rChSTyxAwAAAAAA4CgKOwAAAAAAAI6isAMAAAAAAOAoCjsAAAAAAACOorADAAAAAADgKE9eXh6jVgAAAAAAABzEEzsAAAAAAACOorADAAAAAADgKAo7AAAAAAAAjqKwAwAAAAAA4CgKOwAAAAAAAI6isAMAAAAAAOAoCjsAAAAAAACOorADAAAAAADgKAo7AAAAAAAAjqKwAwAAAAAA4KjEpn44ZMiQ1toOOCAvLy/iXI4dNBTpscNxg4Y4brAnuFZhT3HOwZ7guMGe4FqFPWU7dnhiBwAAAAAAwFEUdgAAAAAAABxFYQcAAAAAAMBRFHYAAAAAAAAcRWEHAAAAAADAURR2AAAAAAAAHEVhBwAAAAAAwFEUdgAAAAAAABxFYQcAAAAAAMBRFHYAAAAAAAAcRWEHAAAAAADAURR2AAAAAAAAHEVhBwAAAAAAwFEUdgAAAAAAABxFYQcAAAAAAMBRFHYAAAAAAAAcRWEHAAAAAADAURR2AAAAAAAAHEVhBwAAAAAAwFEUdgAAAAAAABxFYQcAAAAAAMBRiXt7A4B4oFU4gzFYbqLHjPlDMVgwAAAA4Bzl5li4OQaaiyd2AAAAAAAAHEVhBwAAAAAAwFEUdgAAAAAAABxFYQcAAAAAAMBR+0DzZK1BlwhNutq+BCUWsOTGolGyhqMMAAAAANCSeGIHAAAAAADAURR2AAAAAAAAHEVhBwAAAAAAwFEUdgAAAAAAABxFYQcAAAAAAMBR+8BULOYStXUJXn3yWSDYvH2fbYmXRbGMJGUTMi25fiVWGcW60Pq0Q8962GmHKacnAACwL/EoNz/cDwHNxhM7AAAAAAAAjqKwAwAAAAAA4CgKOwAAAAAAAI6isAMAAAAAAOCofaB5cuT0Frz089pX1SRYfhCIYhkRxqKWq8SKY7FgaGwV8Kj6c3MiAQAA+zymSaBpAb/+Zish0fbmDCI8sQMAAAAAAOAsCjsAAAAAAACOorADAAAAAADgKAo7AAAAAAAAjqKwAwAAAAAA4CimYsF5wahGE+mSlVeCz6/npiox26SrdCVWFeE2NYkJWK0quLc3AAAAYG+zjRDW2G7PQ0zAQtNs06+CQXNaltfLpKx6PLEDAAAAAADgKAo7AAAAAAAAjqKwAwAAAAAA4CgKOwAAAAAAAI5ysnmybaO1BqfJllyt2W1LtfJKt2xEVV0LrXAfY+vjFs3+rLM0StbYGiU3NzcqWp8ws58YYsVWAg+aP/BYerh1aG+eCIqKLEeIR1muV9+IUCCKgxfAPqNdlhnbWd762wGgDYnBm6W6jT8YsaSQfhPr6T2q+StEm0Gj5KbxxA4AAAAAAICjKOwAAAAAAAA4isIOAAAAAACAoyjsAAAAAAAAOIrCDgAAAAAAgKPifiqWVnmKZgaMbSpRTrtUI1a6M4oZRl7LLKag2S6e6Vdu2s8S146/fEuuNqmtn3noiYhIgpK8wXLs1DVzAtYztz+hxq/623XNW3Bbpe1Iyw8sgx3sE7A0IW251o1ollhMlQMQa/rkD4/XPMGM76YvYYZysfJZbqCqqs1YcpKee06mGfsiRc/dsk2PA3BT6Ypv1fiKVXON2BGn36TmJu83XFnuR2puSd40I9Z+yOlNbeIey2ynnNxEpGJnRYusry0oukffb2t3FBixJOU9sojIsg0bjNjBnbqouaGgedealKwv1+/1mcGU9mpuz47mvu9651lqbjzjiR0AAAAAAABHUdgBAAAAAABwFIUdAAAAAAAAR1HYAQAAAAAAcFTcN09umXahUTZK1lgaQLUmvbWiSDP76jonFsdIHyUWTdWzn+WVVKFsXMjSEFnrx93Tsr61EW2V3VWPP97MJaCt2PtnMgAGj34lD254xYgte/hSNfcPO2uNWO4VD6m5Q065zYjNfPk+Nbf2g7uN2MXF+pX4pLfUMAAHnHvWEUas56/+R83tm2w2qj39hN5q7lffbzRi4y69SM1dtNU8Fw7vr08h+WFN897b0SS5acFHPzNi+910lZqbmWG+MVoRWK4vWNltHaSvmrpDKo1YN2mn5m6V1fr6FN2lvxHT/r0iIt6bjot4ua2NJ3YAAAAAAAAcRWEHAAAAAADAURR2AAAAAAAAHEVhBwAAAAAAwFEUdgAAAAAAABwV91OxmmtYrh4vzjJjmzY0f30ju5ux1Bw996sfm7eufW36lYhIgsccHRUINX+uj7aE7Zbc9kqs3K/n9uhkxrYV6rnmjAB9WlcsBCr0TvEJCbZZa/uO7Iw0I1ZTW63m1ln2e3N16GweZd++daeae8AxN7bMRgDYeyyXtQ2bfzBig/9pTr8SEVn6znlGbOumrWpunTLUKm+7nnvlv83kd588U82Vt97V4wDiXn5BuRGr2FKs5uYp55BAnfn3RUSOGmje46zcri+3dKN5MjTPgmgNNbXmWN/NUqbmDjo0x4gNXJ2u5pYqE7Tyd6yzbIX5Bj6pl77c7pVJRmxbsX5xrRZzqpuLeGIHAAAAAADAURR2AAAAAAAAHEVhBwAAAAAAwFEUdgAAAAAAABwV982TU5RYUvt2am5FyU4j9v/au+94y7KqQPz73hfrVXqVurq7OndDB7qhgW5ykuDgmEVR+SkGjKOCDIzOjKOoMzoGQMEAigrKIENSJAgokqQDdKaazjlWV3yxXrz3/v7omc847rV77qsX+u5X3++fq1adc6rufufsu975rPWS74iPu3Usj72p0Dz5/n/81Sx26svyWEopvfDleeycvNdUSmn5zZOPR8ttlFxa8FHryalC7u4g1hrImzqnlNLhsbx22mkEHeZS/G9brQbZ8/OFRUmamI4bJUd+5WdekMV+/Y++1PXf/4UfeUYY/9MPXJ/F/uB9HwtzO3vfkcUaF/1019fAyojuLavUW3tFRHes5behZ7X9wh98NYv9XPz4SZ++L28Ef9M1l4W5I/35s+ojn746zP2BIHZoYDi+CI47ebvSR62P1qTHl/kDX8+D8RY2paB/7YbC6wOP7M9Xw9BU4QkUbIQbo3FqZyyOd6sRDGhJKaXOCgxpqUn7LZ8L41fufSiLve4VZ4e5b/vHm/PgxNEw9+yzg0lH4/FnMTyYN+S+b19ULUgpLeTrbOsJg2Hqe575hvgYgc5b/imLNd7wkq7//mryxg4AAABApRR2AAAAACqlsAMAAABQKYUdAAAAgEop7AAAAABUqmemYhWGOoTTippH8+lXKaX0gbd9fxb73te9v+traN36zjD+8IGJLNa59a/D3Ma5r+r6fKyuqGpZmlIzEvwkPCFunJ7mg9EOg31xbqedd9LfMBR31z81uuDS8Kpljtu58cYbl3eA48xIM75Vfvjvr8liW7fFx9gQNO3/04/mf/9R+fn+4j3xtK13/GkeP+fUfBpOSindcX/3E79YmuhH8rTCeJiHgnvIUOHXLK3gdrFhKJ4A0ZnLD9woDPNoB9c2vRCPO+nl6V7rVaPw/Pni5VdmsSc8L54UevVffzSL3bMvnyiSUkpDE/lnf+On8glcKaV00sUbs9jX/vDjYS694VsuyD+zvTdNh7ljQWxXMPEopZQWt+QLtdmO7yMnzeZ3ktMvPC3M/evL74tPyJo6PJbHtp8dT8A7Pc1msYVOvHfqn8znzvYVnoGNXXnsqTvjPc61Y8vb4xxv069KxqfimbzPuuikLHbGgV8Mc//k8/n8xC3nnhPmPjCRr4ftw/FnMROMLN55Qrx4xvv25LGpI2Hu814QT/eK9PIq8cYOAAAAQKUUdgAAAAAqpbADAAAAUCmFHQAAAIBK9Uzz5KU0IpqJOiqnlO65+cEs9vPfdn6Y22jmXWm/7ft/Kcw9cO2hrq/t57/9vCw2OBT/N//OBzWwXU1x+77YYDNoRroYtwwdSnlTsblW3P773kIz0siZA3kH5v4Nhe6rk3mTuqV4+tMvWdbfP94cbcdr4f59eW18Y1/cWHB+MV8Lg4U+f/sXCze5wM6teRPBg49od9sLNhZ+dbKlL79fTEZdklMK7jYptWbj9RH0ZC7qD5K3FXYEByynNdcpNM5fmM5XxK035QMeUkppYTFfZ4uFZ9JUFI5766bZe/MbV19h/dIbbr0//zBf+OztYW6rnd+4+trxnuOvrgo6mRY851k7stiXrtYkuZdt2JTHdi3Ea2EmuAU0mvFkkbsOxs2PI+ftzhu+H51anUEQjUa8lz/emipv3dT9ex/bRuM976kbj2axzsQdYe6W4HSThQECZ+W3kdRp7Q9zx4LlNzAar8nRFK3J+j53b+wAAAAAVEphBwAAAKBSCjsAAAAAlVLYAQAAAKiUwg4AAABApXpmKtaKGMpbaD/xwpPC1Llg2sNpp58Z5r7+2s9msd//8eeFuY2RfLrSQrsw3oKeMd/IR4KcfMK2MPeRI/kUiMFGoXP6Qj695pTN8TSAZnCI4nGXqdmMO/+zNJMz+c92Pr/hUduH89ttayD+fEeCKUQjW+Lbdf/R/BoOLkSzlFhr+wvDzXZuzj/3hcLCmU/5z2rprrBjJJ/2MHk0XguN4Cg7guGAKZmK1UsOH+h+0mJ/4f7Srb7CDnH8SH4N7ji9bV9wf/k3z8+nuKaU0n2Hg6lH7XiSTLrqqiz0X/59vD/eOJ4f96598dTZ++6JT8faavfvzGLThw6GuSeeuSeL9Qd765RSuvneh7PYJRfsDnP7hzdnsdm5wsTYdG8h3p3jbfrVSuiPvryklBaDyZun7N4a5t7+8HgW6yvccq4+kMf2jMa5neDB1OmL32npBLOUG8H+q9d5YwcAAACgUgo7AAAAAJVS2AEAAAColMIOAAAAQKXWVfPk93z0c1ls57btYe580CRpYjpuxvWkJ+YNmP/sS3eEuTfeui+LjY7EzZeGg9jiYOkjyZtT9Rca4M7O6nS5VM3B/P/yyL6xMPe0nfknN1VoVvus4ZEsVmp9+dUDR4vXR/0OL/Pn8uiEn+valNo79ge37qBdaUoppVZw7z89eniklFIrXyObCw2RTw96uD/74jj3t75QOB89LWpeuRTBcqJS2zblsb/628vD3M/cnse+8WnxcV/+9Dx29Ze+HOZe+sxzstjYTNxMNaW8mSprb3Iy//1//+a8oXJKKR04MJPFxsbiqQBbN+XfdW6790h8DdP5gAgtjlfbUpoGx++INBp5/IF98c/1huADnSvMHToxuGW0Cgtix2D+HWxwMN6ZNTrBv7lw3HYPN9n2xg4AAABApRR2AAAAACqlsAMAAABQKYUdAAAAgEop7AAAAABUqmemYpX6by+l7/Szn3R+Frvsuq+HucM7TshiN9/+yBLOFusLYpsG43/FXDAEaXG++zEUBlasnMnJ/H+zMxJ9milNLOaf58tbwYiZlNLAQN59/Vf2x+vsS1dek8V+96/ySW8ppfSmH3xxFuv0l+Zt5Z72+5eG8b73dX0IetjAcDwKaWF2bo2v5Pg2UYiPB3+wZ7CQHPz65e7SCK1Q/HQ9b2d+HztYumCgCs87K44//GAeWyzcc/7zK0ez2G9+cOyYr+l/+5YX5ce9c388YZbe8PxLz8tiX/zKjWHuzGz+pWZ8epmj+VL8veov3/y6MPcH3vi2ZZ2r9LZD97vr9aH5hvw7Rkoptd+SfyfpFPYY5+zKx1fd9tDBMDcaLNwo7HOCr2Cpv/DBLW7OY884+8Q4OVIoTvS/8aXdH2ONeWMHAAAAoFIKOwAAAACVUtgBAAAAqJTCDgAAAECleqZ58kr4i7/PGyU/6ynbw9zDC3k7ridfmDdUTimlRl9e/5qajFtp3XXX/iz2wFiYSg95JGiNtrEVN0/eODqSxf5+LO7y1U5547jvPG9XmPuCZz39sS7x//LxP+46lRXQ7MubYKeUUrsdtDDvLKXl++pYmJ1/vC+BlNITd8dN1U84ZUcWO3gg6KafUprbdziLnbMxPt9isBy3boh/fzPczLsVvuuNLwtz/+xV/xifEOgpV9wVx4PepOnS0Z1h7m/8wr/NYoMb/znM7evPu4s+5bzTwtxb7hvLYnOP/+OSx/C+j30pi512Svy9qjObP2t2bis8rAIzM/H3qunZmSy23CbJJcdbk+SV0NeM9xifevUHsti5b315mDscVCMmOnHj7aHgdKW5IIPN/P70zhf/QZjbaASdkitcEN7YAQAAAKiUwg4AAABApRR2AAAAACqlsAMAAABQKYUdAAAAgEqtq6lYkStvyCeKlDz5/N1hvD/oqr15MK6JafC/fszMBSNmUkpfuP1AFnvKCaNh7mAwUe2uQ3Gnd3rX1oH4MzsyG01Oi+aPrKL+4BoW1/gaCG0aikc1PHDfkSx24gmbw9y55rYs1hyMj9uJJrIFz6+UUlocySdzNUy/gqqV7vzRZv9Tlx8McxuX/FUW+5u3vTrMHRwezGJzM/Hz8hfe9oXC1VGT+x+ZCOOdhXzPvH10U5g7OTaVxTYHE2dTSmk6HjrL46D5hhdnsZnfifcN0fefmcK94cF8S5R2x1ui1AkmVQWnSimltPe+6Sw2MBhPPO4E3+D73vCS+MA9zBs7AAAAAJVS2AEAAAColMIOAAAAQKUUdgAAAAAq1fPNk6O2j0trUBw3joyO8rWbH1nSkVnf+gtLZyhYgDfsH1vVa+HxdSTuVZs2bMxbVc5OlxqzrVJDY42Se1bfwsYwvmtL3tDv/gfiZu23jxcW37IdXaXjAr0murvs3DIQ5o6P5w1Ov+t1eUNljk+NRrzn6KQNWexw0CS55PCYZ1KNNvzCy7rOPXFrHD8tiN83fowX9P/QrLAh8lJ4YwcAAACgUgo7AAAAAJVS2AEAAAColMIOAAAAQKUUdgAAAAAq1fNTsZbrwqeeFMZvvO6hNb4SajOThsJ4O81mscHCMeZX8Hp4/GwqTEibyocbpVSYGLHEcX6sA/cemAzjJ23Lf6dyzmg8/er2VZoMARzf7gymX8H/yxN3j4bxW+6P1tOmwlG6n5bF+nHilvjb0qGJ/NvSqYUJWvfbEz0mb+wAAAAAVEphBwAAAKBSCjsAAAAAlVLYAQAAAKhUzzRPXq2+ojuGd4bxpz1xJouVqlxX33ZkBa+IWmweXgzjh/Klkwq9dVkvGn1heFNffufqH4hzx2Y1qjzexO2QU7r3SDuL3X64dBfRdZvHtmE0XjszY9YOZafH8yHSvaUbF6SU0nA8FGDL5s1ZrPRUG48PwTq3fyYeKbNjYxAsPL40T35s3tgBAAAAqJTCDgAAAEClFHYAAAAAKqWwAwAAAFAphR0AAACASjX27t1rbAIAAABAhbyxAwAAAFAphR0AAACASinsAAAAAFRKYQcAAACgUgo7AAAAAJVS2AEAAAColMIOAAAAQKUUdgAAAAAqpbADAAAAUCmFHQAAAIBK9T/WH1500UVrdR1UYO/evV3nWjv8S92uHeuGf8m64Vh4VnGs3HM4FtYNx8KzimNVWjve2AEAAAColMIOAAAAQKUUdgAAAAAqpbADAAAAUCmFHQAAAIBKKewAAAAAVEphBwAAAKBSCjsAAAAAlVLYAQAAAKiUwg4AAABApRR2AAAAACqlsAMAAABQKYUdAAAAgEop7AAAAABUSmEHAAAAoFIKOwAAAACVUtgBAAAAqJTCDgAAAEClFHYAAAAAKqWwAwAAAFCp/sf7AgDoQuluvbimV0Ev6+vLQs1WK0xtr/a1AACwZryxAwAAAFAphR0AAACASinsAAAAAFRKYQcAAACgUponA/SY5kgQXBwKc9tpbnUvhmr09QW/qyk0TwaAlbKwuJAHO3Hu/GLevj8IpZRS2rox3/sstuKpEf19vtZyfPPGDgAAAEClFHYAAAAAKqWwAwAAAFAphR0AAACASinsAAAAAFRK+3AoaJ4Qx595Yh7bfO43hLmLM9NZ7HP//NUw92kn57Frby5eHtXpy0PNeGJROxp01TL9isfWDkaQFIaSsI70j74gjA+nySw2NXZL4SgzWWTDzhfFmUfuzYOtu0uXB/S4ViseSRVNWvy7K68Nc//2n/IN68RD98XHHRzOYiNnbg1z/+Hym7KY6Ve9b/A//W0WO/hf94S5W/qfsaxzHe1cFcYvv/yhLPbS5377ss7V67yxAwAAAFAphR0AAACASinsAAAAAFRKYQcAAACgUsdt96lmX97INOgRllJKaXExanDaCHM7YadK7St73ZMuyWNfP/zsMPeq+Suy2Ptf/sIw9+d++lez2PBpce7Ng1/MYi/9nqeEuZ/90A1hnB7WF9xH4t7JqX8ojy22C7frzuKxXxPri0fNurdr+/lZbPSk+IOffChonrz5CfGBJ7+Wn2sk//sppTQ1l2+WWo0zwtzxiXvi80Eq7aTdytbatX/3njA+2MibHP/ov31mmDs7kX+a063C/qQTNGsejlfDaHsgi20ZinMn5vKVs5TG0Cxd38/9URj/tgO/n8U+8rk3hrkvedVTs9g//fV1Ye7H35Tnvvu9V4e57//kn2ax1/znV4W5f/6bfx3Ga2NVAwAAAFRKYQcAAACgUgo7AAAAAJVS2AEAAAColMIOAAAAQKXW1VSsZiPvkt6Ox1SlTtAlfaFV6M8fhTulmlg+5qbRLEzQauv7v9be8u44ftu1eezAH+fTr1JKqTGSx77nx341zP2u1+Sxr/xNPv0qpZQevCOPPe9b4+lX771zIYuddHY+OYC1l8/be1QrmIBVyl2cC6NLOGNh3BY964Evvi+M7zlhaxa74vrbwtznvPqXgmi8buav/0gWG7z4FeULZE39f0+PJ8+Mnn1mFjvwyJVh7sAZJ2axQ3fcE+YON/MJjA+M3RfmvuhF+WSuif2Hw9yPfiUMQ0rJ9KvVVJoG1enk+4MzR88Icy88+dQsNnpGvv9MKaXZxV1ZrLlwe5h73x1Hs9iTn3FCmHtkbEMWmzq6Ocw9fDTfM5emX7WCiV19fevqa/GaeNc5/xDGR570vVnst176q2Hunm8ORhOnfCJbSil9+JrBLPaXvxZP5vrx//SyLHZOJ562tV54YwcAAACgUgo7AAAAAJVS2AEAAAColMIOAAAAQKXWVZeoUqPkSCds2Vb4+2G4++akmiQ/XvLlfe1Vbw4zr7r6six2+LS748Pec3UW2vmSV4Wpu7ZsyWJTT80bf6WU0tADV2WxX31n0Kk5pfTLP7aufnTXldKdYTj4yGYL/ZD7gn7rpdtbJzijO05vu/bTb8tiJ5x1Rpj7wU99Mos954K8gW5KKX3yA7+dxb75u14b5n76hq9nsamr/iTM3XTpT4ZxVs/7rrkn/oPFJ+Sxe7fHuWNRU+VnhKmNDUey2O4TTg5zb78jP9/4zV+Kr4H1Lfr1cNyzlzVWahq8uDibxR7aOhPmjs0fymKnjJ0V5t58c76HTZ3CUJpgAM3+zz8Q5246JQv17YiHhUR7p8WgSXJK9kkr5cab413vW3/h9UE0nAySrv/kNUE0Hi/yl5+Immw/HOa+67/fmMWee0HeEHw98cYOAAAAQKUUdgAAAAAqpbADAAAAUCmFHQAAAIBKKewAAAAAVGqdjdYZziJbNsb/xInpqfxvj8Rd1mePLgTRQqf3oM/60GDc2XvL1q1Z7MCBw4XjslR9/flohv/+A88Jc397c5773t/5UJj7zd/yHVls+t5gGkBK6U/eensW+9Zz4ok2+8Yns9iu574ozJ04ui+Md6vZjGu67bZxFtFP9kpMT4gmYMV3nJQWlnnCgcKdfaEwhYu19W++701ZbGJsLMyNPsrpwnGHdmzLYqUn1Y+/5lfya+h+2COr7sQw2n/XF7LY4mQ8TWZoOJ/+MTf71TC3EwzF2XdvfGWD6WtZrNnYHea2O4/EB2F9sGXoWa3F+IG/GNznh0fi3OGpfIrR1MM3hblnP/kpWeyB224Ic3/vPX+fxd74k/8mzN2yIbi/LcaTjSYbG7NYo/AOQzQ1rFF4YsaTlEkppbe+8xOrdOTShiSegNWty266f1l/v9d5YwcAAACgUgo7AAAAAJVS2AEAAAColMIOAAAAQKWqbJ78Z29/RRh/8+9/IYvdetdYmBu1Mx4MmySnNBvEthQaaU0E/6Vz83FTsv0P/kYWawz+dJjL0kWNaU97zjO6P0Dc8zq9/+Mf7f4YW/LQx++9O86N+oT93YfD1G2FeLeGBuK2vTNzeaM8Vk98x0np1U8fzGJ/dc1898fVJPlxED1O4w/iQKFRcmQpP5Fzh450nftIeGndDwVgdXVaXwrjjb586ELJ3GzQJLI5Gubef+PfZbFTL3hhmDsfrQdNkuFx027lN/RmX/wVb2o2f6pM3x5900lp89n5wJGH77wszO0fyxslDxW+Zf67V/58FttQeP4cOJLfb/pS3AD3/Kc+PT5hoNXKO39HDZVZC/meN6Xu97z8H1YwAAAAQKUUdgAAAAAqpbADAAAAUCmFHQAAAIBKKewAAAAAVKrKqVi/+LqPhPEtuzdnsc5gPP2nNZ+PIJpYwjVMlv6gEYwaKQwUmTuk4/dqWujkHe9LRoKfhKPFyULbg9jhOHUpiyoUr9/yPKXumH5VNhT8l88W/rvfsetHs9j/OBpPh5mdHs9i16Qvh7nxBKx4TNsPpnwKxEChZv/ydF4We2V6T5jLUkU3jGjSQ0rxtIe1nkgVrZHu75msoEY+PnEp06+KhoN7xuxYmFqagNW1XaNx/EB8vm7t3LkzjB88eHBZx2VlvOmHLsliv/aXVz8OV3J8iyZgRVOfUkppZvZoEI32tSntiyZg7RkJcxfn8uPOHiw817bk38EaE/Gzrv/M/N/WORBv0G+47pr4fIFoAtbVV8dr95JL8nV+fOp++ufS+D68UryxAwAAAFAphR0AAACASinsAAAAAFRKYQcAAACgUj3fPPmbX3hGFvvkF+8Jcw/tK7Y0zg3k//TmQtwAKmrntSFoupVSSkejZmWb4kv42l33FC6OldDKe7OlocKKLzdKjhQaJQei1qlLaxG2vCbJLF2pUXLk3NY5Weys6QfC3LvSmUE0aEyYUnrv65+fxX7w974U5j4puMFMFJrZnR1eA6vlpc99Xhj/7GWfC6Ir0SQ5alRZOq5Gyb1iYEP+pBgZPSPMHX/oniD6LfGBh+7IY7O3hKlLaqW95ZuC5PsKyWOlo3RFk+THsJQf9+WeamMcf7BvLM8t7LM6K9FjlVC7nf+0Npvx95SHH8l/pn76pfnwmZRSeudn92WxzkTUfDmlNBUFCwty4rYstPW0i8PUhx+8Pg+uQK/d6P+sry8eUsH/FnyxWtKQl7UeEnH88cYOAAAAQKUUdgAAAAAqpbADAAAAUCmFHQAAAIBKKewAAAAAVKrnp2L9/ZfySQvnn78lzL355onuDxxMwFrKjJBw+lXBSNgpPqXnPv/3lnBGVsLcUqYylMqeS1goS2rcv4YTLlgZJ2ybzWJ/dfLTwtyjfSdksY03vDfMnT881/U1/NS5F2exqf0jYe7G6eHgZF2fiiWKp1+ltG10QxY7MjbT/YGbhckSwbTHVJiQlubym0ujMBCkEw3CYMUsHM2n1IwHsZRS2hV89Ac6n4gPPJ6H8pX3qE3BLWO8MPxmfuJThaOwpoL9weV/dnaY+ofvzjeiJ7fy51dKKR3s25rFtp69O8zd/HD+AHnji54Q5m4fza/htgfjTc67r8inMRFPckop3iouLMa509P5M+Edn72962voLwwgXgwfS6UpU3nywYduLBy4m6t6VP9Qfr5G4XEZ/Z+VJom1ojG7x6X8f23nxmj+b0rTs/n/ZbsV721bjXyyVl/ps2gE8cImpdPK70+DA/FTcGZhCXuwHuaNHQAAAIBKKewAAAAAVEphBwAAAKBSCjsAAAAAler55smdTt786+7bltAkeSX0FzpvBRqLeWOpQv/BpRyWx8MSmiSXepm2l9L8WKPkNbWUqnZpKVx4568v6xpe86KTw/jeq/ZmsZ+/IG6IPHrTW5d1Day9RhrKYqfsDhpbp5Q60UodjB/dU1N5Y8LSY2bjaN5kcjF4fqWU0iOHDheOwlo7EHxEpXtZ9GmO9MeNLg8c7c0u6jt37gzjBw/GzaWPd5d/4c4wvvuC87PYofuD7toppeF2fh85MHVHmPu2Tx3p+tp+8htPzGJnXjQaJ2ueHCo1940sFBotb9rc/Ve/Xds2ZrFG4anSCW44U60499TRzfnfL1zD5FT+na9dGGCzfyL/xlU6bvQ/edVVV4W5T3taPBSDlDZuip8ps8GAhqFNm8LcZrBWW4UvUOOz3Tc53jWcr9+5woqYWej6sD3NGzsAAAAAlVLYAQAAAKiUwg4AAABApRR2AAAAACqlsAMAAABQqZ6fihWZbcXx6B+zuBInDCaFlP7jovOVcvv78z9ZbK3IFbNUA0GssM5GtuTJfZ04eXI87/S+uTD9pj/InVyMJ5UsWiY94SdeclIWazbitdDu5HX0RjRGIqX0+zflkx1+9rm7wtyffPHWLNYqTIz4sy8+EsZZW/2D+RSJ5kD8mY1PB6Ma5uMbwNEj+ZSbwUY8leTo1nzdDAxvCHPpHTs355/nwcn4Mx4M5vlNFJ4pkYHSSLXgtlWaPLPcR5XpV0tz8alx/G8/cXMWaxc+391nnZXFmu14KuO7fuecLPalK+LP7OBgPonvg5+/Jb4Ilq30m/slDHxNqZ3vV/v64yMcngh+2gvPn9vufyiLbUzx3nhhY/5dacdIPu3oUaU5xMGlLWHCGGW7tkVfoFKaWczXyeJs/ERoLeTxduGpMtKfTxUd6IvX5Ewrf971jxSeVrNxuDZWNQAAAEClFHYAAAAAKqWwAwAAAFAphR0AAACASlXZPLmkkfdlKzbAHRjI/+kLC4XkoIHTUhoClnIX53TA7RWN4KPoFBoLHl3Mm5n2Bf1NU0ppIOgFN3047tDVLhyD1bGkBoIF09MzWWxgILoRpXR0Ks9NA3kT3ZRS+t5n7sxiB4Im7iml9LnLHs5ifXEvO3rE9u2bs1ir8Pw5cTi43zTjm1Nn15YgGq/0m297MIiOhbn0joOT0X0gvjfMh1MBun/QLBR6TEY9R0cH4t8THpnL11/pHnnWWWdksVtuvbN4feRam+Imx+PNvKns7N3xMa742l1Z7IUvOTvMfe9njmSxTjteC//8+TviE7Js7Xb+c9ZcgebAg8HP6mLQFDellLb25fuZVuFb5sbBHVmsdLnTE1NZ7OGZ7pvA9xUO/A//8Nks9o3f+NKuj8ujZo5Oh/FOK/+us/3k+D5yx+35zWjXSSfHJ4wachcGkRw4cCgPjufraT3xxg4AAABApRR2AAAAACqlsAMAAABQKYUdAAAAgEop7AAAAABUal1NxYqGigwOxeNh5ue6nwwRzRmZKOQ2GnmtrNNZifk7rKaooXqjNBFkLo+1CsupNGctFA26GRmNc6fHlnJkVsnXHhjLYk89ZTTMbQzm96IP3Bh07E8pHqVXKMOfsTGPHcwHoJRFEwZKCpMHWJqTtuWTax45En9ojU5+F7np1vvD3A0pH8N3NMVT+KJPfePAUJg7tRDc9Oh5zWb+YAqG5yxZtKs6HEy/KpkvTIAzAWv5XviKHw3jr7r9j7LYuwtjz06b25TFvvhPPptethITsCK7N+XHfXiiMJVxKF9P+8cPh7nREUr/gmZ//rx8xdO3hbkf+ko07TEWTcCK5/UtcS9/nNmx50lhfGbhmix2ZN9tYe6Je/JpWfseXJ17zobClndmnWxvvbEDAAAAUCmFHQAAAIBKKewAAAAAVEphBwAAAKBS66p5cqTUJDlqkFVqjhU1Sm4WamJtjZLXjU6pp2zQ2LZZ6LjWjhZVqZwaLR1Nktdc9LGXeqrtfSCPPe30+ANeXMiP/H0XbQ9zm0FD47GD8b3lytuPZLGpMLNAQ+Q19/kr9max8594Wpg7silviHzeuaeHuY1g3czOxs/Au+7Jm0xqklyn0iOlP7hltIfiB9vgQL4dXIiauKeUGtG0AFufnvDFT34+jL/02384i925ezzM/fPf+ZsstuPE+Hx9weNjbDLOnV9KU396wrX37Mtip5ywM8ydXMhvAqfuPCHMbbXyzfFCK76THZjIF9RSmiQvhSbJS/fg3XGT45m5/FlT6JufLjpzRxZbnIsHP3SCPeuhQw89xhX+q+ta51teb+wAAAAAVEphBwAAAKBSCjsAAAAAlVLYAQAAAKiUwg4AAABApdb9VKyS5XY+7xgBse4182E0KaWUWjNBbuEnqRFMyyoOIbKkesJyG+bfcPvhMH79/jz2yktGw9x2MLhm89Z4mk18NmozMhz/nuXqa2/PYheed0qY2wmmYo0Ml8b7sV6UHh3zQWxj4Q7XCaanDRV+9TcVD1qjByxsfEYYn777S1nsG572kjD3gje/PIu94Zc+HeYOBLeX0kTRg1e/NovtvOTtcTI9q68Tj4EdnzyYxUb6doe5jb7BLNbfKIzhS/F0JHrDppHpwp+MZpHFzliY+bWrv5rFijM6g0dYMDw0pZTS1HG4dLyxAwAAAFAphR0AAACASinsAAAAAFRKYQcAAACgUuu+eXKpbeRyG6Qu9+/T+zoLhdXTl3/67WKXL443zUK5/Bkn5bEPXj22qtdCPeYLDWkvvvjsLHb99Xeu8tWwXk17Vq1r3/zSeHf61jfvyIMH8obKKaX0hv9+S9fnW0ofbY2S14d2I15jZ550Yha7++F9q305PM4mxvNG2CmltPOEPNYe2xbm3j12YCUv6bjmjR0AAACASinsAAAAAFRKYQcAAACgUgo7AAAAAJVS2AEAAACo1LqfimV6Fceqs1j4g4EgVhq/VjoG69Z5Z+0M43fdczCLPTOYlJVSSl95eCWviBpMF6bwbe7P40+56Jww94a9d6zoNQF1+fKfvCeMv/qF27PYG3/j8CpfDevRyGBfGJ8LRqSdeeLJYe7d+x5ayUvicbQ4sDWMj0+2s9jOE+IJWnc/bCrWSvHGDgAAAEClFHYAAAAAKqWwAwAAAFAphR0AAACASq375slwrPoKrbdbQYM4+N+GhobD+PmnbcuDhabbX3n4yApeETWYm5gM41sGg8aEeU9CjmM7NsQ3kkMzxkccby741ueH8U4zXyM7Li00sL1RE3bK7hufCuO7t23KYh0jbNa91ny8d5mZz2P79h9a5avBGzsAAAAAlVLYAQAAAKiUwg4AAABApRR2AAAAACqlsAMAAABQqcbevXu1LAcAAACokDd2AAAAACqlsAMAAABQKYUdAAAAgEop7AAAAABUSmEHAAAAoFIKOwAAAACVUtgBAAAAqJTCDgAAAEClFHYAAAAAKqWwAwAAAFCp/sf6w4suumitroMK7N27t+tca4d/qdu1Y93wL1k3HAvPKo6Vew7HwrrhWHhWcaxKa8cbOwAAAACVUtgBAAAAqJTCDgAAAEClFHYAAAAAKqWwAwAAAFAphR0AAACASinsAAAAAFRKYQcAAACgUgo7AAAAAJVS2AEAAAColMIOAAAAQKUUdgAAAAAqpbADAAAAUCmFHQAAAIBKKewAAAAAVKr/8b4AWA8ajTje6aztdQAAAHB88cYOAAAAQKUUdgAAAAAqpbADAAAAUCmFHQAAAIBKKewAAAAAVMpULFgBpl8BALBevOOUm7NYu90Kc5t9fXluqx3mRoNkm32Fdw2C/fVPPXB+nAvHOW/sAAAAAFRKYQcAAACgUgo7AAAAAJVS2AEAAAColObJAAAAx6GoSXJKKS0uzGexRjN+J6C1uJj//ULz5GbQEfl53/2UMPfyD92Yxf74lJvC3H/3wAVhHI4X3tgBAAAAqJTCDgAAAEClFHYAAAAAKqWwAwAAAFAphR0AAACASq2rqVjDQZlqNm7IvmoaQSzv/U6v2bzliVlsZmR3mNs3flsWm5vLpwGklFJqH8r//gnPC1O3de7PYgcP3Bsfl97QHMpCQ0/cGKY+ZWoii921L143neC+NXHOtjB3YV8+tSJNTIe59Ib+4EmxWHwcLyzzbIOFeLBugHUp+i3uGm+P6RG/tefrWezIYvycufeRB7PYfOGdgEYQH9kwEuYuzOer77q3fybMfc53XZjF9l+W760Bb+wAAAAAVEthBwAAAKBSCjsAAAAAlVLYAQAAAKhUlc2TB6IOxWntGyVHNErubcOF+ORE3hA5TRwMcxfT4SAaN8yNtPbfEcYPpn1dH4O19Zo/vyyMf/IDb8liT/6WHwpz//nTf5bFvnTZx8LcS0/Pb3LP/r53hLnX3/C+LPbcJ10Q5n72N387jLO2FqMnRaPwe5ZO9JguNGsPFR6Y4eN/KccFatED22N6xNbgWXPvwQNhbjNovt9MrTB3KHimbGjHK6+vlR+jvxk3Wr7ub/L9eV8zfl7+wSk3ZbGB0rM18FP3n9d1LvQib+wAAAAAVEphBwAAAKBSCjsAAAAAlVLYAQAAAKiUwg4AAABApXp+KtbgQB5rFtr7LwSN2gcbfWHuYjOPt8PpIyk1OkezWKeTd4pPKf4PHRiYD3NnFsIwq2i2+Ce7g9gjhdw9WWQgPRhmLqZ8nQ0Xpl/NNPPjpnZ8XNbWn7/vv8V/sOvSLLTv9z4c55734ix06bf/YJx76fdkoSs+86E4d/eLstBnr/5qnEtv6Avm87XmCsnRsyZ+CDaCeF9/PKtxcTGfllWan2Xa4/Eg+j2fWUo8qlG4OXTcHKoz28o/tP2L8feU6B6wsRl/V+oEE7Dac/n3p5RSmgu+LU22j4S5m9OWLDbbjic4zi7k19Dsixdps5kv6neccnOY+9MPnB/GeRx4VD0mb+wAAAAAVEphBwAAAKBSCjsAAAAAlVLYAQAAAKhUzzdPbgUNkfr7R8LcwVbepGu+E3RUTimlVh5vprh52LYNeWxgQ5y7EPTzOjQRXwJrb8MJF4TxmQNBg9K+uEF26uQf8sLIc8LU5tRt+blS0BE8pZSao3msfTDOTaVGq6yKz30qjm/9xzw2Hjf1S3e/d+Wu5//yiSBmffSCZl/8s94OezmWupAGn2UzfgZ22vkzcHGx1KU//71OJ2j2/qjCc5R1RPdJykpNkndv257FZufi/fH4wnQeXNB9ea29/uF8H/yj3/nMMPfDn/hKFttY2BqPBx9v6YnyLRfnDZEvvyv+srRhKI+deeYZYe5ffPWewhlZNzyqHpM3dgAAAAAqpbADAAAAUCmFHQAAAIBKKewAAAAAVEphBwAAAKBSvT8VKxjGMT3+1TC3senCZZ2r1Gj7PX/7gSz2rS//3mWdi8fHzOT++A86wfSpwnCj0OTDYbgdzgQoTJhZjI9B7+oLJmC1SuXy1erk3wimJhk00hPardJEqlK82wPn06+KGoUFGU6MXJ0tQbMvvoZ2NPaSlTN8Th6bfaCQHK2HwkybwZPy2Pzd3V4V68gjRw6v2bn6mvF9pNV2H1muv/z4dWG8FeyDJ4qPr+73u++/PpqA1SgcN9/Q3HLg3tJFwHHNGzsAAAAAlVLYAQAAAKiUwg4AAABApRR2AAAAACrV882TI8ttkpxSSmkgaNK1EHccXXaj5EL/wVIPXVbRzJ7CHwTNk1dC48Q81nkwTk15Q8pOOlQ48PwyLoqVEv4Il/o4RmX0lej5GPUbLJXs3XN6V3NDHG/PdH2IwSDWacSLbKFvSx5cXEJT5iVoF5qbRvFmoUEqx2D2jmUeoNAlVaPkHhHd/Ndv53xNkldPa3El9pTL3WAsZe2u33W+nr05PTWM335h/h3sT268f9nne+fA07PYXU+PG77/zpXr47lmBwUAAABQKYUdAAAAgEop7AAAAABUSmEHAAAAoFIKOwAAAACV6vmpWL/0pp/OYueeuiPMffWP/bfuD7wQjapaDFN/9r/+Qhb7w1/+ne7P1Sr9N8fnY2Vce9nlWey7fuV9Ye49/3TDqlzDD78qn6j2nve9LcztpIeD6O7CkR859oviMUV3htJguyXNkVitgR7RcaNhKayyaJXEU0I2D+WxyYXC9Kv+/PcvA4XpMH1BeLa47iby0EjhWbXMYVntVuEignVamqBlWlbZSCG+OjPO6B35ZKDdZ58aZj5y5/InzES+40WXZrGPfuGqVTkX68fW4eEsNl58WJkCW6ONm07PYr80dV2Y+8Ybd+XBrfG9LI1H97JoJmhK/3Hhmiz2G1eWnpjrg50SAAAAQKUUdgAAAAAqpbADAAAAUCmFHQAAAIBK9Xzz5Jkjk1ns6ocOrcCRu29cPHHn4TU7Fytn12knZbG//rW8mXFKKb34lrx58uyDX+76XKc8+XvC+DnPuCSLbb/sBWHu4XuihoMLXV8DK2PZPY4HCvHV+iiju7hbzuppFDpTd+JGyZHJuSBY6NDdWMxXZGkpxfG8weqjBw5iR9d44RQujaVZiSbJIyc8Iz/u/q+uwJFZLSeetTOLTY2X9qtRc9HlN6W963DQhJ2eNhA8bAaH443L9Gy0RpY/CWJ6NnoIljZPNjm9rDSrY3rq3q6P8RvpQB4cX8pVxPeysSD2M+t8rIA3dgAAAAAqpbADAAAAUCmFHQAAAIBKKewAAAAAVEphBwAAAKBSPT8V661v/x9Z7JSLXxjm/ttXvyaLNQ4+GOY2d5yQxTqzU2HuAxvyWSMvf+1Phrn9d9yen+vEc8Lcj/3Fn4ZxVsapp56ZxR6+O/98UkrpTf/pJ7LY1oOvDXP3dR7JYkOj+XSKlFLqH887/7/+1d8d5p6z7d9nsYf79oW5//61Px7GWb5oUE/3847S2g8yMxxiba3AJKehYI7EXHNjfLpW/lzqK82h2JQfo70Qr95mO/+9Tqc1E+a2lzkFpdn0O6SVMxrExpbw93eF0fmpaNroWo/4Yyn23XUwi43kW9uUUkonn3Za/vcPHQlzO4P55372qTvC3LHtG7LYqc++MMzdMpXfy+54IJ5yOxdMxGVlLAQ7mi2FZ8rA0FAWa7bjZ0qrEdznG/Gzo7OYH6PRiB+uG4byKV4LnWjKW0qHjq7viUe9qLQlOuGU3VnsmQ/E2Vduzz+34ZHC8+fB/L41UNhjnNXKb4hf3hk/v2YPrsTE7cef3RYAAABApRR2AAAAACqlsAMAAABQKYUdAAAAgEr1fPPkyMM3fDGMn7snb2DbHtwSH2RqOgtNT8RNvr76ob/s+tqe/53fm8UGDh3u+u+zuk468wlh/M8/8NEsNrgnbia3tX16FhvZtSnM/c4XvLjra/vARz6WxbbNxQ0L6V3NQl/bKNwpdJ1bSqva6CZe+vvLa4FLSin+IEt/UPiAF1LeDHJgYT7MbTfyT3hD4VcyU0Fz0pJ2I28+2ShsCRqNvNlgp7R4l6DdzlekRsv/DxtOzUKNdHKY2mnn6+zEJ+ZDBVJK6ZItF2SxVjv+jD99zcfzc0WNU1NKae7GOM6qGJqN42c+Id9L7NgYNydtBx35j07H95b7vhYPpIic95R8//X0J50R5l7+5b1dH5flm5yLGyJvGMifa51Gfl9JKaVm0EZ3sXAPmWxF54uvoa+ZP6vaGrj3vPP3bM9i926NP7fdzbx58t2358NnUkppOpxwEu9u2xeOZLFn7YkHVXzhM5onAwAAAPA4UtgBAAAAqJTCDgAAAEClFHYAAAAAKqWwAwAAAFCpKqdi9cUN2dNVn/tIFjvhrEvC3NHRXVms04i7t++66HlZ7JQd8RSkmYPjWez6r3w6zKV3vOZ7v6Pr3L/73FezWHshXjuHDzyYxb58XR5LKaWFYEDFj3zDM7q+LnpDYQhEMAepLBq81FeYxtQKzrf8eUWUlf53i+OyMtHUmZO3xhNqDk/l0x5K0822BrHSb29m+/NrmFmIj9wXTKpqRQtviUzAWrrTLnp2FjtlNPrkU7r/QD7lo9OIJ8984rLfymJnXPBjYe4pT7o0P+5AvqdKKaUHvmoq1lo6OhPHdxy9NYtd81A8dWbXltEstlD6WR3OQyeesDtMPTQ2lsVOLkzxojeMz+dTjEaay59IFU52LGxyZhfz8x0tbbToGV/+6s1ZrLRtKO1vu9YfH+C+G+8KYss8V4+zqwIAAAColMIOAAAAQKUUdgAAAAAqpbADAAAAUKkqmycvxr3/0mzQlOnAvvvD3DvuCronzXTfEOxAIb5ld97EcGCo8N88nzevpPd9+4s1NGbpCretri3qFdgjltvlL/bQRHzcdqfUKnl5/tsPvyCLHT5yOMz9vQ/vXZVraLfzf5uGyo+tMbAti92xP14jk40Ts9ji2GSYO3D267LYPdGmKqX0wXf+XhbbvSXugvvCi98cxlkde845M4x3BvM18v0vuyjMvfb6T2SxG+6IB4aklMf33TddyJ3KIm95/0+EmU/9/j8tHINVUXqsBbeAo+04eSBIXlKb5SU1RF7CBfO4GAjmQYymjWHuaDu/ZxQeP6kZTCLpFD73697/8iy2c/e5YW7jxW+LT1gZOygAAACASinsAAAAAFRKYQcAAACgUgo7AAAAAJVS2AEAAACoVJVTsTZtz6dCpJTS9JEjWWxu4pH4IItRR/Xld1OfeCSfKjI6Orjs49Lb4hWZ0qnb8vbtXzsSz0dqBF3+Bxvxmlxo5LntpUwUaAzH8U482QR4VPCj96jgx6/TV3jEtvKJiO3OfJg6EkyWOFoYNdIX3EOGC8+1//KuL8QHWUMmYC1ds5lPFdm08WiYO3k4X2cLd/1B1+c6rxBvtd+SxV748m/v+risnvltp4fxT+/9ahZ7/lwwHTal9N53/2MWe/LzX7a8C0spTd/5sSz22l/+jWUfl+UbGB4J44tH82lF7cIzZXBDfm9amClNSOve4MCGLLYhmIyUUkqT8/kedkl74+L7DqsznXI9GwiW1OGxeD00g63SgdIo2SWMmH3kYL6vunHw5O4PUCG7KgAAAIBKKewAAAAAVEphBwAAAKBSCjsAAAAAlaqyeXJn6MQ43smbJwe9JP9Xct48dnDLUOG4eeOthcnx4vX9a2NjcVNM1o9g5T0aLzRKjnSChnRzpZ5vwZpcEk2SYWVFz5qgSfJS/npKKbWaeQfCjRvi40Z3hemZ+Pnzu0Gv2//wd/E1NIOrKzXQZHXd/c+/ksVOvvTnw9yZxbzp6PATfibM7QSNrGdH47EAI0PB1nHfZ8Nc1taB++OGyOeemndhH2ocCHOf/Pz/kMWu+fJHwtxG0FP2ofvvD3NHNuXXcNv93e+lWT1Di/GeMHp6lNoIzy7k2Ruje0VKqRM0ND66EO+XFxbzeCs412NdW/c0SV4pk2Pd5544kN8bBrblzbhTSmluIZ8ecd5w/Llt35Yf96JX/GL3F1Yhb+wAAAAAVEphBwAAAKBSCjsAAAAAlVLYAQAAAKiUwg4AAABApaqcitW3eTCMj7TOzWKLB28Ncwf68w7w8xMz8QlL40qozszYbWF8w+gT1/hKutPfFy++xZaJNND7Sr87ySc49BUy5+aO5n+7cNhoelV/4fkVTcD68+/eFOa+5sNThavrzqdet2dZfz+llL7pbQ8u+xjr1UN3xVOI0qF8klHfeT8bpjaDR8r+8cNh7rc/26aoV508uiuM3zufT5/aNDcRH6RxfRa67StXhqn9jXxCzUI7n0STUkqNZ/6XPHjP8u4trIztW+OJVH2T+dfEg7PxVMbWYr4WWs142nAjeIYND8ZfSWfn5/Ljhpn0ur7CRmfvTL52tjbyvU9KKfW18/3T1+fiTdHJP/CZ6AiFq4uea91PNu0V3tgBAAAAqJTCDgAAAEClFHYAAAAAKqWwAwAAAFCpKpsnLy7EjfvaQUfJrXueFOY+ct/Xuz+hPrXrRv983By0V5WaJEdNlTVUhnrFIwHi1n0Lee/A/6X7e0Czmd9DSk2S3/WK/L754x/pvunpLfePhfHzTh3tOpfH0C60Et34yiw0fcsfrvLF8Hga3RKvhXsfnM9iX58vNBENbiPf/4bfXc5l0ePGJ+Pf82/emD+Bgj63KaWUpoKlFzU+5vjV7iuUHVr5Ohs/mt+zVsRAofn/wvr4DuWNHQAAAIBKKewAAAAAVEphBwAAAKBSCjsAAAAAlVLYAQAAAKhUlVOxNgxEc0JSmhiYzWKT46vUVZsqjTU2hPHO2MEs1hjdudqXc8xMwIIKFCdA5GOtjobzr2KFmQ7hTKxGMP2qJJqUlVI8AetTr9vT9XFLoglYr/+b6WUf93izdfeJYXz87qN5cOjV8UHm/moFr4jHy3WX3RbGzzo1j03tj48xuYLXQx02bo3vIYspH4G1Z0/8verW+8ZX9JpYfzrzhQmOa2mh+71WjbyxAwAAAFAphR0AAACASinsAAAAAFRKYQcAAACgUlU2Tx4Z2hrGNwTxky8YDXOv/OyDK3lJVKI1NxHG98/lsQ9++oth7itf/sKVvCQqUGo/231b2pTydrnUqNNeSuPy7pv3D/cNhPHZVt68cilXULre5bZf/6a3eYb2is0bHgnj42ee0v1Bblmhi+FxNbQtjj+Y9z9PF114Zpi7//q7V/CKqMHs5IEwHj0njhy0m+HYnH3q5jB+5/3xdzOWzhs7AAAAAJVS2AEAAAColMIOAAAAQKUUdgAAAAAqpbADAAAAUKnG3r17lzscAwAAAIDHgTd2AAAAACqlsAMAAABQKYUdAAAAgEop7AAAAABUSmEHAAAAoFIKOwAAAACVUtgBAAAAqJTCDgAAAEClFHYAAAAAKqWwAwAAAFCp/sf6w4suumitroMK7N27t+tca4d/qdu1Y93wL1k3HAvPKo6Vew7HwrrhWHhWcaxKa8cbOwAAAACVUtgBAAAAqJTCDgAAAEClFHYAAAAAKqWwAwAAAFAphR0AAACASinsAAAAAFRKYQcAAACgUgo7AAAAAJVS2AEAAAColMIOAAAAQKUUdgAAAAAqpbADAAAAUCmFHQAAAIBKKewAAAAAVKr/8b4AAADWwNvvDMPP+Ymzs9jlw6t9MQDASvHGDgAAAEClFHYAAAAAKqWwAwAAAFAphR0AAACASinsAAAAAFTKVCwAgPUmmIAVTb9KKaXL/yTPffbROPeKkeVdFgCw8ryxAwAAAFAphR0AAACASinsAAAAAFRKYQcAAACgUponAwCsM89+Td78+PJ33hbmXvLqPPeKd9xcOPL5y7ksAGAVeGMHAAAAoFIKOwAAAACVUtgBAAAAqJTCDgAAAEClFHYAAAAAKrWupmI96Qd+NIu98+mbwtznfUM+AaJx8eu6Ptflf/DzYfxIayKLffPP/0XXxwUA6Naz5+L4Fe+6Pc/9sSfEue/8ep77M/H0qyuG8uOmn42PCwCsDW/sAAAAAFRKYQcAAACgUgo7AAAAAJVS2AEAAACoVJXNkzedsSWMv+6cqSz2z5+/LMw9MnFBFnvzqwbC3Df+9UIWu+q6y8PcPSftyWK/+P0vCHN/+/1fCuMAAP/as/PtSLrij28Ncy99Td7Q+Ip33hTmXvyj+Z7oinfeHOY+66fy416ZgobKKWmqDABrxBs7AAAAAJVS2AEAAAColMIOAAAAQKUUdgAAAAAqpbADAAAAUKkqp2JNTVwcxn/it67Og0PxpKvm3+cTqZpDT4xPODyUhV737oNh6uDWh7NYu701Pi78C1GVtb3mVwFAr7rinbdlsae9Jt67XPVnee6zXh/nXvmWfALW0197fpz71uuy2DNfH0+/+srPhmEAYIV5YwcAAACgUgo7AAAAAJVS2AEAAAColMIOAAAAQKWqbJ787JG88XFKKc1O5bHBQulq24l57Jb9h8LcC3blscPz8XE3Bn2SN7buD3M/NhEfg+OTRskApJRS+qNbw/CZ35k3Pz7aiQ9x4g8FuQtx7sgr80bJ19wS557+I0/NYl95+w1h7lMmnpLFbtgSHxcAOHbe2AEAAAColMIOAAAAQKUUdgAAAAAqpbADAAAAUCmFHQAAAIBKVTkV64oHlpBcmF6VjnR/iHseXML5Dgex1hL+PgDHocFCvPQQ606jEO+E51veuVg5Z3/fuWF8IZiA9fHP/HqY+4TvflMW23LaaWHu+TvyuYzXXhdP9Iy2OenmfPpVSinNmP4JAGvCGzsAAAAAlVLYAQAAAKiUwg4AAABApRR2AAAAACpVZfPknqZRMgCPKXr0rk7j4qDX7qqej5Vx5x/G8b435e2wn5B+pevj3nbfvfEfPDDS9TEmo+D5hfO9oevDArBOdB5+bxZrPuUH49ypYJjD0SXsUUqvqWwPYkc3xLlHZ7o/Xw/zxg4AAABApRR2AAAAACqlsAMAAABQKYUdAAAAgEop7AAAAABUquenYvXlAyBSqzzmAx7TYKEZ+vwqNUNvBOu3Y/3Cce6UIHZPmPndO87JYh8+dMfKXs7/8m27zgrjHztw16qcj8ewGIdbjzHnbFnaR7vP7RvKY625OHfTsV0Oldj2fXnsyP9c++ugKmfvyqcg3XnApMYq7YjDV19zQxbr7C8dZJmffemxeDAKro/pVyXe2AEAAAColMIOAAAAQKUUdgAAAAAqpbADAAAAUKmeb54cNUouXXSh1yDHqc1BQ6/pI2t7DVt25qt1/ICVCse3e7LIQmchzPzNV/5QFvvwh5bfPHl2YTqLveYbfyJO/rzmyWsu7y2aUop/G9cuHOJpQezaQu62zXnsyGQhOWiUvCeNhKkPDi2hKTMr4ORC/KFlHjdurL75xc/JYpMf+VDhGK1lXgPrxfx06a5FdQrPiWd8x5u7PkRzMH/gtRfihspDQ3nuXDCoJqWU0kx+jP6NW8LUxemJ8gVWxBs7AAAAAJVS2AEAAAColMIOAAAAQKUUdgAAAAAqpbADAAAAUKmen4oVWa2ZQqWm2p3+6E+CcV0ppb7g4swBeHxMHspjZ50a595/II8t5oM/HhWUQxtDcerUwXxB9BUOGzSFT3PxMkvteIAOq2Rj4ebQ3LAhiw3OzIS5s335QQZHCgtnOl83pfvT1pF8QR4q3HQmjsZTBnj8DTQG1vR8wwMb1/R8LM2eM+N48FhLs4Xf0V1fnJcVmF/KvK18rT6c4ulX51+cx27u+qJYsv74c3jTn38si514R7zBuGIg/9yf8Zx4KtbBZzw5izX/+N+Fub/4wG1Z7BNj8TPpFS+5OIyztk4OviU+tIQvYWdtjb9mLnTynfAZo/F6vGcqX48bopHJKaWZwp6ZVVTYVoYfxWic25jID1La8y4E07IajfgZ2AmGNa6X6Vcl3tgBAAAAqJTCDgAAAEClFHYAAAAAKqWwAwAAAFCpKpsnl3Tf4rj7v59SSp3F5XXjKlXPltDWkBWy70gc37w1//SHB+LPfbGdf6IbhuPce+/qfu2M7sqvYb7QBPfQPh3i1tKGws1hImiUfLTUaDn4LGenZsPc1hJuDlOTwbmU7Hta1I+/9BPdCP6gVfiAO+3uF85AcIjSo67jdrPmTvieOP7gD+ax/sJuIvo8S5u+I3NL2ZHk3fuDx2JKKaW+0SUcluVbjB9ADz6SP2tmTo1/sHfN5Z/vDV/5dJj7rm99SteXdvS33p/FxuZWaxwKK2G0P5/qsbk/nt6xGEwGmTkaf74PLXT/uZ8abMA2bYqHDdw8ZrJIr2hEt6KxOLezhD1rO/xeFD+/GkFu6bv+evlObvsPAAAAUCmFHQAAAIBKKewAAAAAVEphBwAAAKBSCjsAAAAAlapyKlapGtUI/qBTanMdtusujQTp8q+nlFpBbl9x3FYhzqo5OhXHR4MJWGeeEn9w4+1NWazVjn+UfvjVu7PY5bc+Eub2z+Wx9kQ8FutQGg/jrI7BYNpDSik1owEMzTh5sC+/QbUL94aZ+fzAGwfiKRDRLW7LUD7JIqWU9k1NxydkTUXTioaa8WLYNDKcxTrRqKyU0uGpfN3s2havm+ZCfowDU8FNKHlUPR5K+4ZTdo1mscNH4ufEzu0bs1inEW+KHtm3P4tt231SmDsQrL+heJmlTc/eF/8BqyS+91+88PUs9slP/WmYO3NrPj70cF/hIZgPhkzPvWQkTP2HD/5YFttyu2dSL1sczfe22/uHwtyHDuYb7L7CfSEYrJd2FO550VTG2WisIz2lP/hatFAYWjbQCO4vhS/a8618otqGwqyrhWhfVSgMLGGoaE/zkwEAAABQKYUdAAAAgEop7AAAAABUSmEHAAAAoFJVNk8u9EgKOzx2mnHtqhN2SSodOPj7xW6S+R9EDZV5nGyM18Pozq1Z7NChvIFgSindcs9EFmtsj093y32Hs1ihBWFajE9HDxjdla+PlFLqm8mbuG3dmTfMTimlvZ/55Sz2y7/7hWVdV0opvfndH8pimiTXZ64dPyjmpoPupEtwoNBYlzrNDeTNcZsLB8Pc7Yv5Fu+usXiCwPBg3uV0+mB83PlWoQNm4P7ut1WsiHg4wx//xq9lsVbh1nDed5+Txb5zx84wt/HiINiJP/TXvv2K+IT0rPHpvKH+2GT8rNqwMY9PHY2Puz3YipeeVFd99Jey2Im7R8PcxlPfWDgKa20x3x6XZoukxUb+6Q/0x/eR/iDeLgyUWJw9/r6Ae2MHAAAAoFIKOwAAAACVUtgBAAAAqJTCDgAAAEClFHYAAAAAKlXlVKzSRKr+wbzddmeh0Ge9L/+nd1pBC2/Wl+loGlpKN92ej6Q69/QNYe7LnpevnX/88mTXl1BaZRs357H5YKpJSiktBNOYWD0Dm0+I43P3ZrGxA/vD3Je95n1Z7LOf/+zyLqwgn5vzqPlVORuw0hYL+5yTNg1nsYdPiicWPTSeT7RZLEy0Ggq2SrOli4umjYaTRldAYyiOd/J/G2U3BdOJLtwS516yNX+CvO7tVy77GnaekE+zObj/+JtaU5NHJvMbw46ReLTRoWCNTZU+3iC+q5C672B+Jzr1m0y/6nXRd/VmYWJeqy9PnlvCRCvfiP4Pb+wAAAAAVEphBwAAAKBSCjsAAAAAlVLYAQAAAKhUnc2TC/H5+bzJV6lytX3rSBY7PD7V/TW0VqlRIKvqZS8eDeMPPJI3YtxYaAb55CfmjXTbR+M2k/0bBrLYhi3bw9yPfuqBIKolWC944L77wvhgJ7/nzLaCDoIppc9+4fNZ7NlPvTg+YTu/y111461h6mIrX3uaJPeGuE1g+RnG8enS4JbRLCySztfze9HEwKYwd89ZW7PY/IPxgRvD+Wrd3BfvoCYP5cMGBveEqWn+wTjeNU2SV81Tnxk33f71P7kpi/3KD58c5m7alO+lN2yLG17/3H/9+hKujl61uBDvjaeDW8tQ4SEYNYcfLXwj3b4lb+bd8hCtUruw++kLvuq0Cl/go3CwZX7UcbhOvLEDAAAAUCmFHQAAAIBKKewAAAAAVEphBwAAAKBSCjsAAAAAlapyKtZSlBpiHzo8kcX6+uM6V7OZx9uFTu+tRdOyetmmLdvC+J40nsWmDscf8o23jWWx9uxCmDtzNI/PH46nJj3lwny6xA03xrmsrYHB+FbZ38ynNSyMT4a5w8HN6I6vXx8fty+PbQtiKaV0IB/MRY9YykCG8gStcAbEMVwNveqq/NafLin8XF8d3AdGGvFz4q4780mfGzfsCHP7F/N11povrcpcafrVxfmjNV2fD+vicfDezx6M/yC4cZ25cXOYOjKUL8jpQ6Z5rmdDhZF9UbRTeAiOBLeWewvL5vRv+83uLoye1ylsXaLHXXMgfv50gpVW3D/FX83WNW/sAAAAAFRKYQcAAACgUgo7AAAAAJVS2AEAAACo1HHbPDlSanzc0qhy3Th3e9wA8Ouz+7PYphO2hLkf/YeHV/Sa/g+NknvV4mLc1W82uGfMFurli8F9ZHZ+eddFryu3RP7X+gupC6Vug6xrUZPkkmYzXiNDQUfK6ZlDx3hFx0aj5B62hA3yj/zRrat3HVSls4SBDaUtzvxSvpxxXGovWCTHwhs7AAAAAJVS2AEAAAColMIOAAAAQKUUdgAAAAAqpbADAAAAUKl1PxWr/E+Mp9ywvg2+8o/D+Jue99wsdt+Bh8Lcj565Z0Wvid43NT0XxkcG89hAYYiRO87xqPupDgZAcKymWqURWksYX8M68dRC/Lo1vQrWrxnPKuhZ3tgBAAAAqJTCDgAAAEClFHYAAAAAKqWwAwAAAFCpdd88uVloWVrob8o69z9/7nlh/AONPDY9FQQ5LjULS2F2IY+1SstGw0Eew2BfvHDmWxYOj61RaJJs5RyPDhbip2aR737dfwwzP/y2n1nB62G92T4UvxMwddQ3Kx6b7fHq88YOAAAAQKUUdgAAAAAqpbADAAAAUCmFHQAAAIBKKewAAAAAVKqxd+9ezagBAAAAKuSNHQAAAIBKKewAAAAAVEphBwAAAKBSCjsAAAAAlVLYAQAAAKiUwg4AAABApf5/CScjOuRT7wUAAAAASUVORK5CYII=\n"},"metadata":{"image/png":{"width":1142,"height":1213}},"output_type":"display_data"},{"data":{"text/plain":"<Figure size 1152x1152 with 64 Axes>","image/png":"iVBORw0KGgoAAAANSUhEUgAABHYAAAS9CAYAAAAiHt73AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd5jU5fX//9fsbC/sAktHBAQUlWrBiopdY0GNxhJ7ixo19kSNNcVG7PlYYmyJJXaNJVgQAUU6a0NBet9dtrdpvz/4Md/FcwZ2ZRd24Pm4Lq9LDmdn3uzcc7/v9z3vOSdQVFQUEwAAAAAAAJJOypY+AAAAAAAAAPw8bOwAAAAAAAAkKTZ2AAAAAAAAkhQbOwAAAAAAAEmKjR0AAAAAAIAkxcYOAAAAAABAkmJjBwDasBtvvFGDBg3SoEGDNGXKlC19OJvF4YcfHv83AwBa3rZ4btlaTJkyJf7a3XjjjVv6cAC0Ealb+gCA5jj88MO1bNkyEw8EAsrKylJubq5yc3PVu3dv7bTTTho8eLBGjBih1NQtM9Sfe+45VVZWSpIuueSSLXIMbcl3332njz/+WJK0xx57aI899tgix/HTcTR69GjdfvvtG/25CRMm6De/+Y0kaffdd9c///nPVjtGAEg2jz76qCQpLy9Pv/71r7fw0WxebeX8BmyNvv76a33wwQf64osvtHLlSlVWVio/P1+FhYUaOHCg9thjD40cOVL5+fnNfuzPPvvMrNGLiopa6tCBzYaNHWwVYrGYampqVFNTo1WrVunHH3+ML7AKCwt1/PHH67zzzlNubu5mPa7nn38+voHAxs7ahe/f//73+J/bysL3rbfe0llnnaUddthhSx8KACStdfN79+7dt8mNnbZ4fgOSWUlJie666y6999575u+Ki4tVXFys7777Tq+//rruuOMOHX/88c16/MrKSt12220tdLTAlsXGDpLWySefrO222y7+54aGBlVWVqq4uFhff/21FixYoFgspuLiYj355JP673//qzvvvFN77rnnFjxqtEWRSET333+/HnrooS19KAAAANu85cuX64ILLtDChQslSVlZWdp9993Vv39/5eXlqaysTKtXr9Y333yjBQsW/KznuOeee7Ry5UqlpaUpFAq14NEDmx8bO0haRxxxxAY/EVu+fLlefPFFPf/882poaNDy5ct1ySWX6IknntCwYcM245GiLQsGg4pEIho3bpxmzJjR5sbGn/70J/3pT3/a0oexWX3wwQdb+hAAAMAWUl9fr4suuii+qXPSSSfpiiuuUEFBgZu/ZMkSBYPBZj3HxIkT9frrr0uSLrjggvhXSYFkRfFkbLW6deum3/3ud3r++efVuXNnSWtPFJdffrnKysq27MGhzWh82+7f/va3LXcgAAAA0IMPPqj58+dLks4991zdcsstCTd1JKlnz57q1q1bkx+/qqpKt956qyRp33331bHHHrsphwu0Cdyxg63ewIEDdf/99+uss85SKBRSWVmZnn76aV155ZVufk1NjcaPH6/Jkyfr22+/1ZIlS1RdXa3MzEwVFhZq8ODBOvroo7XPPvskfE6vm48X6969u7k7oSWev7GFCxfq1Vdf1dSpU7Vw4ULV1NQoGAyqXbt26tmzp4YNG6a9995bu+22m9LS0jb4WJMmTdL//vc/TZ8+XcXFxaqvr1dBQYF23nlnHXzwwfrFL37hFqp+9NFH16s9IK2txfDTmKSf9R3pTXHqqadq0qRJWr58uWbMmKGPP/5Yo0aNapHHrq6u1iuvvKLx48dr/vz5KisrU3Z2trp376699tpLv/zlL9f7OqHnxhtv1FtvvSVJeuqppxLepbZq1Sq9+uqr+uKLLzR//nxVVlYqJSVFubm56t69u4YMGaJ99tlHu+++u7KzsyWtrU115JFHaunSpZKkN998U3379t3ov6txocHhw4frmWeeafLvpCkaF7f2ChguXbpURxxxhKT/V8Q6HA7rzTff1Lvvvqsff/xRlZWV6tatm0aMGKHzzz9fXbt2Xe8x5syZoxdeeEHTp0/XihUrlJaWpoEDB+rkk0/WYYcdttFjXLhwocaPH6+pU6dq3rx5WrVqlUKhkPLy8rTddttpzz331Mknn9ysheasWbP00ksvadq0aSouLlZeXp569+6tX/ziFzruuOOUlpamc845R1OnTpUkvf/+++rRo8cGH3P27Nn673//qylTpmjVqlWqrq5WQUGB+vXrpwMPPFAnnniiMjMzN3ps48aN07vvvquvv/5aq1evVkNDgzIyMtSpUyf16dNHe+21l/bee+8mjZ/majx/rJsfli1bpldffVXjx4/XypUrVVZWpt12280taD5v3jy9+eabmjx5slasWKGKigq1a9dOvXv31v7776+TTz5Z7dq1a/LxTJkyRR988IGmTZum1atXq7q6WllZWerZs6d23XVXHXjggdp33303+OnxnDlz9MYbb8QLga6bS/v376+DDjpIo0ePVnp6esKf994DsVhM7777rt566y398MMPKisrU35+vgYPHqxTTjmlSeeMnzOPND6WdZYtW+ae835adN6b3+bNm6dXX31Vn3/+uVatWqWKigode+yx8TsXvfGwIc19z3zzzTfx98zKlStVUVGh9PR0de/eXTvvvLP2339/jRo1Kv76tNT5rSXH6YIFC/Svf/1LkyZN0sqVK5Wdna2ePXvq8MMP14knntji9Qa9OXvcuHF67bXX9N1336mkpER5eXkaOHCgjjvuODNefsobF4sXL9ZLL72kzz77TMuXL1cgEFDPnj114IEH6swzz2xy0dzWmGdbUn19vV566SV98MEHWrBggUKhkDp37qw999xTp5xyinbcccfNdixbSmlpqV588UVJ0vbbb6/f/va3Lf4c9957r1asWKGsrCz98Y9/VCwWa/HnADY3NnawTRg0aJCOOeYYvfbaa5KkF154QZdccolZOP/www867bTTVFdXZx6jqqpKVVVVWrBggd566y3tu+++uvvuu5t1QbAxLf38zz33nMaMGaNwOLxePBwOa/Xq1Vq9erVmzJihp556Sg8//LAOOOAA93FWrlypG264Ib7QaWzVqlVatWqVxo0bp3/+85964IEH1Lt37+b9wzfgpxcNLb3ISktL06WXXqqbbrpJ0tpPiQ444IBm39L7U+PHj9fNN9+s0tLS9eLl5eUqLy/Xt99+q+eee04XXnhhvNPWz/X+++/rlltuUU1Njfm70tJSlZaW6quvvtK//vUv/f73v9dpp50maW03udGjR+vhhx+WJL3++uu6+uqrN/p8625dlqQTTzxxk469JRQXF+t3v/udZs6cuV58wYIFWrBggf773//qscce0+DBgyVJDz/8sB5//PH1FnK1tbWaPHmyJk+erFNOOSU+HjwPPfSQHn/8cffv1qxZozVr1mj27Nl6+umndc011+j000/f6L9hzJgxevrpp9c7ppKSEpWUlGjatGl67bXXdP/992/0cdaprKzULbfcorFjx5q/W1dw8osvvtBTTz2lMWPGaMiQIe7jVFVV6corr9TkyZPN39XU1GjhwoVauHChxo0bp4KCAn322WdNPsaf6/3339ett96q6urqDeaFQiH99a9/1SuvvKJoNLre3617X0yfPl1PPfWU/vznP+vAAw/c4OOtWLFCf/jDH9zW0JWVlfr222/17bff6j//+Y8uvfRSXXzxxSYvHA7r7rvv1ksvvWSOad1cOnHiRP3jH//QPffck/B1+any8nJde+21+vzzz9eLFxcX6+OPP9bHH3+sM888U9dee23Cx/i580hLev755zVmzJgtUuuioqJCt956q/ueCYfDmjt3rubOnau33nqryZ0Um6Klx+nLL7+su+66Sw0NDfFYfX291qxZo6KiIr388st64IEHWuTYPaFQSH/84x/1zjvvrBcvKSnRhAkTNGHCBL3xxhsaM2ZMfHNwY9577z3deuutZmx+//33+v777/XGG2/oiSee2OjGckvPsy1t4cKFuvTSS+NfP2ocX7hwoV5//XVdd9116tev3xY6ws3jtddei4/fE088scU7206aNEmvvvqqJOmKK65Q9+7d4x9wAcmMjR1sM371q1/FN3Zqamo0e/Zs7b777uvl1NTUqK6uToFAQAMHDtROO+2kzp07KzMzU5WVlfruu+80efJkhcNhTZw4UVdddZUef/xxpaSs/63GdRfHTzzxhCoqKtaLNfbTT81a6vkl6ZNPPtHdd98d//NOO+2k4cOHq7CwUNLaC9B58+Zp5syZ7kJ+ncWLF+vss8/WqlWrJEnt2rXTvvvuq969eystLU3Lli3T+PHj493IzjzzTL300kvr3amwzz77KDs7W19//bXef/99SdLee+/tfoK86667JjyW1nLMMcfomWee0Q8//BD/1PSEE0742Y/30Ucf6eqrr1YkEpEkdejQQQcddJC6d++uiooKTZgwQfPmzVM4HNajjz6qiooKXX/99T/rub755hvdcMMN8efq3bu39txzT3Xp0kUpKSmqqKjQ/PnzNX369PhYbGz06NH6+9//rkgkorfffltXXHHFBhdRa9as0SeffCJpbUvjQw899Gcdd0sJh8O66qqrNHPmTHXr1k0jR45Uly5dVFJSorFjx2rVqlWqqqrSpZdeqvfee0///ve/9dhjjykjI0MjR45U//79FY1G9eWXX2r69OmSpJdeeklDhw7VL37xC/c516xZI2nt+3fIkCHq27ev8vPzlZKSopUrV2rKlCn68ccfFQ6H9de//lU5OTkbvKvgoYceWu8uhj59+mi//fZTQUGBli9frk8++URFRUW6+uqrFQgENvo7KS8v19lnn625c+dKWltwcp999lG/fv2UmZkZ3zxYtGiRVq1apfPPP19PP/20dtllF/NYN910U3xTJz09Pf44ubm5qq+v18qVK/Xtt9/qu+++2+hxtYSZM2fqzTffVDgc1s4776w999xT7dq108qVK1VVVRXPC4VCuuiii+KbMKmpqdprr7200047KScnR2vWrNEXX3yh77//XpWVlbriiiv0wAMPJLxoXrBggc455xwVFxdLWrspOnToUA0ZMkT5+fmqqanRggULNG3aNJWWlpoL9HWuu+669TYOdt55Z40YMUI5OTlatGiRPvnkE1VWVsaLhj7++OMaOnToBn8nkUhEV111lb788ksVFhbqgAMOUPfu3VVdXa0JEybo+++/lyQ9++yz2nnnnXX00Uebx9iUeSQ/Pz9+frvvvvskrT1PXHDBBeZ5fnrnXGPvv/++Xn75ZUlr7+wZMmSIsrKytGzZMuXl5W3wd7CpSktLddZZZ61XgHXgwIHabbfd1KFDB9XX12vRokWaMWOGVqxYEf89SZt2fmvpcfr222/rjjvuiP+5c+fOGjVqlDp37qzVq1frk08+0aJFi/Tb3/621e78uP/++/XOO+8oPT1dBxxwgPr3769QKKQZM2bEPxyaOHGiLr/88oTrl8YmTZqkf/7zn4pGoxoxYoQGDx6szMxMLViwQP/73/9UX1+vVatW6eqrr9bLL7+c8M7jlp5nW1pxcbHOPffc+ForLS1NBxxwgAYMGKBQKKTp06dr2rRp+vOf/6yzzjprsx/f5jRhwoT4/++2226KxWL64IMP9MYbb2jOnDkqLy9Xfn6+BgwYoFGjRm30DsfGqqur412whgwZolNPPbVV/g3AlsDGDrYZO+20k/Ly8lRZWSlJmjZtmtnYycvL0xVXXKHRo0erY8eO7uMsXrxYV199tb799ltNnjxZ//3vf3XMMcesl3P22WdLWntn0LpF8LrYhrTU80vS008/Hf//P/3pTwm/PxwKhTRu3Dj3KyOhUEhXX311fKFx1lln6bLLLjNf3QiFQhozZoyef/55rVmzRn/4wx/WW0ANHTpUQ4cO1RtvvBFf+A4dOrRJv5PNISUlRVdeeaUuvfRSSWtvrT/66KOVkZHR7McqLi7WH//4x/jC/9BDD9Xtt9++3ibe1VdfraefflpjxoyRtPZT6r333lsjR45s9vM9//zz8ee69NJLddFFF7mL0kgkosmTJ5t/U+fOnbX//vtr3LhxKikp0aeffqqDDz444fO9/fbb8TvAjjzySGVlZTX7mFvSurt0zjjjDF111VXrLep/+9vf6rzzztPXX3+tsrIy3XbbbRo7dqwGDBigBx98cL07vy699FI9/vjj8c5ojz32WMKNnV133VX777+/9ttvv4QXEe+9955uvvlm1dfX6+6779Zhhx3mfjr91Vdf6cknn4z/+bLLLtMFF1yw3sXOtddeq5tuukljx45t0gXHjTfeGN/UOfroo/X73//efE0hGo3qmWee0ZgxY1RXV6drr71Wb7311nqbeosXL9ZHH30kSerRo4eeeuopde/e3X3O1atX63//+99Gj21Tvfrqq8rIyNBdd921wa/M3XPPPfGL5X322Ue33367unTpYvLefvtt3XLLLQqFQrrxxhv17rvvmt9VXV2drrzyyvimTp8+fXTXXXdp4MCB5vEikYgmTpzo3nHy8ssvxzd1UlNTdeutt+q4445bL6ekpETXXHONpk6dqtraWt1www167bXXNnhnw4wZMySt7RR57bXXrjc/X3nllbr77rv1/PPPS5L+7//+z93Y2ZR5JDc3Nz6Xr9vYaRxrqpdffln5+fn629/+tllbhcdiMV133XXxTZ1OnTrpL3/5i0aMGOHmzpgxQ4sWLYrHNuX81pLjdOXKlfrzn/8c//Nxxx2nm2++eb3X6uqrr9af/vQnvf766612h8Jzzz2nXr166ZFHHjF3744fP15XX3216urqNHnyZD3//PM688wzN/h4Tz75pDp27Kj777/fbHKef/75Ouecc1RaWqq5c+dq7NixOuqoo8xjtMY829L+/Oc/x9daPXr00KOPPmruQBo3bpyuueYaPfvssy363N7XJjeF9xXqpopEIvrmm2/if27fvr0uvPBCffHFF+vlrbvzdN3G3wMPPNCkzcr77rtPy5YtU1pamm6//faNbiwCyYTRjG1GIBBQ//79439evny5yenbt6/OP//8hJsqkrTddtvp4Ycfji+eX3nllRY7xpZ8/nWfoPfr12+DReHS0tJ06KGHasCAAebv3n77bX377beS1l44X3PNNW49jrS0NF1//fXx2jRTp06N3/2QLEaOHKnddttN0toF8roLoeZ6/vnn45t5AwcO1N13323uzAoEAjrnnHP061//Oh575JFHftbzrXt98vLydMEFFyRckAaDQe2zzz7xf2NjJ510Uvz/G3/NytP47zflrqaWdPDBB+v66683myw5OTnr3Qn1/vvvKzs7W48++qj7db7zzz9f22+/vaS1d2jMmzfPfb4TTjhBBx100AZrUh155JG6/PLLJa39ms66C76f+sc//hG/u+O4447TRRddZBaa2dnZuuuuu9SvX7+N1gH44osv9Omnn0pa+3v5y1/+4taeSElJ0TnnnKMzzjhD0tpNnPfee2+9nMZ34Zx66qkJN3WktRfDTfnKWUv4/e9/v8FNnYULF+qll16StPaC5eGHH3YvlqW1d+tdddVVktZ+FWddXYfGXn311fhY6Ny5s5555hl3U0da+z4bOXKk2RwNh8PrfX3vyiuvNJs6ktSxY0c9/PDD8Y32pUuXbvQ9Ka2dv26++WYzPwcCAV111VXxO2UWLFgQ3/RrrCXmkZZw9913b9ZNHUn69NNP43elZWdn66mnnnI3daS1v8/hw4e3SB24lh6n//rXv+J3rQ0dOlS333672cjPyMjQrbfequHDh7daTZG0tDQ9/PDD7leyR44cqRtvvDH+56eeemqjX7tLSUnRgw8+6N651rdv3/gHMpL04Ycfuo/R0vNsS5s3b956m74PPfSQ+7WyAw88UL///e+36nowq1atUm1tbfzPN910U3xTZ8SIEbrooot06aWX6rDDDovfpbN06VKdffbZG215Pnny5Pia+cILL2yVmnDAlsTGDrYpjS9wysvLf/bjdO7cOb6wLSoqWu+77JtDU55/3SKmvr7+Zz/PCy+8IEnKzMyMF8vdkHPOOSf+/+PGjfvZz9tYjx49VFRUFP+vNYsYrls4S2sXgj9njKwr+ChJl19++Qa/1nTJJZfE73j55ptv9MMPPzT7+da9zqFQKOHXPzZmv/32i19QTJgwQatXr3bzioqK4heFO+64o/vVnS1hQ2Nz2LBh69WhOuGEExJePKWkpGj//feP/3ndxe7P1fiT42nTppm/r66ujr9PAoHABv8daWlpuuiiizb6nOves9LazYONffLc+K6Cn75nG3/dpPFCe0vq2rWrRo8evcGcF198Mf5euOyyyzZaFP6UU06Jvw+9eWvdxbe09nfavn37Zh619OWXX2rlypWS1s7f6zbUPDk5Oeu91o3nlEQ2VFw0LS1tva/ueOO6JeaRTTVs2LAmNwVoSY03Sc4999wWrRG3sedtyXHauKbNZZddlvBOhJSUlPimc2s45phj1KdPn4R/f9xxx8U30EtKSjRx4sQNPt4BBxwQr4/mafx1YO8roa0xz7a0xq/dkUceud6HkD91wgknbLTpQnNdffXVLfrfpvjpVz2nT5+u3NxcPfHEE3ryySd12WWX6eKLL9Z9992nN954I/5+raqq0g033JDwcWtqanTLLbcoFoupf//+Ou+88zbpOIG2iK9iYZvS+Hb2xvUYPJFIRPPmzdOPP/6oiooK1dbWrvcpybo6G6FQSEuWLGnxnf9Nff4BAwZo9uzZWrx4scaMGaPf/OY3zfraTFlZmebMmSNJGjx4cJNqHDS+Dfarr75q8nO1FYMHD9ahhx6qsWPHqrKyUk8++WSzFilLliyJb4rk5uZq77333mB+bm6u9tlnn/jXXWbMmLHBBZ1nxx131I8//qi6ujr98Y9/1A033NDk7iDrBINBjR49Wv/3f/+nSCSiN998U+eff77JW1ejStJGL643l06dOrl3mzXWo0eP+GJxYxeOPXv2jP9/SUnJRp+/srJSc+bMiXevS/Tps/dJ4ldffRX/WttOO+20wTtiJMWLejfecGksGo3Gv9bRo0ePJl2gdunSRR06dFBpaam+/vrr9f6u8e/12Wef1ZAhQzY6plvbfvvtt9Fb59fdfZGWlqY999xzo4+ZlpamHXbYQV999ZW+/fZbRSKRePH0VatWxVvuZmZmbrSbTyLrvi4lSaNGjdpocfbDDjtMt912m2KxmObMmaOampqEX8cqLCzUTjvttMHHazwWflrQXWqZeWRT/Zyvom6qdbVL1vHuomotLTlOG5978vLyNnrX0/Dhw+Pv+5a2oa/ySms3V0aNGhX/uvbMmTM3WBB6v/322+DjtW/fXu3atVNFRYX772npebY1NJ4fmvL7O+SQQ9wOgD9XW/lavCS3KP7NN9+svfbay8S32247PfDAAzrppJMUCoX09ddf6/PPP3fPU2PGjNHSpUsVDAZ1++23b3QjFUhGbOxgm9L4hJGo3WdlZaWeeOIJvfnmm01e9Kyr29MSWur5zz333HhL93/+8596+eWX47fQDxo0SAMHDtzgie3777+PbyR9+eWXzf4O9rqNp2Rz+eWX65NPPlE4HNYLL7yg008/fYMFPxtrXHdhwIABTeqsNXDgwPjGzk87YTTFmWeeqbFjxyocDuudd97R2LFjteeee2r33XfX4MGDteuuuzapnfXo0aP1+OOPKxqNuhs7tbW18a8TZWRkJKw/s7k1pZ144wvijb2WjXM3VFT866+/1iOPPKLPP//cdJ3zeIWrG7/eTdnQW9dSO9E4WbZsWXwuWLp0abPfsz+db/r27auDDjooXtD3wgsvVK9evbTPPvto2LBhGjx48HobYZvDhu4EkP7fhri09qJ92LBhzXr8SCSiioqK+F05jb+Ot+OOO/7si4HGr1mir3E1lpeXp549e2rx4sWKRCJasmRJwg3MjV2oShsf1y01j2yKjb22rWH58uXxu9E6derU5Ll+U7X0OG08vgYMGLDRzc9AIKABAwaYuiUtYWObjNL6m8Yb+/pMU8Z3Tk6OKioq3LHd0vNsa2j8XE2pE7OxDzOS2U+/PtizZ08deeSRCfP79u2rQw45JP5V4vHjx5uNnSlTpsQLs59++ulbpEkHsDnwVSxsUxpfXHmfRi5dulS//OUv9c9//rNZn2S11FexWvL5Dz74YN12223xO22qq6s1duxY/fWvf9Xpp5+ufffdV7/73e8SticuKyv7Wf+GddrKVzeaq3fv3vG7Uerr6+PFdJui8fgqKCho0s80/lrHz/nq16677qr7778/3u2svr5en332mf72t7/pnHPO0b777quLL75Y77///ga/YtG9e/f4Ymhdd5/Gxo4dG7/LbdSoUZv90/xEmtIJo/HXkTZWELtxbqI6Bq+//rpOO+00ffbZZ03a1JH89+jG5iPPhvI25eulkv+e/ctf/rLeonrRokV68cUXdf311+vII4/U4YcfrnvvvVfLli3bpOduqo3dOVhRUbHJXyVq/Hto/Dvt0KHDz37M1pwbmvse8MZ1S80jmyLRhy2tqfF5blNe3+Zq6XG6qeOrJTXl+Rs/t7fp3VhTmhisG9/e2G7pebY1NPf1a63Xri3IyclZ78977rnnRr9S3PiOt8aFl6W1G9l//OMfFYvF1LNnT1122WUtd7BAG8MdO9hmRKPReNtXyf8U6A9/+EO8U0T37t31q1/9SsOHD1ePHj2Um5urjIyM+AnmxhtvbFLtg+Zo6ec/4YQTdMghh+j999/XhAkTNHPmzPidNLW1tfrwww/14Ycfat9999WYMWPW+1S38W3I/fv332ABZs+WWKS3lEsuuUTvvPOOamtr9c477+jss89u9lekNqcDDjhA7733nsaOHavx48dr+vTp8e4aDQ0NmjhxoiZOnKhnnnlGDz74oDp16uQ+zi9/+ct4vYPXXnttvQKpjb+GdeKJJ7biv6Zt+/HHH3X77bfHL8r2228//eIXv9DAgQNVWFiorKys+F0dsVhsg7UhWlrjTabOnTuvV5z758rJydHdd9+tCy64QO+++66mTJmir7/+Ov5cy5Yt0zPPPKN///vfuu666/SrX/1qk59zQza2wG88b2VlZTWpNthPNa7JtC1pqXnk59qWutMwTtGWNO6i2hI25atd6zaX10lUEy9Rzk8/lPzHP/6hJUuWSJJuueWWLd7JE2hNbOxgm/Hdd9+tV1fnp63Ov/nmm/h37Xv06KGXX355gwunlvz6VWs+f7t27XTyySfr5JNPViwW0/z58zVlyhSNHTs2/h3/iRMn6rbbbtNdd90V/7nGn1h17NixTX0Hu7UVFhbqjDPO0BNPPKFoNKr777+/SV2rGr9eTb3jqfFX1jblU8LMzEwdc8wxOuaYYyStrbkwZcoUffzxx/rss88UiUT01Vdf6eqrr07YKvWAAw5QYWGhiouLNXbsWP3hD39QTk6OFi1aFB+bPXv2bFI9iK3VSy+9FN/UOOOMM9bruvVTG3uPNh4vTb3bZkN5jT/pzczMbNH3bP/+/XXFFVdIWtv+u6ioSJ9//rneeecdLV++XKFQSH/605/iX9XaUhq/h0Kh0Cb/Dho/3qbUI/k5r3VLzQ3N0RLzSGtryl11jdXV1SX8u8bvmdaoN5NIS4/TTT33tKSysrKNbvo1fu7W3qBq6Xm2NbRr107FxcWS1v7+NvbBWEu/dvfdd1+LPt6mjOfc3Fx17dpVK1askLTxzfyN5ax7HEm64IILmnwcjb/KfMcdd7RIJzygtW07H49gm9e4s0lubq6pPzF79uz4/x9//PEbXWx4LWM3xeZ4/kAgoL59++qUU07Rk08+qXvvvTd+Qnz//ffXW8w0Lsbc+E6nbcW5554bv915/Pjxmjp16kZ/plevXvH//+GHH5p0q33jLh7rOoW0hJ49e2r06NF66KGH9M9//jP+dY0ZM2a4nUOktW1W1y1eamtr499Zf/311+MXUKNHj27SQmtr1fh9etZZZ20wd2Pv0Z+Ol42pra2Nf/Lo6d69e/zTyKVLl7pFKFtCZmam9thjD11++eX673//u16xT68N8+aUlpYW7xgTDocTtqxvqn79+sX/f86cORttzZxI4/d2U7qtVVZWxl/rYDC42WsZrfNz5pHW1tQ6WOs0vrD7qcbvmdWrV28wtyW19DhtPL5++OGHJm14tdZ5fV3ThaY+d2t3IWvpebY1NH79mvv72xo17ri5rpvghjTO2ZxfqQTaGjZ2sE0oKirS22+/Hf/zqaeeaopgNud72N99950WL1680edt3Op6Yx0WWuP5N+bwww+PL6qi0eh6Bfy6du0aL2ZZWlraIkUWm/P72NJyc3PX+3Tnb3/720Z/pmfPnurcubOktRdmn3/++Qbzq6ur12v12twCmk01bNiw9bqkbKhY5QknnBDfuHn99dcViUTiX/kLBoObtWtMW9T4fbqxzdexY8du8O933XXX+Hviu+++0/LlyzeY/+mnn27wfZOWlqbhw4dLWvv++uCDDzb4eC0hLS1N5557bvzPGyuEujk0Lpz57rvvbtJjderUKb7JXVdXFy8g3lyN39sff/zxRue/Dz/8MH5xvuOOOybsiLU5NWUeWTeeW3N+b3zhtrECt3PmzInfCeFJTU1d7yunb7755s8+ruae31pynPbs2TN+l0xFRUW8O14i06dPb7U7lNY1A9iQTz75JP7/Q4cObZXjWKel59nW0Ph38PHHH28wNxaLNel33BxFRUUt+t+mavxhweTJkze6Ubnu7nNJ5kPb4cOH69hjj93of4ceeuh6P9f47xpvDgJtGRs72Op99913uvLKK+OftLZv3979pL3xLdk/Lb7WWDQa1b333tuk5258O+3Gbu1tjedvrp8WKTzttNPi/3/XXXc16dPRdbwTcePCp5v7Vuef41e/+pV69Oghae2dGh9++OFGf2bdVxgk6eGHH95gcd3/+7//ixfA3HnnnTdbHZ8NFaPcbrvt4l+1mj17tp599tl4nY199923Sd9335o19X36448/6pVXXtngY+Xm5uqAAw6QtPb98uijjybMDYVCevzxxzd6fI3fs4888ki8BXJTNOVT/o1p7c5JTfGrX/0qvjn5/PPPN+vuRu93cMopp8T///777/9ZX4PYc8894x2XVq5cqRdeeCFhbk1NjR577LH4n9vqZqo3j6w7522sIO6m2HnnneP/P27cuA3OsQ8//PBGH69xXainnnrqZ3dDau75raXHaeNOhY888kjCO0ZjsVizmgI011tvvbXB3+Fbb70V3xTs0KGD9t1331Y7Fql15tmW1njd8O67727wDq433nhjvQ6cW6NRo0bFPzhZsmTJBjfU58+fv97a7Kft4k888UT96U9/2uh/V1999Xo/1/jv1n1gArR1bOxgq7V8+XLdf//9Ov300+MXphkZGXrwwQfdO2IaT9xvv/22Pv30U5NTUVGh6667TpMnT27S11Ea32L85ZdfbjC3JZ9/2bJlOvPMM/X+++8n3IyJxWL617/+pfnz50tau+HV+OtX0toT4rrWpXPnztXZZ5+9wVuA6+rqNHbsWJ199tnuRW/j38e0adOa9FWldW2b1/23rrj05pCWlqZLL700/uc33nhjoz9zxhlnxMfXV199pRtuuMF8JSYWi+nZZ5/VM888E481fp7mOOGEE/Tqq69u8EJi7Nix8TuuUlNTNWTIkA0+5kknnRT//wcffHC959rWNf50/89//rNKSkpMTlFRkS688ELV19dv9PHOPffceNHYN954I95yvrGamhrdcMMN+uGHHzY674wcOVL777+/JGnVqlU688wzTYezxkKhkCZMmKDf/va35lPgf/zjH7r11lv11VdfJfz5iooKPfDAA/E/N/79bCn9+/fXySefLGnt7+68887b4Kfg0WhU06dP1w033KB//etf5u9POOEE7bDDDpLW/k7PPvvshF+nikQiGj9+vPldpqam6sILL4z/+b777tM777xjfn7NmjW6/PLL4/Ncjx49Nktth5aaR9bN8bW1tS3yyb1nhx12iN9Nunz5cv3tb38zGx319fW68847NW7cuI0+3siRIzVixAhJa8fLOeeck/B8HYvFNHXqVPdc0NzzW0uP09NOOy3eUWj69Om69dZbzRzU0NCg2267TVOnTm3SGubRRx+Nn3vPOeecjeZLa+eUSy+91N3c+eyzz3TnnXfG/3zuueeau6dbQ0vPs9LaFtqN1yabYocddohvSITDYV122WXxtVlj48eP15///Oet/uvQOTk5+s1vfhP/8+23377eXTnrLF68WJdffnn8g9t99913o+sbYGtG8WQkrffff19ff/11/M+hUEiVlZUqKSnRV199pfnz56+32OvevbvuvPPOhLf99uvXTwceeKDGjRunSCSiyy67TCNGjNDOO+8cLyA7btw4VVRUqF+/furTp89Gv2oxcuTI+C3Wt956q6ZOnapevXrFbwvOzc2Nd5tqyeePxWKaMWOGZsyYoczMTA0aNEj9+/dXhw4dFI1GVVxcrIkTJ663SXLZZZeZBVZaWpoefPBBnX322Vq2bJm+/fZbnXjiiRo8eLAGDx6sjh07KhQKqaysTD/88IO++uqrDbY533777bX99ttr4cKFmjt3rs466yztt99+633Suddee5kNpi3pF7/4hZ555hnNmTOnSbdnFxYW6rbbbtPVV18d/zrMlClTdNBBB6lHjx6qqKjQhAkT1vt09owzztDIkSN/1vH98MMPuvXWW3XnnXdq11131Y477qiOHTsqJSVFJSUlmjJlynrPdeaZZ270O+gHH3yw2rdvrzVr1sQ/De/YsWP8U89t2amnnqoXX3xRtbW1+uGHH3TUUUfpkEMOUc+ePRUKhTR79mx9+eWXisViuvjii/V///d/G3y8wYMH65xzztE//vEPSdJDDz2kd955RyNHjlR+fr6WL1+ujz/+WCUlJRo6dKgCgYBmzJghKXHByLvuukvnnnuuvvvuOy1ZskRnn322dtxxRw0fPlyFhYWKxWIqLy/XvHnzVFRUFC/y3PhTY2ntxfGrr76qV199VV26dNHgwYPVq1cv5ebmqqqqSosXL9Znn30Wf8/n5+e3mSLr119/vZYsWaKJEyeqtLRUV1xxhbbffnvtscce6tKli4LBoCoqKjR//nwVFRXFv5aybiO7sczMTI0ZM0bnnHOOSktL9eOPP+qUU07RsGHDNGTIELVr1041NTVasGCBpk2bptLSUv3mN78xnxz/8pe/1Oeff66xY8cqHA7r97//vZ5//nmNGDEiPsd//PHH8dcjMzNTf/3rXzfL17Baah4ZOXKkZs6cKWntOeXoo49W9+7d4xfVXbp0Mb+Xn+M3v/mNrrvuOknSs88+q8mTJ2v//fdXdna2li1bpk8//VSrV6/WnnvuqVAoFH/PeAKBgO666y6deeaZWrRokVavXq3zzjtPAwcO1G677aaOHTuqvr5eixYt0rRp07Ry5Uode+yxZsPt55zfWnKcdu3aVTfccINuvvlmSWu/Sjtp0iSNGjVKnTp1UnFxsT755BMtX75cPXv21I477tjiX+mRpF//+td69tlndeKJJ+qAAw5Q//79469B46+I7b777jrjjDNa/Pk9rTHPtrQbb7xRs2fP1urVq7VkyRKddNJJOuCAAzRgwADz+zvzzDO3WPHyzeXUU0/V5MmTNW7cOFVVVen888/XXnvtpaFDhyoYDGru3LkaN25cfPOyc+fO620aAtsiNnaQtF5++eUm5XXq1EnHH3+8zjvvvPinWYnceeeduuiii+IbRpMnTzafEgwcOFBjxozR3//+940+9+GHH67//Oc/mjZtmqqrq9cr4Cyt3Wxq3Ea8pZ4/GAwqJSVF0WhUdXV1mjJlSsLv3GdkZOjyyy+Pf3L4U926ddNLL72kW2+9Nb4InD179npFZH+qc+fOCeuPXHfddbriiisUDoc1c+bM+EXAOnfccUeb2tgJBAK68sor1/v0aGMOPvhgPfjgg7rpppu0Zs0alZaW6tVXXzV5qampuuCCC35Wq9vGjxEOhxP+PtcJBoM688wz452NNiQtLU3HHnvsencUHXvssevVkNhWdevWTffdd5+uueYa1dTUqKamJl6DaJ1AIKBf//rXuuSSSza6sSNJV155pcLhsJ599tl457qfflq7yy676L777tO1114bjyX6Sl1eXp6effZZ3XXXXXrjjTcUiUQ0Z86cDRblLCgoMJ1sGm/0rly5coMb2b1799a9997bZr6ql5aWpkceeUSPPPKInnnmGTU0NGjhwoUb/IpIdna2unfv7v5d37599cILL+j666/XzJkzFYvFNH369Hi3uJ9K9F65++67ddddd+nll19WNBrV119/vd4HFOt07dpV99xzT6vXH1mnpeaR0047TW+//bbmz5+v0tJSPffcc+v9/e67794iGztHHnmkvvvuOz311FOS5I7vESNG6L777tOVV1650cfr2LGj/v3vf+vGG2+M3y377bffJrwzK9FdJs09v7X0OD3++ONVV1enu+++W6FQyP3aX8+ePePFsFvDlVdeqeLiYr377rv63//+p//9738mZ++999bf/vY3BYPBVjmGRMfVkvNs4w8O121cbopOnTrpH//4hy677DItWrRIDQ0NGjt27Hrzbmpqqq655hoNGDBgq9/YCQaDuvfee3XnnXfG75D74osv3HqPgwYN0pgxY0yrdGBbwyodW42srCzl5uYqLy9P22+/vQYOHKghQ4ZoxIgRTV485Ofn67nnntMrr7yi9957T3PnzlVdXV38a0qHH364jjvuuCbfOpyamqonnnhCL7/8sj766CPNmzdPFRUVCWsCtNTzd+3aVR9//LEmTpyo6dOna86cOVq2bJkqKioUCASUl5enPn36aMSIERo9enS89kMiBQUFuv/++zVnzhy98847mjZtmpYuXaqKigqlpqYqPz9f22+/vXbddVftu+++2n333RMudEaOHKkXXnhB//73vzVz5kytWLFCdXV1LVLfo7Xst99+GjFihHsrcCLr7tZ69dVX9emnn+rHH39UeXl5fFG+995766STTtrkonzjx4/XpEmTNHXqVH377bdaunSpysvLFYvFlJubq169emn33XfXcccd16wNsxNPPHG9jZ3Ro0dv0nFuTfbff3+99tpreuaZZ/T5559r+fLlCgaD6tSpk4YPH67Ro0c3uxD2Nddco0MOOUQvvviipk2bppKSEuXl5al379466qijNHr0aKWnp6/XQr3xnQA/lZWVpVtvvVXnnXee3nzzTU2ZMkWLFy9WWVmZUlJSlJeXp169emnnnXfW3nvvrb333tvMKxdccIH2228/ff7555o1a5Z+/PFHrV69WrW1tcrIyFDHjh01cOBAjRo1Socffvhm+UpFcwSDQV1++eU67bTT9MYbb2jy5Mnx92E0GlVeXl78zoW9995b++677wbvjunevbuee+45TZgwQR988IFmzpyp4uJi1dbWKicnRz179tSgQYM0atSo9QrjNpaamqobb7xRJ510kl577TV9+eWXWrlyperq6lRQUKABAwbowAMP1OjRozdYC6ultdQ8kpOTo3//+9/697//rfHjx2vBggWqrq7eYB2cn+t3v/ud9tlnH73wwguaNWuWysrKlJ+fr379+unYY4/VL37xi2ZdcOfn5+vhhx/WzJkz4+e5lStXqqamRllZWerWrZt23XVXHXDAAQnvsPw557eWHqe/+tWvNGLECP3rX//SpEmTtGrVKmVmZqpnz5469NBDdfLJJ29w7thUaWlpuuuuu3TYYYfpjTfe0LfffqvS0lLl5eVp4MCBOv7443XEEUe02vNvSEvOs43vYDvssMNa5Pj69Omj1157TS+++KI++OADLViwQKFQSJ06ddKee+6pU045RQMHDtxoceytRUZGhu644w6deOKJeuuttzRlyhStXr1a4XBYHTp00KBBg3TEEUfokEMO2eq/ngY0RaCoqKjtXk0BALaIadOmxb9WM3z48PU2ebBlhMNh7b333qqrq1NhYeF6nWUAYEs5/PDDtWzZMklqtdpKm0tT59mrrrpKY8eOVSAQ0CuvvKIBAwZs5iMFgPVRPBkAYDQuDkrR5Lbhyy+/VF1dnaT1OwMBAFpGU+fZdUXpDzroIDZ1ALQJbOwAANZTVlamDz74QJLUrl07HX744Vv4iBCJRPTII4/E/zxq1KgteDQAsPVp6jz7448/xgtZN+52BwBbEhs7AID1PPzww/FORyeeeKIyMzO38BFt3SZNmqRnn31WVVVV7t+vWbNGV199dbxgeceOHXXkkUduzkMEgKTWkvPs1KlTJa2tv7fLLru0zgEDQDNRPBkAtnFFRUUqKipSbW2tpkyZookTJ0paWzSyrbSv3pqVl5frnnvu0YMPPqjddttNO+64o9q1a6fa2lrNmzdPkyZNim+0paSk6JZbbtksLbABYGvRkvPsySefnLCTKABsKWzsAMA27rPPPtPf//739WKBQEA333yzOnTosNGfX7Fihd5///1NOob99ttP/fr126THSHb19fWaNGmSJk2a5P59Xl6ebr/9dh100EGb+cia7/3339eKFSt+9s/n5ubqpJNOasEjAoCta54FgMbY2AEAxBUWFmrHHXfURRdd1OSW3YsXL9Z99923Sc9bUFCwzW7sHHTQQRozZowmTZqk77//XiUlJSotLVUkElFBQYH69u2rffbZRyeeeKLatWu3pQ+3SV566aX41xV+ju7du7OxA6DFbI3zLAA0xsYOAGzjLrnkEl1yySVb+jC2WZmZmTr00EN16KGHbulDAYBmW1dsvy1jngWwtQsUFRXFtvRBAAAAAAAAoPnoigUAAAAAAJCk2NgBAAAAAABIUmzsAAAAAAAAJCk2dgAAAAAAAJIUGzsAAAAAAABJio0dAAAAAACAJMXGDgAAAAAAQJJiYwcAAAAAACBJsbEDAAAAAACQpNjYAQAAAAAASFJs7AAAAAAAACQpNnYAAAAAAACSFBs7AAAAAAAASYqNHQAAAAAAgCTFxg4AAAAAAECSYmMHAAAAAAAgSbGxAwAAAAAAkKTY2AEAAAAAAEhSbOwAAAAAAAAkKTZ2AAAAAAAAkhQbOwAAAAAAAEmKjR0AAAAAAIAkxcYOAAAAAABAkmJjBwAAAAAAIEmxsQMAAAAAAJCk2NgBAAAAAABIUmzsAAAAAAAAJCk2dgAAAAAAAJIUGzsAAAAAAABJio0dAAAAAACAJMXGDgAAAAAAQJJiYwcAAAAAACBJsbEDAAAAAACQpNjYAQAAAAAASFJs7AAAAAAAACQpNnYAAAAAAACSFBs7AAAAAAAASYqNHQAAAAAAgCTFxg4AAAAAAECSYmMHAAAAAAAgSaVu6QMAAAAAAABIZNCgQU3OLSoqasUjaZu4YwcAAAAAACBJsbEDAAAAAACQpNjYAQAAAAAASFJs7AAAAAAAACQpNnYAAAAAAACSFF2xAAAAAADAFjd02FA3/s/L+5jYOQ/Ob+WjSR7csQMAAAAAAJCk2NgBAAAAAABIUmzsAAAAAAAAJCk2dgAAAAAAAJIUxZMBAGijhp42wsRO/NVIN3fK+1+a2FuPftrixwQAQGODBg3apJ8vKipqoSNBshm++1AT+/edu/nJy0ImlJUebOEjSl7csQMAAAAAAJCk2NgBAAAAAABIUmzsAAAAAAAAJCk2dgAAAAAAAJIUGzsAAAAAAABJiq5YgKRBgzetmr8USBCPNSkk+R0BBg0anCB3dhOPC8CWcsCVh7rxXQ7PNrF2C3Pc3Pbtu5rYlC/8TlcDDrEdtG756GQ3N6Ohh4ktr426uQ+d8IAbx+Y3+ZhqEyuJNLi5Yeeju8xIlptbVV9rYt3y6t3c6hTbgeSQ1zu5uQCSV3M6Xe11xrEmlrF0hZsbrsrfpOeig1Zy2m0P/zW++/QdTaxzib8m6txxlYmFFdm0A9uKcMcOAAAAAABAkmJjBwAAAAAAIEmxsQMAAAAAAJCk2NgBAAAAAABIUoGioqIEpVyTz2HnTDKxlFRbeFKSIqm2UGCs0i/UFEmtMrGsiF8sN5KfYWINfv1BffJEP/8v0GoSFWcLOMWPY4EEbw037NchDwZsMdJIzC9Q6o2oWIKazEWzKRzXFvzi0m9NLBLo4OaGg3bOyYn6hUwrGmxudjTBeOxgH6Pa/rgk6ZMH/fkQm+6sty4wse1T/fd6xRrvpJDp5hbuYOPfvBFyc3c4yj5fWUWhm1u87CsT69mzj5ubF7TntT8efo+bi5Yx9sgSNx6sqzOxtFhHN3dl0BZV7tnFvpaSVFpRYWIjTrDFuCVp6ntzTayq2hZ1lqQT381z4wDajkRr42OO/6WJRQJ2rpCkytp2JpYb8+exymiaieUV+HNTrMouaN5/b6ybS1HltmNfp5nDfefaIsmS1Kujvf4+rKttMiFJC2rsOmev2ya7uaE6u27+dNznbu7Wgjt2AAAAAAAAkhQbOwAAAAAAAEmKjR0AAAAAAIAkxcYOAAAAAABAkmJjBwAAAAAAIEklZVesgy6c7sbTQrbadl57v61QVXrQ/nyl36EmmG9z6xN0xYqtXGF/vr3flaS22lZv/+TxXdxcNJ9f5d/fywzIVllv3hsj0R6p7ZaVHrCdSiQpErPjLOoclyTFmnF0dAnYdMddNd+Nt9dgEwvl2q41klSe6XRI+9GfRwLd7bjJDLZ3c4O1TteJTL+bQHWJHQvvPrSdmwvfuf893Y13akg3sZXZ/uu76IWIie10nt9NrS7W18Q6Z9hubJK0JmpzUyr8sVvZ0MvE5nwxw83ddajtWNE37B/vzafSLau53jzczhkdOta4uSm1Nt4Q9c8/0aidM4I9E6xznE6h1fX+uWpYPzvOKj7zu5L0f5vun23BYbeVm1jFUr9j2ZAc2+EspaPtDitJtcttrKHOP/8Ut7PnwILO/lrm5d/78ws2nbc2PnTUsW5uTqF9r9fF/K6Mfbez89jMr5e5uflVdh7K6JFgXbtDDxNq+Haxm/ruG2+aGGvg1jV8v93d+HdPX2RiVVG/81n/sF3z1iz61M2tT7Hrp0Xdhru5PbLs8w28+Ck394sPJ7rxZMMdOwAAAAAAAEmKjR0AAAAAAIAkxcYOAAAAAABAkmJjBwAAAAAAIEm1+eLJB55li0S267OTm9tQZotXRmpsEThJCmXawl25GZVubm3QFsDMrraFbiWpMtMWakqvtkUJJamgYZGJvfzkADcXiflFkqVAwL5uOX7dSNXX2rdB1K97Ku+Vb/BrHCszyxYRrKvzi2IGnXdiLMExZGbav5j85Ww/Gc1y4Hn2fdl1h2Fu7uJlds7olOEXhyuL2txUpwicJJWFbEHkLkG/CHt1zA6c9Ii/Zx9b/YOJjX2ROSeRW14bbWLLQh3d3C+/+M7EzjhmiJs7N9W+f1et8ItYx7JtQf48tXNz83PXmNiSYlt4UpKy8peaWE1Fdzd3j4HFJrZmoT+PFYfsmH7m2MfcXKz1waiVJtaQY9czkqRaO/7ysm1hXElaFrHzSO9Uf+1SlWILLaek+8ewqNge7/b5/rxXXmdPuvmlYTd3TY6Nn/RRJzcXvuMvs6+NJKVl2XXz4vrObm6nWrtu7tHTP1fFUux5bdYSf9wU9LWPW5viF3COLZtqYuP/1tvNhS/R2nj/A44ysY4JCrBXtbevZWaCdUuO7HmiclWam1vf0T5fbLl/OdqpwBbvX1XtF/OOdbDn1nH//cTNpahy8w0aYsfUD+/+3s2tKLHFtPsO9tebyyZ+b2JdY/6FVcmPtqhyTf9D3NxwrT2GzFz/QnD3S+81sSlTku+6ijt2AAAAAAAAkhQbOwAAAAAAAEmKjR0AAAAAAIAkxcYOAAAAAABAkmJjBwAAAAAAIEmlttQD7X+FfahA/Sw3Nyu3r4lFK5a4uZE6W5G6utzvHtJQPsfEUqpDbm5NlY2HO3RwczO6dDOxYCzTzQ0vrjCx2nR7XJJUPPs3TvRLNxeJJaps73UEqKpJ0GbKsV2Cfc8lTqX2nj393OWrbEe0G84Z6ebe+8xkE4tE6t3cGqeL17bmoGttd5hA3XQ3N7v9DiYWXr3Yf+Daz01oTeX2/uNqnolVlPrdgiJOg760dn5HkG7dbHei2tX+2E2vtGMsJd8elyQt++5MJzrTzYWkLNvBoX2u/54cccLxJvZj8XI3ty7Ndjgb2t6eOySprtR2tcrpXOrmLlve1cQOG+R3TFqwwpkfC79yc5cus/Nbl6jf7fHryQtt8Fg3Ff+/YJZ9b9c73cUkqVM7+3rW+I2u1KPCdrpaFfaXfblRO/5WpPvntcKAfcIla/y1Vu90e67K6JCga5LT4e/NY/yxftzb/nptW3LwtWUm1qmf33Um9KPtBJMd8t/D0QLbcagk5Hc9S430NrFunfz1/JrFdjx2z/K7Ji0K+Z3/4PPWu8ccfKSbWyH7/gu2t92DJGnCmx+ZWJY/FBSqd64Dnfe/JBXm2muodt38B5403nZ6O+oXv3Bzq5whfdzJh7u53u+MTlkb1tNpKJVV7K95O/S2nfhqvv3Rzc3vbR84L+LPAVl7HGNisSp/LV1Wac9LGfW2e6gk9e2Q78aTDXfsAAAAAAAAJCk2dgAAAAAAAJIUGzsAAAAAAABJio0dAAAAAACAJNVixZM/eyBsYsdcbgsnSVKk0hYtjUa+dXMrvvuLif370O/c3PH1tkhx1jL/n9gx3xYPa0hxqkJJeuaDw0ysss4vdLl9oS3UdM6wiW7udTP9YoNonkGDBzc5NzPVL9p4+6WHmtg/3rGFuyXpr4ftbmIra/0Cj3NX2ELLsXpb9FeSHvi9PYZ7np3q5i5ctMLEvEJw0tZbDO6Te0pM7KRr/MKRDaULTCwsv7h7edGdJjb7t/4xVPWwRSZTVvmVTANRW5wwJdsWk5Sk8x8dZmL79PALya0KrzKxy/f/0M3d9zO/IOu27tCbTnPjlfX2s4999/OLtmanLjWx4hS/GOT+ney4WbbMP/8c08ceQ0h+kb/cob1MLOLMQZLUaXtbhHfqNNvYQJLqdrVz4eqV/jjffi87D13yvyvd3EcPu9+Nb2v+sPgQE/vor+e6uQvT7TzQq94vrF4etuelntl+kcmCSIN9rkz/cTtm2nkkK8UfZ0ee/5SJTZvtn1s9uzU5s+067G77vsyqnuHm5hT0N7HVU75wcwMd7e8xXH6xm7ui4RsTywv666FQzBaIX73CX/P2HGjPVQWlndzcymx7nVCZZo9Lkuom2HW35K+H4Ktv75+rYvX2XPX9XH9eePc/fzexTh385jEdY/b1Lflhrpv7Vb0dI/vt5D9uaYO9Vrrv/8a7uasj9twanG+PCz9Parotdj6/rNjN7TbLNvGoTPGve9sF7VppVaTSzV01y85PffP9c9W81fa175lgGRys8guIJxvu2AEAAAAAAEhSbOwAAAAAAAAkKTZ2AAAAAAAAkhQbOwAAAAAAAEmKjR0AAAAAAIAk1WJdsTyxHL8SecPqr0zswxeOdXMHDbrRxO78r98hoP92tsp6Xp6t4C1JVWW2gnY0tdbN3WPgf0ws228IogbZx10Y8juYhJwK8mi+omZ02Bixu99j46+vfG9iF59nO5VIUlmJ7SSR1svvbvT1V7aD234j/a5YsxbbSu/nnHC4m3vb/c+a2Oyipv8eGkJ+Zfr0NP/9kizqs/x/V91y2wHrw38d4eYOGnS9iaX39ztGdK3LNrHI9v6xdQja322kNubmvv17200gN92fdGrS7JyTWut3igsowcS1jYuE/W4cow7qamJr6m3XDUnKzrGfkwxJqXZzO63sbGIPHevPN0tL7bzw/colbu6sBfaccuAufqe4fVLt4+613zI397Fqe26tqF3p5sac8+hnj092c+U1vtkG1cbsPDB5nt9p8Z4nPjCxFQG/Y1EgZuOpaf656oErzjex3425180NRmwHt9z0BMtJf4rbpvzvukUmdvytO7i5K7+3XWNz29s1syS9+dBJJjZkcDc39z9/+qWJBav8TmZfldqOed2z/XPrb8fbLlx9ytxU9Q7VmNhvDn7ezT27wc5PaJ5oZKEb/+ztCSYWyNrOzT34V7YTWVrEduKUpJSY7diXneZPANGwPV82yH/NI1E7bjIy/I5fFU6H2r2GDXRz0XwLyuw8kJdp18GSlJ1pX8+qHL97VVrYvsbllf41eUenM9fKatvVUZI65trny0v1r3O+r9g6usZyxw4AAAAAAECSYmMHAAAAAAAgSbGxAwAAAAAAkKTY2AEAAAAAAEhSrVo8ORTwCxR9+MIvNulxv5q71I3P/3GFiQUTFO5qcLa0wnX+88VitqBSIEEN0lwnnqA+qoIJfj9oPTXpfgHAf/72KBPLTVD8u6qrfUFj0Z5u7tBjbOGuUNAvNLbHTrYo8/w6W1BMkrISDcAmijT4hcaU5MWTQ7K/Q0kam6BQss8pKOkUjJOk9nm2WODbrz7j5jY4c9GhR5zi5tYH7OvTJcMv4DzpP0/bn08w56Rt4rjZWo3cv4sbT822hZLLImvc3PAqWxC56DO/GPFVpx1oYnPm2KKpaw/CjoVgrT+HHLu9Hae19bYwvCQF1ti5qZd3YpQ0Z5ItAp/Vx68SnhsoMLEdDtzRzUViVz35uhtPk50H7l+23M0NZNqxc3mBX3T0N/c9YGKxBJ/93VdcaWIZ9f455eoeOW58W1cTK/H/IvUjE3rzoROa/LhOHW5J0odfLDCxrGy/OGm/VPsg8yr8tcENO9xtYqEE42ZNhj23Lg/5lyHpDBvXoEGD3PgxRzvF91f756pAip37p378mJu7/4FnmlhDXob/uPV2vVoj/4X86N/3m1iHXXdyc//91sM2WOYX/v7zfa+ZWHG1X7D3qOMPNLFBg/3fb9HsIje+rUl1xs6Abn3c3PLVdo6b8fHbbm4HpwlI38EHuLmRbDv+MgJ+A4wZU2yh8OxUW/xf2nrudNla/h0AAAAAAADbHDZ2AAAAAAAAkhQbOwAAAAAAAEmKjR0AAAAAAIAkxcYOAAAAAABAkmrVrlgf/Lnp+0aJKr337mgrZR/Y26/APd82r9KkWT+6ualZ9th26WW7mkjSkG7Oz+f7uc9/ONvEglG/InswRoea1rTbkCEm9p8/neXmFqfY7jVzP57j5gbCdqBlDx7h5maXV5tYem+//drMid+YWHllqZsbStT6oomCweTufpXI+3ckaG3nSDTnfP7qXSaWXed3D0nJs/HzH5nm5o574mwTi0Xr3dzqClv1v6rAr/p/wkO2W8M3D5zh5gZjc934tu7Wo//ixi948xITywgXurnf/9+XJvbn637l5naI2HH6+jv+uOnYYLvz7Xbs/m5uIGbHU2rI76b2/mcfmlis2J9Xorm2s0lOgtN7MGy7U75x2ct+8jYm0Zzz4Z3Hm1hxlt+V8bxrbdeksnp/bsiL2LVHWpY/9795/tkmdtIz/3Fz6+tt97W6KmcBJinmdRmE2lX788grDx3b5MfYY7hd4xy9T28/udKOpwVr/K5J0agdIx16+JcLFWU21iXH79r3xQLbJacs4ndYCvmNKJFAcYp9zT6f4J9T3v38UxMb1q2rmxvNsBN9rNJ/T2e1s+eaaI3f2bVDrL2J9Urz11l//eMHJvbf5y9wc1PT7LHNnfO1mzu0314mlrJpS+utRqJz1dI3bjaxJUv9zpvb5dg57rKnV7q5Xzqd//JD/ngoXmMnh+7d/W6P5zxiX/slz1/o5krjEsSTC3fsAAAAAAAAJCk2dgAAAAAAAJIUGzsAAAAAAABJio0dAAAAAACAJNWqxZNbwm7bdzSxaLpfVa13oa1yPH6WLeQoSWmyFbIOGNrFza2oKDex7HT/V9en1/YmtmjhYje3Idb0Qq9ovmC2LRxZFq10c+uDNvdPH/gFwR68+hcmltNutZsbcWp/5VX5hS5/++4PJvbAjUe6uQ3vLXDjTZWa6hf0htQz074+S1fboo+SlN/NFmybO+EBNzetwc5b4Qx/LgvU29dnTYlf6LJ41kMmllXpFzKt1fNuHL4ui+zvfFU3vxhxRqb9nCQlyy+QX9zOvj5j/jXBzX3+3pNMLBiscnMbnLd1JORXg/y/xyeb2IN/OM3Njbz5tonV97HnZklqX7t1FmZvTZV1uSbWKZjl5mam29gfeydYygXtXLZD5wI/t7OdizIDfnH3m/va4riR+ja/nGxTXrnXn8+bI+I0Udh3h+3c3Pp0ew577l/+63vx2fb1rV/tF8ytiJWZWFbY/8x4wgy7/jp5ZzdVKVWsUZqjfXXTP6fvm2bPP3OX+Y1mFk14xcR6DLNrYEmqqmswsYkvvOnmlmauMrHscr+geOmLfzSxed17u7lRp7lJIuGInUwp9b5hoQo7ZxQW9nVzS9Ns85iPn/AbSqxabYts53fzmxR1LLfX5PXV/prom5dtw5zqMv/au1Z+w4Jkwx07AAAAAAAASYqNHQAAAAAAgCTFxg4AAAAAAECSYmMHAAAAAAAgSbGxAwAAAAAAkKQCRUVFfsuMVjRo0CATi83b0c3N3tV2Jjpn753c3Jo6WxW7MN1W95ekyoCtuB8N+vXQ8+tslfWUmF89uzq7nYkFYrZSvCQ9/OEcEysqKnJz0Xx77WnHWW2d32nhhbvPMbHMbP81rovaTiMZYVvRXZLS6nNsMCNBbjtbob96jd81afQ1z5pYc8ZOXYPfDSMzPaPJj5HsBg0anOBv7JS45J2/u5m1Tnei7jn+PFIWsOMmmuJPv4Ur7bwVzC52c0tSbSeJcLTMzd3usOtMjDknsbMetR2pdu5d4ObO/OfXJrYsQYeOiTddamLBoD/fVEXte7I+y+8A0bHBduxaWuWff7pEbCemSDs/d+T1ttNbr1387juZ/ew4f/KSf7m5WzN/ndPfzQ3sYDsivvPQxW5uRsCePwobdnBz66M2N5jrzyOxFfZ1a8jxOzjGYrbbSdjpQilJB11m507mnOYZ7IwlSbrk1PYm9ugLfretK/bqaoOd/M52he3teWnRfH/OyUy3XfDqE3RlrJM9r7XP9tdDD42z3WRnFs10c7dW3hxy1OGj3dx3P3h9k57rnZf/4cYDZfacUtrRP1dl1NguoXXpfmfiggx7X0HOGr9b0Zrt7DVf7vy5bu4xF11oYqFo07sd7TvqYDc+8eOPTGxrnse8sSdJuRm20+fcv1/g5pZ0LDCx2ooKNzc/z14r1dT455/IcnsO69rHv3Ypc05LOSn+425/3F9NLBlfY+7YAQAAAAAASFJs7AAAAAAAACQpNnYAAAAAAACSFBs7AAAAAAAASSp1SzypV4wosINfqMmT1dOPZy61hdmq0vyCSh3qSk1sddTf5/r7xEUmFvbrBOqKQ3qbWH3qtlOQti354ks7zgYP3d3N7e0Ufiyu8Qu5dcm1hYfLy2wBQUla1s4WP66vtAW2Jal3pS0i2CUrwUBLEG6q1HCCmum2fvNWq6hothv3isZN/tYvTDhqd1tctyLNn1bzQsttMDXfzS08+QoTiwT812z1pzebWG2DXxQTzfPMJa+Y2K+fPN3NzTtyZxNreH2Km1tV78wL7f3zT/Zq+7rHgp3c3IhTgLl9mi2SLEkNOZUmVpHgo566FDsXZvT3k5/8zbZXKNmzqeucSI0/yUczbJHJ5dVL3NzyDDseCho6u7lH3zHGxAIJTjRvPHyKiaXW+cW0selmJyjg6RVVDjqNQSQpvZ1do2Rl2SLYkrRgrm0AkJluC+NKUnoX+3zBdL8I+xCnmPd3nWwxVkmKyC/AvK2rC7ZOv5uyT2a68fz99zOx7VbawtaSVFdgC+O2W+OPxxOuuMTEEi1rxzxzn4lldshyc5tTKNkTyEg07jZx0Z1kEhUN9tbHtbn+OSXYYNcYubn+tVJail2nxOr913LUra+aWEqC3YwvH7dNCCrD9vp/a8IdOwAAAAAAAEmKjR0AAAAAAIAkxcYOAAAAAABAkmJjBwAAAAAAIEmxsQMAAAAAAJCktkhXLE9zKnDnBvzDrikotrmltlOWJJXl264kuXXt3dxfj+xqYjkJKqfX1deaWGHHTDcXm19Kiu1oJUmLKmz19ZQ628FBkhSyr2eG39hBF19pO8S8dceRbm55foGJldT63SW0iY0RUrMZk82RmmAoTBr3bxPb44Bfurl1HexcFFruv5A/vPUXE8vK9vfhQ2Hb2WTW2BfdXGy65873uz6d//eLTGyv/f0uSDkd8kwsWmc7ikhSoL0dN9vn+vPCDqP/bGIf/cN2WJOkzBrbkS0/5h/DyJEDTOyTD5e5ufqNH0bz1jmFMX+NsaqmxMQiPezrI0mZ9StMLHu1XaNI0msP/9bE2lVXubkpNfbYaqIL3Vy0Hq9b1pDBg93cjN72NWuo9LsybtfJnpdW5Phzw9/+/aOJ3XiV3yGtdJpdd/Qp9h8Xvg6h1unoU9PNfx2Wffm8za21c5AkbZff38TWVPkdk266wJ6X+rZb4+Yu+cJ2lyxaY8ddS8gM+N3fNnnRvZXweoNVVPsL5JxUu05Zk2GvpyUpPWY7b+YH/A5a8/5+vomtzPOvaQKVdt6Lpvsd1bYW3LEDAAAAAACQpNjYAQAAAAAASFJs7AAAAAAAACQpNnYAAAAAAACSVJspntwcgVDUjXeI2X9OZapffKmq0hZaSikoc3ML0+z+V8SvP6hobq6JVaf6RbdyMxNU3EWridia2ZKkykz7GnXK6e7m5qfagoPLV692c1+75XQTW5XgGF558n0Ta0jxx69XwcwrwNlciYp7busi1f4eeF7YFuP+asr/3NyddxllYsHMpW5uWpV93esD/rxX6RQy7djRFueVpO4d0t04Nt2Tv3nMxPY5bribW3fM8SaWleBcFQvZualslV+scPKTN5pYfcAWhpekQNSOp/Jsv9Dlxx/NMbHpHzJXtKYVDf57NS3TFqQMrFzi5lZH7NgJ5JW7uQ3Ouqos4s97uRkZJlaQ4hek9IptovUk+rQ2r8YWNK6utA1HJCk3ZgvI9istc3OvOK2HiUXm57i5DYV2TNel2DXzWisTxLdtldntWuVxl8773o0XRuwaJyvgX9OUlE41sboE81hGnp3HKm2td0lSRdDOTRkBW2xXkrq1t8+3fE2CJiSOlFq/aD3W8l759Gz/NQ5H7Xu7Q70/Q80vsYWzcwIFbu4Sp5tJtMF/jQNBuy+QGfLXx1sL7tgBAAAAAABIUmzsAAAAAAAAJCk2dgAAAAAAAJIUGzsAAAAAAABJio0dAAAAAACAJNXmu2LlZtjOUTXhBC2psrJNKBauclPznC4397yeoCS7VwY8wW/uzhN2MLHcAntckpSgsDxaUUqKX729MN2+GNVlthuAJEXrFtvcew5ycytj9jG+T9Dt4anJz5tY57793dyxE+eaWCDbdiqRpNSofQ91/vtlbu4uTmetba1TVo98+3tM69LRzS1dVGFiqRX+PNJQazvXbH/yPW5uiuxrFkvx+8ss+vvlJlZeW+LmprX9KX+rEon6LfCidU5XxqDf1SFSbrtlPXDzO/4TOqeatLDf5eOMB35tYp12KHBzU9PpptaavHd2+zy/m1lp574mljt/oZubX7C9iY267lE3Nxayz+fNQ5I0fsxvTCwtUOnmpgUZO5tTomVlpJ3tJJNd53cWSku1ndNueNHv4BhzPh9Ok5977a93MrHeabu4uUqZ4ce3cQ3hTpv8GN3b2TVOoMp2e5WkJVm2c1phtd/1LFhoz2G3PfGFm+vdVZCoH9Vff3OkieVW+muc1BQbT0/QmVhOp9G6WNM7aGGtQMAfD6lhO7/UdkrQ7bHeLl72/sNf3NyUqB09KQle4mn3XG9i6V38Y0gJbh33umwd/woAAAAAAIBtEBs7AAAAAAAASYqNHQAAAAAAgCTFxg4AAAAAAECSSoJKmrYiUv3yajczs307EwuH/IKygYgt6nTuoe3d3Hb1ttBSMM0vFlUWtntlqxfaAquSFPVroaIVzZo1zY0PHjTExF75y0Vubm2WLYiccdX7bm5VgS3OtscaG5Ok0SfcbWKfz/eLr8a8LVn/YRNXU3Rsa4WSPVGnoN4eQ2xRaUmaKjuPZAZssVtJ8mrYznrhCjc3pcZODvkxW3BXksrDdjyW5fVyc+s11Y2jdUx+238/7X2MnW+m3n+z/yDZtujplX89wU0NO0UBq+r8orahkJ0Yjj7jOjf3y3f9eROtJ5ja1Y1n/mCLmTak+p/RxTJs84jJj1/s5paX2XNNeoq/fgrKFtddGfGLPYciFCPdnGbOnu3GhzuNEa4Y3cfN7dxg54w7zxzo5tY5a+myUn9xW+Wsj/9v+gQ3t2gWaxFvPTbIeR0l6eDRR5vYR6//18311jjbdfPXmhmr7XVVeRf/GiyaZs8pf7x0bzc3J+KMkYBfPnlNyXITC3b2L18bonY8NoT9f9t+I23Tk/Hj3nNzWRsnVh3x1xiF+faa2lt3SFJ5lb1OnvDXq9zcWNCusVNq/TmnNs3OOUsW+4W3Y5FEF1HJhTt2AAAAAAAAkhQbOwAAAAAAAEmKjR0AAAAAAIAkxcYOAAAAAABAkmJjBwAAAAAAIEm1+a5YgRRb6To9w+/UULPGVuaO5Oa5uR2dqtqRcNDNjcZst4eciF8VPqOmwMT+8uk8N/eLKbPcODa/QIqt1B7J9Lt8nHb1qyb27I3HurnBNXb8leWVurmTF9qK7LNnU4l/c0sN2v3unGx/D3zEqKEmNvHVSW7ud8ttt4be/bPc3JJy2x0ir6M/Py2YY+e9C5/4n5s79lO6G7UFDc57fWW1HR+SdNjp95rYl2/9yc2Nlq42sVBKtpt7xDn2Mb6cyTmprSgPr3LjhZ3yTayioYebG6633Tvrqu0YWfsXNre+0Ha/kqTqMjumjrn2UTd3Nt1k2gRvNZNWbTseSdKNY+eb2F2/7OLmRkO241BuZmc3967/fG5iX8zwu3ihebLSmt5mN+iscdr38btX1Ubs+zfdP1VpjbPG6VDod7qK1dhuj9Vpdm6TpM69bUfQvz7ur7NSncZGxx57lJv71lvvmhjdr5qvc8DvfLimxJ5rsnP9Ne/g/ruY2LKFc93cUJodU8EMfzujR469Bhvx6zvd3K3lteeOHQAAAAAAgCTFxg4AAAAAAECSYmMHAAAAAAAgSbGxAwAAAAAAkKTafPHkylpbJGll0C/GlZ9lC/pVlvpFjp+cbQsT9mrvF1pODdaaWH3MLwC1pNgWSv6cIsltXky28FygrMzNfeIv55vYr6//+yY9lyQVFVFEsC1YXFJvYgtli61LUn7MFo0bst8Rbu4+p99oYnv29osFBmXnnAbZAoKSNP1HW4z7g/EUSW7TAnYOKEjwMcvYV28xsWHH2rEkSQHZIvBR57kkafZs5pu2wr5qUkZ3v+h1eq2NZ2T7BfmPPPcRE2uf589lQafqaKTeqUQqaU21XYNRJLlt86aXaKZfHPt3Rww2satfnunmemNX8ouebi3FSbekRL/DQYMGmdgxRx/i5r793w9N7OW5C9zc0Vl2jRMO+o1FnvnQnlMCTqFmSQo02JETSHAOXFVlC3Q7fXUkSaMOG21iz/3nJTeX8dgyctL8WWBlwJ4/MiP+9XvvY68zse3z/AGR4lxDRZ2CypK0YLVdz2/trzt37AAAAAAAACQpNnYAAAAAAACSFBs7AAAAAAAASYqNHQAAAAAAgCTFxg4AAAAAAECSavNdsTwFtRn+XwRtBe7cHL+rQ3Wtreq+OFbh5uY4DbAqa2yleEn6fCodsJJRIGaruocbOrm5kXb2tX/y/ovc3PN/95iJFdGNJul0czrRSNLqEjuFptX5HWqWl9hOV1Oi/vzUIc/G15T789MHE2a4cbRdgaidbzKDOW5ubZU9V335D78r1h7n3WlidL9KToV1vdx4RtTOIzndhrq5Mee89unEqZt0XNh65KcH3fjSqD2v3XrIrm7uLR9+ZWJbe9eZZFGR4nfd9BzV7wA3Pm6WnS96Z0xxcxeurjOxrvl+F75wxK5xDt/3ZDc3xzk1Fpcvd3OfdTpgMR5bV03AXx93iNpuZrF0f82bkmLHyduffb5pB7aN4o4dAAAAAACAJMXGDgAAAAAAQJJiYwcAAAAAACBJsbEDAAAAAACQpJKyeHJtrn/Yuen1JpYW7uzmBrXSxCZOmblJx4XkFQjYIpOdY7bwlyTVxjJNrKHEFjiVJKd2JZJQJDfixttn20JwOfILFgYDARP7YPzkTTswJKWUFDsW6hqq3dyGVNssIBj1P5Nhutl6rPneL3Jc17HAxDKXfd3KR4Nk553BVkXaubnZqXYmqc1Jb+EjQmuLNJQ3Obeie0c3fmzuCBMLBQe7ubFnrzCx5eX+OnqnUUeZ2GNvPrehQ2wSCiVvfrEKv7FHeiDXxFZV1ri5wYhdE+Hn4Y4dAAAAAACAJMXGDgAAAAAAQJJiYwcAAAAAACBJsbEDAAAAAACQpNjYAQAAAAAASFKBoqIiGmkAAAAAAAAkIe7YAQAAAAAASFJs7AAAAAAAACQpNnYAAAAAAACSFBs7AAAAAAAASYqNHQAAAAAAgCTFxg4AAAAAAECSYmMHAAAAAAAgSbGxAwAAAAAAkKTY2AEAAAAAAEhSbOwAAAAAAAAkKTZ2AAAAAAAAkhQbOwAAAAAAAEmKjR0AAAAAAIAkxcYOAAAAAABAkmJjBwAAAAAAIEmlbukDSAaDBg1qcm5RUVErHgkAAMDPk2g9w9oFANBWcK76ebhjBwAAAAAAIEmxsQMAAAAAAJCk2NgBAAAAAABIUmzsAAAAAAAAJCk2dgAAAAAAAJJUoKioKLalD6Kt2GPP3dx4XW1Dkx+Dat0AAGBL87qKZGSlu7n56VET+2jCjBY/JgAAGnPPVZlpbm5emt22+GQS56p1uGMHAAAAAAAgSbGxAwAAAAAAkKTY2AEAAAAAAEhSbOwAAAAAAAAkqdQtfQBbyrAhg00sGkv06wiYSBpbYgAAoI1KDdq1S/ucLD85Ut/KRwMAgJUdtIWS8/Ly3dxYtKq1DyepsT0BAAAAAACQpNjYAQAAAAAASFJs7AAAAAAAACQpNnYAAAAAAACSFBs7AAAAAAAASWqr74o1ZPBQ/y+C9p+e6nS/kqSw0y0rGgttymEBAAC0moIcZ50Tibm50UC0tQ8HAAAjq0O2iWWk+tfZDeGM1j6cpMYdOwAAAAAAAEmKjR0AAAAAAIAkxcYOAAAAAABAkmJjBwAAAAAAIEkFioqK/Ep6SWj4nrubWDTkFwSMOeG8/IibW1lpCxCmpPiPm+IUYJ42bbqbi7Zjj8F7mFgoUO/mBvwa266UlKCJNYTCTX7c2bOLmv5kaBN2G76bG4/Fmj7VpqWnm1g45BeSi4TtXDRz9owmPxc2v0FDBplYIOHwsHOIlOj8Yx8klmC+ikXt5zqzi2YlOgi0EcOH7mliHdv74yEtaF/jYEqamxuTXf8sX1Pn5gac9c/UybPdXCSfLoV2zlkc88dNXkWeDYb8cVOvShNL72KLpkpSw8qaDRwhtqSXDvjKja/KyjGxrPrVbm5Kpn3dgxG/KG5KZr7NXTPHzT3ts/3dODa/4XvatXC3bL9nUzjDLlTys7y1j1Reb88/JaUJiv+H7Xlt6rSpfu5Wgjt2AAAAAAAAkhQbOwAAAAAAAEmKjR0AAAAAAIAkxcYOAAAAAABAkmJjBwAAAAAAIEn55anbuP2d7leSNO2vF5hYpH2Bm/ufdyaY2KSPZ7q5kU62G80Dt17r5ubk2Arce+07ws0dP3GyG0frGTRkiBs/ZY8eJtYu1X97xJzOM8rwq/mnp9ruRpGqajc3FLXjbPAg2z1HkmYX0S2rLXjtTNuB4aE9/O4hmSm2Y0SgW3s3NyecaWK1xT+4uZXOND5k0FA3d1bRTDeO1jFosP/+7drVdpKJ1fttsarLqkzM76snKWa7SHRpl+U/btR2kWC+aTsGDfVfi4v37GZiaXnt3NzlK8pNLBywMUmqLLbj4fj9e7u59Q12nTN4WIKxM4Oxszl16FjoxktLik1s4I67urlfL1lmYrE8v+vMyjw7FoZ17OLmxsK2u9GC+UvcXLQN/zjqaxts569x2qfazka1Ff7c1DHbdj1rSHBi6z8k18S+/cwfY2P2s935rpow2H9gtIghu/nX5E9cc4yJZXe2c4Akvfv29ya2pHS+m1vodMW687Kj3NyMOjs/Dd3d71w7c+o0N55suGMHAAAAAAAgSbGxAwAAAAAAkKTY2AEAAAAAAEhSbOwAAAAAAAAkqUBRUZFfsbGNGDTEFuT74rkH3NyGVFt5a+cdd3Jzly2yBcFmFa10c7+f8ZmJnXj6qW5uTrjSHlfAFsqUpF1++TsTK5pNocGW4hUu/eWwHdzcjgW26GhWINvNrQvZom9pGf4eaVq6LY4bq6twc8Nh+1aMyBb+kqRHPp1jYkUUOG01r5420o0P38G+7g2ltvCxJCm93oSCWX6B7g7ZtkBqXXWJmxuN2Xkv4MQk6ah37WNQULllDHIKD3fKtMUkJSknYIuqDx8y0M2trio1sc++XeTmtncKE8ac4suSNKKnHWMf/bjKza1IaTCxounMNy3FO1edv0dfNzetvR07OxT4a4ySMlsouS7in1MidTY3L7+rm5uVXmdiS1b4xXX/7/MfTYxzVevZcbv+bnz+vO9MrHMXfywsjth5pG7FYje3rMHODe3D27m5qT3WmFgw3V9nBSrtuTGrW4GbW7u8zI2j6R4f+Y0bz+hjX4eqJf4atkPENgCpzfIbizTU2LVTML3AzU3Ptc/Xv79teCJJC6YtN7HTPvKLhKP5vHXOvx640c1NS7HjoXs3f25YvMwWSi4p97cnFn1nGw8ddNixbm7VqqUmlp3X3c09+uLfm1gynqu4YwcAAAAAACBJsbEDAAAAAACQpNjYAQAAAAAASFJs7AAAAAAAACQpNnYAAAAAAACSlN+SpQ3pnGG7FaVEbecpSdphux1NrLx4oZsbCWaZ2EED/A4Q/XocZ2J1UdsZSZI6tutgg7ZpgCRpuw5+tXi0jF45dt8ykO137qgP5djcNP+FC6bZMVlf43e/WV1bbIPVfqX3/Pw0Eyuv9o9hl442Fy3jhqNs1f+dcmx3M0ma+IPtKrJvb79DzZqQnXNU44+FiYttJf+BPfq4ueXlq02sotoZd5J+u1uBiQ0ZNNTNpVtW86Q5H5Pk+g1ftPegASYWWON3PavPtZ0lTt2zp5v70fe2q9VhR9jzoiStWlJtYscO3d7NfWXWXDeOluGdq4KFfseifnl2nbJ0je0oIknBHNtBKzNiz1+SVJfeycSW19oxIkmF6fZ8Wej8GyRpUOcEXQLRZIXt7O9bkqJRO0aWLPLXvFk59jGqa2vd3Nrq702sTyfbKUuSfrSnKvXeaYWbW/y9veTI6G47rEnS6lXeOay3m9shrdDESkP+ORC+wjw7V0hS8WLbzXO73I5ubjAt18TSI/51zooyew3VsZ/fbSt9iV0Hf/2FXfdIUijTzkOPH/KDm1svey3ZOdVfW5/yvl0XbosKnN9vao2/dskstF2IFyzyu6+FZMdJoq6iOx9+ook1BGz3UEkKpNvzz+oS/3zZOW/rOFdxxw4AAAAAAECSYmMHAAAAAAAgSbGxAwAAAAAAkKTY2AEAAAAAAEhSbb54cqpTWzQv3d+Pqlgy3cSisQTFkJyicSty/aJZQa8o4Bq/qO38Bpu7fTv/1xys8wtDoWWkpdjXIqfBL9SXmWFzcwP+6xMO2oKFGekJXuOwLdZcm+YfQ7Ta5g4odAruSpozxy+AiU2Xl2mLHw/q4L9muw/b08SKS51qkpIiGbb4ZI+oX7xy2E7dTKxyhX8M2QXtTKw6QVHmj7/xnw+bLiXFzhcpmbaopyQVpNv376wU/1y1XXaBidUF/fd/qlfTcpmbqu062uQpS9a4uQFxrmpN3vkjo94/pyyqscVxg/Lf78sq7Pu9e4Ff3L02ZM8/XVL9Mbm62Bb07uzXXlV+Kk0iNlVxhV/EuqCnnV/q6/3iydE6u2Zdk52gKPPkiSZWuYctWCpJu3Szr++KCjs+JKnnTra47jdz/PNaINWO0+wCfz4N1Zc7QTcVCdTWVLnxfjvaYu3zF/snlW45dm2cnua///sNsq9vbLXfpKKm+0ybu9RvYBMot+fGwo7+/BiutuO/LuD/Hp497GMTO/N/o9zcrVma86uMRf31QVntNBPLCfvX2Tkpdu1RGfS7TyxYaos1d+5g18GSlO48RH6DPx5SYn5znWTDHTsAAAAAAABJio0dAAAAAACAJMXGDgAAAAAAQJJiYwcAAAAAACBJsbEDAAAAAACQpNp8V6wV9bZKdV4nv3J1pMaWv65Kq3dzO7e3LRzCFf7jts+0+1/1WX6l97KgrfAfDPkVwxdXh904Wsa8Svv77VLjd/kY1KuniZXX+B2EYs52aHnEr9Afidjq6xk5/jEEMm18VYJOOdMr/E4S2HQ3vjbJxK463e8IEuy9k4kNOPo4N7dLpp0z2qX689O0L2zXicMv2t7Nnb/KPm7FisVu7q1v3WFis4qK3Fw0T33YvteXlvhdpl78pMLEQgH/vT7HedxYR3/cVJXayemltCVubk7Mjpv0LL8LX3Y4QXdJtIjFNXbtUZ9vOwhJUmbQridqA36XtLxK201pZa2/zknLsY9bmeCzv7DTRbI46h/D9HL/3Iimy+hgOypKUsnSUhMrW+N0iJIUrbJtogqKX3dz2+10iol9+tZf3dx+x9xgYtVFb7i5kxcXm9jww890c2tq7PotLdVfS5eX0QJrU/0n5Xo3/rfzLzexQ3oNd3O79i8wsYof7LlOknJic0wso71dT0nSmuwjTaym6CM3d9eTf21isybPdnPRfKsb7PljSbl9X0vSbXe+YmKhqL/tEEi1j5sS8c8pf7viZBM747bH3Ny6iNOtNMO/9m7wm10nHe7YAQAAAAAASFJs7AAAAAAAACQpNnYAAAAAAACSFBs7AAAAAAAASarNF09OTbV7T11i7dzcyjpbSO6t119wc7NkCyodePgv3dyqdraIYeXKlW7uhPffNrG0BEUFU2SLYqLlBJ1tyylfLXBzv5u7yMRiTtFSSWoI2weuS/BaRhWxwQTvujynyFcgweP6IwqtZdbypW68S4YtQLsqzS9O2i1gi4hWrfZz+w2wxWoXz/WLYs4M5pnYkPbt3dycDEZOa0lxitoeNKyHmzv1ixITO3SoX5A/Gkozsf987Rek/MOv9zOx+5+f4Obu38+OkVDIL3Q7sZxx05qyMuxrnFbv/85zbN8HrVz4lZubFnOK93fawc0NNNhmAZE0v5h2zdIFJlYd9QvbhhuccyASSunSycTqV652c7sV2rXw80+Nc3Nfmfi+iS3//ls3t335QyZWXOAMPEmPd7Fzzm8vtz8vSWnt7BhLufVZN3fwITub2EtPvePmZhR0NrH6slVuLnwluX5B/j16FZjYR9vbMSpJWSvsOeyE7fzC1t+XdTSxFSvtNZwkrdzF5ub2283NzUvnfoXWFHQurP74t/+4uYGYPYfdONsWzZak7HRb0Pi6AQPc3Ivue8nEYqn+tdLt39jmEWn1lW7u74f0c+PJhncAAAAAAABAkmJjBwAAAAAAIEmxsQMAAAAAAJCk2NgBAAAAAABIUmzsAAAAAAAAJKk20xVr0KBBbnz5m3eb2NdrFri5mbW2K8P1T81zc9+771cmFqlZ4+ZWL7ePGwr7v7rLnrbPN+mek91caW6COJoj0dgZ1tVW6M/Ky3ZzU3IKTWzKLP/1yQzY6uu79e3m5u7S03YEiKX5uU9/NNPEugT8ThTVMTqNtJazj7ddPt6999dubihqu1e99e50N3dqqu18c9XhQ9zcqjrb7aR7d78b4GOPfWxiRZl+R506v0EFmmHQYH++ueXKS03sq9kfurkZ6XYOOfOQYW5uxbz5JvbGd/6x5cVst6xogrP8GUfsaWKVq+xYkqRPF/gdj9A8ic5VF45yun+kVbm5Edk5Z2yR7SgiSacf1NvEclJsZyJJqneaikSCds6SpPeK7PnnrAN7ubkB2Y6TSCzqdMDq2M6f++tD9rPZ2TO+cXNXzphtYjeMTdDNJmjH02MHnOrm/ulR26Fmp0J/3Bz29hMm1mm2Px7vven3JlaSoFNppMJ2wFqztMzNbd+jwI1vSw4fdbCJvf7w79zczqndTWzOuGfc3IpSOx6z9jvTzd2hwXbzTC/s6uYufvdhE1vtNwlN2J0PzZPoXPXUdUea2KqAfz1y8z0fmVh6in3dJSkSsue73Bx/8fLolSeZ2AX3vunmZjudhavkz09Os+ykxB07AAAAAAAASYqNHQAAAAAAgCTFxg4AAAAAAECSYmMHAAAAAAAgSbWZ4smJrKmxhdUi9Vlubm5+1MQmvXm9mxuuajCxaF6OmxtssMWX0tP9Y5j2zk02WFbt5oacok5oQSm2oFcw1RZUlqT+TmHaL2b5BWjD6fYx9h9mC8xJUpnz2nfM8992Q/r1MbHv5/mFJ8OieHJrKS+vN7GyaluwVJJG7msLYZ98tS0QKUnXX3OaiWXk23lIklbV2XmvprzGzf1soi3WfOoxh7m5KVH28jdZgmm7pGicif3y4v+6ucH6Q03s1P/7n5ubX2Mr+v3uxD3c3JT0OhO7+vShbu7Fz9vnq4/4RXjXbC1VBbew7Cy/aGOfbPvenrbKX4/s2N6uc0b/YqCbG26w88uqMr9Ybdfu+Sa2cEmpm/vrw3cysViNP3ZSGTrN0r6LXR+UrLRF0SUpJ9MWIj19oN8EZPV8u8bZf7t+bu7yqi9NLL2D33jitsOGmtifXvDXTkfvYJ9v2bI5bm4oYiv9t8u285skhVK8JhMFbi6kqrCdF9La+009fszsb2J3X2iL10rSHX+53cSGd/XXHJWruphYzxx/nN9x7bP2GB6+xc2NcVnVqiJZ9vqnQ609J0lSZqp9X16/ayc3N+A0BWifmmCLIs2u0VMTXBNdO8AW5I7F/OvAgD9tJR1W+QAAAAAAAEmKjR0AAAAAAIAkxcYOAAAAAABAkmJjBwAAAAAAIEmxsQMAAAAAAJCkAkVFRZu9hvigQYNMLDbXVl6XpEC/H0zsqzdvdXM7RG1XhqVpflXt3LDtTpGV43evyltju1PUpvvV2ytSbG5+gk4jPUbbCvJFRUVuLtZyx848f+ykDrBj59cHbe/mpqfkmlhIfuezdOcdk5ntj4ew030gWpWg25bTMSUzzev2ID309mwTY+y0jBF7DjaxtDp/mpz+zv0mNjdgK/ZL0pBc+/rGavxuAoGofT5/dpK+dzpoDU/3u+9sf/ytJjZlxtQEjwyPNwcl8qu9bac7STryj4+a2LznbnRzI2E7B9QE/c5GBU7ntEi2P4cEOtsuOUMKL3FzT7r9LBObVTTLzcVa7rnqx53d3Oyd7bnq/vN2d3OXLradqqoaVrq5VU4XyNQK2/1KkjoG7bxVVe/POmnh9iZWF7NdjCTpmSJ7bBOm2K5L25q8fNvRSpIawnbur0z1uyfmrLTrln0O3sHN/e3ZTnejp79yczs6r+9Nv9vNzU1LsW3PUtr5x3v1HRNMLJagw2xOg10nFc2Y4uZW19qOXWtifkc3SHded6CJvfKxv26Z/sW7JpaWXeDmpqbbzkTRNf79A8sjTmejqP+4uR1tp7e8Sr+z0Y6723E6c+ZMNxdr+eeqBNfkfe256j+PXOjmdiqz80B9hv9+T4k4He+cDsSSVFplx1RmO/9cVVtm18LtC/19gSOu+D8Tmz0j+a6ruGMHAAAAAAAgSbGxAwAAAAAAkKTY2AEAAAAAAEhSbOwAAAAAAAAkKb+CUCvzirwG+vkFKW1ZNum7BEVihw63hQk7BP0ibtGQLXYbqO7g5vY47TYTS/Frk+qH568xsdJMv1gUms8dOzs0vZjp0x8udOMXHLOjiaXW+4VtszPsmKqo9AsivzxxsQ1GbYE5Sbpgb1v0bXW2X3ibHdnWM/lLW5h6+NChbm6abAHAnVL893u43r7uVRG/sG1Zgy2OG4j6Y2xwzBbhrK/xCyHWOwUL0TyJipR7BQi7yRbTl6S5L9xsYkOO+JObW5ll54AOFf64mRm257XeOZ3c3PrwMhP74X/3u7mBFH8uRGLeOMnZxS9AGwjYlU7nwkI3t9Ipzt5pVYLHbeesczr7y757PlhgYqkpmW7uH47pbmIlsgVOJSn8tR1nkCrLK5ucW5Buf9+SFNq+ysRKK5wipJJ69LTr28dvPNzNzai2TSZyo36DiMX2ELR6mb/Geex355hYVa1f+Ps397xlYrGw/7gRp1hz8ZwSN7ewa0c3vi256e5xJvbq0OFubmbIrjuqyhK0cii088Wqen+12j221AZr/LGQmmHPYeGGYjc3FvHHCBJzr6v6Nv26KrPaNm2QpLIMWwg+FvCL7LvbEc6aWZJO/eNTNuicQyXp9T+faWJ1a/zHTfAQSYfrQwAAAAAAgCTFxg4AAAAAAECSYmMHAAAAAAAgSbGxAwAAAAAAkKTY2AEAAAAAAEhSW6QrlidRp5HBTqeR+jKnDL+kueM/NbHeOx/k5gZ72urt1Uv9jjGz/+t0K2nwu23VynYkWDr7AzcXLaM5XWoSefb9+SbWM8PvCHLgIQNNrF2K373q1EP7mVhmgk5I9Tn2MV5+93s3F5tZonL5YVv1f2VZqZvaNcd2SEpPtd2vJGn/E/9gYpNfutXNXV1gW/S1q7WdsiTJHi1a09Qap/OHpF9k9jGxFV38zhI9Q3YeqkjQ2ejMdna+eWPlIje3U7jcxL5uyHZzIzTFahGTv5zmxkfsabtaldX665GheduZ2DeV37m5qYW2e035cv/YbnKWSuVBv/3nyvq5JtbJOX9JUpRZZ5MFEnQcy3Y6JaYkOFUVfGfPCWXb+R2iCuu9ucjvinXZg++a2EO/u9jNjS2yg6+4oKubm55q10kVqe3d3MryVSZG96vmCTq/b0kqq843sWUV37q5O1T1MrFeCcbukNFnmdiMV953c9NS7XgsCfvdHtEymnNdlZrhLxBCVfb8E8vp4uZGGmyXwKwE3Thfve90E6sL+eunWNTpMJvnd5iN0RULAAAAAAAAWxIbOwAAAAAAAEmKjR0AAAAAAIAkxcYOAAAAAABAkmozxZMT8cruZabkurlenaVVa2a7uSOcosqxdFvoSZKqnaMIpofc3IUltuBhfqpfyBSbX3qC4lhBp2rW4rBfuOu1j2wBzLoERb4kW5AutcbPrY7YgtypCd6h1DLdvKIJ6n9WptkXqGPHzgkexO6jR4N+gdSv37vHxBoSvOj5tRETi6X6hUypY7p5Rfx6fppfY89hvVaUubmTUmzxyr4xv9DlK8tsEfisiF9EtCxkx+PATraAoSQppc0vFZKb874M1c5zU8tqbIOGPr38QqL5aYUmVrOrX5C/oc4W3u4V8wdwap2zBov6TS3u+FWBiQ0dPNjNnTnbX69tSwoLbYHg4mK/AK1W21Aswce1Edl1aFb1Mj+53o6xVQ0Zbuo9955qYvkr/eYi9e1tIfjOmSvc3EDArrEra2yRZEmqWmmL1Od26eHmwlcf8hfH6Xm2aHaHwPZubixsr6FK8/q6udPf+8zE6jr7xfuDy+3cEs3zr9dYG29+oRS/GHFKhm0YklVb5uYuLLdzXCDDL5YeybHr5owaf81bFrZzUTsVuLlby+Dhjh0AAAAAAIAkxcYOAAAAAABAkmJjBwAAAAAAIEmxsQMAAAAAAJCk2NgBAAAAAABIUknZ6iK1o1/tPrxquomVlfrdq4pX224A2530Vzc34HSzsX1o1vrmH9ebWHrUrzafmpKW4FHQWvzRIOXn2teiqspvIdQQs6/++Tv0dnNr6+wzBrv6+6nPLVpuYhkZfke1hoZSN47WEYj65fJrK+1rmd/O73QVcOaB/Y6/0s0NhmwHktqY/7gzx95nYitL/fGRGmTOaTVptjPEbgdf6Kbu1edQEwvn+10+9m1nu6w19PXnkOpUp1tRru1MIUntZtuxsGbgk25u6hN7uHE0zx57DHPjfzl2JxNrCPqrjOWVtnNM4VLbbUiSMnrYLmdH/91ppSQpJWbnjIj8tcsnl+5mYrEVfgeTnLB9vmAwKZeem0XCDlhNFfU71KzpZc8psbCfW5fZxcSyX1ng5nb6cLGJpWT5XftSfuF0U9rJ79qXqEuThw5Ymy5Vfiez7mn2XFOT5eeWVdnufJ+cfJibW+F00GqX5q9xjnjyvyYWqrPrZUlKSdChCa3JP//kOG2IG8K1bm5hXjcTO+GOf/tP12A7YAUT3Kfy8u1n2uPK88dZWtCft5INd+wAAAAAAAAkKTZ2AAAAAAAAkhQbOwAAAAAAAEmKjR0AAAAAAIAklZQV7Pbobwu7SdLXeUNMrKMq3Nx6p5DpnP/c4ua6Jdxq/SKkNeXFJhYr3M7NjUQTlfJFa9ku1d/LXF5eY2JZmbbYoCRFA/a1/8ePi/xcZ5yFExToynQKLdfX++MXm9eM2bPc+G5D7JzzzVv3urkpqbZo3Ofv3+HmRuvs1BxJ8cduOGCLrJ7zh8fc3BkzbYF5tJCQfR1iy95yU//3wwcmdkC//3Nzl1bZQoH5y/wCkYH6cnsMAX8ea8i24+nLMWf5jyt7DGg5tWn2/NOxwhY+lqRQR1v4MaOun5tblVFoYq+ev4ubG3TWNIFO/jqnuNKO9bzgSj/XKQIdjTKeWsvs2TPd+KDBg0zsmVP94u45/ZaaWOZevd3c6h523RKu6ePmlkWnmtil57zv5hYlOOeidcyYNc2Ndx+yp4lNn/Sxm1vX0c5Zo/7zupsbyrPNSXrG7PlLkvJCWSbWY/gpbu7sWTPdOFqGc/mjnCy/QUOkosTEGiJ+I5JQij1PvHKrvx6Rc/5IS1DoPyR7bi0rTnAMEb8oeLLhjh0AAAAAAIAkxcYOAAAAAABAkmJjBwAAAAAAIEmxsQMAAAAAAJCk2NgBAAAAAABIUknZFas83d+P6ut0y1o8o9rNXTKr1MQ69vS7VNVV2mrbmQW2orskLSix8WOv/aebW1RU5MbReo4etYMbf+uzuSa2Jup3k0mtKzOxWKpfkT09YMdqoN6vvF7nxMIJuocwdtqGYKqtrp+e6ncs6nvkzSa26KP73Nyo0wGrodYfCzv/8hoTmzKDjiKbmzcDBOr9809mnX0t57x1iZt72iO2W8nCH2zXGkmqC9tzYGptlZv7yoPnmNi/3p7t5k6fwXzTmvJz7bmmqt7vihWwTbEUyvfHQ2BhmYllpvkdQRpidgTnLnFTVZlpO5gUBf3lZGHItlGJRP31E1pPMM2+vsX9bMcYSTrrjndN7MU/j3JzAyvs+a56++Vu7m+vnmBiRbOZW9qygNPVLtN5/0vSHiOONLFpM/1uW6VrbBe9VK/lkqTu++1hYkUzZ7i5aF0x5zK5rNQ/V+WmdzSxhqi/JmoXsF1jKyJlbm5qyJ4/oin+9VpaSqaJnXTrs27u1nJdxR07AAAAAAAASYqNHQAAAAAAgCTFxg4AAAAAAECSYmMHAAAAAAAgSbX54sleQcp2qf5+VHXIFgXcbvvt3dz+p9xmYvlZftHTqGyhpphT3FSSKqptUcytpSDT1sF/jSNR+3oW5njljKXlDfZtE4j4xeRCARtPNHbCTm1cvyQz2oqGqC321xBxqptK+vq9B0yszyG/dXNjAac4nFOIW5JmUCi5TfDKwZaW+7npGbZQYE5pezf34HZZ9nGj/tzkHUMg4M8isZjNns25qlVNmeIX/Nxjj2EmNqhDupt76V62GGR1zC+IXJqeb2K/HtnNzU1baOetzKH+2Hngs1U2N8Ufk+U19hzIeW3zc97u6lDvV8d+4qZDTOzMm8b6j+tG/Vd4FoWSk07UuUxMrfWLHH/z7ksmNmDgADfXOy1FE9xrUDSbNU5bluoU2JakoHP9k51nz1+SdOSVtslQbo7/fAFnnETD/jmwun7buybnjh0AAAAAAIAkxcYOAAAAAABAkmJjBwAAAAAAIEmxsQMAAAAAAJCk2NgBAAAAAABIUm2+K5ZXcT8c9evwqybPhNIbVrupKUFbkn38lzObcWRIRiGvNYSkYw/oa2Jvf77YzQ0EbZX1WNTvAhFyi8X71dtTnIegi0TbFoiFTKy8ynYxkqTs7AYTm/XmnW7uTsfcaGJFRXSGaMu8HkbdevgdiJYvKjWxuq72/CVJkVzbrWjWROaFrd25v9zZjd/5hJ0HevYocHNnrfjWxNJq/O5Vhbn2ZLVidY2bm5WRbYPlfjfAP7y+0B7XVt6VpC0KOOvm+mBnNze92J7D/u8PtlOWJJ17x4cmVlQ0u5lHh7Yq4CxMS6oz3NwOwSoTm/fR825u34PPMLHZrHGSUorTKViSaiN2zZtZ0PRth8+/8LtIYsO4YwcAAAAAACBJsbEDAAAAAACQpNjYAQAAAAAASFJs7AAAAAAAACSpNl882VNn63NJ8ovaFkf8YrmBiF/sFlu3QK0t5iVJCqaZ0MF7D3RTXx5rC7xNn0XRt21RilMcu2ueP+cUp9h4aji3pQ8JW4g3s1SHi93cDt3sZyqpoRI3N7XOK8uMrUldnV27hEK1bu6Vp+9rfz51uZv71fOVJnbHG/Pd3OJKv6jypiqiUHKbEHRiOakr3NyqtC4mll+elJcL2ERpstdKBfn+RVgs1VnjrMz3czftsNCGNET8c0fMGTtVqxPMIwFGREvhjh0AAAAAAIAkxcYOAAAAAABAkmJjBwAAAAAAIEmxsQMAAAAAAJCk2NgBAAAAAABIUoGioiJKUQMAAAAAACQh7tgBAAAAAABIUmzsAAAAAAAAJCk2dgAAAAAAAJIUGzsAAAAAAABJio0dAAAAAACAJMXGDgAAAAAAQJJiYwcAAAAAACBJsbEDAAAAAACQpNjYAQAAAAAASFJs7AAAAAAAACQpNnYAAAAAAACSFBs7AAAAAAAASYqNHQAAAAAAgCTFxg4AAAAAAECSYmMHAAAAAAAgSaVu6QMAAKxv0KBBTc4tKipqxSMBAAAA0NZxxw4AAAAAAECSYmMHAAAAAAAgSbGxAwAAAAAAkKTY2AEAAAAAAEhSbOwAAAAAAAAkKbpiAcAWMnz40C19CAAAAMBWxeswu7V3kuWOHQAAAAAAgCTFxg4AAAAAAECSYmMHAAAAAAAgSbGxAwAAAAAAkKS2+uLJuw0d5sbz0wImtn3vPDc3vTZqYrOXVri5n8+Y1YyjA7CtGDZksImFo3YeWsvGUxKlAgAAAK1oU4sRez/f3MdorcfdWgotc8cOAAAAAABAkmJjBwAAAAAAIEmxsQMAAAAAAJCk2NgBAAAAAABIUmzsAAAAAAAAJKmtqivWsSMPNLH87A5u7o4FtsVMal26m5uRFTGx9KyYm3vIfgeZ2IcTPnFzAWx9Bg32O/Epxe6jB4NBNzUatXOOUpwYAABAKxg2xHYKishft8S8dUsg0f0DtttwosxZs21nokGDbJdRSSoqmp3gUdAczeky1ZzcQMBv7zpoyBD787P8LtODBtvcRIPHPbb0TD95E7VWx6/m4o4dAAAAAACAJMXGDgAAAAAAQJJiYwcAAAAAACBJsbEDAAAAAACQpLaq4snRSIaJDe5uY5KUkWb3tAIxv6hTLNXGC7P83EiYAqdbiyGD/eJs0ZhfOHtTeTXFZjtF49B2DBlmCyWnBGxRQEmKOfNLRkaDm1tbb+enWMzfhx86ZKiJzZw1081F2zBkqJ1bdt6ru5tbW2nnm4xUv3ilquwpPbtbtZs66/NVJjZ9GvMNAGxrBg32C79mxWxTmXDAX7f4/MvMFIWdqL92GuoU1pVaZx2+NWuJ4r6DBu3e9FzndQtk5bm5gfpKExu8/wg/N8W+9u3b+9f6pRX2mjy1oc7N9UZkIiOG2t/l5i6SnAh37AAAAAAAACQpNnYAAAAAAACSFBs7AAAAAAAASYqNHQAAAAAAgCTFxg4AAAAAAECSChQVFSVdafGjDjzUjfdsb6tt1zkV3SWpXac0E0utrnFzI2m2m82aMn9PLD3d/jpXLit2c/878RM3jsTcqu4JtieLZjW9QvmQIV6ld7/DWTDVPmGoIUGXgKAdO2lR/4DDQa8TUsjNLZrZnCr2fiV893HbSFX3tmao0/1Kkn67dx8Tq3U67knSyvl2HlheaTsBSFJanR17I4b3c3MjTte+h8f94ObOoFvWZjVqt6Fu/LlDtzexqgQd0soCFSZWX57t5tavtuewXYcUuLkNYft857xW4uZ+PGW6GwcAJJdBQ5w1Yaq9JpKkTql2LVLR4HcFrne6AgflP24kxT5G5wQdRasCtgtkSP7aOBT2H8PDenet5lwjNEf3drZTVX6nAjd3ZbnzelavcXNjztjp1Kerm5tSYruyfbd8kZsrZToxv4OWp62MJ+7YAQAAAAAASFJs7AAAAAAAACQpNnYAAAAAAACSFBs7AAAAAAAASarNF08+Yo8DTCw9xy/cFQ7bIkkZOTYmSXVrbJHJdrl+bixoCzDX1PgFlbwauoEU/1eckmqf772JH7m525rmFPPyR4MUc17Oh+7Id3OvvLHcxCKJ3hlOPNExuD+e8IBtKNHO65hbO5nYlbeubsZRNF1bKQi2uXhj79L9B7i56alhE0sL5Lq5lfVlJlbb4Bfori0pNbFuvXq4uYGGehNLzfCL697zyRwT29Ze39YyaJgdNw8c1s7N7dkry8Tqv/eLJzek23NNMM+OO0nKKrOTSCDPKwgohZ1TWEOWX3jyzNfs+XL2bMZNW5HofOmdahKd1jKzc0ysvqbazfXOYUWMh6QzdMhgNx7wBkmmP3IiYVvYNhj0z2vR9nbgzPrf7MQHiE2ScF5w3r87FPirzaXVzkK6wb7mkqT0WhOqTdBXJCfHNruprvabSXhnsPoE6+iYM0xZ46zVnOuqVKdAsSSl59jXPj3XL5CdnWoXGTm72vOMJIXCdh1bN9GfR7wXOaOTPya77mf/HWX1/uPOGeusf/wh6Z9cE9Tt3tzjjzt2AAAAAAAAkhQbOwAAAAAAAEmKjR0AAAAAAIAkxcYOAAAAAABAkmJjBwAAAAAAIEltka5Y++63l4nlxvxy0ikxWzl9QB+/e1WG042mvLzYzU13OmBlpviP2yDbgSQv098Tq15t/x2Jqrf/uMpW5q5L9ZNDdba0/MQpE/0HTjKDB9tK7V5l++byO4Ik2su0r1v7gJ9b4bQEGTR0oJs7e9HXJnbkwD5ubnmN7WQ0cab9eUmKNeMXlOKMqWjY//nmdFHZWjsNHL33EBM7dZ+ubm4gYCv8R0N+x7yaaMjEOgZsdyRJqg5mmFgwx/68JDUU2+dL85sU6N2vS0zshY+n+MlwDRrid5Y43mlatvvO7d3cUKzKxGoW+x20gkF7/olF7fiQpGC+PadU1PjzWHpGhYl16+B3i0jruoOJ/e4Z22FNoltWa3M7m3htbuR3N8rK9mf0+pB9jKDT8UiS0p15qyrqtw/ZWs8TyWaP4fa8VriD36Gmbrk9p/TZ2T9XfT/LdkLae2e/E9/MufZxSyv989q0mYyb1jLU6eAYC9vuv5IUda5/0oL+9Vo4y15DdU3QKqhD1+1NbLe+/nh8bdw3JlaVoAORIvYv6Ni3Yd45JUHfM2W0s69Rr3S/e2LXfW0X4uNf9Lv3roitscFf93Vz3/ncrlPS0vwBsd83tttWZck8N/fNE3Y0sTVTE3TmcrSVcx137AAAAAAAACQpNnYAAAAAAACSFBs7AAAAAAAASYqNHQAAAAAAgCTlVwtuIcN3H+bGOwTtflIgQdHgskipiS2t6+jmdgvawmz1mbZ4kyR1y7HPt7LSL5JUGbFlpCoa/D2xsFNfLjPFL1ZYHllpYsEEe23e7+eAfUa4uZ9OmuzG2yqvDnCCusVy6hZLCWpbzXYKWQ0ZOtzNHT6gt4lNm7PIzZ3675tMrFeBX602FOhsYqsXr3JzF+XZsX7P/bbwlyR99sUPJub9e6UExTYT/X4TFaTbhqQ5gy8S8QvbVtbWmFhK1B+QoZh93JUBW5hQkurSbW56uV9ksjJip/E+Wf54TE9UyR1NlqBupIbutYuJDShZ5uZ+s7qXie3SyS/0P7/OnlR6FfhjbIkdjhrsFL+UpJIqe27sluEX/q4qsedAZzijBQ1ymgpIUoozP0UTFCgNpjovUswvgpsRsIOnIeaPneqgLZScnenPLcOG2aK9M2bMcnOx6YYf5q+7hw6whdyXhPy16R4DbNOSRQv8uaFvd9u05Ktl/rmq6442NzDXP4ZzLx9tYk89+LqbC9/gwYPdeJrzK+/QvtDNvfaU3Uxsmfw5ZO+d7GMs+W6Jm/vY53YNe/Aee7q5e+2/t4m99t40N/fDSdNNbEiChgezZrWNYrebi3stIMktWZ2gAUeXOlssvTbNL3qtLDtnzF9sC2FLUqxTgYlNcNu5SIVdu5lYuMY/B2aVzzexninbubnv1tnzZWaCC8wpbaRQsoelGQAAAAAAQJJiYwcAAAAAACBJsbEDAAAAAACQpNjYAQAAAAAASFJs7AAAAAAAACSpQFFRkV+Svo3Ye4TtYnTu0X5l70i9/aekpTa4udFaW7W/PuTvc0WjtiNIVorfLSItO93EcsMZbu69H9vOEF9MsRXdt3bN6drkNf8oakZ18v323MeNhwtslfSqor+7uStW2o4AsxfNcXNTorbTTZ/+A9zcQK0dO+3Kyt3cLgecbGKzipreaWTQEL9bgqJNnw6a83tPJl43msJ8/z3cUGvnl5oEnUbsLCIFUr2olJdiuwHUhRN00HLCWel+w8PqBvsGmtmMcYPEZs//0MQyG2xXPEk6YX/buearH/yuWBE7LSjgDxtFVtkuFNvt1sHNLV5SYWIZ5X4rjBU1a0wsr1cf/yDQbIOdc2BGqv8eTsm3HUHyUjPd3In/utbEPl/idyzKdjrpNcT89VPvDDvpnPi7x93clQttF5SZs5t+7kgJ+oM9GknQDnMbd/QovytWYTc7RmpL/THWK2R/t+1z/Q6ds0rsOeWXh/ldk94ab8dNu3w/95uQXft88uZMNxfN4625DzzK7xg77l17TdIrJ8G1Uq0dC6EEHWNrA/Z1T6uz3fYkKSNsH6N9hr8mm1NRbWIzmrHGadfO74BaUWHPl21Zog5YTZZgjbGds7wtzvCTU5xf5YEH+OuG/GL7Gr/3pe1oJUkDR9oOpJULV7i53bezC6i5q/1upUtm2fmpIeyfZ7xRPa2NXBNxxw4AAAAAAECSYmMHAAAAAAAgSbGxAwAAAAAAkKTY2AEAAAAAAEhSfuW0NiQQs0VE8zPy3dzSkuUmtnC5X3wpJdVWgOrUq7+bG4nZYoOlNX4h0zU/LDKxrAT7Z7GQ/xiQWyS5JQS6+gXXPrrvchN7dYYtRCpJsaAtprVnZo6bu7jKjp0fppW5ueUdO5pYWiTXzc1Jt++LZmlGkeRtTdApXHzEbr3c3NfH/WBi5+1ti5tKUkXYTrcvT17s5p52oi1k+Ow7fmH1i4Z1N7Gquio39+mi5CoAmEwe+tujJvbKv/7j5lZX20Km977vzzepDbbQX23YL4B70Sm2WPO4G592c2OrbUFkxfxz0jEPXW1ic/267vgZgql2jVDnFCiWpB7ZtSb25m3nurk/LvrRxNJr/OKghbV2zoik+i9yRqk9Vz1544Fu7rEXf+/Gmypc7xftTUlQXHpbVxX118e1zqnGOdVJksqcNWtGiVPFXdKYS/cysYsfneTmBmO25OiKkL/Yi6nAxBIVhN1aGzlsTueMsO9pSZr6rh0kh2yf7ebWOpX+X51b6uZOePJXJnb0Oc/5x7aLfa/XVPprnLkVmzYvhBv8gvHJpjnviWHO+yqW4BIhkGKLXkfD/hz94Q03mNjSbp+7ufstLTSxI/bZyc3d41C7Hl+62J9HasILTSyv00Fu7pEn/tPEEiyJFJC95vOaIEjS7M08P3HHDgAAAAAAQJJiYwcAAAAAACBJsbEDAAAAAACQpNjYAQAAAAAASFJs7AAAAAAAACSpNtNWYN89d3Pjp+++vYnN/vY7N7dre1ul+n9z/UrZlx3ex8RWrql2c7vk2vLgC53q75L03jzbMemmQ3dwc9/83v93bGu86u0t0f3giANs5fMn/nyhm1sbs11qFkx6xc2tc3JT9jrOze2dZrtw5Xfp6uYGv3rExOYW+3uvtdFN64qV6Pfo/d631o4TicbY9SNtV6sV6QlaAAVt6ND9dndT6xZ/a2KfzvYfNq9mhYmlBv3X/JC9bVeSmuKP3dynt86XcrNKNG4evMF2+XjloQfc3L1Ov8rEvl9mO6xJUv+e25nYDvnOwJNU80OxiYXX+J3QwvPnmlhutt9RJ5xiu9mg5aQG7OsZrPfXLufs19fExn80081NL6s0sePPPcDNrXO6oCxM8dc5M/5jJ66GSjtnSVKqXRI1S2qqfwzR1mqdmUSOOWqkibXP9Dt/do/Y7omH5PrdHktSOpnYg0ted3OvfGSiiQUr/PPl6G5nmFiu/I46H9Xbxy1xM5FIonPVlId+bWI1XfwOrDVpY01s9FF7u7lpq782sRdso2BJ0nad7TxWkWXX1pI04hC7lt818qmb+/jDfsfIpko030h+18pkkmg8eDNGgtOPyrJsm6hD9rNrUElSwL4WKS/5XdKeTLFrlwN/eaib+60zEeya669dZjw33sTGt5/j5oa8hmgJbn+pj9r9grZyrcQdOwAAAAAAAEmKjR0AAAAAAIAkxcYOAAAAAABAkmJjBwAAAAAAIEm1meLJMTmV+yStidiCVVnpfnGr+lpbhO3kQ/q5ucsqakwsN0HRuYhT/K9jwP68JJ05qqeJLa30izKHIrYIFdZqiSJU1QH7+82O1Lq5y9fkmdgD//ifm3vr9VeYWEHNajd3u362EG8ozS9Euvfxb5nYEy/+wc2NxTateHIibaX415ZUl2bnorxgezf39INswfZf3vW2m5ubbWMXH7GTmxsI2znjlIP8uezUx941sbT65C/0l2w6drDFJ7+evsTNza2z88WfLx3l5lbZqUk7NnhV/qSS1R1MbMjtu7q5U2fZwrpVnW0BQ0maWTrPxAoCO7q5SGzoUL94ZSRi5/OsPP9zt2MO2dfEjj/PL9L93p32XFWT7Z8De2TZgrmhFWvc3KNeesfEpt17uZsbeedLN95Uqan+ua6B5ZOWLravT2EHZ8KQdFTANm2Ym+OvpXcL20LLwZhfBfvmI+w58Pf/8Ysnt8uxhVN3qLVFdCWpTHYtPU1L3VwkkGCZWJln16AdElxXvXHNgSZ24l9sQWXJv6Cc+PBJbm51vR0jn//lEDf38D9+ZmINFVX+47rRpktN2/bud5jqrPsHDx7q5oZCdn08YZZtxCBJ0V/Zote/+cyvpv3UBUeb2Ioldt0hSXUZ9jUq336Ym3vRx/NN7O9/2cfN1VPf21iiGv1+/4o2YdsbwQAAAAAAAFsJNnYAAAAAAACSFBs7AAAAAAAASYqNHQAAAAAAgCTFxg4AAAAAAECS2iJdsfbZw1avrpjld3wJ7vSdiV1/kt9JprLOdgqpCfmtE3ICWSaWke+Xv65bZauvpzX45eazgrYzVyzd74KE1tW/jx0Px1z5mJv7+RcHm9izt/7ezV2ZaV/Prn3y3dwfUmwHkrqaVW7uok/+P/b+M0yysur/eNeu1FWduycHYJghQ08iigEFHhFQQKIgKCCIgiAKKAaMiCIgioCIqEgUEMkooEiSIU5qMgxMjj2dQ+U6LzzP9Zxzrd/2mv7P9NC75/t5+WNRXdN117133V3XWg+5rBjX09fCW7VDaWnx02gqi7aXtcG0t1329U+mZe3EZj/q6tITpsna/l7fRr8Ysj9Z3k+oaIjr2h8d5aeKFHv0hItvPTBf/zxssLB5dN+84vcue/TKi2TtP/90q8tKeX057ov7PWSJFWRtJe0n4jxd8dckM7N0wk+56ZysRz18+9dPueyBe/wUP/x3asKmmVlVyk8ayfbr12KPaTu77F//vETWjir560eioq9V1TV+utG0XRtl7YI//9pluZSeWBRs5N8P82WudWHKMb8brWr30+7MzHba1a+xqcluWdudfM1lH9ja3zObmTVU+YmRu2yvF/rE4tYuG12n96eGAb/OLXhe1iKEHjZsh5zxB5f98vunyNp9dvYThJ65cVtZ25v1PzBZO1bWvr3M31ONrejaB3/hn1uhLMaMmtmHvqj3wg01kvebsKm3M6b7++PGkDudjrx/jSvt62VtX5+flnX5Vz4naxvq/UTOfrG3mJlVV/xrv7jyiqy9/SsnuSxR0bPTAvlvDvn8XuM/X6rPGWabf9ow39gBAAAAAACIKA52AAAAAAAAIoqDHQAAAAAAgIjiYAcAAAAAACCi3pfmyc++OM9l9TNmy9raKt+46Fd/9Q2ZzMy+eLhvWlqf0E1EMw2+AVS+TTeLuuFF//OCkAZbZx4oGkOndaNLTtWG1h/+6BvtzQpZZ4nV/vUs7aYbuU2PN7qsL6Ub207p8E3FsmXdiPf1gm/SbTW6gWY5rAsnJNW8LJimG50pDXV6LazPL3FZKqT3Xn21b04a170r7fuPvrvBz+2iw3Z0WSm1boP/fwzOwpBGeKpx3iPP/FPWjslMcVnvFH05nrzML5JVDbpx5Hcuu81lQciCvPr8/V02vl3vK0veeU/mGJywG66cuEUIAr3391f54tq1usl+LqMatmdl7aur/DrrC9nLptTUuixlPjMzywchDeI3ULKgO8AW9K9nizJ/wUKXzQhp4PnNtqddVimH3IUG/nf++Q9PkqVr8/4e/Qsz9Vq46p+3uGxdUS+yVR2+wenmbkIadWG/L3Wt+tb3/GtjZvb7357qsoGQ4TGja3yz29KAblT76fMvd1nY56pbfvZVX5vQDXs39nNVojBymyeHKYst9qlWv7eYmX1khl87hZjejOM5/2pM2bld1vas8FfHMeOrZG3dUv/z4qWtZO3ycf5zVecEvX7LciiNXg+t/x6+exFnCwAAAAAAABHFwQ4AAAAAAEBEcbADAAAAAAAQURzsAAAAAAAARBQHOwAAAAAAABH1vkzFUp59ca7M993DT5lKJnUH7t8+6KdXja/VE4g+caCfJNMU092vv3bEdJf1h0wlSpR9/ruHX5e1yQTnaptbkNRT0ooNzS6r6Voqa9MN/nVrSunXcusDTnPZvL/fKmvHp/1zWNXD9KuhMpiJEdXV+nWIF/3+UizpjvsdAx0uSwR6C/724ZNdljc9zabc7adDxCc1yFoMHfmqh0x86e9b7rJK53aytrfaX++SgZ4I8rMz/8dldYHem+IDfu2t71omawO9pDFIYfOhEmIqSTye04+xbK3LMhk/cc/MLJ3yE2lyFT3hb+ahfvLMmnu/oZ9DlV9TxUSbrDU91GqDMf1qcMJm+pz/4TEuW9qvp+uNK/kpa4VEXtaeffsbLrv6iB1k7Rc+6ifXlLN6Lzv/QT3pDUOjJq1XzufO+4PLfvblA2VtfILf4fr79L3TH394ksuCOr3GCrkBl31ePK9NobNfTKcd4QYzba4S85OqCiG7Tn8u47MV+v3eOM5//lnXri8eh1xwrcv+/OsjZe2ANbpsbK8+F1A3OtXxjZvq+H7gZAEAAAAAACCiONgBAAAAAACIKA52AAAAAAAAIoqDHQAAAAAAgIgaNs2TwwyUfFOmukA3VIqXfL622zfdMjO7428LXNYn/n8zs0rMn38lBnRtruyfbywpSy1X3Miughi0QkHn5Ua/TqpTo2Xt2l7fBLcqNUnWznniYZdlu3Qzrn6xdprT+i3Kytm8gmJI99i4b8JWXdDNAtf2+teyKaS5e0k0Vk/kQhq+japzUSrQTTFjNMEdMvJXW9KvWaHeb0S5lb6hsplZ9ba+2W11STfLtbRvuFsxfQF6pa3HZaVO3Vy+woazSejfrpnqt54L2XOKed+QMtHoMzOzcsXvAwO5dbJ21V++5bLeiu5c/KlTvuOyXF9I217xz1AN6sOEbVkLB9Hwc0sS9vtaLZrY1jbpRrH9Zf8oyV59XfvRJ+pdVkrpRv+rk34/HN2u11ieu5zNqpQNGQgT97vW5Vc9LmuzolF/v/gMZ2ZWEbfBA3obs2TOP7d42Ocq0XN+MPtNmME0GB4Jpk/Xv7OFC/3vYc89ZsvawkTfsD3Wqxtk18QmuCy7xA9EMjN78ue+8fY7fbopc6beL4il5bAG2X7PGYjg/Bq+sQMAAAAAABBRHOwAAAAAAABEFAc7AAAAAAAAEcXBDgAAAAAAQERxsAMAAAAAABBRw34qVrHoO6rnkrqLfnXC510hgxoK/b779bnT9QSTvrzvqp1M6drfvuGnnZTLIe3brS8kx1CJl0XLfDNb9PRSl43dfbKszddNddlfD9pP1vaLcSf1Cd1m/ax77nfZ6An9sjYQ0wewaajJUQM5vZGMEnF7Sm+r24xqdtk3735TP4lBdOK/9tS9XJYt6XUeD/TeiY2nVkgqoaeTjY75F7gt1S1ru9v9evradY/qJyEmslUqeu3++HNHu6yxSk+RDEJn7WAwQoYyyqljiZSefPa6LXPZjn3bydra2naX3Xa0vnYkAn+tebLoJ0Camd3z7lyXPfLIPFm71247uCyo1/PBEmWfj7ryTFk7WUy62dIm1wxGR8pPgplc1PtTsbPKZV/L6Wk2/WW/qvtC7rP+0NzksgV9nbIWm1cxoz/TjE768VWr9W2ppYv++nPyjv41NzMrl/x6WqtGZZnZRb+9z2Vvd+rnMHW7US6LxfVzSOT9c9j5Ej0NKtjC9hs1/SpUyD3GnGfmuOyAD2wja5e++pbLTr34L7I2oaavhTyHBy/xE7Tmr18ja2Pi/nhe63xZO2OPmS5b8JKu3dz4dAgAAAAAABBRHOwAAAAAAABEFAc7AAAAAAAAEcXBDgAAAAAAQEQN++bJyo7NvrGbmdmi9b5hW1VMN1QqxPyZ1i9fzcrawHxDpURJdDs0s0RFNE+O6VrdXg5DaX6rbvA4s2UPl73x4gOydl1xrcvOvv0eWZtN+TUVG9CNIy3hm2VOnPoxWbpw4UL9GBgStQnd6LyvVOuyxECPrM2mfAPa7x6rm56ms36PCzK68XGXaFRZzusz+1JlEF2ZsdFS1fpa1Vb0r0+lrF+bqlr/GFeddYSsTYgex8tiumVvsc2vm2WlsL/16GsYhk6lou8Q9jv5Bpetvu8yWdtTqXfZwQ/pBtmpgl88h3XrBs67z5rusqUdIZMqApGHLadBLLOR3Lh0YywM+b3MEM1ff330aFnbX+evYZc06p8Xa/NrpFQX0qS/e72LHnvbN3U2M1swmOat2Gjnf/NgmV9xib+3TVV0M/1e8bnqlpAux1lRO0VdwMzsg584xGXd2ZD9Rghr/a/ysEdlvwn34svzZb7PHv5z1SEH+szMbE3NOpf98tpPytppZd/0fbU1yNrFvf46+vijr8naefPmy1wZLo2SFb6xAwAAAAAAEFEc7AAAAAAAAEQUBzsAAAAAAAARxcEOAAAAAABARHGwAwAAAAAAEFGRnIp11IemyfyOp9522btd+p9YV/STIbpDeqcnzU8rySb1BJN02U8D6MvrqSR0WR8+YgnfC39Fd17WfuzAI1322ot62ta6rpUuq2rQU0n23ttPJWhdwPSr4aBnvX4PZ1J+WlYxqSfJZIp+z4hn9BqrEtOr8iGTKMr5jMsu+vOLspZJI5tXrilk3YgBjAUxlcjMrGd1v8tq/Ev+n9q4nxYxuaz/frO+xq+9n/5qjqzlWrVpxEOGBamBaCGDNy0RF/+hpK8pY4/4ocsWXXe6rC1M9ouqmNZT3Vb0+jUVWFHWqsGk81lPm52a9rOq4qdUmZldcrfPL/voDrK2v8a/7jU1XbL2G3/1jzuPa9KwsLelZf61cw532U8u+4esTcT9tSqoScra5n5/bVxT0RtkpbThE7C4Vg0fpaLfG+re1XvOWT+8w2WPXPNZWdvz3jiXNW6rp9F+8Rt/ctlTz78sa0cKvrEDAAAAAAAQURzsAAAAAAAARBQHOwAAAAAAABHFwQ4AAAAAAEBERbJ5cpDUT7sS842ath2jm3G9ttJ3K0wGunllQRx/xYq6s2Gv7h+I4U40vQ5UR0sze+aJm1y28x67ylq1oiohTbpbW2mUPByUxVu7L66b91Un/BoJyrpx5IX3vOuyZCLkbD2kcapSEI0FaZK8+cn3ekE3pKwU/etem9Adkb/6u3tclirrC00lEAsn5LrWm/O1NJ4cYvqSIhdPXL9sVhbFxaxu0v32vRe7bMqhXw97dk4l5G9/gWjFG7Zlhf2TsXmpVzLe65vdmpn96FO+afZ5D7y10c+B/WX4Wp7Wn5VivX4AyI8vPk7Wfu1bf3BZb0lMCjAzC8SKzOlhEgprafiriNd4XUOtrH3winNdtt9pP9ePKzM+V/0vvrEDAAAAAAAQURzsAAAAAAAARBQHOwAAAAAAABHFwQ4AAAAAAEBEcbADAAAAAAAQUZGcilWMJ2V+xL5+MtFfn10ka9XwkEJFz3Uo64E4Ukw05mZCTQQk/USAuqoJsrTS8Y7L5jxyo6zd96CTXbYldmmPukxKd9zv6/Z7RrJOTzdS07Zemrtgo54Xhreqsv7bSaLKr6eeip9EY2YWVPze9OzLczfuieF9ETLoymJib6iE3XiIjSTT0CxLu7PdLnv7sR/L2u0/fpF4Xvo5DOKWiOk1w4S6u91+wvay9i0xnOhHn3pD1n7vAV/Max49iSp937K17eyyxcv1NDWldT5rYcvlrxSxGj0nsbnO1/7tmnNk7UFnXeUyPlf9H76xAwAAAAAAEFEc7AAAAAAAAEQUBzsAAAAAAAARxcEOAAAAAABAREWyeXLQ0SfzRCLtsg/vPUnWvn7/my5bSMO3LVY88GecY0flZO2aim/ePS6pz0h1O25ETWVAtz0t1/hXuDfvG5aacYo+0qn3eqlf7wClpG8gWJPWDXCrYr55MqJp7ia4x5g5c6bLst29srbSUOezsuiMa2ZqdgT3RCOH2omW9LfJ2qq+RpcVxmwT8shv/z8/JwwfE3r0HrK+zl9/dtk2kh8dsZmpJvv5+GhZW1znG3I3jtMDJfDf8VkDAAAAAAAgojjYAQAAAAAAiCgOdgAAAAAAACKKgx0AAAAAAICI4mAHAAAAAAAgooLW1lYG9wAAAAAAAEQQ39gBAAAAAACIKA52AAAAAAAAIoqDHQAAAAAAgIjiYAcAAAAAACCiONgBAAAAAACIKA52AAAAAAAAIoqDHQAAAAAAgIjiYAcAAAAAACCiONgBAAAAAACIKA52AAAAAAAAIoqDHQAAAAAAgIjiYAcAAAAAACCiONgBAAAAAACIKA52AAAAAAAAIirxfj8BABhJWlpaZN7a2rrZagEAAABsOfjGDgAAAAAAQERxsAMAAAAAABBRHOwAAAAAAABEFAc7AAAAAAAAEcXBDgAAAAAAQEQFra2tlff7SQBAFIVNqtpQ6UyVzLMDuY16XCZlAQA2lbBrXSoRuOzleQuH+ukAAAS+sQMAAAAAABBRHOwAAAAAAABEFAc7AAAAAAAAEcXBDgAAAAAAQEQl3u8nAABRFfi+kZaM6/PyfLHss+yG965Pip9lZlbc4EcAAOC/m7nvLJdVHXOlrN1+/wtcFtZomab+ADC0+MYOAAAAAABARHGwAwAAAAAAEFEc7AAAAAAAAEQUBzsAAAAAAAARxcEOAAAAAABARAWtra0bPpYFGKFaZoopDkHI0Lji0MwhUhMjWqaHTJdYyHSJzWlGyOsQF2Oxyqa31JIfimXxkAlaZfEQMRWamQU+DytdyFQSAICZTZ8xQ+aJE3/sson7fE/Wrr7/cpdNPelrsvb1z/qMSVkAsOnwjR0AAAAAAICI4mAHAAAAAAAgojjYAQAAAAAAiCgOdgAAAAAAACIqpDssMDK1tOgmuI1Bvcs6K90b/sDxkLwkzk5joouumU1XDZwxrJUC//rGYrpzcdz3WbaK+P/NzBJq2SRLsrZY8IuvEuhaDA8zZs92Wbmgm7IHSZ/FyiI0syDuX/dSOeTvNyVfu3DhAl2LYWP2PjNdVujb8Pd7lWj4bmZWSfh9K1/Qt4ixwK/VBTT0j5yqlN4bpuzrGyUveelbsrbmmG+47M2HfiBrg5qLN/zJAQAGjW/sAAAAAAAARBQHOwAAAAAAABHFwQ4AAAAAAEBEcbADAAAAAAAQURzsAAAAAAAARBRTsTBitagpUyk9TSae8BOwgv6Qt0etnwiS6tWPmzNfmymnZW0gpmXl4nlZK6d76WEn1sq0kkGRv9uQI/D5157usvUx/fredMuTLntu3huyNp3PueziSy+QtVPr/TSb3b54maxV/7bWVtbHUJk5Y4bMf/GDY1w2qagXWb5urA/r9N7UMGGUy9a/8IqszfT4SUozZ82StfPnzZM5hk7L7Oky77n3Gpc1f+Y8Wbv6Fj/J6NhfPyBrr5pQ67IP3/WCrF1w/09ctk3I2lnA2hkWZs72e9FOv9S1bz71c5ftuLe+/rz1mL/WTPiwrl2d+7bLWmbraaCtc7kuASNNywx9XYuJW5pySX+oiZm/51VTZ83MihVfu3D+yN5b+MYOAAAAAABARHGwAwAAAAAAEFEc7AAAAAAAAEQUBzsAAAAAAAARNeKbJ8tGqKZPtHzr2v/I1Pimgtm+Xlnr2zTRnHSotUzXr7EyKe2bGZuZrcilXFaV0Q2Rg6x/jKwVNvg5DFhW5imxAEshizIR99m8Ed4QbLMRTdhevuNnsrRU1+iySQm/X5iZff8HO7vs1vtf0k+hw7+W6fo6Wds0zucL/nSFrJ1+gm6yio3XMt03BWxf95qsbahvdllHj266Hbcul5XKeh8riwtb9UfGyNqeim8YX/zZ1bK2ZtR4lz3/wnxZi8FT9yntj18ra9vHr3NZok93jhyozrjslXlvy9rY13ZxWdctfbI2n/XXsL77LpK1GRq2b1YzZuj7oWk3+3uc1x79nqzdeb9vuuz1f54ha7cSjZJXvP4LWTthr6+7bOXoy2Utjf6HrzNPPkTm5YTfhxIhn6wqlZBut+pxxSer3/z+bxv8/+P9MX2P3UWqX/dk0a+T115ZKGt3mDXTZbHAD4MwM6vk/c+bMcIb/fONHQAAAAAAgIjiYAcAAAAAACCiONgBAAAAAACIKA52AAAAAAAAIoqDHQAAAAAAgIgaUVOx5ASsQJ9dVUSn9lo9lMQG8n4yRCrQv7pk4CcPhE3mosP/ptG6UP8e1e99dVmMkzKzdNq/+E0DfmqMmdkqsab2mqbXw4uL8y775Vc+KGu/edUcl6WS+vnm8xs+hQuDM8YPkrHRiZCO+2k/3Wh0zVpZu2J9u8u+e/hsWbssK7r21+n1WNM74LJSjZrPZzaufkRt+cNKVdzvCwd+T09PLKb7XZYS687MrG2xf82KQU4/bsavsaYBP1XLzKx7lM/rQ65r5ULYzEgMlWJC7/E7zPyxy9586eeydqt9/aSq7of19Kr+8liXLXpRT7/Zde8fuOztO/XUJGxesZieOvPuP77jsu0/qNfCW0/6SVcNs/X0quw7P3LZxG31tK2213/in8MHviFr37xextjMzvjCJ1ympi+amcVy/vqx7TZ6uuxby/01pSGl126h6B/3SycfLGuvu5FpWZvb9NkzZB4r+9c4bno95MRL/4EP7yVr33neT6/a/9D9ZO2ydn+vVSzo+6fZe/j77rkvRW9SFt/YAQAAAAAAiCgOdgAAAAAAACKKgx0AAAAAAICI4mAHAAAAAAAgoiLZSTOsGXFcnFOVKrrpY0w0uiyVfeNjM7N0LOuyQqUoa/tjPq9O64ZgM6b7f8eCkEbACNcyQ68HpSauO2T/5Zz/cdkv/vWurH3ylD1d9uiLi2Tt2id8/soreu388UdHuuxnt+jGXQve9I9Lk+5NIyW2xb6C3htyvf53G+/XXXCrK77J8btxvT8F1X7PCXQPXFskGmlPGV0ta+NF3bgOGy8mrjVnj/qZrK2r9a9Dz4C+TtTN8usxyOu/ySR6/OMur9dNeMcUfEPwtzpkqV2ie7hjCFWSfr8wMxuX8O/t0oDeR1a/5BvmthzgG9iamb1025UuS3fq/SJd3+CytkydrOXPh0NnuriHrBzyXVnbvK1vcjxQ0de1aR/4jcvyaV1bW+9rG4uTZW3/bhe7bOk/dePvrS8732Xc4wydL536cZkXB8TgiLi+h1Vdld9cpNfNmGZ/vVvapq9VdRVfW1enN5azv3CYy379+/tlLTaNSlEP6xjf6K8JKzp6ZO2ExhqXFfN6aMknj/JN/Wvj/ppkZjY27QfYrC+HDEOp6H9H1HDJBQAAAAAAiCgOdgAAAAAAACKKgx0AAAAAAICI4mAHAAAAAAAgojjYAQAAAAAAiKhhPxVLdcGPBXp6SKJ+jMua4roj+y0/Pd1li3L6nEv9tCChp1BMSPlu8Wd87xZZm1v5nsw3VH2D7gLe3RUyPmeEal2gJyKotfP14/VUheeWveGyEw7V62zOk0+4bK/dJsra45b69XfgFP36rHvXd2qfe8a+sjb+dT8Vi8kQm8ZqP5DK8mP1FIjnn/NTHNrljmHWstO2PlyiJ980N/nJWu09eqLbupLv5P/y8m5Z25bT+xY23oB4Hd5c5ScymJlNmuCnRcSr9Oip5upal3WX9OvbXuN/XnXIa94V9xOPJuhhNtavh0hgCE3Zz0+0MjNLitei5UMXytpCzO9FhUC/mGMP/KLLyhV9T1Sd8Gtnj0Mvl7U2MgaNDEuxuN8zdjtYvw7F4niX3dJ0nKwds1WVy1atmipra0aL611SXy/Hr+1z2eytfydrS0vVx5OQaUwYlDO+eLjL6mqbZW2yyb/Xe7M5WXvByZ9w2Q51ftqRmVkh8PnAgL6uZVJ+PX7j6j/L2mJRX3MxdN4773qZ5zP+dRtV6z+nm5mt7l7lstHN4p7ZzHorq102Jt4kazP9fgrXm131sraheZ3Lovhpmm/sAAAAAAAARBQHOwAAAAAAABHFwQ4AAAAAAEBEcbADAAAAAAAQUcO+ebLqk1zdpJ92bco39Lr2XN8kzMws2/muyzKlsbJ260bfbLBkvgmcmVlupX/C1311D1l77HeWyXxDFXO6gRnCnXeIbka86NW3XTbv5YdkbaLBr4d00wxZ+8nDfPPk7ArdvLJz4T9ddscTL8la3UYXm0Kyyr+H77j5EVm734GHuuzfrR2y9tU5i1121kd2k7WTRvv9pTDQLmuffsY/bldRN2UOKnTB3ZwuvfFhmdeINVYq6L+zFCq+QWpQ1K9jQfbt1rUpE02VYyF/6ynTAXdzu+/So2R+zAX3uqwm5DXuL/u8ENLcfcE957ss2Ho/WTv/r39yWXeHftyzrrlD5th4ZdGwvW2Fbgx6z66nuWxyxjdmNzMrd4l7nIpuSltavtZljU26EXwsqHbZ06ljZO0Hl18nUt/cFINXLvq9f/Vafd+yvrPXZbGvnC1rC1k/TOKdkCExyT22ctmEAd2qdv/XJrjs5hOOl7Xn3XitzLFpZJ7wn5WeTS6VtVMm+Nf4rb5/68cd45scd1Xpz7gTt/brd+Wbem9Ym/aPkUzp5/vcS76h96F9evjE+mNnyXw44Bs7AAAAAAAAEcXBDgAAAAAAQERxsAMAAAAAABBRHOwAAAAAAABEFAc7AAAAAAAAETXsp2LVppMuq/TrCRC7T/Ud999+XXe/jq9tc9n0A3SX64YqP9motbtb1g686TvL5/uWyNpYceMmjSQS/nn9R3ajHjdqWlpaZP7TT/tJVX39/nU3M+ub5Cc+nP9dvc7eutxPCnl+sZ8MYWa2R6Pvsn53Tk8sOutBn5WvOFDWnnr/UzLHhgtbN2///VsuS48eL2tffdOvkTuvuUHWfuY4P0Er1by7fnINvpP/sjeqZOnVN//FZad8YLqsjYVMxMGGC1s3px68q8t22WWyrF201l96r7v5b7JWDao6/IC9ZO2xH/MTcVKxibL2yO/4dZqs6FuCIGCa2qYQtnb651zmsncWvSJru4v+PVwJmYo1bZzfM5at1/cdO43216WOtP7b30k/fdRlq673U5fMzM5izxkymSo/farQ6ScTmZltnVrtsucf8pNozMys7O8hp39yT1n6zppOl5Xi+jX/9yNzXBYv9cva9DQ9WQsbryruf7cDJb2HTBg9xmXtnXp61bcW+fvoWz/YLGtnNY122d1L9eS16pV+gvDZbXo2bFIPLMYmsq0YVf1qlb437c34a9iVj+u9YcIEvyZ3G71c1h5QN8plhe7Fsvb+l/2es9s4fT8/MOqDLuuODftjEodv7AAAAAAAAEQUBzsAAAAAAAARxcEOAAAAAABARHGwAwAAAAAAEFHDpivQzJm6qWA88GdPmYw+j/r8Yb7x0Vnfu0vWXvnVE1xWrNJNh5MV3xhqUlH/6o66+3GX3XLeZ2Vt/t7XZL6hkknO5f6b+St9Q+O2Xt24uHeJbwZ33zWHydp5Sztd1jRON/pr7/Rr6vBxep2lztvBZc936oZ2WdNN5rDxxo7d2mXrCnrdTBs9zmW//fGpsnaXnX3T7TE1K2VtddDrsp2m1cnab5x1isv22N7/G8zMfvfIMzLHxmuZ7Jv318TLsvaQfaa67Ld/8YMCzMys0uCi047cSZa25YouGxPS2PCgj/nr5aP/mqufgn5m2ETeWNDpsqZxuvH2mud+5LKJ+1woa99b69fDynnflrUrl65zWXXTO7J29b3f8z9rwP8sM7MKq2fIFIt+f+np99cOM7P3qvz+dNLtvvG+mdmcH53osraCHwxiZtY0ptFlhRV+LZmZnXvrv112/w9PkrXp1a/LHBvuS1/8hMxLBf/ZIZXWzYiv/tInXfapL10la6cfdozLOir+WmdmtmCNb+ZdnfRDI8zM1t56q8v2OOhwWdvB9xU2icr1+l4gtpu/T5k6erGs7Z4w1mUL5jwia0/57gdc1pTV97xByXfIrmnU91r/+Jtv4Pzxi2bL2gNmfMhl78xbL2vTD6xwWfZTk2Tt5sY7AAAAAAAAIKI42AEAAAAAAIgoDnYAAAAAAAAiioMdAAAAAACAiOJgBwAAAAAAIKKGzVSskh7+Y8kq3+m6t1dPWZgxZXuXXXb9l2TtVgXfVbsu4Tt4m5nV1Ptu8duPbZK11138FZeVTU8ICCyQ+YbKlXUX8C1NXA+ksjtfWOWycw/zmZlZ48Ral1UC3aF/ysTxLktPKMjannWLXFZe56dTmJl9YJLPCxX9uNh48ZBj7eY9v+yyV/56sazNrnvTZSdu3yxr24ovu2z1u34am5lZNubXQqXwtqz9wrQpLltZ0y9rK5WQjRZSS4uf1rjs2W1l7XYffcllv/vGQbI2t9xPrrn5ws/L2pqMv/7ke/z1y8ysqd4v6s6inqB34id3dtmFR+whaz967q9kjk1j9y/9xGWdD31N1raJQXqdD/xY1ubNr5Nyu75glqr8hL/kHH29rIyf6LJRo/SEP2w8tQ+ZmcXE1Niqen1f2TjBX5fmPHSRrB2d8/c+bd2dsra+0U/J6ajTk5Aeu81Pb+uP6ylehV7ufTbW5PH6XvOd9/xk1rApu01iglbD5Xqy3g8zfg8YldKPG3T7z3E7BPWydtvTjnfZ2WP1de2Sd0I+EGBQajN+GqeZ2bvL2lzWlNQThNfm/D3riz/5qqxdln3Bh/36M1hH1r/GxYReO5dc6tdqLu8nspmZrVnc7bKgV6/fSs3w3Z/4xg4AAAAAAEBEcbADAAAAAAAQURzsAAAAAAAARBQHOwAAAAAAABE1bJonh7W7yor+WHGrkrV588U79OkGW+X6OpcVO3XD0Rc6ffPj/kA3Lt4jNcpl8YT/WWZm5UA3gd5QyQLNk83M5s9vlblqOHjQRc/I2gW/PtBl3TH9uqUa/Trpezklaz/6m9ddFhR1061/fPsIl3VW+caEZmY6xWDMX7Dh6+blp5+VtTsftKPL3urSDd8y5vN0oz5bn33IJS4L4vr9Pvf2c1xWSem9pWBFmUNrbfVrZKuQRqZKLOSN2pfscVk2yMjaREeny3rK+op55rfuFU9Cr4U7vnGcy15L+uaBZmbBxvX5x/+XWk9mes/prdpK1qaTy1zWWdb3LqmS3zOWvaNv+z5w9pUyVxbcc57LqhI0LR0qoetmll83EybqTaeuyzdhT3Tp5v0Do/w9b3qcvu+O9/m8tqAbr+bG+mESsfW66WmpIp4bS2xQVi3V9yKJKn/fUcnrwQr5Wn9v++dmfb9bLG3tsr71+uJRqPNNs0sNnbL2zy2TXNYtBuuYmaUSfF9hU+hvGtD/YbV/b+er9N6Q3N7vI8vXLZW1Y8f5e6IFfXpNTt3Bf4ZKtul9pCfmf151X8iaLPq9s5TSjZYzb/rNKHfwFFm7ufEOAAAAAAAAiCgOdgAAAAAAACKKgx0AAAAAAICI4mAHAAAAAAAgojjYAQAAAAAAiKhhMxVL9742S4iBHsmU7vTe3dXna+O6O38i8B33BxrGyNrPn/4blz191SmytrfGZ0FMT+ayjRuKZR39vqs8/rtKWf/SZ//0KZfNyogX08wuv+AAl23bpB/38W9/ymWZsXoyUXWt7/S+96lPy1psXqWSnhCw4oHHXNbyqcNkbSo92mV9eb03LLzzOy5LJvRz6E82++f1+F2yFhtvMJONEiW9L1SK/lo1NtEoazvr/GW6oagv3dd/52Muqw/GydrejJ+ANT5WLWs38lKF/wejUvo68V6x1mWZAf0K1U3w15SxPXo9tP3mApd1zNR/+xsjppWsMr12MHRiYjDQwFZ6QlpTt59ktKZW30MmkhNcNiqnJ980H/RNl731uF9LZmbbrWx02crmtbK2Y7L4xyX5W/RgZON6+o8aKBUk/NQ0M7P+mL9OZPubZG118yqX9VY1ytpDTrrWZQ/ffKasXVbj75N2DJmQVqiEfZrEYFRyeupYYoq/d+l9Xa+zcqHdZcXqkHveFf69PTpkut6Bx/3CZTdeeqKs3abJ73v94/QErfIr4gxhlH5fJBpCPtcPA+ySAAAAAAAAEcXBDgAAAAAAQERxsAMAAAAAABBRHOwAAAAAAABE1LBpnpwMycuiJ1Pe9wM0M7NKl2/eF4z2jZPMzLra/INkA9/oyczs0Z+f7LK2nH7cb15ylQ8LIf868W9TDTjD6HZVZgtDmnvCLBbScK0y4F/PV3t08+Tjv/esy9rjutFYacA32Boo69rt630DzO3G6rfoAvpmb1axlD4DrwSjXPbyv56QtW+uWOay0Tm9xqzav7uDOt00viwazGUC32AVm1+yWjccTfZnXFYwvS9YzxoXpUfV6cct+qaW5aJuJlno95vhgOk1RvfkzS8e02unKfDXqnRBX9hWd/h9pL7JN0M1M+tM+SaRo7v0/lRq8utkXF6vSQwhsWWk1+g7w8puft0E9boJbscY/4ZPtL4na1c8cLnL8m26gfPUUy90Wa81ytr4SeLeJ6sbig/mvlkJa4gfdf4q8x+Fit8v4iH3sE19E12Wq9LXlCDrm9LmA/2B7e83fcllyZDPVel4j8tiepaEJdMhN/kYlET3epkHOX8v3DRZNxgur/fv4bLq3G1mTeL6E+TWydpHr/uKy0ohxxlt1f56F7yta/vEz6st+6EnZmax9WGfwN9/fGMHAAAAAAAgojjYAQAAAAAAiCgOdgAAAAAAACKKgx0AAAAAAICI4mAHAAAAAAAgoobNVCzd696sIqZxJBJ6WsSyKj89ZOvcZFm79Xj/wM+ctpusDcyPIHqurDuG/3vNuy57+O+vydp999rZZbE63cc+UfKd3if++NOyNhATAkZq1//ByodMd9l+lJ/+8cb6Tlk70Oe7/L99jJ8GYGa2usdPh6ir1ROLPv1gl8uSU/X6tXfbdI4hkYuFTJlK+9es0qOn4E1MN7rsi7fp92Ws7LfmsLV719f2cFkQMhkiCIZvJ/+RqFLUUz6qJ/i8faWfoGdmVj3GT4s47II7Qn6gf33DZoT8/ocnuixZo6edJGLD5lZhi7G2zk/cMzPLrFnusv4GPXkm3ePXzoRjvy1r4xX/d75A3YCZWde/LnFZuainigah8zuxsdR8mVxF30Mu6/H3saOyerxmTcxPmD3p1GtlbbHkX99VgZ58M2HPQ1y214xmWfvKlDddts0efjqSmVlHwX8mWFE8Ttb2v6rX/0iUE9cDM7Nk0r8+pZChjE93+Pf1h6eOkbWFgv95ay+/VdZ2FP1rWUjrtbvLd05x2fdv/busDYbPx9pIK57yMZnH71voskJcT8Val+hwWSqrpydOqfb30if/+B5Z25Lx9+NrU3pvuPCyz7usbbU/KzAzq6me4bL+gr6H6z1jO5kPB3xjBwAAAAAAIKI42AEAAAAAAIgoDnYAAAAAAAAiioMdAAAAAACAiIpkl6kg0E0mT/zmbS77x1XnydpszDe73eE63/jYzCxV8Q1wP5jX7Z5n7bCtyxbrPsu6q2VIg1TZJS8EjZLD7b6dbty1cNFql2Wq9NujHPjXfrc/Z2VtV9qfnVb3Dcja7Zv8z3vxxaWyFpvXJz/yAZm/MOdZl5UDv1+YmVnRN1X+1em+WZuZWbVoll6I6wap+bivzRV0A+dKSDNUbAJiuyjpbcHKnX4PqE75hqVmZj1dfg+55SLdGDQZ869vLmTYQKzo97GV7+qmgsVy2HgDDJXxbe/IvG38OJclQm4clre97rKX7/2xrI1bg8uqu/UCrq74Zpnz87pNdyX0pgYbaroYiGFm1uB7WFuhUV9/Dl52ocve2PFqWVtV64cz3PbnK3Rtg9+flq31jVDNzD504kUum5PS62Ns2T/uwM76Rrj3Zp9VbIGs3ZLEAt0MvyR+5fqOwezM713lsgdv/qqsbTS/LzR8V1+rWsS9SC6vv2sQM7+mF7y5WNZWjdLXUWwiBd/sfGy9btJd/foxLlu2w2Oy9jXxuf6ii0+TtfXxPpe1hdw/lfp9Q+5pvXpQktX5f0dNVjdl1unwwDd2AAAAAAAAIoqDHQAAAAAAgIjiYAcAAAAAACCiONgBAAAAAACIKA52AAAAAAAAImrYTMUSg13MzKysmroXdWf8eNyfU5VyepLMzJN9p/enLjtBP4dRvtN7e1k/4ZXd/lcaiClKZmaqYf0CJloNqZvP3E/mJ/zqcZctWKfXTrnXZ9lRevJMpj/lsr5a3U99/jqxTkKmoTH5bPOqT+hJZjt+cC+XzX3qIVlbavBTZ5I9emReMeEnBKSyenpIUO0f95TLH5a1rJshpN6+GT2VpEtN/yjqPaSp1O6ydYmQiX1imSaDnKxNxPxzOPdqvw+asW7eD6tXd8q8kPT7QLrUJGu3T4z3jxvoSVfxjrddVj2g95y1vTu4bNYnzpK1rJ2NtzDkd6imZdX+Ut+bLj/P70VtD/ppoGZmW02/1GXv3P1tWRuf6PeRWJOesbR+wD+34FF9f9zgB+rY2tNlKWssRCA+E5mZBSWfFwL9Xq+IfHRBr7F9T/eT057+45myNhb4CUSJdv9Zy8xs5hcuc9luu06WtRV9ycUmUjra/95z9z0ja+Mto12WrvFTtczMjjn5ty779z3nytr+wD+uLdPTAD92zs9d9vo5N8raihhV3XPSzrJ2OOMbOwAAAAAAABHFwQ4AAAAAAEBEcbADAAAAAAAQURzsAAAAAAAARNSwaZ5sYQ2vfH+tsH6yFouJ5l/9uqHSX37iu7Dt+7WrZW1Iy9KQZ6GrN64Sm0p/XDdnq1T5rqN7Txkla//1SpvLku26QWm/alzq++KamVmRpm/D1pqkbgY5asDvRh/Z7yBZu9OnfuyySkjTeKv4/aUUsvEN5F51Gc0kh4dKVjdgt6DWRYWYbiJ6xE/+4bK6qrDH9VeVUkVf5nsH/EbEuhk+EpPHybxG3OfU6X78lj72Ypc11Or1EPT6a2Ahozeozm5/XWPtbH6qqfKsGdNlbUX8HTc7oO9jX33sGpdtt/8XNvh5VULuj1tbF27wY6jG0KyxQQq5TJRj/mazUgz5TCM+qIRdft74wzdcNvUkvweFPrBoqGxmtsfuW7usUNBPIinunTC01h/+IZkf8JHdXfbX278ua1v/4Juz73yEXjuD+eys9oy+Qfz/UcQ3dgAAAAAAACKKgx0AAAAAAICI4mAHAAAAAAAgojjYAQAAAAAAiCgOdgAAAAAAACJq+EzFCqEGXYUdR5XzvriqrkHWdmY7XfaXK3TX/6PP/73Lgoruyx02sUuhw//mFy/pyTO/+vKnXPatXz8ta9XyK4S1aR9E+/akeOC5C1gjw0E8yMi8UpNyWSEfMvYs5qc1zHl+3kY9LwxvhawedVdV49dIdVWNrA3EpKtnXpi/Uc8Lw19uYLXMa6vG+trq9SGP4vecfz317MY8LQxz8xboyVMzZ8xwWe2EMbJ2XbbXZQP/9JOyzMzSB5zlssFMvwqjJn5hkEp6QlRFjCEOAv3Bqlz2n2r6M/o+urrHT9Z747ozZO0OZ1znsn13nyRrS+L5ppL64+v1v39I5tj8cmL8VEPIh6XuAb/+nrn+fFn7wS9e7jI+T/8fvrEDAAAAAAAQURzsAAAAAAAARBQHOwAAAAAAABHFwQ4AAAAAAEBEDZvmyfM2QeOjWTNaXJbI+WZeZmaVZK3PYgVdK3o90dgtmlJ9/TIP4mmXXX7aJ2Tt7AtvdxmNu0a2ZD4r896yX0/ZfLesrZTjm/Q5YfjLhbTTL2f9damjUCdrA/7+skWq7xkt885ihw8TIU1SReNtbJniMX/9WbfCN0k2MwumJF22Yh1rKWquu+mBjX6M3WdMd1ksqdfCunr/kTJd75u9m5mVxUP85g9/G9yTw/AW9y9yYeU6WVqsHuey/kY9UAL/HXeMAAAAAAAAEcXBDgAAAAAAQERxsAMAAAAAABBRHOwAAAAAAABEFAc7AAAAAAAAERW0trbS6h4AAAAAACCC+MYOAAAAAABARHGwAwAAAAAAEFEc7AAAAAAAAEQUBzsAAAAAAAARxcEOAAAAAABARHGwAwAAAAAAEFEc7AAAAAAAAEQUBzsAAAAAAAARxcEOAAAAAABARHGwAwAAAAAAEFEc7AAAAAAAAEQUBzsAAAAAAAARxcEOAAAAAABARHGwAwAAAAAAEFEc7AAAAAAAAERU4v1+AgCA/38tLS0bXNva2jqEzwTAloA9BwAw3HGt+u/4xg4AAAAAAEBEcbADAAAAAAAQURzsAAAAAAAARBQHOwAAAAAAABHFwQ4AAAAAAEBEMRULAN4nYd39f/LZyS77zq3Lh/rpABjhZs2aKfMbz9nWZSdf9d4QPxsAALyZM2e8308hkvjGDgAAAAAAQERxsAMAAAAAABBRHOwAAAAAAABEFAc7AAAAAAAAEUXzZMDMWqb7JrZBSG1FnYdWKqHV/nH1I1dEbWtra8jjImr23HOmyy7/2q6yNljr10ImEd/UTwnACLb3nru77Laf7KOLV/S5qDrB3/4AAENr1ozpLiuVw6r9Z6h42Ae2LRBXbQAAAAAAgIjiYAcAAAAAACCiONgBAAAAAACIKA52AAAAAAAAIoqDHQAAAAAAgIhiKha2KC0z/fQrM5MjsJJxfe6ZL6hW7SFnpIGalqUnaMXEc2iZ7jvFm5m1Llyofx7edzNmz5T5eZ8Y57KmtqSs7a1rd1kxXtqo5wVgZJq51yyZ//zYyS4btVaPD+lq6HVZMRY6lgQAgEFpmT5T/4dgwyddqatSJeBa9b/4xg4AAAAAAEBEcbADAAAAAAAQURzsAAAAAAAARBQHOwAAAAAAABEVtLa26k6uETR9pm80m6rof15O9lkKO+fyxamQttPlsv8P8xbMC3lcDKWWFtF4OK7XQ12s1mXlTF7Wlkq+o1csppvgxkpioSULsjbf52vzxZCGuaKpWOvCVl2LIbP7vn6NXXjMNFk7qTHjsppUWtb2J/06vfA3umF2bsCvkeeemy9rMTzMmrmXD0tZWat3gJBrVdzvIZWSrq2u9bXPz6Ep+3C334f2cdkVX5wia8eNqnZZfbJG1vZW+ZV20o9ekLUFcQP19DNzZS2Gh+mz/OCIoBzSndT8GqnE+2Wl6lkahGxP5WKVyxYu1GsMQLTNnOmb+lcqusmx+qieqtK1+XzcZYEcVKMfd+GCBbJ2pOAbOwAAAAAAABHFwQ4AAAAAAEBEcbADAAAAAAAQURzsAAAAAAAARBQHOwAAAAAAABEVyalYLWL6lZnZnz421mXJpJ40snaJn0xUGuMnSJiZJUVj7jE1IZONxJSBzz/ZLWtbXxrZnbk3l5YWP+3BzPSxZVJPrxpb66c1dJSKsraQ99NDkik9aaRQ8ZMkamJ6pFrC/HPr6dHrt1zM+TBkwAXTsjZey2y9xn74+T1d1t6uO/nPapnssuTAIv0Dq/x6fOIVvY+MT6dcdskDb8na+XOYXLM57b/7DJl/7CMfcFl93E96MDNb393rsszokD2k7PehZFZf4os24LKHn9V7xeMvPC9zDJ2WvWfL/LFfHe+yrRsmyNply/yeUVfQUzqXJ/w6mTjR729mZqmsvy7t87WbZO3cZ16WOYZGy3R9rWqo8VMZB9TUTjPLJ8Usvm59P2Rpf+ORFvcyZmYW9zdl2byePto6l/tjIAr2muWnX5mZfX6PiS4rJfUk2OWr1rusbX2P/oFiKuPuM/U02ljg97I/vvCurH1hhOw5fGMHAAAAAAAgojjYAQAAAAAAiCgOdgAAAAAAACKKgx0AAAAAAICIGvbNk1tm+EZwF8/QzZd2GeWzSq9u4taf8M2PyyHHXFWlWpdVp3UjubJouFso6+Zwxzzl89ZWGt0OVlizQNVLuCrtGwiamaVFh+xMRq+zbMG/xl19fbK2sc6vnY4uXdtc55t3d/T7BqdmZuWsbnqosKYGR62nzx+yraxtCHzD276Kfr/bWr/B1DXp7bcu41/fpStCGl2ab56cqdK1f/j3EpexPjYNtW7OPO5EWdtm/vXZut6/jmZmXTnfqLYzpCHyqDF+f+vvEI3WzaxBzApY1anXzd1/vddlC+e/JGsxeGrtPPDbM2RtfbzeZ+N9s3Uzs9WtnS5LpkVjXDPrXvm6y7babh9Zu3S1b8qcFk10zcwO/cY1LmPP2TTUuknH9T5Slfb3IjfeeoWszb/n39vHnetfRzOzIOZf91RIg9Q/n+v3wxMvv0HW9pX9HscgiOEh7J67Nl3nsozpBrhZMXCkJ+TeuCbt97znXvz3f3uKGCLqtT/n4N1kba+4T6nNNMja/r4Olw1k9b10x9o2l02Zuo2stYK//wni+lzglhdfc9kzz0avoTLf2AEAAAAAAIgoDnYAAAAAAAAiioMdAAAAAACAiOJgBwAAAAAAIKI42AEAAAAAAIioxPv9BP7XTDH9yszsyGk+C4q66/873X7aQ0enniqUqvdd+/tX6Q7cE6f6Dtor3tMTICzjp22Nq9GTRs7c3XeQ32vmbFn7wvy5+ufBYhX9WpTNd2SPJ/WSz9T41zjb519LM7NKytfWj/Jd+83MesVEmrGNY2VtzvxEgKa6kA7yCV+bz+rni8EZW+XPu7dr0FNnegp+HwnW+479ZmY2pt9FxQH9uPkJfu3W9+lO/l1Zv8ZGi4lHZmZTmvVUOGy8VOBfyzetU9ZOKkx22RvrV8jaeNlf75L1es9btsrvC7myn6plZpYt+0WS7wy5JRjWszOjb4J4v47L670hNn6Kyxa3vihrJ0/yD9y+VE/0bGrxj9u+bK2srR3jr0vFvl5ZO2VUyGaEjRaI92U6o/9ee88N33VZ9/PPydqeen/ffNvFn5e1p11ys8tuv/JsWdvd6e9RbrvsW7L20xf8VObYvFpa/Gez847aS9be86yfrHfKUTNl7R8f8HvLzd/fV9b+9Nd+Sts+e+rPSs+9yGeloTRB7C8dffpzdk2myWWdXetkbaHiPyc3J/S1ozJxossGivrze7zin28lryeFjkkMmyORjcI3dgAAAAAAACKKgx0AAAAAAICI4mAHAAAAAAAgojjYAQAAAAAAiKjh0ymorM+Ymkq+2ecOE3Wj2seXr3fZh7fSzZcWdPmfN6lJN1RauqbDZbMn1sjad9v98x0T8lvuaPNNMYvWo4sRqhzSx7qmxje27evRv9/+7rjLAvPNuM3Mpkzwj/veat2gNFXlX/z+Lr+ezMx6Sr75V6D7bltVxjfSrZTocLopJKr8WnhzpX7NGkqNLqvK+MzMLB74xx0wvef0LvJNJlPVes/JF/1jlLt0g9RU3u+R2DTyYr+YXNRNBdOZd102IeQamK/4PauxulnWFgL/uifqddPtcrd/brFt9XNIJkI2ImwSyYR/jd5evVzWjhXXiXjI2inn/TVh4jg/tMHMbPGyNS6rTfvml2ZmxYJ4Dut8c3gzs9SAvo5i4wUxf/PTXDtG1qY6/Hpakvb3MmZmu4zz+0vJX77MzGzPj37UZblu3cg0Ob7WZY/+8039wCH3dRga++69h8wv+tyHXXbf88tk7Wl77+6yR+a8I2vP+dgO/mf96mVZe+apU1z2uxt1E959Z81y2bPz5slaDF4i8Nea6pDviKxfvkT8//pzSk2tGOwRsufUJv1n51JIA2d1KzymWm8uicLI2HT4xg4AAAAAAEBEcbADAAAAAAAQURzsAAAAAAAARBQHOwAAAAAAABHFwQ4AAAAAAEBEDZupWPNbF8i8ZWaLy0657oey9uHjv+myP7yupxVV11T5sKx/HT/67udcdv6lt8jaimj43fWG7tadL/spEgtaW2Ut/hvdZX3rbSa6rCtsWoPonD45pEH6ThP8pJBO0x36G6rEOqvSE2Y+FhOTUVbo9du4tZ98MedV/R5SqlK+q7yZWS6vfz9bklXdfiJVprZR1ibFNJpVFf//m5mNEeu0JCa3mZkV8v71SYqlZGbWOMY/xkBeT6J5u09P4cLGS8T9CIcX/r1Q1rb19LqsVBRTIcyslPCvWS6v94XpM7Z12csv6+lKag+Ih+ylsYrfm1pa/LXZzKyVa9igLRV7zsrVerLd+Zfd4LKqkq7tqfj9qT/kNb74qye47MdXXStrJ2T8Wi326MddZHo/xCZQ9r/zCz7nJxOZmU0r+wtIw2Q9Ma+5ze9Pi1KrZe2XZ/j7oTHBClk7fsUkl33if6bL2hdvfkHmGBo9gb43ePip1112xol67180x993HLC3XmPfv/4pl13wjf1l7W9u8lO4vvLZD8ra3131tMyxaSzr99eafLOe2JpJ+g9R1XX6s0el13/26C7oa0qVGBecqNc3yDVivF46qe+13uhdLPOo4Rs7AAAAAAAAEcXBDgAAAAAAQERxsAMAAAAAABBRHOwAAAAAAABE1LBpnhymShw9fezQ83Vt3DdJOvnhx3Wt+QZQ1x7ycVl79nd/78OKboD7lYeec1k81y1rf3XEgTLHIOn+WrZs+SqXTZrom/eZmdW0+/XwPztOkLUDFdGYdkA3r6xtqHdZ7/KlsnbvXaa6rGW67uD8UtY3zA0GcUxbyNPQMkxc7CPdnfqXW4n5hm/l9vdk7QrR8K127I6ydv26NpdN3lqvx3VL/XoqBr6Rr5mFvlew8RJx//q2iYaAZmbfv+SnLlvT2y5rg5hfjxd/90pZ2/a6bzL5ux+dox93lF/TfbrPv331gstcFgtCustj0OLiNb78nmdlba7gX7cfLNbN+8txv8+fOWmyrP3JdQ+4rLui95FL3vTNdRMDfhiEmdlXpunGmth4QVy8h9v0m7i2qtplP3vpDlm7S9LvZXUt02Rty0zfsH3pUr2X/fbfL7msMamb66YrtTLHECnqprZLRSPts6/wjY/NzBIpv24q/9I/7iuHfcRlP/jZP2VtRTy1r1z2tqzN5/RnM2wa6lrVXNFHCW1Z/7mobfk7sras7o/Hby9rYynRwFl/BLO+Vf7+uEc0nTcbOd90GSn/DgAAAAAAgC0OBzsAAAAAAAARxcEOAAAAAABARHGwAwAAAAAAEFEc7AAAAAAAAETUsJmK1dLSIvP5z/3GZY0Z3UV/55mnu6wrZJpNIu4fo3G8nvLxzJ23uWz2J74kazt7e1wWL1XJWgytxvqJLutfq6eHHLr/Pi4LGptkbe2KlS7bdyf/s8zMDtl3issee1mvh8aJfupRdft6WRtk/bQSNawrTCKu3/r50pYzLStszznrQD+pKl7Uk0ZiYmjMHa/oqQzHf8hPo6kr9MnazDj/wHVV+jX700I/teKUA/S0LbOOkBwbKmzdfP3I2S6Lx/VUoXLcv1nXvaun5e2250f9z/rcx2RttflpagMlvW7mz/Vr4ZO77yZrzfy/Y8HCuSG1CBO2dm7/2YkuW7lWT5n62ZX3uqw9m5G1NQX/ujVl9P70p4sOc9lR39VTk9qyXS4b1+enLv2Hvl/DhgtbN0/f9H2fPfZ3WVuT8deavzzyuqz9/dmnuWzNwGJZmy+JCVq1ehLa7/7+osv+cf5xsvYp8xP+sGnMnDHDZT847VBZe+m9fj19545HZG263t/bfnf3D8vaJ+e96bKGkAF6F9xxl8uS5TpZe94nD9IPgkEJ23PO/YS/t2zP6c9V8YT/TP3YG/r6c/J+/v64UNHXwFpxdNGT0Ovhjtf9uKyv7L+1rLXX9T1Y1PCNHQAAAAAAgIjiYAcAAAAAACCiONgBAAAAAACIKA52AAAAAAAAImrYNE8OM2N73+Ro5StrZG1B9D6+6zP7ydpKPOWyTFr/Ol5f/7bL4iXd1OnWYw5wWTD8f83RpnteW8v4tMteW6Jr2/I5l/32pntk7ahRDS475/hDZG1tjW+qvN+uo2Tthdf9aYN+lplZ7ST/GK2trbJWiSdDznQH0YA56oKQdTNpjN8bunxPdDMzW97um4gevP92sjZX8Wusr903PjYzq62uuGxxm24mefyndnBZSvd6tiDszYINVpXS+3m6wzcjfrcyVtbu0OfXwocPnCVriyt9Q7/xdf7/NzOrrdvGZb3pWll78Id28T8ru0rWxgIa4A6l/opfUxMa9etWVdfosu/vohtHVonBDTO2Gi9raxP+mtAyQXcz/fm0ZpeVTQ8FyNuW05B/c1u1wmdnHH2WrL3l6ZtddvnPjpW1K9tWu+zAHXeXtb0Dvnba5NGy9tEbT3ZZT0iT8CftXZlj46Wq/Hv9Ex/wzWvNzK693+/9n/+ovsdp73zLZdeM0deOX59+tMtOue73snbGB/xgkYldugkvhlZ/0TcjzgT+s5aZWTnw97cHhtwfd5SyLqsJQoZPiA8qqZK+lz7iwKku68n5++v/PK7Oo4Zv7AAAAAAAAEQUBzsAAAAAAAARxcEOAAAAAABARHGwAwAAAAAAEFEc7AAAAAAAAERU0NraOizaQLe0tGxw7fNP/Fnmtd1rXZbr6JO1PRnfVbtpjJ5A1JP1k41Kjctl7eq3/ASIseP0xIqPfuIMlw1mshH+I2zt1IuhImufuELWrlvixwiVQqbJNFT789DukLFJ2VTGZT0J/ZbbuuLz3kDX7nDIt1w2b948WavEU3pSQSk/MieYqDVSeXd7WRtM9VPwvvk/fg8wM+sWZ+N9fXotxErV/mdV667/9X1+f0o06ykQ60t+0lW6oB/3d0/4qUfzWxfIWmh77K6nVyXi/nX4/hF6kozF/BSJ2rie9ri42k9pq1/h15KZWbHBv38bA/2eThX9pJG2wF9Dzcwuvmuhy16eu+H7Df5jMPc5D/38czIXb3ebbHoKUTbhJ4WUavREtaWL8i6bMlnvZT0djS7LTfbr1Mzs8FP/4DLucwZnesi6qYjrz33fPUnWlrbyk9fiYZOFUn499VT8BEgzs62X+lGjSwt6mtrobf2e07jCT8MxM/vQL2502bzW+bIWg7P7bL+eimpjMbPbLz7UZWde/ZSsrYn7NXbbxZ8JeRZ+7cWb18nK489/zNeW9D3sinfWu+xF9pv/St4fL9L3x6md3nHZqftvK2sz5ido5Qv+OmNmls/51zNTq+9jE1l/T1Ms6M9K8bSf1hgEet/75T/9XrYwgmuHb+wAAAAAAABEFAc7AAAAAAAAEcXBDgAAAAAAQERxsAMAAAAAABBRvtPV+ySsmZ5q6nTPNT+VtfufdaLL6mrqZW2yyzdV7qzXTSY/esCxPgxpavvCQ745byGrGzXpVmUYrMGsnbZ+3aivptm/Guvyurarx5+H9lf5JmFmZnsf6Zsch73wb/39+y6L53WDuGJR/7wNlSjoNelb9o4Mao3EpuqGlIF4fVaENINMZ3xz0ZqMfs0yMb/d9rTr3/h1c30j3UrInnP+B7dz2fpUh6wti4aFGJyXXtZNg1VT5Q/sOk7WLlrhX8ugW6+xXav9PhRM0mvswrtedlks0H+/+clZW7ks2aMfV70nMHiDuVYd/83bZe09V5/msvaib5JsZlYtGkcWu3VDyi/+8mYflvV+8dCPvuyy7Gq9dvRPw2CENfBU6yZreujDuFX+WtU0Vje8LmX8vXD/e/qVPOkvr7osHtN7ziXf+h+XrdpG38sUuVYNmZfn+vU0feZsWTuxZarLHv/jbrK2sM6/7omQzz8ry349VRf157W//mwHl/Ut0fc4B557ncwRTl2Xgmkb3uj/jaX9Mt9pW3+fEyvrPadObFvZnF47N81Z6bKKGD5jZnb6B/367U6O1E86/8E3dgAAAAAAACKKgx0AAAAAAICI4mAHAAAAAAAgojjYAQAAAAAAiCgOdgAAAAAAACJq2EzFGpSy7mj97KVXuuyYb54taxcXfUf21BI/KcvM7Mknfu+y3p7FsnZtn+/iPefWy2Wt7uGNoVTs1q9xe0+Dy3oTelrD+Cl+YsTW7dWytvvRH7msM2TaVqXsR89UelfJ2o2Vq4zsrvAbImzSyPTpfhpAEDKhI9npX8uOXt31vzxuwGWxhJ40csZHxrqsJ6nX4/oePxEnn9JjjNhzNq9Vef+am5ltMy7jstaBxbJ2Sn3OZW+I65eZ2SUH+6kiiUxa1nb2vuOy5pJ+vtj8ylX63Xr0+de7bNK2U2TtdWce6bJ02U9HMjP720/OcFmpWtemU34C1glfuUXWsudsXpf8Sb8Ol33tQJe1Ven7ltJa/6p1j9J/B77qy/u5rFCqk7V17f7+q2F92N+XGcW3OcVDZqKO7vTv9VWZLlm7Q9Z/pKwU9MS+2Wf+yWUL7jpV1navHOOyUWNHydp00k8CxOANZoJjJeT+eOkSPy1rXLV+v+dG+3VWG9N7wLH7b+OyRElfaQolf9/87lq9fkcKvrEDAAAAAAAQURzsAAAAAAAARBQHOwAAAAAAABHFwQ4AAAAAAEBERbJ5cl9ZNyctpX2TyDtu+IOsbWzeymWpvP51lJO+WW6qWjdqWrHWN5GqVHSDuoDecJvdQEyvnXTGv271Sd0AMF7xeVdmnazt7vZNmZP1PjMz+/SFN7usr0s3nttmjF/rqqnZYIU1TNvSZZIhZ+DFGhc16be75Xq7XRakfBNdM7Os5V2W7NUNcwvVfk0n4rWyNgj0OsXQ6Gp/W+Y1Zd+keIdtfMNsM7O6zBSX7TPlVVlbGreTy9IJ3ay9vuzXXjHXKWt/fpKvnTF9uqxdsHChzDE42Zy+x6hU+31g2XuLZe0JP7nGZR0des+xat+kOx3SS3vdgG+CGwtpk6zbamKoJBK6WXq20zdWz/Tphvztzb6RaU2nru33pVaT99c6M7PEON/wNpfVeyQrZ/Mqh3Q5X1ISr0OX/qwUbDPBZasGlsnauXf+xGX5Lj3cJBAbUXfc71dmZvHA3zthaFWFNDmOlf3msK5Pv8a9YhBJKi02FzMrx/z9eDyr96dExu97dVU+MzOrmB4WEDV8YwcAAAAAACCiONgBAAAAAACIKA52AAAAAAAAIoqDHQAAAAAAgIjiYAcAAAAAACCihv1ULNVru37cGFkbW+e7oQftXbK2t+S79v/ggXn6SfSVXFS2Kln6s8/MdlkyqZ9DIP912FSmNPvpH001uht6d8J3ak92r5e18173Xf4//ZXfylo/M8lsSU53Xn/rLf+4oxv0ZK5y+3sue69Xn9MmRLP4ra84QtaOEpO1mJRlNpDXEzomp/zvfI0evGZB1k8rufHZtbpY/Di/C/3HOYc2u6zYrycEYOPNnj1T5lcetbMPY3rUyKJ+P7Vs6zV6ktmoaf5atedla2RtYCrX+8Ir5+/rsuI6vXgzOTUeievXUIon9ESQMc3+qtLeriefrVzrX6Nvfkjfuwx0+R0mntDr4Xfz/P5SqdM7VFennyqKoVPboO+Pb3nwKZd95fMflLWj2/tddtAvb5O1scDvL+WQvWHOz0912Xsh0x5ND/fCEKmI19HMbG3FT2adWaVHf8571V+r/nrpLbK2u+L3heqE/kh69Nmfdtn4HbeTtYUC31fY3PpDBthV8v46EUvq17g+7a9rA+v0A+cLfu0kQq6Xo8b6611QHNlrZGT/6wAAAAAAAEYwDnYAAAAAAAAiioMdAAAAAACAiOJgBwAAAAAAIKKGffNk5cTTTpf5Xb+9wmU93bqJaKLkm7tdfIJvJmlmNjDgG8nlQvpGluO+EdyarG5mZ5WlOscmUQ58M8dXV7fL2p22G++yvgF97rm6b7HL7r/yO7K2N+GbyfX26oZgH917P5cdetCusvbvf3vUZcvW6Qaag0GjZC3e7/cAM7N1Nb7hWzLvmw2amfWJjsif2Vc3806UfOfIZEg3yXzJP27BQhpSYsj0J/waqevW66auXjRVzupGtX2JrV32xFf1HlIe8BemxGjd1Laz6J9DU6Nu7N7WpX6ebgyNTWPHbfzrbmb2znuLXFYMaVabSPhr2K+e1/vTQNLnyT69jyRF49O+Lv5OOByc/9k9ZV7q8s1F18X1axbv8vvWP751gqwNir55v8XU2AizPjE4onMgJ2sty3ranBbO18Njps+Y4bJXf/EDWds4cYnLvnjBybI2K7aW3oweIFAbLHDZXh+9Vda2LvS1GFrTmvS9y+pOf13KxPTnlGLga5Pj9XWtKuebdwdJ3Ty5WPD3LrkR3s+fnRMAAAAAACCiONgBAAAAAACIKA52AAAAAAAAIoqDHQAAAAAAgIjiYAcAAAAAACCiIjkVq6enS+ZHnnO+y/580Y9lbbbWd9vOdayRtfmKb99eW87I2rbAd/i/8u6XZe1CJhANqUTCv27TtmuStWsW+dd+9NiJsnafWp+3Pv+SrA2Sfp2MS+ppMnNuPcdlHznhAln78ON6TWFoNNforXJVj58eUp2uk7W1JibJFPUUokTcr5GSmERjZhYfqHLZH554W9ay5wydxno/taw30BOIesXEvrG1r8nannc7XNY8Wq+x7j7/86qX6Qlaq+LrXfZyoKcgjc35qRflClOxhtJvzvFTEs3MzrjW/97feNtPyjIzK5V8bSWu12RMbC9BUk87KeX9mipX9PQ1Ji1uXiXzkzjNzBLVfvJnfZ++522buoPL+vP6/Z6vEdPUCiv1cyj7aTZf/80/ZC3rZnioVPx7fc0EvW72P/5Glz1z+xdkbVWXv142j9Kf7WYc/XeXMf1q+GhI6YlUhRr/ObujTz9GvOgnWCdS+poSxH2eC/QE7IEev87++epqWTtS9hy+sQMAAAAAABBRHOwAAAAAAABEFAc7AAAAAAAAEcXBDgAAAAAAQEQN++bJql1brEqfR1XlfNO44753rqydueepPtT9nyyI+V9TZUA3Mi2LZ0zD0vfHu2sGXFbbq9fOkox/8bNL18raUy660mVTx+omk7GsWMEx/RxeWXGbyx78F02Sh4OqtG5AGxPrKZdtl7V/nOub1VYFeguO+Z5zVhEN48zMBgrsOZvT3LnzZT579kyXjZ+sm7VfMdM3P16X0A35uxsaXHbGzK1kbeod37y/emexmMzsiid8g9NUVVbWdmT12sPQydfqG5JANGHfZZftZO3C1rdcVqnoPScphkSUzDeHNzPLi8bZepVhc2vr1HlNve9a2lA3Vtae/d2rXVbo1o3+84FfC4m0b+hvZtbZ4/enkdKwdKQKKv6dnQr5TsDT15zpsg8e++uNfg6skeGtrGcuWEw0NB7TqItvneMbGifUjbCZiSUZqlDsdNlIX098YwcAAAAAACCiONgBAAAAAACIKA52AAAAAAAAIoqDHQAAAAAAgIjiYAcAAAAAACCihv1ULKWc1ROIOnJ+ikRdg++0bWYmhjrYghcXbNTzwvDXmPOTIczMtmlOu2xdn5rJZrZ0jZ8UEpR0baySd1n/gO8Ub2b24JNzZY73X1/IxKKmtH99syEjAgIxN+aFBfM27olh2AjERMRvHjND1n73Rv+614TMFXplvb8uJfv0tKJp4/xjLHm+V9amU9Uuq3T6qTVmZhf8ZYnLRvpkifdbqegnp5mZ/ezsg1124W8flLVqRZVL+vqTM50rcfHA8xeyHoaDrZqaZb6yy2fZot5H1MJ5ct7CjXhWiCzx5/81cT3tcauYvwb+65YzZO3HTvyty7imRFMlqe9d6tP+HiNX0vcY6lsmL89nz/l/wTd2AAAAAAAAIoqDHQAAAAAAgIjiYAcAAAAAACCiONgBAAAAAACIqEg2T7agQ8bZft/AKZcthT3IJnxCiIpe0ezWzKym5Btvx5t0Q+RE4Jvj3vW3Z2RtS0uLy2gQN7ypxurZdVlZW5vyTbc7Al0bD9hzRrJ8oezDmN5vzj3xQy7L1PbI2rMvedJl37/zbVnbWxLPYRNgz9r8Up1rZF5V9o1Lf3rGEbL2k2f92mW8liNbKanvW5rM3+Pk+vX+JC+C2DKJtbBLr96bBioNLpsc9/dIGGH69X1HOe6/O1Kp6No4n8k3Gb6xAwAAAAAAEFEc7AAAAAAAAEQUBzsAAAAAAAARxcEOAAAAAABARHGwAwAAAAAAEFFBa2sr7e8BAAAAAAAiiG/sAAAAAAAARBQHOwAAAAAAABHFwQ4AAAAAAEBEcbADAAAAAAAQURzsAAAAAAAARBQHOwAAAAAAABHFwQ4AAAAAAEBEcbADAAAAAAAQURzsAAAAAAAARBQHOwAAAAAAABHFwQ4AAAAAAEBEcbADAAAAAAAQURzsAAAAAAAARBQHOwAAAAAAABHFwQ4AAAAAAEBEcbADAAAAAAAQURzsAAAAAAAARBQHOwAAAAAAABHFwQ4AAAAAAEBEcbADAAAAAAAQURzsAAAAAAAARBQHOwAAAAAAABHFwQ4AAAAAAEBEcbADAAAAAAAQURzsAAAAAAAARFTi/X4CQNTUHHSsy/oeuVPW1p7yKZf1/vGBTf6cAAAAAABbJr6xAwAAAAAAEFEc7AAAAAAAAEQUBzsAAAAAAAARxcEOAAAAAABARHGwAwAAAAAAEFFMxcKIVXPScS7ru/kOWVt37Gdd1nPnrbI2yAxs8HOoX1VxWe8G/99mU449ReaL7/zjIB4FAABsqVpaZom0FFLt71sGI+wvxmWRtba2btTPAgD8H76xAwAAAAAAEFEc7AAAAAAAAEQUBzsAAAAAAAARxcEOAAAAAABARI2o5skzZ89wWamg2rVpiWSg/0PR56VAP24Q+LOyBfMXbPBzwKZTE/MNAPtCalWj5PFHHyxri2X/uKsP2k/WtjfWuqzhoCNk7ajqape1re+QtUr6hKNknqxUuSxTzsratXf8dYN/Hsz2nDXbZdlicYP//yDQW3Ag2kxWKnrPScbiLnt5wbwNfg4YHj5z0qEyr9rZr5H+zqmyNlX/tsvi2R1k7cqXFrrsH3//x397ihimWmZM1/9BXKv2jKdl6R/mv7gpnxLeJy0tLRteHITc86o45FZa/XU4/K7bX6vCni9NlYeHPfbZ3WX5/oKsVS23E3HdiLsY94ssyG/4/dCChfNlLYaPWbv7++NSQd8fV8QyqU7p/akkll9BfN4zM0uIdfbyyyP7Mznf2AEAAAAAAIgoDnYAAAAAAAAiioMdAAAAAACAiOJgBwAAAAAAIKI42AEAAAAAAIiooLW1VbeSHsamz9Rd9N/44iSXFfr6ZW1NT9Jlvc31snZSn59sNFC1Wtbm8nmXbXd3p6xdMMI7c28uY4/4jMzX3vtnl43/9JGytj+X87V1TbJ2edFPqqpMCenIvtZ3gK8faJS1GfOTqpb06OlV4yb4Tu/Lb3xE1mLj7S8mQ5iZXfnr37tsQv8yWTt95m4ue71zrawdt8tYl7XfqaeE9I3xe9mJX/mRrH3shTkyx+Z1/leOcdnED46Stf9e4K9rQfHfsnbZymkuO/wIPaMmv3hblz31yEOy9vF/PilzDJ2waUHNzY0uS2f8HmBmNmZNt8uSZX+tM1PzisxuWMBkouFsulgjldC/1274hFjJD+38j6JfOUG+JEsH82FDrcf5TMoaMtP39FOFzcyO/uThLusv9Mraco9/hTsr+h62tsqv08aSXmT5Kj8G6eFH9TVw7stM99vc9ttzlsxfP9pP7yxal6ytL6dc1pXxE33NzOoL/noXL+sJwuV6PwVym5tWyton57ws86jhGzsAAAAAAAARxcEOAAAAAABARHGwAwAAAAAAEFEc7AAAAAAAAETUsG+e3LK3b+j1+F7byNp9dmxz2cBq3zjJzKyUTvgw6JS1jQ2+MVShe4WsrRZNvirFdlkbv9U3FVu4kOZwg9V4wrEyT6zwzbTannxM1tYc6RvEVTfU6R/Y6R+3kPaNv8zM2jp8C8CGSRlZm8j5hmCx/DpZuypodNk2Wd3QrnaMfw8suuF2WQuzGdP9nrP03TdlbSbT7LLePt040hK+kWkipfen6vETXda9VK+FgaJvhtrk+72bmdm48b5hbuvC+boYG+1Pd/vm2mZm4w70r++O006QtQ2Jp1127z266XZH2/0u22nGBbJ29gw/AOCFf9fI2l99+XSXPf6kf174f6MGQpx9mm4kevVv/UCIhga9j/T0+XuMPRL6+lPMDrjsNd270sr+NsdepNHykGnZSze2tQHfENmPVQgXdvOfMH8/05j2g0HMzNpLfj2VC34t/Ydap7q5rpm4Rzc/jMLMrJWmyoOiGrOfetSnZe3KrL+faajSNxhdOX+PUsirNthmyWq/uQQ5vRYCcUtVTurH/fvf/+Gy1gUjoynucNAyy6+deYdNlrU7TvYXivwqff0ppXp8FugdqjnpB9tkiyGDkqr8YxQqeh+pu3m9y156eaGsHc74xg4AAAAAAEBEcbADAAAAAAAQURzsAAAAAAAARBQHOwAAAAAAABHFwQ4AAAAAAEBEqbbz74uZ032nbTOz88QwgO6y7s7/z3f8hIBSt58YY2bWU/Ld16v79a+jd+f5LqtaP13Wrl8712Uzd9ITk/504HhfO0tPP5g/b4HMR6pJJ/gpVWZmK267z2UTVvXJ2nXbNLis8fDTZG2uxndOf+ygrWXt+pVjXDZj+wmydk2Xf9zs+C5Zu9fv33BZY9GvaTOz0Q2+q/uaO+7Rz0GmCFMR590HXaE7+efLi11WKOvXLLfaT1nrKK+UtfWj/T6SX+YncJmZ9Y/162n78XpyYMiQAQyRv/xTT184cKcDXPb6Cj2xr2O5fy3rq/yENTOzf7R+0mVNE5fJ2isfmOqyaVND1uM4PS0Lg6Om0ZiZHGX01KN6yse+O/mJILlsp6xNjfe1xx23h6zdbutdXLZDlb5W3fPUcped9HH9b7v5USYWbTQx/SpMRUy0+g9/3zx71ymyct6ri1229976fujfC/wa+cjMeln74ot+3wq5fbPqGj8KqT+kFoMTxP0aaYvrSWbVcT+dr6/kJyqamVnMT6oaV6XntHWV/P5WP1HXFpf5tdtX0J/XgmAwc+EQZkbIZ/Izd/bZqqy+sVzztn8P93b5qcJmZv1F/7rVFfVYxsIov4+sXqVrU0lfO2srP4HYzOznHxrlspmzQz6Tzx2+n8n5xg4AAAAAAEBEcbADAAAAAAAQURzsAAAAAAAARBQHOwAAAAAAABE1bJonV0J6M9bEG12297a6g9rSVb6528TtdePIRX3jXLZdXjdanrPaNxU7uMk3DzQzez7um8ZtVSzI2nXr/a+/UqK7qZlukmxmNv6k4122sto3bDMzq8355mypWt8Izszs2SM+4bKtp+hmgWNqX3FZe0y/xls1+4a3bZUeWbv+G/u47K2l+uz1Qzc977L04Z+WtQNF3/i3FOjfWfbBm2W+JalUfMO3X37077J2n218I9K+0bq5e/uaNpdNjfvMzOzddt/cbZvt9dpdttg3r3x1yXOy9ijz/zYMnRnbrJX5M78/0GXFav1er8n692oioZsy7zraN3F/5I96vwkS/jr67/UzZe32ew+bW4WRSVz2l/ToZunpPt8kcrdd9DCHG77zOZf1tHXK2nd7/UCJcTvsJmsPm7SXy9oTuiHlzBb/3Oa3LpS12BT09WdSs7/JniuaJJuZ7VTvm24//Iy+lz75g76b6n0vvyVrt5vh10jX83rdxHO+YXQQ4/q1KQQV/7st5/Ue3xjz62ltXl+rtm30WX9Br8fqir+fKYUMC8mn/M/LVOnPSpWK/nkYnEpID+r6RKPL9ttaf57423P+/brHdvpxn+v2n1OmmW7ovTzwg0gOneSvX2Zmc97za2frtH6+7y7x74FyyJoczvjGDgAAAAAAQERxsAMAAAAAABBRHOwAAAAAAABEFAc7AAAAAAAAEcXBDgAAAAAAQEQNm1EXC+a0ynz67jNctvfJp8narer9VKtns/vK2mk1aZeVqnxmZrZzv++K3RHSVTvZ7zuyd8Z0V+2jTvmNyxYsZFrEf7P65ttdVn/YGbK2o2q9y3oS+ixz2ZoXXVY1oCc72DaTXFRapqffLKrqdln/BD1ta33rey4L9JI0i/upbvXr/XQkM7PmWt+Z/i2mX/0XftrC0Sf/XFamEv79PtClJ+Yl437SSKfpSXyVRMqHIdP1kqVelyXMT+f7T673rQ010O8nzZmZZar1xK4tXeNUvweZmR21y0Eu2zs+Xtaufnely1amxPowszUDfj19+mO1sja9zu8Lr4/Se0isek+ZY+jUxPXUl0zzGJddcOKnZO3qXj8JKZHRe8C29X4Cydxl+gJUyvsJJJ+c/QFZe6npiYLYeHGx7cYT+ra+r8dPwfvGUbvL2s51/lo1uk9PWrz7ZX/fcuBRH5K1C59e7bJ9PuinvJmZdc/z91Stffo+C4NTLvupiq3zF8ja9Ws6XFYp6slTxZhfe2HfHoiJ2lxeTz1LiSmuyXjItKIyk4U3hYUL9Gfylln+M/lh550ia2cf6O9ZFw3ocVvbBWJKtL7ltalpX1ss6/WwjRjvtTava4+/65cua12ofw/DGd/YAQAAAAAAiCgOdgAAAAAAACKKgx0AAAAAAICI4mAHAAAAAAAgooZN8+QwmcCfPSV6feM+M7NC0v9z3njzGVnb1eubJ02eto+sTU/wjcaquhpl7cK5T7ssKPn/38ysEuhGYRurNu4bjfWWhuZnDQejQhrqLY35Rq+7L1ssa2vn+qajXTW6Qal1+8ZxY2K6IeXpR+3lsl//5GFZ25NJuiyd1d3D3i765/bl7beRtc0D/veQ+uh+sjb/xJMy39K9+8rdMp+444ddduQuet1U+v0+cPdSfbY+/77bXLbXQSfJ2s/t7huc5nO6Qd2Nr+h8QxVDGjjD7AtfPMxl4/eaImtnL/bv9WzONyE1MysWfUPjV3K6OfZndh/tsvkv6KaY/1PnO6/2r9LXidW7TJU5wrW0tPgw5O0XiP+wpsc3LTUzq8v4ZrPbZHQz0+rS6y5bEegm3WMa/ZraqtY3Zjcze/PtdpeNbdSN4IMqmpkOlZLoZV9K6XuRuGjIf9fCNllbKfum74sX+ebLZmZnH+obJV9zs77vHj95gsveWtwja5f3rHLZsP/AEhFB4Pebx64+WdbuctilLqsJGQgTL/gG7D0V/ap1PPEjly2r3U3WvvDwdS7rbtd73nlX6vtrbBoZ1bS6W38mL6frXPba84/J2kA0vW7ZWX8mHxBnAM0JPcDjjRf/rZ6ZrI2JwSlRxDd2AAAAAAAAIoqDHQAAAAAAgIjiYAcAAAAAACCiONgBAAAAAACIKA52AAAAAAAAImrYNJlvaZkp80d+dbLLPrKT7n69vM1PbPnVjbrr/18vPdhlTVk9zSaT9p38i6N07UU/We2yx356qKyt/OFNmW84PcGkHPN5PGRSQsk3sR/W6j9/hssKcT8VyMxsr1XvuuyTM5tl7aOv+g77lz7sJxOZmRWn+Nf+x9scLmvvfKrVZU1JP9XEzOyKe//oskJSn72etd9nXHa6H7RjZmb9ubEuyz9xky7egsipNWbW8+bbLntjvZ/QYWYWVDIu2//D02VtZZ3fi+5e9o6sLea6XZau1m/WfWbu6bLMmE5Ze/Mrej/cUIlYyCKDbTttksteeOUtWXvkKL9Hz39FjLgxs3F5X1u7rZ6Y1Lbe1yYLfsKNmdkDz6902fiingqRmslUrE0iZOhGOuX/w5477ChrE33+tX/gCT/9ysxsXNZPVDv8RD0Rsa/P7y91dbWydsHzr7gsmdIT80p6eA1CtLTsvsG16bi/PyiE/MIrcX/f/JMn/6Vr035q0skTdpa1f3rsBZeVQ8a//fGp+13Wk9P3sUfvtIfLwmY6zhKfH+a1zg+p3nKE3eOsXnC1y1a9slzWlsXHxO6ivlbtONnfGy9u069ajZhMNCah73dP+4Ffpytv+aysPS90lWAwwtbOvD983WVjR+vpiZ3dfhLsBTf4+2szszt/+GmXTarVF8y+YqPLYkl9LnDOnxe57NFvfUrWmr0WkkcL39gBAAAAAACIKA52AAAAAAAAIoqDHQAAAAAAgIjiYAcAAAAAACCihk3z5CDQDdQqXb4hX/vaBlnbk13hsr/9UjfY6svmXLbS2mVtY3+9y8rrdEPKf/32TJfFBnpkrZU3rslXUjTDMzMbyPuGU6mKbkJVMt3wcLjq/tNvXZY4QjcuLq7x/+Yj99lL1r746lMuO3D77WTtmp43XBav0mek157xOZedcOn1snbSrhNdNqrcKWuVcYmszBc99NcNfowtSsjbb6CyxmVji7pB9/1/+InLPnH6V/UDZ/17bc6Td8vSpI132b0P/0nWHnz4uS7Ll/Q/Lm++md1gxBI0JgxTLRppz5rgG++bmbUO+Cb71y7V15TffNzvC7Pq/PowM0tXfOPUutG69vaXl7jsq3tvJWvf7FsrcwxO2LunIt6W6bJvLmpmds33j3bZrNN8430zszmXfsll69frdZZM+8anPaYbtn/vft8w9/4LT5O1VnlU5wix4d2msyW/Ro79kL5v+evz/v54nwl6qMbKDt/UvyJ+lpnZrV//oss++8sbZG2+xjdZ3alJPwclCHkDFSr68wO05a/4YRATK6NlbeH5K1xWtffZsvatFf51WPfE92Xt0k4/IGJqjb8mmZmtuucil73Xr9dNOaxDPTaJRK//7Lyqv0bWJuv9Pe8Tf/LXJDOzYtZfBNfEdJPuVFl83ir79WRm9uRNZ7ks1q6vayNl5fCNHQAAAAAAgIjiYAcAAAAAACCiONgBAAAAAACIKA52AAAAAAAAIoqDHQAAAAAAgIgaNlOxKnrAkx3yg5tc9tIVX5C1pTF+WtbSNt0puybmO6rXJSfr55b1VhWimQAAXqRJREFUUwoGanUX8P7li11WXUjqx63oKQMbqlDy3cnNTI7eyG3cMJxho/lwPxEkbBFP3Mb/ly9e/bCsveaiY1229y57y9pKh18Pd/7s87K2N7nOZVf96kBZ+5npn3BZrF9PLasSWSYxRtY2f+5El7XfdIus3aKEtMDfavqHXPbis8/K2n12n+6yZ+YvlLXjza+FQr+etlVT5yfUpLPbyNp/zrvdZduURunnsP2OMt9QhZA9S63HLc2cF+a6bN9P7Sprp670E+zuPERPs3lV7N2F9pWyNtPjN//O9XpizLf33tpl78T0fvPGa4tljsEJm7qx267+fmLOMj29anTDti6784/nytog0eGyxvJUWduX7nNZf69+Zz913Q9cVtukpzJi87rzGT/Ryszstxcd4rI9Ru0ia+Nlf398189PlrWFuL8fuu3Wg2Xtl/b9jMvSBT0FTK28sh88+B96eA5C7H2Sn+b51p++IWvbF9e57J3f/UDWFmr9C9G32t/LmJn11vj78+43/H5lZpZP+Npt4n6yF4berK9d47JXbzhX1vaVxaez9k5ZW874N3d9rlbWxrL+Oyn5tL66Vvr8/hKLhUzhHiHT9fjGDgAAAAAAQERxsAMAAAAAABBRHOwAAAAAAABEFAc7AAAAAAAAETVsmie3Ptcq8xl7tLisrzIga+MF39hzm1G6ieioet+teUWsU9YedMzNLksndRPRR3/pm+hWF3TnYt+ebtNIp/2/LZsdGd3l2u/7i8uqD/PNgc3MXi/NcFlV+SVZG+zgm47e9pMjZW1Dm2/SXd2hm269XPSP2zRKN6S8/2unuyzeuFTWHnj2fS7r7dbNK9vvuUPmW7rWVr3ntLT4PSfVvUbWLo775pPJmK7tFn2Sqwt63Uzb1T8Hq4iu6Gb27Et/d1lP79Bs7fFCSPvXsKaWW5C7/vqEy358rW6qbnH/+qwu67VQn/Lv61K1vnos6fePW6rVzSuz43tdlhjQj9vV1iZzDI5+B5u99IpvXBzTMxesK9Pjsl0S+g2YGZjost7GLlnb0OuHMfSn9X1DY8Wvk3ifbrw9bG4yo0ItkkrIbzHm7y0TFf332l1n+Ob7T113hqwtlXwz73ROP+47gX8OlVizrL3/YnFP1q8bwc88/Xr/uCH9ufUOh8Hc41SX/X2tmVm3+dc306TvA+IN/ianfbEe8jL7hEtlriy64yKX5WPsLENpMGtnVfu7srZxa9/oP5VskrXNYhhQ7yj9Gu999FU+jOk1+eaNX3JZT0ZfXEfKN11Gyr8DAAAAAABgi8PBDgAAAAAAQERxsAMAAAAAABBRHOwAAAAAAABEFAc7AAAAAAAAETXs24oHgZ8glIrp6SGNWT+pqm+07vS+eu06l9VU6WlFT1x1msu2N92Be0nGTwNojy2XtXqu1sYbKROwNlT//bfIvO/Qw10WCxlLMmGxnwKRG63Xw+QBP5WtraIngnzjl3912b2/+JSs7enyU2oy/WNkbVqs1e58p6zFxmuozst8faefBpBK6slC+ZyfXFPM6wX51DNPuqxZTKIxM0vmOl1WyLwhazdWpr52SB53pFq4ZrHMD5kw02Up89OOzMxW9vk9YGyT3m+uuXOBy37wET+5zcwskRXrMaX/1lMUE90weCEz5SwQ/yFe0dXFPj+lZswof/0yM+sN/L3AqIx+D9ce9COXvfXQ12VtotdPFRno7pa1YZPAoLUu9NNo1CQaMzMr+2tCLKHXTVOfn0bTU6/vQkcv93tRrKpT1h529p9c9s6NetrWyt5GlyVG18vadMzPuuop6+twFX+i3mj5pP5cVRFrJJbQHx1zBX8P2zh6iqxddNvXXJZpHC9rm2OrXLYkUSdrsfmpa5KZWX7hqy5r2t5PxjMzy4pBVbH29bJ2/k1+f8mX9b63Pu5H6a1/zd8nmQ3dZ/LNje0QAAAAAAAgojjYAQAAAAAAiCgOdgAAAAAAACKKgx0AAAAAAICIGvbNk8u5nMv64rqp7dqcb300arX//83M+jo7XNY1QTfuyhR9s9wnfI8wMzNrX7rWZQOdvvHXf+hmqBurWjQ26y/q5lYj2YqH7nNZOaQJYUe7XyepgdWydmmzbz7ZWdQNq+++4iyXVTp149P+0b4xYP1An6yNiSaC7Q89Imux8Uq+/5qZmcVK/rXMNPr9wsxs/TrfkDIIaUqbbveNI9eF7Huf/PKFLouLppphQhtzDkJrq2/4CbOqkv7bSSLw+UBe167M+mtKcoleY1/68Fb+/y+1y9pVbf6akC3rW4JsfqS0FXx/DaaRcKmoG8Wms37T6HhPv8bddb62HNOPu+jh77gsl9XXn+4Bf/9Um9KbWZH2yUMn5Rvelooh+8iAv8dJZ/0QETOz+gnjXPZ2Qb++r972XZcN9OjrT+0ov/YySX0/lIj7vNpfFs3M7PnnuP5srCo9Z8YKff6+Ix7yyfFPt7/osr1aluniuO+WW4nr9bjLZF87afwk/bjY7EoVvef0lP2ek1+lB3tMmbqby5J6dozlcn4B1qR18+S+Pl8bq5ssa6eN8wMloohv7AAAAAAAAEQUBzsAAAAAAAARxcEOAAAAAABARHGwAwAAAAAAEFEc7AAAAAAAAETUsJ+KVRGNruuqqmVtbcKfU/WXl8vaQnOdyw4/6zL9HLJ+ClJFTCMwM/vINju77JBDdQfuZGxopmJtiROwNtZAk187YwZ01/31MT8dYufvfUnWxvOdLluV9NORzMzswhtctLhOr/VcVneAx9DIJJtlnqvzE4sK/Xq8xOSp/v2+yy5HydpUzL++awt6EtJfnl/vsrG1en/Kv73QZUGT3ofiZT8hoPZ3P5e1arIWk7LMikU9EejF1X76xwcn6Pf6B8b6/eboV+tl7eKBNpfVNNbI2hsnist/TN8S1LfpSUoYnLBdW62SoKKv4+f+5p8uu+xrB8rapri/d+n/4c9k7ap8l8vq6vx9kplZ47fPddlzC/X0zyDgWrWxBrOXzpoxU+Zvtb/jso83T5O177T5PWeb834qa3sL/hqYSOmxsdlLr3bZvHp9XSvk/D3Z8wvny1psvJ5e/T7NiqFl5WY9ofPM0/d32dhD/NQ0M7OY+F5BPGSrWPOXH7mso7xC1qYTI2Oy0XC13Wh/n5Ks0/cjheWdLitX9Oefvj5//dj51Jv0k8j6tRM2e/Hta05zWXzAPy8zs3hlZExw5Bs7AAAAAAAAEcXBDgAAAAAAQERxsAMAAAAAABBRHOwAAAAAAABE1LBvnqzOngoN42Rl0LHSZfF1jbI2UfHNRZ/9yVdkbf9A2WW3vvKurJ05xud3PLFY1pbKG96Qco/pvjlpboh6Eo7kpqdh/zbV/PW+b58uayelfNb91Wtl7bqmnMumJJtkbanWNxX7zJfvlrUj+TUajt4sdcp87ECjy2oyvmGpmVlXtt1lrz7/nKzNJ5b6rEM3LJz+4d1d9vmTDpW1119/jcw3FutRG9WgL7Evdq522ayBXWRtQ42//tyxnc/MzGKxKT7M6EbafW8scdmcst+vzMyWrfLNnvEf6toRJuwvaerVbAxpnH/PE0+67Jff+Iis7ej3jW3jX9X3OTsV/P1Ie06vs4G8X9c//uWtsnbBQvaGzWnegvkynzV9hsve/M0lsrZ5O9/QuPNX35a1hSrfcDTZpAcIZIqdLvvSqXfI2jk0St6sarfW7/XkIn9NSDb45tpmZsmS77S8/O+66XZaNMduqtHNa/MD/t6pvVvciJtZtqibcWPTKMX8/cS2U/SgmZXVfgBAuVO/Pp3imvLq9Z+Xtf09fu3kQnpm50v+vnlpRg8FKAb6PRA1fGMHAAAAAAAgojjYAQAAAAAAiCgOdgAAAAAAACKKgx0AAAAAAICI4mAHAAAAAAAgoiIwFUt0Se/XXbVr6utdFuv3k4bMzEoxP1KqL2RKVaXW/5pO3lFPvllhH3bZgdvoyUZP6YE4WtxHdx4zVpYOpH0n8qBTT9j43D3LB/EkRq6YOOLMml47B3z9Bpc99JPPytpE0j9GepSebnTwiY+4jGlDw0OudgeZVzoXuqyQGCVr4z1+kkRH+k1Zm+r1b/hMtV6PL/zzapfN2PdTspb1tHkFZT26sPNln68f2y1rL31ojcu+e/COsranxk+sCEImPfxjub/eXXfr32TtAWf6yWsYvIoe+mLidsS6sn7CjJlZfZ3fR7q6srJ25vFXuGzdvT+RtX1VfS7L1Opr1U6fvNBlLy3weyGGj0rgF9naBj9J1szsQ4f66Ymv3KOnqZXX+0U9dpRejxM/dovL5s1fIGuxeQUrdJ5O+qx/id6bYjF/3xJM0p89rNDvorU9IRMc+/0Uo+2O+o6s5R5naCUT/jXuienPzpO2m+yyNS+9IWv717S5rDqv711yYoJWXbe+uC7Ld7rsy1c9LGvv+8dLMo8avrEDAAAAAAAQURzsAAAAAAAARBQHOwAAAAAAABHFwQ4AAAAAAEBEDfvmyTHRVTCT0E0mC0nf0DjYWjcyPeIzl7ssWacbNcXjvntYPucbFJuZtff5x0iV9eN+76jRLttzZousFX3v7NU1+jlsO8Y3PHy1yzcqw/8pi66WmQm6kduDZx7ksk+c75sCmoU3y1Ro+jZ81fR3yLzT/Bpp7F0ra3c75EiXNdWJruhmFoilVynrc/g13b6ZPGtpeLj6O4/J/NinPuqyTL++HO86xV/DTrn2cVlbEs2ag7heY/PmzZe58s9rX97gWvwXupe2vE6UC/r6Xs74faAh3Sxrn7/rUpeNPeIb+nHVTUbI9WvBAvaXyBGLrLFGX1Pm/urrLtv58Ms2+ilwXRq+uks5mTfU9bqsPu4H1ZiZjT7oIp/Vh2x6YnMpl3Rte59v1sxaen+8tdJ/luxcr/eR+pTPJ++wm6z90Feud9kuE1OyNsj5z9RByGnGq6v8/fF9j42MJslh+MYOAAAAAABARHGwAwAAAAAAEFEc7AAAAAAAAEQUBzsAAAAAAAARxcEOAAAAAABARA37qVgV892vS2LylJlZLO87pwfj0rI2G/hJIU8/NXeQz27j7DnLT8C6+ouNsrYq56deFAp+WpeZ2fJVq13288e7ZC2d5f+X78a/orNRVu6a9rV/+fb/yNojL/FTcfidR09geh/JJ3dxWTG/Sj+IGPjwjydGdnd+aOWYv/Ruv5WfZmhm9kRv3mUnHDBD1t746HyXtQ5i+hUGb3Pv5zOm+9d+0ng9PaTzVX9P9NSNF8rafU/+mctaFy4c5LPDsCWmnr3Rp6epbdfg181zd5wta/c57tcu4x4nelJJ/Xf+UvcYl2VG6UmLyr/+vXk/V2Hzm9ik713eXuYnO9apka9mtnhln8uCov6sX5f2j9vXr6dI3vevLW+iJ9/YAQAAAAAAiCgOdgAAAAAAACKKgx0AAAAAAICI4mAHAAAAAAAgooZ/82TROylV8Y3dzMzasr55UnWbPruqGQZnWi/O8w3mWlp8Q+X/6Nyon0Uzu/9OrYaxo9bI2t72Opc1NGQ28TPCcBIfrZvDJXN+C433jNcPEmzKZ4QoS5hvPvnG4pysrY35i2Cx8P5fv/D+yGQaXNbR0SFrY9X1Ltuuyf///yG6u2NEa+l/R+aV8hSXqT0LI0d9XDef7RBzI4q9a/WDBLrZLUa2Ukk3RJ7Q4Jv6V7L6Pice+Bvk+/757417Ylso7g4BAAAAAAAiioMdAAAAAACAiOJgBwAAAAAAIKI42AEAAAAAAIgoDnYAAAAAAAAiKmhtbWUUAgAAAAAAQATxjR0AAAAAAICI4mAHAAAAAAAgojjYAQAAAAAAiCgOdgAAAAAAACKKgx0AAAAAAICI4mAHAAAAAAAgojjYAQAAAAAAiCgOdgAAAAAAACKKgx0AAAAAAICI4mAHAAAAAAAgojjYAQAAAAAAiCgOdgAAAAAAACKKgx0AAAAAAICI4mAHAAAAAAAgojjYAQAAAAAAiKjE+/0EoqClpWWDa1tbW4fwmQAAAAAAAPwfvrEDAAAAAAAQURzsAAAAAAAARBQHOwAAAAAAABHFwQ4AAAAAAEBEcbADAAAAAAAQUUzF+v8xffp0mb90+a4u2+P8V4f66QAYJmoPPlrmvX/7y5D8vPTpJ7ks+7ubh+RnAQAADEdqMjETiAGNb+wAAAAAAABEFAc7AAAAAAAAEcXBDgAAAAAAQERxsAMAAAAAABBRW2zz5Nl7zXTZa3d/TNbG3i26rDoR39RPCcAwMOozx4qwImubDj7BZcv+dpusLR9zmMsmZ0fJ2mzGn7mPPe5gWbv0jr/JXBn1xWNctv76uzb4/wcQHTNm+IEQY5oysjYollz22DMvbfLnBOD9tbHNiNX/P9jHGKrHpdFyNM2cPsOHQVLWlis5ly1cyGv8v/jGDgAAAAAAQERxsAMAAAAAABBRHOwAAAAAAABEFAc7AAAAAAAAEcXBDgAAAAAAQESN+KlYs/bRXdbvOXtnl01Ykpa1XWNWuawY9xMkAERfOdbjskRhnKztrul3WeaTR8va6mTZZTW1fm8xM+uv+K156Z/19KuGYz/tf1bGT/IzM8uu1VMGsHntvfteLgsqevLatEn1LqtLpGRtMV5wWes7XRv8vJ6f/+IG1+L9MVNMugpCak/8+Vdd1rBimawtrmly2Yzp+v4pEH8SnD+fqSTAcDKYKVODqVXvfzOzlhliItUCvS+0hOwtsjbkuQ2FoZr4tSWa3jJrg2vP+OtVLqt99VVZW1oyyf8sNVXLzCqBv+8OW5MjBd/YAQAAAAAAiCgOdgAAAAAAACKKgx0AAAAAAICI4mAHAAAAAAAgooLW1lbdsTGC9jpgpsv+9v09ZO3OE+pc1pzymZlZd43/FbWc9IisHejzTUufemqurMXwNmO6b1JpZlYWTU6DQLevVA1RKyGdLlXvVBq2bRqjPv1Zl+UquoloMrWNy9I1HbK2uLLZZX2j18nahlKj//9D1k25uN5nBd8EzswslfQNkXXrZLOK6Lk7UNT73sAdd4Q8CjbUXjP2lnlNnW9Uu9u2Y2RtMuEbaddk9NyDXNFvIm8s182Ty4W4y9q7dO2zL+jG3Rg600WTZDOzM888z2WNTb7hu5lZR/9ol42Pr5S1qwb88Ihilb49TPblXHbtdTfK2taFC2WOzWvm7JkuK4v9wszkWJVkUu85pYIfJFKJ6b8ZB+LnzZ8/Tz8HSJuiIfJgBKJTcqWi70U0f535z+P6x6iEDBAI7Q6vDOI+Wv1+uOcevOktM2V+xRXX+7Bqjaxd3jnRZePK78jaVX3VLhsztUrWpjr9gJMLvnmRrB0prz3f2AEAAAAAAIgoDnYAAAAAAAAiioMdAAAAAACAiOJgBwAAAAAAIKI42AEAAAAAAIioSE7FatlDd3p/8NLDXBbP+YkxZmY7Thrrsm0b35K13Zkalz30vJ5C0Zz382g+9asXZO3cp16SOcLJLv8hx5OtCza8w/mmmB4gxcREgLKfIhFKDxSw1vlD82+LUlf4SUcd77IVd9++wf9/49FHyXxtsdf/rKpGWVsXFFyWV2MZzCzW5CfUFJatkrU9vbUua5iakbVW6HRRW5WfWmNmllrn115twwRZm+zsc1m3H5xjZmadd96l/8MW5Mg993VZwxh/nTEzm77NNJe1Zf1aMjPLNPprWLDer1Ezs5LYDPNlvYnUiAlpy9r09LfVq/ykt7+++KisxeC1iAmMnzvhLFmbTS51WTI2TtbGkstdFk+Pl7WjO/06W1Kvp5LUNkzxj5url7U3XP4rlzEpa+jsPnuGzL906mku6+xvl7VJcalpW6Mn5jU1+de93KMnaGX8Zc1uuvshWfvCnDkyh7bx97Ahk8zE/Uwl5B5nUI8b93m8rOd5lsWNcNhkrsE9Ny9K98DvBzUB64ff9Hu8mdmagt/nG6qmyNp80v/ey0l/n2RmNnm5n4q1djv9utU07eyyVEFPIP3ml7/ssiiuB76xAwAAAAAAEFEc7AAAAAAAAEQUBzsAAAAAAAARxcEOAAAAAABARA375skt031DsJ+dM1vWbpuoclkgmrWZma2c55uLbjNVdwatSQy4bNVaXbukwzfAbKjTTb6+ettcl0WxUdNQGEwjuCAkryT8f7nqYt3g8Zxv+caAQaAfOVb2b5lySG2l4muDWEiteNx4yONe/j3fiPdrP/QNTjeF4bomm48/zmXxuH+vmpn1dPm8UvD7hZnZxBq/N/TW+d+3mVldf6fLinHdsD1W8a9ldUgz4vXtvsnxmDF67a7pWOuyUdW6Odx7KV/b2OMb0ZmZ9ZtvZNhz199kLcz22etAl02dpNdNl+i9P3aabmLdvXi1y4ohTSatSjRP7tXN2pNJv07zZd3AuZDNu6yzWzf+frn1Rf3cEHpdO/I439h2h2r9d7c1Kf96xuv1nlPX6ddOb4fomm1mxfH+MWJLdePt6ozfuHrLeu/ta/Jr6s7r/yxrh+u1ZriaPtOvpxOP89dFM7NS3L/uoydPkrV9bStc1tGh95GaUX4tDHT2y9qmOv8cugv6I8gdt/7FZa3z9CCSLcmmuDfWf9MPGfoQ83lJf6QZlKq079Cdy+s9xMTPE7f3ZmZWHKJPtFva3qSaJJuZff3Cn7tsl5i+H+mZXOey3ox+gSZ2rnRZ21K90MpT/UCj5Nu6YXvjuCaXdXa3ydp1Y7Iu+9n5P5a1w3k98I0dAAAAAACAiOJgBwAAAAAAIKI42AEAAAAAAIgoDnYAAAAAAAAiioMdAAAAAACAiNJtpIeRaWKq1R4J303dzKyn3k+CKa1YLmtn7OWzd9/tk7XZ7fyUnExWT5LZusFPlqj0+olLZmazJ+kpN1uawXT5V8Ka4AeiPf45F+rXQqkzPRGkR7To/+C+02TtM6+87bIPTNtK1sYqfk09M+8NWTuYCVixuB8fUC5t+OiAsNfn/e4K3377HRtcW33oJ12WTuiO+zHzkztq+3y3fDOzdWnfnT/VLkYemdm75x7isrVFPU1gz9/e57IHT/6QrN3p50+4bNHX9tS1P/W1K/9yv6zF4KRS/n1WFTK6Y+ftR7msfaWfRGNmNna8//tLoVPvTX3xXpeNH+cnU5iZBf6yZulafV2b/55f0+PG6Ilf++3zYZc9+dzTsnYk211M9DzzJD/9ysysz/xkoUJqqay966aHXRaL64lFibjfn2KBnjyTL/q1OqrR//9mZp3r/eL59PF+jzUzqyr5aW/nnneqrJ05y//O5s8bvtNH3m+xmH+/ltN6Qtq40RNdVujukLVFMU528ni9btb1+3zKFD3usa/L52Oq9B4ZNj10Sxd236Xu08Lv8tS9j/47f0lMax2M6ox+HQslP2mxTkw2NjPrK/jJesXKJhjNJbzf97Xvh1liAtYvv3+prO2s+GtCf+o1WfvNc//oskSVvlYFef+5PpbUe04279dUQ5M+Fxjo9PfY533nbFlbW/DXqqt/p6diqYndrQuHx9rhGzsAAAAAAAARxcEOAAAAAABARHGwAwAAAAAAEFEc7AAAAAAAAETUsG+enMz4ZlrPLHpP1u6+nW9I2RNrkLWZTv+445t1M67VC1a5LBfSFHNUc6PLiu2+8ZeZWVWfzmEWhBw5VtSvXffisoWiCVpYI+AZO4xz2YK31sjaZ27/pssmJnQT3Aljt3XZW2+3ydpFVb4hcs2vRIdTM3v8Jf8emDuIpnoWhDQmrGxco7zhKlnyjcprp/jmfWZmk1/yDa+vuvJYWbvfk76p8oKpes9J5LtdVhPoZoHvffcklxXbVsvaOZ/zjZKzK/UaO2bxMpc9IisxWPmCb0Ra1aAbDL/35jsuy4pmkmZmNb1+M2zv19eO0Y2+UfLbS/Q+NiCaT46r0dfAbMHngdyMzXJFvWdtadRlqTDaX2fMzAb6/J5z733zZe3NvzvBZY09jbK2aZRfk+W3dHPdFbGxLhvboBt696b8erj2z0tkbXGcfw9k1vbL2liZhrmDEZTFfUdC3zxlVy9yWU/IjdZYkS/paJe1DbXNLlv2nh5SkRL7SyId9jFEN07d0oXdw6pbuopt+H1eEOh7v0zSN7yuxPR1IhX39zOxmH7cEw/3wyAmpPxaMjO78u67XVYo6Bv/fN6/J0I+ImyRjZKVklg8A5P8Zxczs97ul1x23Q9ukrXf+Mb2LpsRTJa1hZi/1uRe1ut31kf+x2ULFv9d1lq938uuvPlmWbr/cee5LLnYD6QwMwuG8fdihu8zAwAAAAAAwH/FwQ4AAAAAAEBEcbADAAAAAAAQURzsAAAAAAAARBQHOwAAAAAAABE17KdivbHOT9h4Y62f/GFmlhntO7UvLequ2jPG+u7rJdOTjdqafVf42mrdFX6FOCsrbDNB1s7p9N3F8R+hs5lEe/vBdLavTqZkvvCd9f45LLxS1j77lJ9u9EZKTw95ddUcl00RE7jMzPYYyLhs2mlHydoZL10uc0X9fsImK0Rdw5EHy7yn7Kc1BKv09J72nH9vV/X418bM7LV9al1WHe+RtZmSfw7L2vTkj0Snn3qUrNF72bYT/cSvdJvfs8zMVub0HoeNp6Zx3PTTY3Ttcj81ZiCpX5udM9UuW9yva/Nlf0lPJ0JmgsT8tSrZr69r00+7ymX/emHDr1/JlN53C3k9CWwkKImLWLb4uqy98/oHXbb/h3eUtUedeKvL6pONsjYl1lSh0idrd5i2tctaX18sa9Pm78HiIdOY1ufmuuzgA6bL2kJ5ZE5lHCqlkr9OfO3jk2RtMuevNb1pPV2vOe/3kURhvKwdKIhJSCH30p1iStNEfTtvt/wurv/DFmQw92lyoGnIpKvByCf8vcRd3zxR15b9evrRvc/K2kde9pNdv3qGnpj0px0+47Iv/ULP81zbrqeHKur3+/e/6+lKkybp99WIIBZPvuQ/u5iZXX7+tS6b2uzvUczMLr54gctqk3qqdSIQ97wpfY/+wTV+L/vbvNdkbbzon1syoydDXnnxhS774kn7y9qKmCo6XPCNHQAAAAAAgIjiYAcAAAAAACCiONgBAAAAAACIKA52AAAAAAAAImrYN0+Oi36hdz77tqx9bO4ilwVVuuHoTSWfZ/v1c6gu+waPAyFHYrUp30w1Vxn2v+bhZ4h6KA4UdbPA+6/4vstantO1V471r/HYJbrJV+cU39h2YLlu3HVsdozLflHr/38zs3rdq2yLVyrphou1E/2be6u5q2RtoLaMBt0APbbuXZe9/Po8WZvwPSZt5h4flbUL32hzWVNGbzqPP/a8yxr0ErPaWMh/wMYTjSpTPfr6Mz5d47I7HvmzrF1e5R/3w4ceL2vbeztcNrFZN2u/+767XJYMWR4J082PN1RxBDdJDmtw+qXTRYPRFWGNPf3v5/EX/d5iZvbcnJddtmrx07K2UPJ7xrEnf0/WLn3N74dvPnK7rM2VVrqsLaQv+wc+/V2XrezWe9npXznOZS3TdaPl1oUL9Q/cgoj+57b7VjvL2o7lb7js/n/5PcDMrFG83ff+yKdlbRAXzZO79L3Tk3MecNmimG70r7sBb1kGMxhE7kOD+RWmdHHh0d+47Mp/6QbDhyT9jel1X/64ftyK30NqUqNk7atZP7Dk4e/7vcLM7KDzr3ZZWylkgID4Jy9ZpPfdkdA8eXrLTJn/8jL/+afypv49mGVdsjin77vnzXvVZX2jemVtrXgxPjrjCFm7eLG/VrU/fbesze3gm76rQRdmZuO3/ZTL3mnT/7bLrvGNlmfMmCFrFyzwTaSHEt/YAQAAAAAAiCgOdgAAAAAAACKKgx0AAAAAAICI4mAHAAAAAAAgojjYAQAAAAAAiKhhM64pbLLEJ/aY6LJjp+8ga18Xnfiv+uuzsjZR8Z2uT/jATrJ2jz39iID+kp9gZGb23WsecVnS/AQU/B/V+T9sPQxmSsCHZ8902W8u/rysfaWtx2VL3nhL1n6m0XfHv2nqaFm7V9Nkl73bqyfMBMuecNlX0zvK2m7fmH5Qwn6P6vc+mN/5+633vgdl3njMMT6s6KlYv7n6XJe98+ZyWfvJliaXnfjTdbL22q/t77JYQU+iGL/jti5L9HfJ2vv+5qdLXHL2QbK2EiyROTbc7rvPlPkrD/7MZcvWrJW1k8f4STDn3KinULxw7dEuy2X1ZIkg4aeKdFfpEXpfuuE1l731O/+zzMyS9p7MN1QirsdtFUp6es5IsCLuX+MH/voPWXv9uX7i0D57bi9rgzF+819wi96jDzjYT+a6/YpT9OOu9xPVcpkGWfu7259z2QVHfFLWJqr8BJJ5L+r7so/NEo/BdKTQ+6FX7/mlyxYs09e1iQn/ezz3hmWy9t/X+IlDuYE+WVtJ+DXSXdE3KN/4g/95//6NuDabWWB+og7C18JgxMT4w6q0nhzV19XpsoWv6Sk/r4oJacftpafaLV/vr0tbbStGh5rZ40/PcdmTYgKXmVmnGng0iC1km6lTN7x4hHhb/C6v/uWNsvaKT/jr0o777yJrKw3rXTb/H346n5nZRz/+WZfd8dOTZO2Sx59y2ZqCnkB6372LXXbGxz8qa5MZP53yH3+7V9Yef8CXXRaYfg6bG9/YAQAAAAAAiCgOdgAAAAAAACKKgx0AAAAAAICI4mAHAAAAAAAgooZN8+Qwx++5tctK9brB1jaTfEPjyj36n5iqrnPZJ/abop9EtttFA7W6qeCM6b6J1JsL39aPi1CbomFvf+A7pjXmfHMsM7Mdt/VnnKNv8Q26zMzqDzrAZemsbp5cLPlGhjvvMlPWLvnqv1y265d1M66gPDRNuqLUKHkw+ssbfoa9vNU3dJ2Y8s21zczmvJdx2bU/0o2Li13+NVva55vdmpnVV/zj1tSproBmP/z+vi5L9On1MVAZuc1qN5uQt15dwl+XilX+dTQze3W9X08v3ft1/cB9ZRf1FnUD9voav84rHb6BoZnZmw+d67JRRd3ov8Pu1s9tAyWS+pdW0P06R4Tx3Ru+52w3bSuXvV7UDdunrVrtsqPP0g2RGwfaXJZe7hv6m5n17VLrsoFCs6z99gVfdVn9KH1tLRRU4+ycrM0XfcPp4dGOcnjKFfzvMQjZ4lcW/L3wnL+cLWuLHQMuW13S97zpsrgupfQ9+iN/9MMraot+3ZmZ5St+30M4OYRkum60XCn63205rq8pD619wWU33z5f1p56jr83tqQfVGNmVl/j94X1a/Rr/uCDb7rs2M99QNYWK+qiErKLxP1nhHh8y/u+w5S2DT8KaJrsr1WvFPRn3B26/PCIAz8yU9Y25n2D7KoqPSipdn//uPGMPyswM/v8/v6zWUpfAi2f3fDfQ7Yg7pWGycVqy1vBAAAAAAAAIwQHOwAAAAAAABHFwQ4AAAAAAEBEcbADAAAAAAAQURzsAAAAAAAARFTQ2trq24K/D1padPf2uGioft9p02Xtupyf4FDJ6UkyyaZqlxXKfvqVmVlNn88yLbp79up2f1YW79cTAr5w1WMuG6lTid4Pp568t8tefNlPezAz+/t1flrDNYv1xKKTGrtcNm3XJllbML/+ijk9JeDhTj+p7fzRYvGZ2agjLnPZwtaFsnZL0nT8ETLvuP1el7W0zAx5FD9V4eFfniQr15T8Gkk36lE/mZWNLquM1/tTfu17LqvO6HEnsYyfVlIp6jV22Fd/77IFCxbIWmi7z54p89pqPxJhwQ3flrX9Y/xlt7NHTwoaE/PTF3orepJMJuUfI5HRf7/pyfopRnE92MhmH/ljl7300lxdLCSq9DWwmNP/5uFK3aecdtI5svaGm6/aqJ91/y0/lHnQ49fZ9lutkLW966e4rDPuJzWamRXFlJqGkOmLjaP9BNKe9/wELjOzvU7216rBOPKzJ8r8r7fe4rKRev80PeT+OJHwr88rt14ka/uyWZf1mr79r4v7/aUQ+IllZmbxvk6X5fUwQCuJCVp1IY874xS/57TOH5mv76bQMl18Lgr5dJdM+P9QCfRUrAev9u+/1wJ9/dleTNZqKPn7ZTOzqsbxLuvo7pe1r3b5dbN9Rd8bH3b+DTLfUNf/wd8jmZl9YM+9NupxNzd1rbr0+9fJ2gt/eNYGP25F3B9f/p2jZW1shf+8tddH9OSzwsptXba4/S1Z21PX67JxWb1+J06f6bKBefqe9+OXPynzDfX17+lr9i9+9H2XDeW1im/sAAAAAAAARBQHOwAAAAAAABHFwQ4AAAAAAEBEcbADAAAAAAAQUboD8PsgrJGQagA1Zdb2srbz7ZUuyw34hnFmZo2iSeTqim5ketIt830Y1w2g/v7FD7tscWa1rMXQ+sONz7tslmowZ2aTC74Z3Nnb63PPMXHfKDm7XjeZrK72C60/pWsPaffr77VG3ViwEh8WPc+HHdUkOUxr63yZqz3nmG/fI2v/fMFnXNaf902wzczKzb7BaeVt3fDtC7+6UzyA3nP+9PPPuayzW6/dIOQxsOFenjtf5rNFU+W+su4iWtPnr0tVWf1eL032TW1Ti3tk7W6f/ZHLKnq7sXfuvsBlsaz/WWZm5crGrZtEUTcU11fcaOmv0v+2jbXun/qeaO/D/TUs8a7eR6q39U3U60u68emHT/DNnkOWjt10wzdcVlerG7arxxjM1SuoHgmrZOMsDLk/Vk2VU6bveQsV//qMbtDv91LBN+qP9+n9aZ8viybheinYS7ed7X9WSIPusLWHEBX/rgr9XDXdr5sgCPk7/4AfSrNbSQ+a6Wrw16Xekv6YGSv62kRMN9nfO+Ob8K4JBrGLhCym1oX+97Ny6bINf9yI6a0Ju46r3+WGvwOnLtWDPabs4q81ySfflLX9O/p1NqtZ7zkf/+E/XBayjdhPv+6HT2w9OaS7+0YK6ofHMAi+sQMAAAAAABBRHOwAAAAAAABEFAc7AAAAAAAAEcXBDgAAAAAAQERxsAMAAAAAABBRw2YqVhjV6DpR1lMS9km3u+yldbqrdlX9WpeNLVXL2ntO+f+0d59xctbl/seve/ps3002PSSBUAJsGh08iCKidORgA8SCBT2H8lKxHSsiFuweQMUGFkQpAoJSpJcEUhepIaRvku1tZnbq/wEP/g+u7/DKnhT2Xj7vh9/Xxeyw9z2/3z2/7Ou65rms0piRtRu3+07vx+6tJw9gzyuLyRBmZv2zGl02uVdPN0q1+HsnndZnpAefeK3LnvzTBbI2svckl9UM9sla2z2DWFBFLOnvDzOzc3/4R5el0/q++flHzvCvm9Zrw8+//hFfmxCj/MwsiPgO/5/61m9lLXafQGxWmXyvrB0Jprss3aAnXY10+A97tE5PNlr2u0+7LF43UdamYn4f3TpB37tBtdFaOyhXGr+TjSblt+2W1+2boz/vtzzipz3ud8B+snbGJj+RsywmspmZ3XDl11w2J/airH1+e4fLnlrmp/7tCunK5N3yuuNVbmRY5qmkn4jT198ga0sl/3mPJ/QkpIevu8jXxvVXi+iwnxqTqvcTj8yqT/ODVm0CliR+t0Gg14WajL8+A7V6+s+kuN+Xsgn9sHrK+de47N7vflDW9hf9605qWS9rpVHcS9P2mrnjxSEzI/uyzCvm14ag2mg7oW/BkMyfGOhyWUZ/JbcDnnvWv25Ev+7Fx5/oshMn+P/ezGzJhuddtnbTbP0mdlJdadZued3R4i92AAAAAAAAQoqDHQAAAAAAgJDiYAcAAAAAACCkONgBAAAAAAAIqTHfPLkiskiVhqP55ikuOzDwjUXNzDYNPOOyKTW6kZw1+iaGpbhuMplu8vm2Yd0tit5we161hnyJvG/OVojqBtnpwYTLtg/qa/zI7z7lsug2/9+bmQ01+kZhU2O6liPZPasm1y3z6IhvMNdRpbP1ub/6i8syXbphbiUQ1z2m17JKrt+HiYKulSl2l1JE/8ZLw35PCWr0GnL1L+9w2bx9dUNki/rXGA46ZenXf/g7l9VNmytrKxXfXHHx4gX6PYj/5WhMP2o89dQy/Roh0tcwYbe87oZ1uinzPuYbuW9duVbWZmuaXNbXo/e1oME3RN6c101SN+f9RlpI6kbhO7vmRIfHb+PtnSV/t7EqTU8rfk+ZktDX9/n1vunp3lP887WZWVE0Zc5FdOPvfnE/RXv183zAZrXT2traZK4aLbe1zZe1HVF/LZtb9cUpi/7L5U1+XTEzu+Nbp/vafvEsY2YXir0qW9D3rn5jOq72+1FG1Zx6jNo+wQ9tMBtdo2Rl5UrdZP+ohP8+PLGonwWyqWaX5Xr0959ZB/ihANu36uenVJPfL0vRjbI2EfP7Wr644wtRtF+ve3saXw8BAAAAAABCioMdAAAAAACAkOJgBwAAAAAAIKQ42AEAAAAAAAgpDnYAAAAAAABCasxPxVJDjEr9uhv6vtOaXPZs1E8aMjNLjPgO2sd8/2lZWyn7d1Gq6E7ZK751rMtSzbT3HzMqemLRkvYtLjt0bz8py8xsTdZ3b4998i2yNlsQ91+iT9bOueFxlwVTp8naal3+sXvEInoiVWRS0mVN2/XFyYpJIZ850v/3Zmb5rJ8EE8TEyAkzu7bHv0ZlY4t+D6Yn7WDnqS0hX9TTJpL1vjgo6fXmEx9+q8veds739OuKDXNzQU9BenTZCy5rqtcTnuI5f9+UavT/W7Tk78dJP7xY1jaLqSRhmz6Sy83YLa/bGlsk867W7b62t1bWZgK/jlx/399k7UjR1yaqTGV8/1kfddne8SprS8zfD4myXiMrET/NL5P3E1DwGqqsOfm8338q9Xr/OXDhTJdNP+VKWRuIp/R4lUfepb/7rMuGR/TEyURMT7nBjhvNWhpN6DWktcnn5TX6WSSY6r9S/vi7j8naovlpaBsqeirWN6+7zmXzJun9cvlzfh0K6qrsVRV//9f89ZeyVk3QCttelRneT+YVMcm12qSsRNR/3pv7D5a1LxzoJ3IetEU/myYm+r8z+divH5G1VvL7R7Vv2Td/42Mumzaop3hFk/7eSQd6wqwFfj0dHnmlyrvYs/iLHQAAAAAAgJDiYAcAAAAAACCkONgBAAAAAAAIKQ52AAAAAAAAQmrMN09Wlqz2jW7NzFKHznVZoUc3ZhsY8P/rt1yimyDWiCZu2YhuKliq8c24NnTrhr3Y81a3r5b5wraFLlt6x6dlbXPHgMtKP7hN1k6Y4O+/4YFGWTtQ9M3kjjv5MlkbtqZtYZercgQ+kvf3QiSh27gVB/za8ONleh1pnKTWDN0scHrZN6jrq1Vt582yuu88doFCwV+z2km6IWWwpc9lQy36JkuLf3958PorZG2p6F+3PtD347zDD3TZSe/wjZrNzG698x6ZK9Gob7pYKuk9MGzrmHq/qqmmmdk5F/kGw3/4iW7MqRxzeIPMNy4ddlm2SQ+JGBZNJs87732yNlv090ki49c3M7Mt2/0zWPIg3VDVin7R8W0nX3XWu97jsr/89c+yNmz3zm6hnuBTuunwhBr/fNFfpYl1QewTG2//H/0WSn6viQR6LesYGHRZ36C+G/LFKvcTdouVy56Q+fxFh7rssasvkrWpmG80+7mrPihrExW/tgRF/ZX09Av8a3RlqkwQqeyeySJhW29Gs1d9+Vo/jOHyT/hG52ZmFvjP+4HTu2Rp49oml/W06O/vQdkPpfnNF0+QtZG8v09Spt/Dcxt9Q+PcgXptKY34fTQv9kUzs0s/7b+bfef735W1e/re4S92AAAAAAAAQoqDHQAAAAAAgJDiYAcAAAAAACCkONgBAAAAAAAIKQ52AAAAAAAAQiqUU7FaJ+uu//9astZlhx+kJ0vs27CPy9ZufE7WFiP+19Q06CfcmJlNnuY7ex/2PzfJ2tUh67I+ngUx3/l8cEhPcnnrx65y2cobviJre7b5qUfpRj2a6Khzf+qyVatXyVrsWT/9/Bky/8y3b3dZx+R6WTtzqMNlI3k/qcTMrNjnp0v0lHQn/2hqkss6ezbI2rBNdgi7iZmMzEcSfv8oZvV6kyv714gl9NYdaWpx2VDUT00zM3voV19w2ZHnXy5ruW9Grz6hJ9PtqH0m+DXAzKzmhP1d9uTdetpjp7hNDo7oSaFdw37aVleqVda2Tu9x2cVfuE/WKp+88AKZX33NdS7j3nsNRRHV1sjSrh4/kSoe6P0nN+z3mmCynvAXE48ziTq9V6Uj/ueddOkNspbrPjbExBpSzOq17YhP/cJlj16up/BtT/jvcQ1Vpvv1FPzfILSvXiFrMXotqR3fq1TltMl6HelvEt/VN06QtY+t73PZWYfp70pdI/6ZaFNST7VunLDJZR/67L9lrfp/+/GP9KSriy/xU7HGyprFX+wAAAAAAACEFAc7AAAAAAAAIcXBDgAAAAAAQEhxsAMAAAAAABBSY755sm9paxaJ6MZssTrfKHnlv3UT0Q/93jdargn0OVdc5OW46FpnZn1Z39CLJsljX6Tsr3FFNBA0M1vx28+7bP55X9vp9zBWGm/BK9XohpTDgV8HJvV2ydp1A74RXENUN8wtxfzrpiq6wd2WYb/G7VzbVuwqxYK+vtbo15Z0tk6WHn7OlS6bOUE37w8iYq8qq13UbH2Xfw+sQaNX7XfW1tbmsgs/dq6sveYXv3fZPaWyrD286PO9Fs+RtZ+/5HsuC6JVVofA55Uq7yFb0Lly/of+y2VXX/MzWcv9NzrqSgY9WVkbFc28i8P6XlhwwbUua0jpZt7lwK8vFXEvmZn1Dfl9jWs+tpXFXZYp6Qbst/36gy474ryrZa26QypVnlza23VzeIzOaPaqH131VVl7yWe+7rKfdg/I2gsbJ7tsfVSvT7csedZlv3xQlpqVxf4T0cOP8kX9/KN89Zv/67KLL/mkrB3L6xZ/sQMAAAAAABBSHOwAAAAAAACEFAc7AAAAAAAAIcXBDgAAAAAAQEhxsAMAAAAAABBSY34qluqRni83ydqJjX7qTKq+ucor+07Zj61YvuNvDOOLmOwwYnpKTbqUcdnjV39K1h79Sd9lfSx3U4cW5OIy//aXz3DZ979xq6zdKrKBkp6uFxPDlIpyRqCZGnKzcjX32JiQqte5uJSlpgmyNBBTGe944OmdeVd4nXRHW3e4dsHQXJmvHXzRZU1N/bJ2RCwvZTFV61X+pvzEe/wESDOzpga/QG3qWSdrf/cbPwGLPXDXUDtCMlErazPxqMsaavWEGjUg9sElfuIrxr9K0X/Wa+MTZe1AKe+yO399qaw99cM/dBnTr8aOLbEZO1z7HjtC5vc+/6TLDpjtvz+ZmfUM+fssFtNT0nIVv/L94NN+sqSZ2cQJ/nVf6tD7zxc/7ydghXGv4i92AAAAAAAAQoqDHQAAAAAAgJDiYAcAAAAAACCkONgBAAAAAAAIqTHfPFk1h+sbHpK1k+ONLtuoe8NZxHQzVLxR+TvtwHr98RgY8nndJN+4G+NHkO6VeX3XFJd99Zvny9pzLv6py8LYmA07LmG6UeBw1u8/yaG1sjYa6AaCCJ9CdvsO1/aUdbP0g1Mpl21vmiZrU1UaritvusA3jrz2um/v8H9fDWvcnpVJ6fWiVPDZoH6Utsgo7huMb+pu6it1ytpS4Jsqi1kjZqa/22HsGBlav8O16xNNMj95+iyXDU3TAwRSdr0Pq/T5P+OKH7nsk5e9v9rb22HjZa/iL3YAAAAAAABCioMdAAAAAACAkOJgBwAAAAAAIKQ42AEAAAAAAAgpDnYAAAAAAABCKmhvb6c5OQAAAAAAQAjxFzsAAAAAAAAhxcEOAAAAAABASHGwAwAAAAAAEFIc7AAAAAAAAIQUBzsAAAAAAAAhxcEOAAAAAABASHGwAwAAAAAAEFIc7AAAAAAAAIQUBzsAAAAAAAAhxcEOAAAAAABASHGwAwAAAAAAEFIc7AAAAAAAAIQUBzsAAAAAAAAhxcEOAAAAAABASHGwAwAAAAAAEFIc7AAAAAAAAIQUBzsAAAAAAAAhxcEOAAAAAABASHGwAwAAAAAAEFIc7AAAAAAAAIQUBzsAAAAAAAAhxcEOAAAAAABASHGwAwAAAAAAEFIc7AAAAAAAAIQUBzsAAAAAAAAhxcEOAAAAAABASMVe7zcAAAC0tra2UVQHLmlvX73r3gyAcW/Rgvkui8eisrZS8dlTy1fs6rcEANgB/MUOAAAAAABASHGwAwAAAAAAEFIc7AAAAAAAAIQUBzsAAAAAAAAhxcEOAAAAAABASDEVCwCAPWj+Yj/pKlnStUd/6EyXpTZ2yNrCUJPLFs7XU7UCMc1mRXu7fhMYMxYt8hOLAhMX08wOmNnksoZ4QtYWI3mXPf1if5V34X/eylXcO3taW5u/F9S1MTOLBH5iXsX0pKtpx5/usnRXUdYmxc9bKKZqmZmVxNS+oFyWter/op31CQBeE3+xAwAAAAAAEFIc7AAAAAAAAIQUBzsAAAAAAAAhxcEOAAAAAABASAXt7e2601oILVq0yGWlkm74pv6nG2NxXVvyXS2Ho1V+bSXfHG7lqlW6FkCoHbn4SB+mdRfccinpsrqagqzNZkSjy6iuLWZ9M9Snlz8ha7FntbXpxsXvPfsclw2WemTtQLbBZQ2VLlnbX/L3QkOzv+/MzCLDfm+88+93ylqalu55CxcukHm6aYLLjtl3L1kbj/v5GHUp/eySyft/53tmXZ+srZR8093Obt1o+Ymld8scO043STY7+PCzXFbsGZC1maa0y2Ykh3Vt3q8jD//8Xln7Hxe9yWW5oZyszQd+LapU6mRtuehfY8Mz98la1qc969Y7Pi/zdDTlsniiVtbGRvz+s7Gg98Bzz/jeKN4dxgo1JKKiH2PNTN0nen1SRG/4V3Pz696q1Ut3+HXDiL/YAQAAAAAACCkOdgAAAAAAAEKKgx0AAAAAAICQ4mAHAAAAAAAgpDjYAQAAAAAACKlQTsWav1BPCLjv5Jkuq0R0V+06MT0kl/KZmVk67ydLVCp6AkQ24ltzH3+3nmCy6unVMsfY0FZlKkkk6T8ylaKfEmJmFoiJahar0r697F931XLukbHgxKPF9Cszm7v/3i4rZ/Sa09LS5LKmaVNlbW3ST+h76Wk9+aNU8vfNS5v1mnP3k4/JHDtPTcB6x0lnytpUy3SX5aNlWTurxWerN/fJ2uaOvMsSc/QYivJ0v1+WXuqQtXf89WaXMYlm1zlhsZ/o2Txliqw9ZK5//ukc8dfdzKyuWTy7bO2TtWUxlGR4uEbW1orajR29srZ7k590c8dSPX0NWrWpWDMOPdplyfxkWds/ss1lmTr93DKnnPG11qzfXOBfo1TSa1k55p+xa0b0ftmT8NMAu5b/TdayFu0+PY/9zGU1NXrS4kjSP9tObNZTsVJiGlrH0GZZGxeP0cl5n5C12PPa5uvpnxMa6l1WqPL1Jxf4KWn53qwuFoP0aqL6Pgui/gcOD+ipfe0rVuifFzL8xQ4AAAAAAEBIcbADAAAAAAAQUhzsAAAAAAAAhBQHOwAAAAAAACE15psnty3yTZluOkY3SZo7xTcKDIZ8AzYzs1ylz2UNCd1ILlFuclk2GJK1kcA3jcsVdQOoY+7xDZyeXkaz3NfDgiMOcVm5SkPKeOCbcT2zcpmsbTv8MJdVKqITnJkVCv6cNRLVZ6+rnh4fTb7GovkL/JpzwgnHydoR8dE++/z3ytretS+47IEV/5a1TRN8A8ztm3Rj25MO9Y0171+1Stb+676HXLZ6FffSaKgmyWZmb37rqS6bEdedAjtF88lEoLfixmC7y/q3+b3OzCw3weeRDt3IdGK930e3j+h9LTbZr0P/uPleWUsj09FbdNixLps3Z5as7RvwzbCbpjbJ2t51/t5JpX1jdjOzXEE0sS2nZG1BzQRI6uenYsY/52zrWytruXdGRzVV7h7qk7WzJ/tG/ZvW6z1l0jS//+Syujl2fWOry7b1bZS1zXXTXNbb7Ztrm5nV1vrG3e3tPB/vLptWXi3zllbfqTbWr59LhzMDLkvU6jVk3xb/3WzdFt1Iu1Tr17xyXH8PrJ3zPplj11DPP5GoHjxUm0q77MY//EjWZjY87bL3X/q/slbtP+mUvs/+fNEHXPa+q34ha4fFo1IY9yT+YgcAAAAAACCkONgBAAAAAAAIKQ52AAAAAAAAQoqDHQAAAAAAgJDiYAcAAAAAACCkxsxUrIXz9aSRc/fz2WFNLbK2vsFPZejs0FM+LO67dSeG9DlXbLrPt2/RtanUiMv2atHTlV4s+k7i33zSd5U3M1uxYqXMMToLDl8g86Dk26GXxPV5VdElTY16Ss2S+5a47KAjD5W15bh/D5Wi/nimE/69LXlCT+bC6MxfuNhljXP0fXP+aSe6bKCjW9aO1Ph1oJL305HMzP725FKXnXnk0bLWEv51a+N+ooiZ2fW/v85lTz3xuH5d2CIxAeLMt58ma7sDP22opV5PRLzt1vtclkrpPaUc+GkPQUavC5VIxmf1stQqA369OfmsU2Tt0LDfWxub/V5nZnbrjX932fIV4ZsssScd8x/HuezAvfRUrGSN32v6N3fJ2nijX19KI/reGYn46VUNNfrmKXT7a5+q09O2nu/w05RSMT0tbmDQP/889hTrUzVtbQtdVluvn1uCiv+dN85YpGvT/hmnOKSfu+vq/brVY/peaK7465vt12tkusbvYWufuV/Wrg7h5JqxJvPcNTKPJSa5LBnxk7LMzHImnkWieppa57C/H2eLycZmZluHJrosYn7in5nZ0mUvuew/zviarMXozV/gn4WnNes15+ZrLndZZvXzsnb7BL//JCv6frjw8j+67NZrvyhrt4n9Jxn47/9mZu+85Dsua18dvrWFv9gBAAAAAAAIKQ52AAAAAAAAQoqDHQAAAAAAgJDiYAcAAAAAACCkdGei10GlyhFTQ6TBZYun6Yajq1/2zSCPnKVrXxzxzb/2adXNIJ/L+MaRp+4jS+3JDb6J1MykbiTX0+mbh5XLJf3C2CXKOX+PmJlFKv4am2gEZ2YWi/rr1j+oa08+83iXTa/S/HtzZ6f4WVU+GJUx0fN8XEon/bI4u3abrP3DdT9xWb7sG0+amSXr/LXMdOv75uA5U1326P03ytrOzn6XNU2slbWlgm9UuXCBbly/clX4msbtCZmWZplXMhtdtuZl3WTykTt9E+u6lN6OG2p9U8HaDbrJ/pOiwemhMwqyds3gsMt+f+MKWbu94BsQ1r2sX7eib3+8hkpZNL2O62eBgS1+IMRAVj+7TC77/a4zqy9QNOUbSm5Z69cWM7N4wu+BtX26SWpJNO0tVdm+gpJuqgwtKh5bfvWN98naSs5/Xj/4pRtkbb14xukr6Is2IJ5RchX9nNUrXiId0dd8m/h350rAv0XvCv+46TKXHdSsn0sntfiLtqnQIWtb9/LPLeVBvYbMjDe6rP85vw6amU2e69fCXK9+v9GCXguxa0TEntJSu7esnTTRf7aXz9hL1h46xz8rRWr0d+ejTvLPP8VADwyZscg33r7/tpWydrxglQQAAAAAAAgpDnYAAAAAAABCioMdAAAAAACAkOJgBwAAAAAAIKQ42AEAAAAAAAipMTMVa9VKPYGlbdF8l33tD1+XtTO3bHJZV0V31T6rtsllPd1+SoiZ2X6NfsJMpKS7/h9f8hMn4hk9heIt773CZauYRLNbrf3sr2Qe1Pr7ZMgPEDIzsw2b/H02Z/Z+sjZZ6yeYBFl9T6ayfvLScz3TZe0Rh/l78hVZidFqmegn8RUqKVk7v36yy+qjurY17pfbv5Q2yNpXhvwUiJpa/bqnJie5bF2Pngxx8JQ5Lrtnw3JZq0TjanqcWakwPqf5qZW7WFwnax+4/SGXNU3dX9YedYafSpIu6UlXpUi9y4KSvr5JcX2Gi3qvSkR9Xinpf+vJFftcdvRhB8lahmL9H4jJUX/89tmyVD1PDMT0NZ5V6yddlUb0FKKc+AhHq0w3Gon76Z+JEb1h7vf+77rsnkcel7UYnYp4Dv3L7foZsrXBT515z2nHydqkGCZbzOspeDHxgU826XUkJu69fFm/7tU3P+Gy9tU8H+8KR7/lJJet6emRtUHe7zX9Zf3Vse9pPxlvMDpB1m7f6L9vHfcO/+xlZrbywc0um9aqa49578dcVhmfjyevC/Wr/O9PvEXWxjf4CaKLm/RU0WCDn4jW3aynr5177Fz/3+f8VGEzs5Y1U1z2oXccIWv/+sN7ZR42/MUOAAAAAABASHGwAwAAAAAAEFIc7AAAAAAAAIQUBzsAAAAAAAAhNWaaJ1eTilRctn6Vb15rZjZjsu/4tuSRR2TtCtET8JS3vlPWdvT7prYNEd3I9JEHH/ZhNC9rzfz/G3admkfXuOym7c/I2kkTfZPJn3XoZlwnJnxD5IGybny60XzttF7dgPaG7f7j+Lbax2RtxxLfuPTYDdtlbf/7DpM5tO5u3wDw4L0nytrmXt/EetIU3T62tewbRyY6de1XzjvcZVdd83dZO2eef2+zdL9Ce7Hb3+fBKI73iznd6DKIhvvfCNra2mR+xmknuizo1E0mlafv/r7MDz7sgy5LJPQ+kcj4dagz4u87M7Mn/ni1y2JzdQPnf9z5Q5flcrLUvvqtv7qsa0g34T3trONd1jZf/35phvqqUsl/rioDunFxMetr25feJ2ufTfrXmH+Ivz5mZvmyX4smJ2tk7ZIH7nBZLND7WqVE59Kd1dbmh4iYmcXEunv/sudl7dCAb05aNn2PVZr8ZzvWp9f4STNaXLa1yrNTIu4HR9SIe//VN+Gjaut0ezvryGj8+W7/LHHcUSfI2uHVL7tsybAf2GBmNq20xWWx1r1k7Rc/5+/pe398l6xN5/xzdKpHdPg2s+TRB7gsp0vxGqp91pSPf+nnMj818K9xf1I/P02p+A/8urxeR84/880uu6/KAKZy/zSXVUzvVfuYH1QRxjUn3E/jAAAAAAAAb2Ac7AAAAAAAAIQUBzsAAAAAAAAhxcEOAAAAAABASHGwAwAAAAAAEFJjZipWtc7TL919pcsakr67v5lZk/lJVZdd5zu6m5nd+d2zXNaa1hNq8ua7asciuqv2ZTf6n3f/N06StYGtkDl2jcJ230l/y6YOWduR8J3aN1T0PfmbqJ8stGClnkSxaKafXpPr6Je1w1E/WeuRWj9xwszslGbfvX0g6idOoLpqa849137MZT+/43FZO7nF/86PfNNUWRvb7O+xlu36mp32jr1d9uu/6Xvh0MOnuCzRv1bWrun2a1xlFENr4lG9ZRSrTFcJu85owmWPPfSUrH32leUu2yfh1wozsxExQSiX0fvP7Cl1Lusf0P8mM7HG3wtp/79gZmaXfflOly298yJZ+424v0lefE5PhVi87zEuE8Mt35AOO2yxzB/49eUu29rbLWsXTvdr/wW/eVG/7vf/02UNSX3vjJT8dL34ZP+zzMzO/+VzLlv2o3NkrZn/XGC09AfoPUf56URBxa8XZmYPrxl0Wcc2PUlzUsGvT+UmPSHtzEU+2zpzX1l76xP++ThR5XWDvmGXsYzsGosPmuyymo0bZe2g2Kv6X9APDdmsv0ILDt0qa+96ZKbLyoF+vuh+wL9ufpK+GyYXxfrGVKxd5qZffMVlW198Sda+fNMrLkttWC9ri8HBLmtt9WuWmdmVF/mpWKf9S697Z339Fpcd0eJ/lplZ1KqMBQ0Z/mIHAAAAAAAgpDjYAQAAAAAACCkOdgAAAAAAAEKKgx0AAAAAAICQGjPNk6upi/jmokPduhNWfzTrshU3Xihro4Fv2NbeqxvJtdT6X1Nvp2+Eamb24PUfdtnUim4ON4qepXgNhWt0M9PGGb6h6/5Tt8japyvijPO+u2TtnFP2cVkyr5tpj/T4xnG9MX2e2nHrEy6bfPYJsvajZx3hsmee6JS10ds2uKx0xl6y9g0l0HFDqtllHz/x7bL2T3fd7bJzf/SYrG1q8l1sb/vcBbK2Z6tvDPiTz5wha9956a9cVpPWS3uivtdl7e26Ca4SiVf5t4DC+Gye3DK04//20VgccVl3Vjfj277kry6bvPhEWbuxr+CyZTfqtakr7RuwT8rpBrgDt33TZS81+7XNzKxY3PHdqlD29/n4vDtGLwh0w88m0WN7uKQbb/eLverR3+p1JJ73WblGN5kMhv17yw36+8nMbPXN/+2y2iHdCH6kwtXfXWZO9w2vR7K6CfvpYhDDNff4/cDMrHPE32MfFY2azczK5m+yCc36mp9y1HyX/fPJf8vaqNigV7SvlrUYnUTZP6+minqoR0U06n9h5U2y9mPvfYvLgga93hTFsJCB6X5QjZnZrzoecdmVl3xW1vb1+Gf8ZO1Bshajt890/93h7AWHyNqrg6tc1n2VHyhjZtYX8wMAXvr6xbJ2eLDPZUfO84MjzMyu/OzH/fu68WZZu67HnwGM5vl4rOAvdgAAAAAAAEKKgx0AAAAAAICQ4mAHAAAAAAAgpDjYAQAAAAAACCkOdgAAAAAAAEIqaG9v12Ma9rC2tjaZx6O+M/7am74iayMNKZdVhgZlbT7R6LJ0XP8qIn7YiWVr/AQuM7NCzr+HVJXzs9mnfsFlK1etkrV4Db98Xsap+m6XJaKTZe33l//aZdsnLpS1Uwt+elW0f1jWBkl/P5QSfsqNmdlj5qdOHFPwU7XMzD46308lKfXqKSrBJH9fl0+ZK2vfSKqtOY31/vO68ebvyto1ndtcVtenJwj1N/isnGmStV1RMa1EL2U2t9ZPIcqW9MivhRd+22Wj6vofrTJIsaQnsYxF6rqfetLZsvaOu/6yw68biF/55peelLUDPX6CUE9WT6hpKPgJJgPNetJIosmvQ02b9FTGwRo/uSbVpW+yee/U0/l21LEn6IlfD9/7T5eFcQrFjjrssMUyTyX8zbP6T1+XtcWi+AxWxPgrM0vU+WufLeoJjpVBv0/EW/R0o0rBr3GJsl5z5r7rcy576qkVshZmbW1+ctRQu96v69pectkl79ATapK9furRYKTKxLKcfz6uq+uSpduz/rljUr2eBthf9rV1ga79yYObXLa8faWshfaWNx8j8/329mvAO484VtYe3ewnVeXEBEgzs4ZaP7F41ZCetjVvml/HXugekrVTKzNcdsiRetrj+8+7zWXXPHSjrMWr1DPRKw/PlrVzjvVTdu/7td6rYjH/fJzrb5K1paRfGyLN/jucmdm8Xv8d6sU+vf9Umv0UrsZ1+hn9yCv8c34Yn0f4ix0AAAAAAICQ4mAHAAAAAAAgpDjYAQAAAAAACCkOdgAAAAAAAEKqSifMPa9agyLV1Om+Bx+StYedfKjLatO+saiZWW3BN6ociOqmggvP+p4Po7rp3LpbLnNZb0k3NqyUqzSuw6iUJunme8NbfQPAoYRvWmpmNlDxjfrSa/8ta6MtvsHbSxur3Gf7iKzXN5gzM1tQWeuyvrx+v7H6Jpflh/3/g5lZzYv+vta/sTeW0aw5w9EJsrY2vt5l2al6WZ0c8427O1IbZe15H/2dywLTzeFuuflilzUO9chaq/IaOypW0E2SiyH/J4JclfV8NCqi937ds1V+3mxffHBONznuPGiKy1IbdFPBgw56j8siEX3NH3r07y6bMMWvmbtCkKrWXHvn7seweeqp5TJXTZUTZd1MO4i1uCyb0GtOqSBuyirNkw8978s+rPK5br/ND37IVXnOeaNd453V3r7aZfWioXI1uQn6911M++ueLehrNj3n949MTD+L/OHxNS4LTA8i+cLb93LZ5ri+dwumG5xixz3w0GMyf8txvqnysxt9I3szs2kXn+6yxMSJsnbwpQGXtc7y65WZ2WC3b/Q/I9Esa7tLfS578jG9Pq4OfENxvDb1LDynynARZfP67TJfPNdfz+ZW/axVSvmBREO+T7OZmc277Oc7/N4eueZSl21ZrJ/nx8teFfLHcQAAAAAAgDcuDnYAAAAAAABCioMdAAAAAACAkOJgBwAAAAAAIKQ42AEAAAAAAAipMTMVazSKxYLMX77xFpe1nXyarO2vpF0W5DOy9qk/f95lsbLv4G1m1jnopwGsePhvsrYyPhpwv+7KI7rLemy2v559z+naStRPNxoO6mRtX4+Y8FKvu6z/6ZbnXHbKsa2ytrXZ35PpFn32Wu71EwUSLSlZG2usNq0EO+rJ51bKfHbad/1PzPBT08zMunq3uKw2WS9r19xwocs2den1qfisvx9jST1dYme7/od9+lU1EwrVpojtnMwB+hfWG691WWdFT0izlZ0uqovOkqVP3Hyjy1pSepvP9a5zWXfrAfo97KSUVZtCoafnvNGoT2UuU2VSW96vI00z9pelQ9k+l0Xy+vlp1U2fc1klpveUIOPXokShS9fKFKOxWkzKMtMTHBvzemLesLju0WF9j20v+3Ur2a+neX78OD/tsa7KlLaBTf7n1c7ePWsvqnvgQT8t65i3HSlrZyb9BKyerN7XJkz1zx2ZqH7+/MBVf3bZ1d/6gKydm/T3XmePvsfErYv/g9FMjf3OdX6Kq5nZD77qJ6rVNetnl44uv9cMNerd4/ZrP+qyZKnKRM+i36sa//2Krh0nuxUfAQAAAAAAgJDiYAcAAAAAACCkONgBAAAAAAAIKQ52AAAAAAAAQiqUzZMtHpdxf8k3In3igQdlbabim7g1RnzzWjOzSsw3J60kdZOlnHgPQWWSrDV7qUqO0YgP6OZ7wYg/t2ycFpW10ZUNLkulddO3dMm/bqlXN+M6923+2iez+j4bqvdNdxMv6Ca4mVm+UWVdRTcojXSNj4Zgr6dClV9hTatv2Nb5XE7W3vCvu12W6NWvW4mXXBat0/fu9Q9uclnDVN0EtybhM9UMb7SqNdoLi4HaKo33dlLfoF4XaopzXZaO+CakZmafv+LbLpt18GxZG6/zDVLjeb3NH7K/b1a4X6Nu5r2zIlnRcB6vKYhXaYYf8ftPoWu7rB3s9XvYpGn6Xs8XfW0xqhst1zf5+yQyMlXWlis0yN6Tsr368x4U/MCPdFFvbNGEeOZt9nuSmVky6jeVXFS/h/6pfg+rGan2NaTK5ojdIhJU+U5T6z+/NVl9LwRxfy2Tffp59/ovneeyQqCfcToH/fe1SkW/h3KB9WZPS8f8MAgzs/wmn2/O9svaEfE1eULJD4kxMxuK+Hu1tlM3jU9N9utTbHCDrDWrMrAgZPiLHQAAAAAAgJDiYAcAAAAAACCkONgBAAAAAAAIKQ52AAAAAAAAQoqDHQAAAAAAgJAK5VSsSFx3WY9m+1xWzleZbJTw3dff99sl+ueJ6UrFij4Tu/3io/z7qmEiyG51wdtkXL5luc+sRtZOafOd09esHpC1UxtGXHb7Ot1N/cBt/v5bn9BTvBZM8BOwJkT0+01bncuGR/S0uNwn9YQkaDVxvzYEeT2B4YXejS7br3WirI1v9evAn1ZvlbUpMaBiU95PTTMzW/XwHS5r3P9kWdvxyv0uy+X8vWRmFi34e3f/Hx8vayeLyVphmpSVL7TultetdOoJRD1T/Oe6NaKnJ178tQ+47Kgz/1PWBoHfl9IVPe3k9htudFk0ph8JUgk/NTAa0xOTTEysyMX0PYZXqTkuiYR+zskP+72mlNaT+CbN8FNJZrzrC1XehL9uMdP3zrY7vuey3qxeyyLinsRuVKPXnNquQZcNNuh9bSTj14HrHnhZ1qqrq1/V7KJ3HemyRLmjSjXTPPekipgUbGaWHfbPATXppKwdFM+7l37zV7K2QUwg6i3pO+fn37nIZX0J/XweEVMDsXulW/Wzy013+UmwHz/nTbJ238Dvgnud+zNZq1aGSpX14sVb/stl67v0fRar0d+hwoZPAAAAAAAAQEhxsAMAAAAAABBSHOwAAAAAAACEFAc7AAAAAAAAIRXK5slHHXO4zJ9ZutRlxYxuVJsZ8k2+rv/EAllb6ffnX9l6fSY2kvJNxTpz+tdMa7jdrNjiolglK0vPi1/usq8kfMM2M7PNMf8ah86bJWsn1HW7LF4zQ9baoG/oddoBl8rSIOYb/NZmdXNd3VYT1VREE7d9F+jmcFMyvlHysnXbZW1Xv7++Hz56b1lbKvgmbpkqDduPPv7dLjvl7bqh+O3/uMtl2fzON3cPU6Nk9V7bRPNnM7O3n32ay+75y+07/LPKLbox6D7PZ1yWP2K6rE0O+Ka0T91Z5T0U/b07OaWbHK95eZ3Leof0apHLi0aVei6Bvfk4f+898I/rZW2Y7pvdKZfz1yjS5BtWm5lFy/7JoRLVF6Mv6193/W1+rzMzK5X8npI2n5mZxWv8c05Pn37Oyeaq3CjYLQqdXTLPNfvhDFNqfUNlM7P1wymXfeSEybI2UfHNmqOVKk2ZR/pdViMas79KtRTH7vLofXp4zCFH+e9Ft3z5I7I21er3iR99+3z9A+N+HRse0WvFtsKwy/77ij/K2iceW6Z/HnabX3z6bJm/9PIWlw016ufNkaxfc9b94RJZG03673bxoF7Wdvf927+HKrXFTLW27+HCX+wAAAAAAACEFAc7AAAAAAAAIcXBDgAAAAAAQEhxsAMAAAAAABBSHOwAAAAAAACEVCinYjU26POoeUcc4rLn771P1pZrfCf/yKCeZpNLJlxWU6V5ds+Q7/R+4U8ekLVMBNm9gnfPdln5j/fK2qGZTS6r2+DvETOz3/1zm8sufLfv2m9m1hdtdVlkk548c/XjG132qf+SpVYWE5LyHzxYF2NU1LS6mQU9WSjb46d87LO3niTzjev8hLMbvvUnWZua5n9e3bBedNbd82OXzXrbx2Xt0mWrZA6tRkzuGI2pmakyr0T8tLz+NXpfi0fnuqwhpqeHlIt+HVqfa5K1ey+c47LZ88+StcqZ7zpV5rfecofL2OtGbzij95SGhhqXDfXq+yEtHvHyeT+RzcysNOTXl1i9Xsu2bfUTGBe/+zuylmu/ZyUTeppUbmTEZYORWlk7I+En12T0AC2zBr8Hdg/qSVe1YuLklX/3U2vMuG/GikTcTysqVJnCd/pFf3HZbVd8StZmM2mXxev0ZNcPfe2XLlu2dLmsxZ7XU+mV+d7z9nNZ58v6874q7p95507x06/MzHLm75N0xk/gMjPrKvoJju++4q+ydrysOfzFDgAAAAAAQEhxsAMAAAAAABBSHOwAAAAAAACEFAc7AAAAAAAAIRXK5snFnG4OF4v4hm+HvPM/ZO28s77vsrho7GZmVon6BpqVKs2TM/myy8ZLQ6bxIPL+E2R+eFuby056u298bGZ2yTGzXPaDm9bv3BszfZ/olr3YndRnuFc0FjUzK9WLJm6mG1IeddYXXdac9j/LzMyK/sw9CHQj0+++7RMuo0ny6FRbo9vEunDm6SfK2lv/9k+XPd63SdYunuwb2MaSuvnf/Ded47KZrX6vMzOziL9vynm9r63tzOrXEN5xkm+qfOstN8ta9rtdo7as14ZSyl/7hsbpsnbq2y9xWWut3lUC8ZxTNn3vbO7xzVO57mNDT1zvVQ05v3/0Z3zjYzOzHy7d6rK6pG4kXxJ7VSXSJ2sHc76BM/fNGJf31z1mcVl68+X/6bLTvvS/slZ/3dLrzarVq6u+Pbz+ejP6ugVxv760HrC3rD353V9zWUNFN+nOi0fhSMI3STYz6+7zw2rG+5rDX+wAAAAAAACEFAc7AAAAAAAAIcXBDgAAAAAAQEhxsAMAAAAAABBSHOwAAAAAAACEVCinYkUiKZknon4aTaWou/5HRFf3J55+eufeGMaVhqQ+9xzu9/fOuYfMlLW/X7bRZeO9I/t4NLFOrzlZsY4MVhlllh0RU24qetLV0PCwywoFPSVn6XImRuxJA5GmHa6dk95X5i92+3Vhzv5+wpqZ2YgYgLWmo9q/yfhpW2ccf56sPKrGT8/pGuyQtf+4y0/AYh3bvYol/XhW7PNTaiY16olFgfn87keX7dwbw5jWkpwq87pYp8s6h/UkGfVvvg8vYdLiG1FQ8ROPgtomWVsu+/vmb189Tdae/tXbXLaaPSWUmusbZT7U4/ew+pT+Tq4mot33NM+2/xf8xQ4AAAAAAEBIcbADAAAAAAAQUhzsAAAAAAAAhBQHOwAAAAAAACEVyubJxXJW5oWCP6eKFnyDSDOzaIUzLfx/vm2XWeOgbpg7FPgmtr2zdK3Rp3JcSNfqNSfX65uTljK9sjYI/Jrzz389tnNvDHtcYaRvh2uT0/S6sN/gBJeVixP1i0T8HhZE9P512Dvf5bLb7rjhNd7hjqFR8p5XKI/IvJz3j22vZLfK2mhU7WwYzwaK22Q+Ek+7LJ/Uz8cmmm7jjUk1YC/KJ2azoOQnR5Tqq+xrGDeigV5HGot+OMjgUJXvSqw5uwynGwAAAAAAACHFwQ4AAAAAAEBIcbADAAAAAAAQUhzsAAAAAAAAhBQHOwAAAAAAACEVtLe3MzYBAAAAAAAghPiLHQAAAAAAgJDiYAcAAAAAACCkONgBAAAAAAAIKQ52AAAAAAAAQoqDHQAAAAAAgJDiYAcAAAAAACCk/h/xpzmiFT5p+QAAAABJRU5ErkJggg==\n"},"metadata":{"image/png":{"width":1142,"height":1213}},"output_type":"display_data"},{"data":{"text/plain":"<Figure size 1152x1152 with 64 Axes>","image/png":"iVBORw0KGgoAAAANSUhEUgAABHYAAAS9CAYAAAAiHt73AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd3xUdfb4/zMtPST0ItKka+hNUVFR0VUEy6Lufmyrq+LaxbL2gmtZde2uZa3YUCxgQZpIU6SFhCogvbf0Nu33B1/mFzznQmISyMXX8/HYx2M9OczczH3P+77nnTvneLKzs6MCAAAAAAAA1/Ee6gMAAAAAAADA78PGDgAAAAAAgEuxsQMAAAAAAOBSbOwAAAAAAAC4FBs7AAAAAAAALsXGDgAAAAAAgEuxsQMAAGqdjRs3SkZGhmRkZMgVV1xxqA/nkPjiiy9ir8HLL798qA8HOGzxXgPgdv5DfQDA4WzQoEGyadMmFfd4PJKYmCgpKSmSkpIirVq1ko4dO0qXLl2kb9++4vcfmrfme++9J/n5+SIict111x2SY6hNli1bJlOmTBERkd69e0vv3r0PyXE4jSMREZ/PJ8nJydKoUSPp1KmTDBw4UAYMGHDIxhCcbdy4Ub788ksREenQoYMMHDjwEB/RwTV58mRZvny5iIgMGTJEjjjiiEN8RADwxzVnzhyZMGGCzJ07V3bs2CGFhYVSt25dadiwoWRkZEjv3r3l+OOPl6SkpEo/9scffywjR46M/XezZs3ku+++q87DB/AbrPyBQyAajUpRUZEUFRXJtm3b5Ndff41tIDRo0ECGDh0qV155paSkpBzU4xo1alRsA4GNnT0bO6+88krsvw/Vxs7+hMNhycvLk7y8PFm5cqWMGzdO2rdvL0888YS0bdv2UB8eytm0aVNsPJ1zzjl/uI2dKVOmyNixY0Vkz3uJjR0AOPjWr18vI0eOlFmzZqmfbdu2TbZt2yaLFy+Wjz76SN58881Kr302bdokzzzzTHUdLoAKYmMHOEiGDRsmRx55ZOy/y8rKJD8/X3bs2CGLFy+WNWvWSDQalR07dsgbb7whX3/9tYwcOVL69OlzCI8atc1vx1EoFJKdO3fKnDlzYndD/PLLL3LVVVfJRx99JE2aNDlUhwoAAGqR5cuXy9VXXy27du0SEZHU1FTp16+ftGzZUpKSkmTXrl2yfft2ycrKks2bN/+u57j//vulqKhIAoGABIPB6jx8APvBxg5wkJxxxhn7/avH5s2b5aOPPpJRo0ZJWVmZbN68Wa677jp5/fXXpXv37gfxSFGb7W8cff3113LvvffGNntefPHFfW6FBtzkiCOOkOzs7EN9GIfU0KFDZejQoYf6MAAcBnbu3Bnb1PF4PPL3v/9drrzySsevWq1atUrq1q1bqecYPXq0zJ49O/b41CsCDh6KJwO1RNOmTeWWW26RUaNGSaNGjUREpLS0VG688UbJyck5tAcHVzjrrLPkr3/9a+y/J02axF/LAACAjBw5Mnanzr333is33HDDfuvnHHXUUVKvXr0KP/7mzZtjX8E6//zzpVevXlU7YACVwh07QC3TqVMnefbZZ+Wyyy6TYDAoOTk58vbbb8vNN99s5hcVFcm0adNk9uzZsnTpUtmwYYMUFhZKQkKCNGjQQLp06SJnnXWWHHfccY7PmZGRUaGYVfyuOp6/vLVr18qYMWNk7ty5snbtWikqKhKfzyd16tSR5s2bS/fu3eXYY4+Vnj17SiAQ2O9jzZo1SyZMmCDz58+XHTt2SGlpqaSnp0vnzp1l4MCBcvbZZ5tFhl9++eV9auuIiLzyyisqJiLyyCOP1Kq/qA8cOFDeeecdEREpLCyU9evXS5s2bfb7b37v62QJhUIyfvx4mTZtmixatEh27dolpaWlUqdOHWnVqpX06NFDTj31VDn66KP3+zjTpk2Tb7/9VhYuXCg7duwQEZF69epJ165d5YwzzpCTTz55v//+iy++kPvuu09ERIYPHy7XXXedFBQUyJgxY2T8+PGyfv16KS4uloYNG0q/fv3ksssuk9atWx/w91u6dKl89tlnkpmZKRs3bozdbp6WliYtWrSQ3r17y7HHHisZGRni8/nUsew1duzYWL2Z8vYe617lC2fvvXtl1qxZMnbsWMnKypIdO3ZIcXHxPuPwiiuukLlz54qIyPjx4w9Yy2bve70ixS2j0ahMnTpVpkyZIpmZmbJz504pLi6W5ORkadGihXTt2lVOOeWUfe4qK388e/3tb38zH7/88W7cuFHOOOMMERHp1auXvPXWW/s9tp07d8onn3wiM2fOlHXr1kleXl5s3ujfv78MGzZMGjRosN/HsF7v+fPny+jRoyUzM1O2b98uiYmJ0rZtW/nTn/4k5513Xo0WKrfG8W/dc889sbG0tx7GqlWr5KOPPpKffvpJtm7dKomJidK6dWu56KKL5PTTTxev9///u15JSYl8/fXXMnbs2Njr1qhRIxkwYIBcddVVB3zNysrKZNasWfLTTz/J4sWLY48RCASkXr16cswxx8hpp50mp5122j7Puz/FxcXy8ccfy8SJE2XNmjUSDAalUaNG0rdvX7nwwgulffv2MmfOnNg4Ouecc+TRRx/d72MWFRXJF198IdOnT5eVK1fK7t27JRAISMOGDaVXr15y/vnnH3BeEtlTg2TMmDHy008/yerVqyU/P1+8Xq+kpKRIs2bNpGvXrnLcccdJr169flfR2b1++76MRCLyzTffyLhx42LHX7duXenatatccMEFB7zGWvPC8uXL5eOPP5bZs2fLtm3bJBAISMuWLeX000+Xiy++WBISEip0rDNmzJAxY8ZIVlZW7LjatWsnQ4YMkTPOOEM8Ho/53jpY8vLy5P3335cpU6bIhg0bJBqNSuPGjeWEE06QCy+8cJ+vNx+uli9fLpMmTRIRkT59+siwYcOq/TkeeOABKSwslEaNGsltt90mS5curfbnAOCMjR2gFsrIyJDBgwfLZ599JiIiH374oVx33XUSFxe3T96KFSvkL3/5i5SUlKjHKCgokIKCAlmzZo2MHTtW+vfvL08++aTUqVOn2o6zup//vffek2eeeUZCodA+8VAoJNu3b5ft27fLggUL5M0335QXX3xRBgwYYD7O1q1b5a677lIfJkX+/8KAU6dOlbfeekuee+45adWqVeV+8f0o/2FUpGIfrKvTb/+6lpeX55hb3a/TvHnz5N5775UNGzaon+3atUt27dol8+fPlzfeeEPefvtt6dmzp8rbuXOn3H777TJnzhz1s40bN8rGjRvlm2++kR49esjTTz99wA+dey1fvlxuueUWWb9+vXrMMWPGyNixY+WJJ56Q0047zfz30WhUnnnmGXnnnXckGo3u87NwOCwlJSWydetWmTNnjrz88svy2WefSbt27Sp0bBUVDAblgQcekHHjxlXr41bUypUr5a677orVciovNzdXsrOzJTs7W0aNGiX/+te/ZPDgwQft2D7//HN54oknpLCwcJ/43nGXlZUlb7/9ttx+++3y5z//uUKP6XTOy8rKZN68eTJv3jz59ttv5aWXXqrSB/jqNmbMGPnXv/4lZWVlsVhxcbHs2rVL5s2bJ99//7089thj4vV6ZfXq1XLDDTfI2rVr93mMDRs2yPvvvy/ffvut/O9//3MsxJ6bmytnnnlmrJtieaFQKPae/e677+Too4+WZ5999oB1v3799Ve57rrrZOPGjfvE165dK2vXrpXPP/9c7rzzzgNuWJc3adIkeeSRR2J3K+xVWloqBQUFsnr1avn000/lggsukH/+85+OfzQYP368PPDAA1JUVKR+tnesLVq0SN5//3355z//KX/5y18qfIz7k5+fLyNGjFDFbrdt2yYTJ06UiRMnypAhQ+Shhx6KbSgfyLvvviv/+c9/9rnelpSUyKJFi2TRokUyduxYef311/c7x4ZCIbn//vvVnLT3+jFz5kwZN26cPPnkk5X4bavXwoUL5ZZbbpHt27fvE//111/l119/lU8++eQP8ZXljz/+OPb/a2JTZ8yYMfLjjz+KyJ67gQ528w8AbOwAtdZFF10U29gpKiqSrKwsdVtrUVGRlJSUiMfjkU6dOknHjh2lUaNGkpCQIPn5+bJs2TKZPXu2hEIhmTlzptx6663y2muvqb+a3nbbbSIi8vrrr8c2AvbGyvvthbq6nl9E5Pvvv99n8dexY0fp0aNHbFG5e/duWbVqlWRmZpqL6r3Wr18vl19+uWzbtk1EROrUqSP9+/eXVq1aSSAQkE2bNsm0adNi3cguvfRS+fjjj6Vp06axxzjuuOMkKSlJFi9eLOPHjxcRkWOPPdb8i+gxxxzjeCyHws6dO/f578TERDOvOl6n8iZOnCh33HFH7ENCQkKC9OvXT9q1aydJSUmSm5srv/zyi8yfP19KSkokEomox8jNzZVLL71U1q1bJyJ7Wrkfd9xx0rlzZ/F6vbJkyRKZOXOmhEIhmT9/vlxyySXy0UcfSVpa2n5fk61bt8q1114rO3bskLZt28qxxx4r9erVk61bt8rkyZNl+/btEgwG5e6775aOHTuaf7394IMP5O233479d/fu3SUjI0Pq1q0roVBIdu/eLStWrJCFCxfu84FaZM8Yue2222T9+vUyevRoERE5+uij99kA3Ktbt26Ov8fjjz8u48aNk/j4eDnhhBOkbdu24vF4ZMWKFWrTt7otWLBAhg8fHts48fv90qtXL+ncubOkpqZKQUGBrFy5UubNmycFBQUSDodj//bCCy+UAQMGyPjx42Xx4sUioouA73Wgc2n54IMP5LHHHov9d5MmTeSkk06SRo0ayY4dO+SHH36QjRs3SnFxsTz88MNSUlIil1xyyQEf98UXX5S3335bEhMTY6+3yJ4PijNnzhQRkblz58qTTz4pDz74YKWPuyZMmzZN3nnnHfF6vXLCCSfI0UcfLT6fT7KysmT69OkiIvLNN9/IUUcdJeedd578/e9/l61bt0rr1q3l+OOPl3r16snmzZtl/PjxkpeXJ7t27ZIRI0bIJ598Ym52BIPB2KZO27ZtpVOnTtK0aVNJSkqSoqIiWbFihfz4449SUlIiixcvlmuvvVY+/PBDx3lpy5YtcuWVV8bu0ouPj5cTTzxR2rVrJ6FQSBYuXCg///yzPProo3L55ZdX6DUZPXq0jBw5MrY517ZtW+nVq5c0atRIgsGgLF26VGbMmCGhUEg++eQTyc3Nlaefflo9zpIlS+Suu+6Kje1WrVpJnz59pHHjxuL1eiUvL09Wr14t8+fP3++G+u/xwAMPyKxZsyQ5OVlOOeUUadmypRQVFcmPP/4Yuyviyy+/lGg0esA7l0REPvvsM3nttdfE7/fLgAEDpFOnTuL3+2X58uUyZcoUCYfDsnLlSrnnnnvk1VdfdXyc++67T7766qvYf3fu3Fn69esnSUlJsm7dOvn+++9l+vTph+z9sXLlSrn22muloKBARESSkpLk5JNPltatW+/z+t15550V3vB1qxkzZsT+f8+ePSUYDMqXX34pX331laxevVoKCgokPT1djj76aDn99NPlT3/6U4XvsNuyZYs89dRTIiIVuqMWQM1gYweopTp27CipqamxRfO8efPUxk5qaqrcdNNNcu6550r9+vXNx1m/fn3sltjZs2fL119/rf6SvneB/OGHH8YWpBVZNFfX84vIPh+aH330UTnnnHPMxwsGgzJ16lRzgyEYDMptt90W26y47LLL5Prrr1e3kweDQXnmmWdk1KhRsnv3brn77rv3+ZpHt27dpFu3bvLFF1/ENna6detW4Q8Sh9LEiRNj/z8+Pt68y6a6Xqe9fv31V7nnnntimzonn3yy3H///eZfeouKiuTrr7+W9PR09bNHH300tqnToEEDefHFF9VXI5YtWyb/+Mc/ZNu2bbJhwwZ56KGHDthW9bPPPhO/3y8PPPCAXHDBBfv87Oabb5Zrr71WMjMzpaSkRN5880154IEH1GPsHZ9+v19efvllOfbYY83nKioqkgkTJuxzZ1rbtm2lbdu2MmfOnNjGzlFHHVXp8TR69Gjp1KmTPPfcc44bbDVh586dcuutt8Y2dbp16yb/+te/zI2ZYDAokyZN2ufc793AWrFiRWxj50DF5Cvql19+iX2gEBG5+OKL5fbbb99nE2LEiBGxcSwi8swzz0ivXr2kU6dO+33s1157Tbp27SrPPPNMrO7ZXhMmTJARI0ZINBqVzz//XIYPHy6NGzeu8u9TVW+//bY0atRIXnzxRfX7ffPNN3LnnXeKiMg777wjmZmZsm3bNhkxYoRceuml4vF4YrlXX321XHLJJbJ582ZZtWqVTJo0Sc4880z1fIFAQK666ir585//LM2aNTOPaefOnXL33XfLrFmzZNWqVfLOO+/Itddea+Y++uijsU2dli1byssvvywtWrTYJ+fHH3+Um2++eZ9rhpOFCxfKY489JtFoVOrVqyePPPKInHjiiSpv/fr1ctNNN8mKFStkwoQJ8vnnn8u55567T86oUaNimzr/+Mc/5JprrtnnNdsrHA7L7NmzJT4+/oDHVxGbN2+WTZs2SZcuXeQ///nPPmPxlltukTFjxsjDDz8skUhExo4dK6eccooMHDhwv4/52muvSatWreS5555Tdz4tWLBArr76aikpKZFZs2ZJZmamueE8adKk2KaOz+eTBx54QL1me+eO7777znytalIkEpH77rsvtqnTuXNnef755/d5n95yyy2xjb8PP/yw2p77t3fuVlVFvia7P9u3b491uEpOTpZQKCR//etf1Vel9t5p9f3338s777wjzz33nOP7urwHH3wwtjF01113/e7jBFA1FE8GaimPx7PPVzmstpNt2rSRq666ynFTRUTkyCOPlBdffDH2of3TTz+ttmOszudftmyZiOz5EOy0qSOy54PEaaedJu3bt1c/GzduXGyh8n//938yYsQIs0ZAIBCQO++8U0455RQR2fNX9/nz5zs+p1uMGzdun8XpoEGDzA8X1f06vfDCC1JcXCwiIscff7w8++yzjrfvJyUlyZ///Gf1NaVff/01tonm9XrlhRdeMOtddOzYUV544YXY1w0mTpwov/zyi/lc5d10001qU0dkzyL3oYceiv335MmTVU5OTo5s2bJFRET69+/vuKmz9/cbOnRojXzIT0tLk1deeeWgbuqI7KnbsvfDdocOHeSNN95wrEkRCATkzDPPrJZNm4p44403YgXCTzrpJLn77rvVnSV7x/HeD7uhUEhee+21Az5248aN5eWXX1abOiIip59+ugwaNEhE9nyAnDJlSlV/lWrh8/nkhRdeMDet/vSnP0m/fv1EZM9XNKdPny6XXXaZXHbZZepDd+PGjeWGG26I/ffe2hy/lZaWJjfddNN+P/zVr19/nw0Jp2vAL7/8IlOnThWRPefsxRdfVJs6InvunnzwwQfVVyIte7/au3dD1trUEdlznXrllVdiX6l74403VM7eOTM1NVX+/ve/O25U7L3T0Pqq6e8RjUalbt268uKLL5pj8fzzz5drrrkm9t/7u8Nmr6SkJHnllVfMr7N17959n6+QWXOiiOzzHrrmmmvUpo7InnP/4osvSv369St0vqrTjBkzZNGiRSKy55y99NJL5rw8bNgwueqqqw768R1M5b9q6ff7Zfjw4bJ06VLx+/1y0kknyXXXXSfDhw+XE088MXaXzrJly+TSSy9VX1/8rc8//zx2B+Mdd9yx3/UggJrFHTtALVb+awm5ubm/+3EaNWokPXv2lJkzZ0p2draUlZXV+Fc3Kvv8e7+aU1pa+rufZ++mRkJCgllk9LeuuOKK2AeyqVOnSo8ePX73c+9V0y2ay3+dRURirc1//vnnfTY4WrduLbfccov5GNX5Om3fvj228Pf5fHLvvfdW+Pbt8saNGxdbWJ9++un7/Ypb586d5YwzzpCvv/5aRPYUIh4xYoRjfr169fbpFvZbbdq0kbZt28YKkm7ZsmWfOiDlv1Zk1ZM6WIYNG3bQF83BYFDGjBkT+++777672u5EqKqioqJ97lBzGu/lf753rH7//fex4spOLrvssv3+/LTTTottRu7dmD7UTj75ZOncubPjzwcMGCA//fSTiOzZPLnyyiv3m7tXVX+/pKQkGTBggHzyySeydetW2bBhgzRv3nyfnPJf6Tn77LP3W9PrzDPPlP/+97/y66+/OuYsX748thF9+umnH7AwcuPGjeXMM8+UMWPGyLp162TVqlVy1FFHxX6+9xoVDAYlEolUuJZNdbjkkkv223b6iiuukPfee08KCgpk6dKl8ssvv5h//NjrvPPOU69/eaeffrq8+eabIiJmAdxff/01Fk9OTt7v3Yepqaly6aWXyn/+8x/HnJpQfjz95S9/2W+toKuuuko++OADVaPr90pLSzO/zv57VbVeTfmvBubm5kpubq40atRIXn75ZenQocM+uYsXL5Z//OMfsnPnTtm6dauMHDnS8a7YrVu3yr///W8R2fNHj4NZVw2AxsYOUIuVL8i593ZiJ+FwWFatWiW//vqr5OXlSXFx8T5/gdq9e7eI7FmUbtiwoVKFJyuiqs/fvn17ycrKkvXr18szzzwjw4cPd6zDYMnJyYkVde3SpYukpqYe8N+UX9Ds/ctebbf3qzxOfD6fnHrqqXLXXXeZC9nqfp1+/vnn2Hnu1avX7y4UvWDBgtj/dypgXN6gQYNiGzvl/62lb9++B+yg1rJlS1m5cqWI7CmCWn5jp169etKgQQPZsWOH/PzzzzJq1Ci58MILD/iY1c3pboOatHjx4tiHnSOPPLJaNj+ry6JFi2Jf/2vbtu0B57SWLVtKp06dZOnSpRIOhyUrK0uOP/54x/z9/Wzv4+11oL9qHywH6oxU/sN8586dza9E7lWnTh1JS0uT3Nzc2B1b+xONRmXNmjWycuVKycnJkaKion2uAeWLqq9Zs0ZtLCxcuDD2/ytSo+Pkk0/e78bO3g0skT0fOiuiY8eOsf+/aNGifTZ2OnToIL/++quUlJTI/fffL3fdddfvqgn1exzoq1WJiYnSv3//2Nd1MjMz97uxU9WxXf5c9evX74DX6pNPPvmgb+xkZmbG/v+BXr+kpCTp37+/TJgwoVqeOyUlpVZ9dfu3G1Yej0eefvpptakjsqf+25NPPhnb9J00aZKsWbPG3Gh96KGHJD8/X5KSksyvMAM4uNjYAWqx8hdjp7/Y5Ofny+uvvy5ffvllhT9cWB1Mfq/qev6//e1vsZbub731lowePTp2O3tGRoZ06tRpvx+kf/nll9iHiJ9//tls174/ezee3K5Xr14yYsQIx79OVvfrtGrVqtj/r+xjlbe3to6IHLD2yW9zftvR57cq8tWl5OTk2P//bXFuj8cjf/vb3+TJJ5+UaDQqTzzxhLz66qvSv39/6dGjh3Tp0kXat2//u+5UqoyKtGOvbuXPb20rFF7+vJf/QL4/ezd29v77/X3APVBtif2NmUPlQGO9/B8LKvK+2Fv4fO9XLS2lpaXy7rvvyieffGJ+ZdhiXQPKzwEV6Sh3oJzydzDec889cs8991To2Pb67Vx36aWXysSJEyUUCslXX30lEydOlD59+kivXr2kS5cucswxx1S4PXhlONVK+6327dvHNnbWrFmz39wDnfsDje3y772KnKuWLVtKXFycKixfU8rKymJj0efzOXZ1K69Dhw7VtrFT2/x2XPbu3Xu/hfr79OkjXbp0kaysLIlGozJ9+nQ1Br/88stYQfYbb7zxoH9FGIDGxg5Qi5W/fdb6y+DGjRvlyiuvVG1hD6S6FlfV+fwDBw6Uhx56SJ566inJz8+XwsLCWBtXkf//L5LnnXeenHDCCerf5+Tk/K7fYa/9fXCpTd58881Y/ZJoNCo7d+6UlStXyrvvvivTp0+X2bNnyyWXXCJvvvmmWQelul+n8l8R/G2r9cooP9b3dxfBXuW/lpCfny/RaNSx5kVlvzpk1Vq45JJLpKioSF5//XUpLS2VnJwc+frrr2N3DaWmpspJJ50kw4YN2++CuSoqcndVdSs/Xmpb7YTKjpnf5h2oc9GBxk358WZ1eTsUKnPMFfk67t58p/ojubm5cvXVV8uSJUsqcZT2V24rez4PlFPdc90xxxwjzz77rDz44IOyY8cOKS0tlenTp8c+3MbFxUnv3r1l6NChcvrpp1fbRm+dOnUq9Fg1Nbatc1/Zc+X1eqVOnToVuvOrOpQ/vuTk5ArdXVnROcSNym/UiezZuDmQvn37SlZWlojor+Nt37491sW0W7ducvHFF1fTkQKoCjZ2gFoqEons8xdH66/Hd999d2xTpVmzZnLRRRdJjx495IgjjpCUlBSJj4+PLdDuueceGTt2bLUeY3U//3nnnSennnqqjB8/XmbMmCGZmZmxv5oWFxfLpEmTZNKkSdK/f3955pln9vnrc/k6KO3atdtvAWZLVb/Dfih4PB5p0KCBNGjQQPr16yePPfaYfPDBB7JlyxYZMWKEjBo1Si1o/4ivU3W55ppr5Pzzz5evv/5afvrpJ8nMzIx9RTI/P1/GjRsn48aNkyFDhsiDDz4ofn/1XmJr+o4goLIee+yx2KZOvXr15MILL5Q+ffpI8+bNJT09fZ9rwEsvvST//e9/D9qxlZ/rhg4dus/XqirC2qAdMGCAfPvttzJx4kSZNm2azJ8/P9ZdsKysTGbOnCkzZ86Ud955R55//nlp2LBhlX4HuFNBQUG1NqpISUkxi/9X1G/v4K1Icf/yOb+9e+2ZZ56RvLw8CQQC8tBDD3FtAmoJNnaAWmrZsmX71NX5bavzJUuWxApDHnHEETJ69Oj9Fvqszq9f1eTz16lTR4YNGybDhg2TaDQqq1evljlz5sjEiRNl9uzZIiIyc+ZMeeihh+SJJ56I/bvydzTVr1+/Vn2//WAZMWKEzJkzR1asWCFLliyRd955R6666qp9cqr7dSr/eFWpM1KnTh3Zvn27iOz5S/uB7k4pv9BMTU09aK10GzRoEOskFIlEZPny5fLzzz/Ld999Fyua/eWXX0qjRo3kxhtvPCjH9FsH+mt7eQe6U638X7F37txZpeOqbuXnm4oWly9/F8f+5isc2O7du+Xbb78VkT3vwQ8//HC/X187UJ241NTU2BjLyck54Cbyge7IKT839e3bV84+++z95ldUQkKCDB48OFYodsOGDTJnzhyZMmWKTJ8+XcLhsCxatEhuu+02effdd6v8fHl5eRKJRA744flgju3y83NF7oyKRCIHvIuoOpX//QsLCyUYDB7wrp2q3uFVXm5urjz99NPV9njNmjWr0sZO69atxe/3x2qSVeR6ub+cvV0ig8GgDBkypELHsGnTpn2+rl3+7mMA1YMtVqCW+vjjj2P/PyUlRdUv2XuLrMiev0YeaCG3tzBsdTkYz+/xeKRNmzZy4YUXyhtvvCFPPfVUbLExfvz4fT7MlS+cWpH214ejQCCwT3eo//3vf2qzpbpfp/K1C6rSDax8W+OKdOApn1O+0OfB5PV6pVOnTnLZZZfJBx98sE8XlNGjRx+yr+eUv5PtQLVfDlQTpfxdDrWtwHj582517rGUz6tI3RI4y87Ojo3xU0899YA1iVasWLHfn5c/nwfKrUjOwbomNG/eXM4991x54YUX5K233op9xW3BggXV0i2ttLT0gDVzRPb9HWt6bFf2XK1du/ag1dcR2fO1uL01X/Y2djiQvU0FDkeBQGCfWkhbt2494L/Zu3kjUrWvWQM4eLhjB6iFsrOzZdy4cbH/vvjii9Vfmw5Uf6e8ZcuWyfr16w/4vOW/OhIOh/fbzrUmnv9ABg0aJC+99JKsXr1aIpGIrF27Vrp06SIiIk2aNJHWrVvL6tWrZdeuXfLTTz9Jv379qvR8v3093OC4446THj16yPz586WgoED+97//ye233x77eXW/Tn369BGv1yuRSETmzp0rmzZtOuAHPEv37t1l3rx5IiIyceLEA3bGKl/ksnv37pV+vppw6aWXyssvvyzFxcWSm5sru3bt2ucW+PLjqSY3fcrXwlm7du1+u+PMmjVrv491zDHHSEpKihQUFMj69etl/vz5v7szVvk5rDreT8ccc0zsr9ArV66U1atX77fA9Pr162MftH0+X5WKfaNy14AdO3YcsHtd165dY3eBfv/99wfsjDV16tT9/vzYY4+VF198UUT2zBc33nhjtX898re6d+8uvXv3lpkzZ4rIniLGFS3svT9TpkzZb9e3kpKS2HOK2F8jq07lH/+nn36S4uLi/XbG+v7772v0eCzdunWLbVxPnjx5v+ehuLh4n9evqo444ogq/aGjJgwcODC2sT179my5+uqr95v/888/x/7/b+fK/v37V+g6v3PnztjrmpiYuM91vbbVbAMOB9yxA9Qyy5Ytk5tvvlmCwaCI7CkSe9lll6m88l+R2F/hykgkIk899VSFnrv8re8H+mpDTTx/Zf22AORf/vKX2P9/4oknKtWpxvrKSvnbzSv6VY/a4Nprr439/9GjR8e+4rRXdb5ODRo0iLWSDYfD8sgjj/yuTYvBgwfH7saaMGHCfsfU8uXLY18BEZEK3wpe08Lh8D5fl/htJ5LKvL+qonzHsEmTJjnm5efnyzvvvLPfx/L7/XL++efH/vuxxx4zC99WRHX//klJSft8UHjuuef2m/+f//wnNn5POeUUvopVRRW9Bojsee0PdMfGWWedFfv/X3/99X7vUhk/fvwB78LY26lKZE+h/9dff32/+eUd6CuMFVXZwu1O3nvvvf2+Z956663YV906duy4383c6tCmTZvYPFNYWChvv/22Y25+fr689957NXo8lvJfvfvggw/2+1XSN998U7UEP9ycddZZsY3NOXPm7NMO/rd+/vnnWEt7v98vJ5100j4/v+qqq+TRRx894P/2tkwX2bOWLf+z/W1UAvh92NgBaonNmzfLs88+K3/9619jxRjj4+Pl+eefN/8aWv6v5uPGjZMffvhB5eTl5ckdd9whs2fPrtB3qsvfvl3+rzWW6nz+TZs2yaWXXirjx4933GSIRqPy/vvvy+rVq0VkzyLhtwuD888/P/ZXuZUrV8rll1++31vwS0pKZOLEiXL55ZebH0zKvx7z5s2r0IbFxo0bJSMjI/a/ynYMqw7HHnts7C+qJSUl8sYbb+zz8+p+na6//vrYX2tnzJght9xyi2P3k6KiIhk9erS6fb9NmzZyxhlniMieDZIbbrjB/HrN8uXL5R//+EesVsBpp51WoXa7VTF37lwZPny4TJs2Lbbh+luhUEief/752IeDDh06qBohLVq0iN0Fl52dXWOd2E4++eTY84wfP14mT56scrZv3y7XX3/9PrfbO7niiitidx4tW7ZM/v73vzvegVdWVibffvutzJkzR/2s/PvJ+vnvcdVVV8XuBJo8ebI88cQT6hwFg0H597//Heuw5/f7D/jXahxYly5dYh8Uf/75532+PrxXaWmpPP744zJ27NgDXoM6dOggJ554oojsGUc33HDDPi3Q9/rpp5/kgQceqNA17Y477ogd48svvyz//ve/91vrZ/PmzfLGG2/INddco3523nnnyZgxY/a7wTJx4kT56aefRGTPOOvatavKueeee2LXh4q0YPd4PLJr1y75xz/+Yc6rn3/+ubz66qux/7aOvSaUr9/26quvyueff65ydu3aJTfccIPs2LGjQufriy++iL02gwYNqtLxHX/88dK5c2cR2bMWuf7662Nrq/LGjBkjr7322kGr03aoNG/eXC666CIR2bOeuu2228yvny1evFjuuOOO2H+fe+650qRJk4N2nAB+P76KBRwk48ePl8WLF8f+OxgMSn5+vuzcuVMWLVokq1ev3uevhM2aNZORI0c63lLdtm1bOemkk2Tq1KkSDofl+uuvl759+0rnzp0lOTlZ1q1bJ1OnTpW8vDxp27attG7dOvbBxsmJJ54o33zzjYiIPPjggzJ37lxp0aJFbGGckpIS66JUnc8fjUZlwYIFsmDBAklISJCMjAxp166d1KtXTyKRiOzYsUNmzpy5zybJ9ddfr76eFggE5Pnnn5fLL79cNm3aJEuXLpXzzz9funTpIl26dJH69etLMBiUnJwcWbFihSxatGi/H65btmwpLVu2lLVr18rKlSvlsssuk+OPP36fO3n69etXK//yNHz48NgC/9NPP5Urrrgitjir7tepTZs28vDDD8s///lPCYVCMmXKFJk1a5b069dP2rVrJ0lJSZKbmyu//PKLzJs3T0pLS+XNN99Uj3PPPffI4sWLZd26dbJt2za5+OKLpX///tK5c2fxeDyydOlSmTFjRmxTp3nz5vLAAw/UwKu3r2g0KjNmzJAZM2ZIamqqZGRkyFFHHSV169aVsrIy2bZtm0ybNi32ocvj8ZiFk+Pj46VPnz7y448/Sk5Ojvz1r3+VgQMHSnp6euxDxd4PNVXRuHFjOe+88+STTz6RSCQiN998sxx//PGxry2uWrVKpk2bJsXFxXL11VfLa6+9tt/Hq1+/vjz11FMyfPhwKS4ulgULFsg555wjvXv3ls6dO8e+qrVq1SqZO3euFBQUyCOPPKIKYx5//PGxr+2NHj1adu/eLUcfffQ+dzYNGTJEtebdn/bt28uIESPkscceExGRUaNGyZQpU2TAgAHSsGFD2blzp0ydOnWfuePWW2+tlq/H/NHtLXT/wQcfiIjIyJEj5csvv5Ru3bpJenq6bNq0SX744QfZsWOHNGjQQE466aQDdgq677775MILL5Rdu3bJmjVr5LzzzpMBAwZIu3btJBQKSWZmZuyPDpdffrm89dZbIuJc6LV79+5y//33y0MPPSThcFjeffdd+eyzz6Rv377Spk0bSU5OlsLCQtm6dassWbIkVguufO2wvVasWCEPPvigjBw5Uo455hjp0KGD1K9fX7xer+zcuVPmzJmzTy25Sy+9tFpqkzRt2lQ6d+4skyZNksGDB8spp5wiLVu2lKKiIvnpp5/2WVecffbZcuqpp1b5OSvi9NNPlzPPPFO+/fZbCYfDcv/998vHH38s/fr1k6SkJFm3bp1MmTJF8vPzZdCgQZKdnS2bNm06KMcmsqcG2iOPPCKXXnqpFBYWyqJFi2Tw4MEycOBAadWqlRQVFcmPP/4oS5YskUAgIBdccIF8+OGHB+34DoUbbrhBFi5cKNnZ2bJt2za56KKL5IQTTojdfbV48WKZMWNG7Kuye+dXAO7Axg5wkIwePbpCeQ0bNpShQ4fKlVdeecAPOCNHjpRrrrkmtrCbPXt2rHPUXp06dZJnnnlGXnnllQM+96BBg+STTz6RefPmSWFhofoLbLNmzfZpj11dz+/z+WIf+EpKSmTOnDmOf9GPj4+XG2+8UYYNG2b+vGnTpvLxxx/Lgw8+GLtTISsra59iz7/VqFEjx69l3HHHHXLTTTfFPlT89vblRx55pFZu7Bx33HHSpUsXycrKkrKyMnn99dflvvvui/28ul+nM844Q9LT0+W+++6TLVu2SElJiUydOtWxDoZV6yItLU3effddGTFihMydO1fC4bBMmzZNpk2bpnJ79OghTz/99AFre1SH8sean58vs2bNcqxNk5qaKvfdd1/szoPfuuWWW2ThwoVSVFQkK1asUHcuDR8+vFpqv4wYMULWrVsXez/u3Zgq75JLLpHrr7/+gBs7IiI9e/aUd999V+666y5ZtWqVhEIh+fHHH+XHH380863z26RJE7nyyivl9ddfl2g0KhMmTNinVpLInnbSldnYEdnz1cKEhITY1wo3bdpkfkBLTEyU22+/Xf785z9X6vHh7LbbbpP169fL9OnTRWTPnWi/rS3SvHlzeeaZZypUZ6VJkybyxhtvyA033CAbN26U0tJSNU78fr/ccccd0rp169jGzm+/9ljeueeeK82aNZMHHnhANm7cKAUFBTJ58mTzTra9rI2dvfWcnK4Fe/l8Prn00kvlpptuOuDvW1EPP/ywFBQUyE8//SRjx441cwYPHiwPP/xwtT1nRTz66KMiIrGvxi5evHifjSaRPfVYHnzwQRk6dKiI7P9clf/jVnW00G7fvr288sorcsstt8jOnTulqKhon/qFInvmhZEjR1bqK8lulZSUJK+88orce++9MnXqVAmFQvL999+b783jjz9ennjiiX2K8QOo3djYAQ6RxMRESUlJkdTUVGnZsqV06tRJunbtKn379t1v0eLy0tLS5L333pNPP/1Uvv32W1m5cqWUlJTEvqY0aNAgGTJkyAHbfO7l9/vl9ddfl9GjR8vkyZNl1apVkpeXF7tDoqaev0mTJjJlyhSZOXOmzJ8/X5YvXy6bNm2SvLw88Xg8kpqaKq1bt5a+fftW6Lbg9PR0efbZZ2X58uXy1Vdfybx582Tjxo2Sl5cnfr9f0tLSpGXLlnLMMcdI//79pVevXo6LyBNPPFE+/PBD+eCDDyQzMzO2aVFdNRhq0vDhw2X48OEiIvLZZ5/J3/72NzniiCNiP6/O10lkz91L33zzjXz11VcydepUWbp0qezevVtCoZCkpaVJq1atpGfPnjJo0CDHGhD169eXt956S3744Qf59ttvJTMzM9bZq169etKlSxc544wz5JRTTqnGV2r/unfvLhMmTJAZM2ZIZmam/PLLL7J582YpLCwUr9cr6enpctRRR0n//v1lyJAh+9Qe+a1OnTrJp59+KqNGjZI5c+bIpk2bpKioqNrHU1JSkrz66qvyxRdfyFdffSW//PKLFBcXS4MGDaRr164ybNiwSrea7dixo3z22WcyYcIEmTJlimRnZ8vOnTslGAxKamqqHHnkkdK9e3c59dRTHe80vPHGG+WYY46RL7/8UpYsWSK7d+/+3TV7ytt7Z8fo0aNl5syZsn79esnLy4sdV//+/WXYsGH7FLNG1cXFxclLL70kX331lYwdO1aWLl0qhYWFkp6eLi1atJCBAwfKeeedJykpKRUuoNuuXTv5/PPP5cMPP5SJEyfK2rVrJRgMSqNGjaR3795y8cUXS4cOHfapH3Wg1uh9+/aVr776SiZOnCjTpk2T7Oxs2bVrlxQVFUliYqI0atRIjjrqKOnZs6eceOKJcuSRR6rHmDZtmsyaNUvmzp0rS5culY0bN0pubq5Eo1FJSUmRFi1aSK9evWTIkCHVvtmfmpoqr776qowbN06++uorWbVqleTk5EjdunWlS5cucsEFF0j//v2r9TkrIhAIyJNPPimDBw+WMWPGSFZWluTk5Eh6erq0bdtWBg8eLGeddZZ4vd7YV+D2d67K1006/fTTq+UYu3fvLmPHjpX3339fJk+eHPsaaePGjaV///5y8cUXS4sWLeSLL76oluer7dLS0uSFF16QmTNnytdffy2ZmZmxu03r168v3bt3l7PPPluOO+64Q3ykACrLk52dXfs/nQAAAAD/z2uvvSYvvPCCiOz5CpfTXZxutffOvWbNmsl33313iI+marZu3Rr7iliXLl3k/fffN/MuuugiWbx4sSQmJsr48eNpsw0AlUDxZAAAALhK+a9oHn300YfwSHAg5c/V3oLGv1VYWCjLli0TkT0F/tnUAYDKYWMHAAAArjFt2rRYO+amTZvGir+i9iksLJT//e9/sf92+hrt/PnzJRwOS1xcnFxxxRUH6/AA4LDBxg4AAABqhSeffHK/RdwnT54sd955Z+y/L7744moptIvK+/rrr+Xzzz93rJO1adMmGT58eKwrXdu2baVfv35m7ty5c0VkT7HrRo0a1cwBA8BhjBo7AAAAqBUGDx4sa9askZYtW0r37t2lWbNm4vf7Zfv27aqleJcuXeSdd94xu7C5nRtq7Lzxxhvy3HPPSUpKivTq1Uvatm0bayG/bNky+emnn2LNF+Lj4+Wdd97ha3MAUEMOvyshAADAITJ+/HjZsmXL7/73KSkpcsEFF1TjEbnT2rVrZe3atY4/P/HEE+WJJ544LDd13KagoECmTp0qU6dONX/esGFDeeqpp9jUAYAaxNUQAACgmnz88cexr5X8Hs2aNftDb+w899xzMmXKFFmwYIFs2rRJdu3aJXl5eZKYmCgNGzaU7t27y1lnnSW9e/c+1If6h3fhhRdK48aN5aeffpJVq1bJrl27ZPfu3SIikp6eLh06dJDjjz9ehg4dKgkJCYf4aAHg8MbGDgAAAGqFNm3aSJs2bQ71YRxy2dnZh/oQDig1NVUGDx4sgwcPPtSHAgB/eNTYAQAAAAAAcCnaCAAAAAAAALgUGzsAAAAAAAAuxcYOAAAAAACAS7GxAwAAAAAA4FJs7AAAAAAAALgUGzsAAAAAAAAuxcYOAAAAAACAS7GxAwAAAAAA4FJs7AAAAAAAALgUGzsAAAAAAAAuxcYOAAAAAACAS7GxAwAAAAAA4FJs7AAAAAAAALgUGzsAAAAAAAAuxcYOAAAAAACAS7GxAwAAAAAA4FJs7AAAAAAAALgUGzsAAAAAAAAuxcYOAAAAAACAS7GxAwAAAAAA4FJs7AAAAAAAALgUGzsAAAAAAAAuxcYOAAAAAACAS7GxAwAAAAAA4FJs7AAAAAAAALgUGzsAAAAAAAAuxcYOAAAAAACAS7GxAwAAAAAA4FJs7AAAAAAAALgUGzsAAAAAAAAuxcYOAAAAAACAS7GxAwAAAAAA4FJs7AAAAAAAALgUGzsAAAAAAAAuxcYOAAAAAACAS7GxAwAAAAAA4FJs7AAAAAAAALgUGzsAAAAAAAAuxcYOAAAAAACAS7GxAwAAAAAA4FL+Q30AAAAAAAAATjIyMiqcm52dXYNHUjtxxw4AAAAAAIBLsbEDAAAAAADgUmzsAAAAAAAAuBQbOwAAAAAAAC7Fxg4AAAAAAIBL0RULAAAAAAAccj179jTjcx/vo2K97vq5pg/HNbhjBwAAAAAAwKXY2AEAAAAAAHApNnYAAAAAAABcio0dAAAAAAAAl6J4MgAAtVS3C/ur2D9uHmjmfj95uop9cO/31X5MAACUl5GRoWIeh9yoEcvOzq7W44F7dO/dXcWWPHu8mRsKB1UsKcFX7cfkVtyxAwAAAAAA4FJs7AAAAAAAALgUGzsAAAAAAAAuxcYOAAAAAACAS7GxAwAAAAAA4FJ0xQJEJKOLruZfqXL+jowHidoPYHUE6GJ0GRARyaJ7AFDrDbjzDDPe68zmKpa+pcTMbd5K506bMcXMzThlgIo9PfMSM9cfbaxiW8pCZu5jpzxrxnHwjfvTehXzOPyJrjSorzVRh+taNKxzkxLsB46Gdezsb460HxiAa1mdrgJ++6PjOUPOUTGP03wTqdhzOaGDljv16NXVjH9yczsVi4+3HyNUqLtihcUYUH9Q3LEDAAAAAADgUmzsAAAAAAAAuBQbOwAAAAAAAC7Fxg4AAAAAAIBLebKzsytVCrY2O+nKuSrm9wTsZOO3DjnUXvJ7jQKEDsdgFTGMhO0HnvJmD4dHQU1xLM5mFHjzOFSkjEaM8+lUaNnaO7WqxlUSheNqh0HX60KmIWt8iJiThs9n54bDetx4PPas4/fp3GDYqG4qIpNfbm0fG6rshklXqdgRcT4zN7TVKFTbzC5ImdJKn9+ln8aZuR0uKFOxdevrm7nbV/yiYuktm5q5jSL6GG4/6SkzF9VjzGlrzHhSkj73xWX23BA1CvV7HC5WUWOC6vOn9mbu4u9Xq1h+QaGZ++eJbcw4gNrDaW08ePBgFfM4VES2CrN7nKq1G/ONU6Flj7HG+eKzL8xc1sa1R88+3VXs/evsNWinI+upWFJygplbVFisYl1vn2PmBgJ6UM2ZvdDMPVxwxw4AAAAAAIBLsbEDAAAAAADgUmzsAAAAAAAAuBQbOwAAAAAAAC7Fxg4AAAAAAIBLubIr1kl/m2/GIwktVSzea+9dlRWX6NykZDM3LLpzjc/oNiEiEonqbjQ+f6J9DPm6K8n3b+oq4vh9rCr/TjuZdjV/O7dSPa2MxzWarO05BuufO3QJiFTiXUuXgKo77YZ1ZjyQ0lbFwiH75KQl6A5JhVF7RBpNIKS4KGgfg9cYJHH245buXKZik19pZebCdv2kK814Q58+vzleu3vVL9/q89PqijQztyivuYo1brbdzI2UHKFiucFfzdxoge6AtfBz3VlSRKT3wDoq1sJjd/y64+SnzTicjTl1jYqlJMabuYWhUhULRBwuFEYHxqg1uYhItCykYj6/3amty6CjVGz5DxvN3NO+bGwfGw6qMx/U16XSPHs109zo5hf22x1mvT499tbm6q41IiI+Y/ET30SPOxGR8XfYHXFQddba+NyhQ81cr9ERMeSwkg4Yl4Sow2cwr7GSLrWXOPazee1x88UXX6gYa+Ca1adPNzO+ftx9KlZSbJ836yTnr55spkbC+jHS2gwycwN+Y601bKSZ+/Osw6NbFnfsAAAAAAAAuBQbOwAAAAAAAC7Fxg4AAAAAAIBLsbEDAAAAAADgUrW+ePIpV+pCyfF1dMFSERGP6EJ/oYhdqClqFH70lNmVu+KSklSstLTIzBWfLjAXDjkUPQ2tVbHv/tvVflw4sgrBiYi5bdm1o13MdOGSMh10qEdpFVV2ehN5jSKEkTJdYNvx6ez6pNKtgy6s+e7HduFTVM6p161Rsbi0TmZuJKwLAJYZMRExC5kmBey99WBYj6ioQyXtkPF8AauKoYiU5SxVse9f1YVQsccj31+jYluNwn0iIjMnrFKxlx89zcx9ZVGeipUVtrEPwrtS5+bbuU1b66LKG9c1MnMTknRR5UhZezP3ryfq4uHTp+rfQUQkEtHj8ZlTnzdzscenp67WwQS7eHJcWM8DUYeS/iVhfV2Lcyh6HUrV1yVvvj0/hYxz7LWKuIuIRPTjRiIOFzbDhZNbVTgXIn+6QzcGEREJxR+jYnEBuzh2iVHFtm2CPRZygnrNuyNiF0/2Ggsaj88eu4H4RSr21d16LQ5nTmvjIeeco2JxDmuR4lK9FvF47TVsxCji7nG4fSAU1NdRr88ej9ZDRBxW3QnGmvuzz740cymqXHkZ3fSYWv3FY2ZuvF+PhzpNdTMIEZFdG3Tx/XDEXmME125WMc8R9pooPk7PTw69j6Tl4DtVzI1jhDt2AAAAAAAAXIqNHQAAAAAAAJdiYwcAAAAAAMCl2NgBAAAAAABwKTZ2AAAAAAAAXMouQf47nH6Trl4dzNfdPERE4lJ1541QgZ0bLFiuYr7kDmZuxHiM/GKj25GIeI0trXi/3akhIeVoHXPoWFFSrKvFh/KNjhcismP+34zoAjMXzpyqllsdARYutceDVbk/wWfve5aGdEn1ji3qm7ltWx2pYp2PTDRz3/s2S8U255WauZkOv8cfyRl3JKhYKG+ZmRtI03NGKF/PLSIinkJ9HqJpHc3c4hzduSMhXlfhFxHxGO3UgkGH7jBJuvOfJ2KX8o9P0I9Rtlt3vxIR2fnjeUZ0oX0MkKSEFBVLduiK1fn041Xs0x/t7on1UnRniKb1tpm5ObvbqVh80w1mbsHWJirWrYHuNiEiUhjVXXK8je33z6dzdOeaDI89B30zxXhfnWqm4v+Ji9PXmmDIoWOe0dKj2KGjZ4LH6NLpMOX4C3THyGDYflzx6KWj1SFQRCTJ6FLjd+h+Ezaeb8ygNWbu+d+1so/tD+TYuwtUrGFKdzM3MU6f3zKju5mISEpAj5sVdrMtSaujx6k/z+4+6ovTY9cbtbupbc93GHswZXTR690hQ3T3KxERMTpsBh1e7okTxqpY1OjMJyIS9enPRX6fvW4pNbpi1fEnm7n5kqtiZ50+1My1uoQOHWrnWq9Zdpb7uiAdTPWM5W1yvH2O05vrTlXb19lrUzHWVUkB+3O2p71+XK/D9afEozv0Bbz29aehQ+c/tzk8fgsAAAAAAIA/IDZ2AAAAAAAAXIqNHQAAAAAAAJdiYwcAAAAAAMClqq148oTn6qjYoJt0kWQRkWDhKhWLFtqFTHOWPKZir/3JLm41c75RpDjervjWIEUXZYomJJm5H/6sKz8mhOzCkfERHb/+T/PN3Pvm2wWnUDlWATQnyUl2cbbzB3ZVsSUbdEFwEZGbzz9BxXIK7XG2eftWFfvTgGPN3N49+6jYk6MmmLnz5usCZE6vw+FaDG78k/o1/9Od9pwTytdFYcP5uvCxiMjOzHtU7Mfrtpi5RzZNU7G8Eru4bkFQv9/rxdtT8CWv68LQberahbS9fr0/f/2ffzRze89gzrGc8sjlZrwwoisFnnRGMzM3PaDPe6E0NXO7Nda5G3fZf2e5tJUeY7lFqWZunWQ9v+0I2ccb6aZ/t8kzOpm5/vo/qNj2ArtI+HGDdKHxu6ZeZ+Y+ftLLZvyP5tFNZ6vYm49cbeYGPLpIZDCs5wsREV+cUeQ4qotJiogEInp+iYi9JvJG9eMWRezHve6hN1Rs5nxdoP5wdu7zLVWsrGSFmZuQ1lnFdq23m2qE8jJVrDiuh5lbsG6OipXG2eOmjvHWjo+zC5kmFbZQMV+SXTw5L6jnuKKcxWZu0fQTjSiF/h2Zl3a7yHHEaMSQnW1/Bssc84KKtemgx7OISKlRjHvDyrVm7pJNurFAi9b1zNywUVT5oafeM3MjZfoYkpPtecx+zbA/UaNGcWFuvplbWvqrinkC9rnwJehJJxR0aH4ULFSxAn+6mVtWoquCx0V00XkREa9RVNyNuGMHAAAAAADApdjYAQAAAAAAcCk2dgAAAAAAAFyKjR0AAAAAAACXYmMHAAAAAADApaqtK5bJY5ccjxTojj5TP7rIzM3IGKliX87QXbVERNKNDjMp9e0q6zkFulJ2UZmOiYj0af+NflwxSoOLiHh8KrRxV6KZGnV6DFRKZbo+9emhu1+JiKzcojuCXDZskJmbnqTP8W5d4F9ERFbv1rm/brYryG8v0+P3vFN1By4RkXnzdJen7OyKdxqpm17XjO/O2V3hx6iNog5dIEJGB6wp7w02czMy7laxdm3bmLl1jS54pQG7kn9jrx4LAa8950y4faZ+3KA9XxR79f58/Th73gscHkX/q104ZHeHGXJGExXbVmq/fxslh1Us3mNfqzJ+baViT/Q9w8xNrKvP+9Z1uiuEiMjaVXoiOr6j3RUrrkx3oRjQ2v5bz1MlDVVsU8g+Bo/x96Lxr0w1cx8/yQz/4RTpoSMbd9hzw3Pv6vXIlhy7K2M0bDyGnoZEROTpWy5QsdtefN/MDRbrA05OtCeXQvvX+EP5/EbdGej813T3KxGRHUYHLG+hfW2f86JeH/Tpq7voiYi89rfeKpYWsq/32Wt3qli9hm3N3GfmjlCxBqXrzNyGZTkqdtVJX5q5lxldJFE5UYeXcNzYsSpWx6EjUP+L/qlixUa3SBERv1dfqzweu0toOGTkGmsZEZGQ8XxJDsdbVJqrYl179TRzUXm7y/TrHvXa66e4sL4uFcfZ69g6YbuTnsUf1defOLHXI4UJej2e6rG3PnYav5sbcccOAAAAAACAS7GxAwAAAAAA4FJs7AAAAAAAALgUGzsAAAAAAAAuVaPFk50KdzkVSq6o72YvMePNG9ZXsY27csxcq85fJGIfcDiqiz2VOdQ9jhqvaMChyFfNVq6GxR9nV4685uy+KlY/SRdhExGpL3qcNGjb3Mzt1kLHSv32eEgryFGxhCR7TCb7qzZ6SoJ2gV+3izpMOk6FkiuqTsCuALqjWMcXfveFmVtqnPYTTznLzPV79flNTLKLsE8ZN1rFwg5FpCXKXr7ljLNamfFoUBcXLSuwC44G41NV7Nf3Fpu5D9x2mopt37DdzK27VY9pr98ukNqxvS4CH/XoQqgiIjmLdbHBFj573CycvFLFGra2izJ7jOtdv8HHmLlwdvdLn5rx0tJiFbtryXwzN80oXHr30ceaubc9M0rFwmH7OjNiyWz9XGLPkfd17mPG/+hycvV7VUQkkr9QxX549vgKP244aBfS3rVbn5+1RtFuEZHElBQVW789x8w9r+P9KuaNs4upBqL62DYX2muR5PoOVb7/4DIyMsz4OecMUbGyUnssWLP83G+eNHN7Xajj4XT72AJxen0R2mqvowuXfK1i61euMHMfGjNBxY5Jsa9Vdz83UcWKy+wxNsR4zbp06WLmZmVVvDnJ4cz6OFs3Xa99RES8YT3HTRv/kZlrNT45+TRd0F9EJF9fAiUuYM8XMyd+p5/LY6+DveHDo2A7q3wAAAAAAACXYmMHAAAAAADApdjYAQAAAAAAcCk2dgAAAAAAAFyKjR0AAAAAAACXqtHGTBOesytlW5wqvXc+Qne6atu6of0gkYAKrZlldwQJGZW9e7dpaub276A7BGwvSzZzR03KVDGP1660rftVoDpdM2yQij1+8zlm7jEt9fmcMG6Wmev36+4SF1xhd3rL3xynYoUO4yF7drZ+rmi+mVsScWhnUUHxAX1cIiLFojvluMn4Jyve7ctpztk++QkVKwo5dMwTPedc8LzuaiIisuaDv6mYLxBv5pYYT+cL6OcSEbn4P5kqtvjjq8xcv+hciPyzz11m/PpJV6pYgs++rs2882cV++rNa8zcdg31Y0x6f7KZW1KUo2J/uuFiM3e30bArMWJ3D1k/c56KLSnUzyUiEvQb841DB7qo0UXytct0x6U/Iqc558O7dPePuk2bmLln3fSiinnrtzFzi4r1+ifBZ88jo+4bpmJXPPSFmRtX7ygVy8/fZuY69Of7w4vfbbR2EZHJleiAdexxvVXsprPsrj6bt2xQsXCZ3TWpME4fW2KjI83cTdv1YzRMsR939w49HosS7O5gRRFWyJWj5+MJE3U3KRGR1WP/rWJJKQ3MXJ/x9/9Qvv25qqy5bgPbsK49FhaH9Bq0LNfOfedD3dnoofv0tVlEJE50d6TFWfaarHWLlirm1Fn1j8bpWpXz3WMq5i+0P6eUil4LXPbyMjN3/n/PV7Fo0D4XJcbWRYLH7op11UuZKvbT//S1TkQkKnoN50bcsQMAAAAAAOBSbOwAAAAAAAC4FBs7AAAAAAAALsXGDgAAAAAAgEvVaPHk6tC3jS5cXOpQDDIpxYj77VxvVMcHHFPPzI2EdLHcxvqwRESkbfN0FduwKcdORo3aXaQLAMal2CeuIKSLgz4+YaWZ++gN56nY2l/twpENk3Qx32CxXSDuiW8Wqdg/rznTzC2LLDHjFeX1UtLSsapnRL/fyzx2sfQyjx43m394xsxNLtXnfVfILqDp9SSqWDhoFz1d8PlDKtYkzak4NgUpK6PeFv3+zatvFy4PeHShQKvwpIjIzt0FKvbn/35p5k556joVy9m1y8wtK9XjyZNoz3lDXv5KP9e/rzVzI+/ouUmOam7m1tui3z/YvyZH6kLJu3blmrl1jfP5r+Z1zFxfSBdnb+YwN3g9ekKM99uFbb858WgVW7piq5lLKVLbN//aUeXH8ET0q9soTl87RES8qbq46G3f2c0SXh2mi2OXFueZuVsjeo5slGiPsUdn63nvjYv1c4mIRCctNuNwYLx/nSQnJajYrjy7IPKSGS+p2LHn3GzmhvOKVGzSqNfN3I1b9HqoUwe78PfIqy5RsWPa6zlIRCQ/oucsx1eGZXClWZ+H8+zLhHgS9Tib8/ndZm5KmT4ZBaX2WsLqHRN0WNpmjX9ExQIF9uMGjWLPbsQdOwAAAAAAAC7Fxg4AAAAAAIBLsbEDAAAAAADgUmzsAAAAAAAAuBQbOwAAAAAAAC7lyc7OPuhNCzIyMlQsurydmRs4eoWKDT+xlZlbVKp/lWLdCEBERFJ9ek8rZHRGEhHxGttfUaOrlohIiUc/YaLDK/z6tF9VLDs7205GpZ11ejcV27TDrnqe9e6tKlYQsMusJxjV2+Oj9kmOGD1BvD57UO4I5qtYUtTuLtHr0pdVLLMSYyctLd2M5+bmVPgx3M6ah5zsnnKfGQ94dCe9grDdIsBv7KNHvPa4STHiRcV2Jf9AnVQV81mTloikHXuTimVmZ5m5ELnunb+o2BH17Ll/y5d6Pl+ea19Tlj6nO0NsLbHnhYZxes4KO4wbn9HnMuzQRTK3WHdZa5hsH2+LSx5QsfYZdjebtIy6Kvafy14zcw9nlVnneDrodc7n/7razPV79Tkq9NjXiRSjC57RSGnPMQT0eIgaHQJFRPKMtVaKx8499553VCyLdU6lOF2r/nmNfq899abdverqk5qqWOu6DczcsOiORZvy7Q5akbCxxnHohda8TiMVK/HYnSHv+2SZiv3R1sfWeR8yZIiZ++WXuquiU/dTKzzhY3uObnZ0CxXLD+hueyIizeN13FNkr0XK0nQ8kGDPY8uNdWlGqn0MjRoca8YtYWMyHDRokJn73XffqdjhPB4rsz7e8NnDZjw+Ti9IvGX2GsPq2Or12+PBE6p4d9ckrz6GUMB+XzQ8S6/LFrrwHHPHDgAAAAAAgEuxsQMAAAAAAOBSbOwAAAAAAAC4FBs7AAAAAAAALmWUWqx5VsEpT4eKF2qKS7ALs3n9RuHiiF0sV4zibnFGQWURkf9NWlPRQ5O/DWylYj4/+2eHwtcTMlWsR1d7nBXm62KBHru+lhh1I6XIoSJl0HwQu3hYglcXgws6DF+nUV1RTr/bH4lT4buMLnqMTJv4vZl77Bm60J7HoXBk2HjN4/x2AcCmJ9nFmi2/TLpfH4PD+Q07HBtsL1/2gYpd9fqFZm58v84qtuubOWZu0DgP9eLtotvWbBEI2JfuaFhfA/0Ohd3rxBWpWKlRGF5EpMSnixUmdqxj5v4RCyVbqrrOCToULvaIPscJUTs3ZBXvdyisfs5tuiC/k8//daVxXLr4soi10kJlOV6rjAKnTnN/64YJKhYN5Zq51gg5It0uZFoWss6wfdY9nhwVS2AtctBZy9X81fPM3N2pTVQsHNXrZRGRVaJPZihor3dPHnzufo5wX9PHj1UxXVq78nwOxaVRuTnHYeqXUJleN8T57Nc80diOsJrPiIg0v/BRI2o/7sbP9Fo6VGyPyap+rqot2HEAAAAAAABwKTZ2AAAAAAAAXIqNHQAAAAAAAJdiYwcAAAAAAMCl2NgBAAAAAABwqUPSFctSmQrcXoey/x6P7gwRslrRiEic3/jVHQqk//30VioWNTpT7PmBruLt9x8utbbdL+pwKqzuU0UFxWZuSrLdychywrWvqNiPrw03c0NGd4mo1y43X9Va/jk5OVV8hD+YqP2Kz/puvIqdfrbd7SHo2KFP+3Wi7nTl9zuMBY/en585aVyFnwuV88bfPzbj/3hDdwo6Y0AnM9fr1x1mSkvtrlipSfq8O3Uaanja3Sq2fcJIM9cfp+exsoh9XTvzjI4qNu6bxfZBXOVwcKiWdU5xmR4n0ah93pLijE4jDh0cxz6qT1zYaaAZ8aDYnblQc6zxZHatEZFIRHeCKY3af9tNMlpVOa057h69WsWeuLiNmWsN6bDjIMPBFA7Z79+8pV+r2LyZ083chm2O1kGHgfPva85SsbT0ZDN32dRRKhbYvcR+4CpKSNDd47B/ZQ7te73GyS8J29sOyYGKf6pZPvpBFUty6D5tddYKxR3ecw537AAAAAAAALgUGzsAAAAAAAAuxcYOAAAAAACAS7GxAwAAAAAA4FK1pnhyZTjUFBR/QBcQrJNgF7rdWaSLPcVHdXG5Paz9L7v4UolXv6QJYYoK1nYR460Ql2gXUWuapuNb8wrN3J//e7XxZPY4u/Se0SrmS6tj5lqlypyKJppvF4f3UFaWXdzzD8V4azvNOQG//sHcBQvM3N79eurHDdkFc+MD1tRszzlbd+9QsYxjOpi54rGLHqLqXrrqfyrW61z7PRm9SMcCxvVLRKQ4qMeY12v/TWbjhCdUrMzMFAlGElUsHC4xc7/+eqmKZX7HXFGTfMbcIiLi8+px4jUKqIuI5BYVqVhqkn1dC1Xi2CJRPaq8cXo8ofbwGXNGksN1rbBUjzGnkrKPnt9OxUIOk862SLoOBpxmKFSG11u1lhobls0y40lxetzUT7Zni9Dm2SoWjtjn1xpPpfYyWvJLdXaSz/5905P02imnqOKzm1MTAzjz++ytBK/H+KTi8Hk4WLBFxUojFd+iKHCIpybqx0hJrWcnV7UrTS3BHTsAAAAAAAAuxcYOAAAAAACAS7GxAwAAAAAA4FJs7AAAAAAAALgUGzsAAAAAAAAu5cquWGVh+7A9HqPyudG9QUQkYFRqf3nyxgofg9MLd8VpbVUsMcnuzOVx6GSBmuP3251nSkO641CC3z7LyzbqLkTpz9vdq0pKdZeZLK9dv/2HRZkq5qvT2MzN3bJZxeLi7d/N0nzkOWbcY3TWys7+Y3W/8RotsBIatDBzd25apWKerevN3HXrj1Cxbpf+2z4GY2qIc2geMm/0LSo2P+sXMzch4NTbBDXDbrMQCuluEX6fw/XAo+em+87XHbj2PJvOLY3a3dRGfnmTivkkYObGB+xrGGpOxOFcREN6nRP12Z0Wm6SnqtjpD7xqP2G+DiXofy4iIp/ce5mKlRTYLW2cOqbg4Ap4k1QsGNFd00RE6hidkEaO0tc6EZGAL07FChzW6NcO0wOqc3177YTKiUTsed5SL0XPLWXF9gKjXh3dQahU7M5RobAeN8PfXFvh43Ly1nVdVSw50e7C5/Ft0jFvxV+bgGMfSTizrz9hYx7w++xzURTWa9OMa581c60GcF6HptbL375exeKi9vxkdZx0I3YWAAAAAAAAXIqNHQAAAAAAAJdiYwcAAAAAAMCl2NgBAAAAAABwKVdWtSsstAu+JSboikoRhwLFgYD+1a85uZn9hEahJqN+oYiIBI26UCvW7TRzo1FdQBM1a86CTDPeo0sPFZv66rVmbjiiB0TOTbkOz6hzO3h0sUERkR7tdeHijQV5Do9boafao+J14/5whZItEaPYbI+M9mbuvMItKhZwKGJdL0UXoP35NV3AVkTE6zNOZrDYzI3z6/G0ZqNRCVVESsp0MW/UnLmfZ5nxFkON9/qrj5u5Ab8eCw+N1sVrRUQ8RlXBolL7YlVapqsN9rj2n2buj1/NNeOoOWUldhFPX4JRyDoUNHODxqmf8NA1Zq5VY7skaD9uRPTaJexwXQuFHRZLqBFO1/AuXfSc8+SfjzJz4xP1PHLf/7Uxc63lxYotdiHtUuNaNfz1mWYuaxH7NcgwGlyIiAwZMkTFvvzySzM3bBRa3umwhI2P12vQxAR7URkIJKvYq3/rbOZGjZETF7AXsYWFej3TrYPd0CJsfDgLOXxgGzRokIqNG/+dmct4dObx2c0VfH59nYg4FDnenasLcme/dpudbFysvEaTCRGReKMHQZ10PU5FRMJhh4NzGe7YAQAAAAAAcCk2dgAAAAAAAFyKjR0AAAAAAACXYmMHAAAAAADApdjYAQAAAAAAcClXdsVKSbT3o4pKdAXuOLtYt/g8RrXuUrvrjMVpRyzRqOr+9oLtZi5V1muPUFRXzXcosi6D7xqlYt89e4WZ6zEq/0cd2lftCukuKIyRg886O4kJdneYXscNULGfZ/9g5s6e9aOK1fU5VOH3GEdhta0RkeVLdPyW/y0wcxlPtUN0tT6/hQ7dq9qcfq+KbZ1gd9CyxkhSvN2tqNFpN6tYVhbjo7aoZ3QmEhHZXqTnooQ4h24yRpePJI/dbcuaXXxWdz4RKYokqNhF979q5jLn1A7W5aM4bF9T7nhviYo9+5dOZq7HWA23b5Ji5t48apaKZTE+DjrrXd3KodvW6qxFKnZUK6PVkIis275DxVo2aWQfQ8WXOBLv1T845e5v7WTDUKNjmIjdNYz5qvLiHVrvloT1SbbOu4hIgyOaqli4dJeZGzW6ukWMjqAiIqF4Pf48fW40cw+Xc88dOwAAAAAAAC7Fxg4AAAAAAIBLsbEDAAAAAADgUmzsAAAAAAAAuJQriyfnFNr7UYkBXVSwrMzOfX3qBhW76PgmVTswEXl98kYVO1wKMh3ejCLHEbuw7aSXrlGxk697ucpHwDipHawycPlldrHABK8eI32PO8XMbTDwPhUbc+sxlTo2y3lPZakYY6l2ixqjLMEovC8isunrkSrW8NS7qnwMjJHaLcdh7RLnL1WxYIm9lLv44TdVzO9QZLIyQkbxSsaT+8Q5FMd+Ylg7Fbtp1NIqPx9jpOqcXsMMo/jxkEoUDZ744zYzt2cT/V5fs9leG7/741YVKyzebOZWhkNNZdPZg/XvPOqjMWYuhburh9ehIYzHKHodDtvXtXbn3a9zI3ZDiao63Och7tgBAAAAAABwKTZ2AAAAAAAAXIqNHQAAAAAAAJdiYwcAAAAAAMCl2NgBAAAAAABwKVd2xUqNt/ej8kriVcwnJWauVWX9oxlbzNwj6uvHXb9Td6YQOfyrbR+urPFQFrXHmcejOwJ8/8pwM/eU615RsawsxojbJAbsLhAlQT1GEn1lDo+iOwec/8xiM7Nn62QVm7Mqz8xlznEfqwFWcpzPzM0v1t0et3z7iJnb5EzdeY3x4U4NGx1pxgtCulNIOOw052gLFuouejj8+X16fklJsHMLjOH05MW6U5aIyB0frlAx5hz3uegv55nxD95/X8UCkTVm7vodeuCkJ9sfM6PGonvwOeeYuZXp42d1wKL7Vc0KeSJmPDWgPzvvKq14jzPmkd+HO3YAAAAAAABcio0dAAAAAAAAl2JjBwAAAAAAwKXY2AEAAAAAAHApVxZP9vrtUlrpKVbxyRT7MWSbimVSqAnlxIldECzqD1T4MawCcXAfr8MeeJIxF4X8iRV+3IULM3/vIcHFrJklHNFFcUVEkhPidJB55bBXsHOj/QNj+eNzuNBUpugoDnPGYCi2pxyJRnSzALt9AA4Xicn2Z6Urr75a59ZvauaOHjxUxXIL7UF2zpAhKjbqo8/2c4QVQ8Hdgy8asmeH4nChiiUEHRYvXKyqDXfsAAAAAAAAuBQbOwAAAAAAAC7Fxg4AAAAAAIBLsbEDAAAAAADgUmzsAAAAAAAAuJQnOzub/hoAAAAAAAAuxB07AAAAAAAALsXGDgAAAAAAgEuxsQMAAAAAAOBSbOwAAAAAAAC4FBs7AAAAAAAALsXGDgAAAAAAgEuxsQMAAAAAAOBSbOwAAAAAAAC4FBs7AAAAAAAALsXGDgAAAAAAgEuxsQMAAAAAAOBSbOwAAAAAAAC4FBs7AAAAAAAALsXGDgAAAAAAgEuxsQMAAAAAAOBS/kN9AG6QkZFR4dzs7OwaPBIAAIDfx2k9w9oFAFBbcK36fbhjBwAAAAAAwKXY2AEAAAAAAHApNnYAAAAAAABcio0dAAAAAAAAl2JjBwAAAAAAwKU82dnZ0UN9ELVF7969zXhJSUmFH4Nq3QAA4FCzuookJCSYuXUTIyo2Ydq8aj8mAADKs65V8fHxZm56gt62mDSDa9Ve3LEDAAAAAADgUmzsAAAAAAAAuBQbOwAAAAAAAC7Fxg4AAAAAAIBL+Q/1ARwq3bp31cFowCHboyIBv44BAADUBv6A/ttd43S7IGWorLSmDwcAACUhTm9HNExPNHNDwYo3NPoj4o4dAAAAAAAAl2JjBwAAAAAAwKXY2AEAAAAAAHApNnYAAAAAAABcio0dAAAAAAAAlzrsu2J165ZhxsNh3dXK649W+HEj0cjvPiYAAICa1CBFd8DyOPw5z+Pz1fDRAACg1UnWXak9Prv7tCfMtWp/uGMHAAAAAADApdjYAQAAAAAAcCk2dgAAAAAAAFyKjR0AAAAAAACX8mRnZ1e8YnAt16dPDxUrLg7ZyUZNJp/XLsgUDocr9O9FRBLi9V7ZnDmZdjJqje7du6pYJOxQINs49ykee+x4jdyckDGexC5qmbUw2z4G1FpduuqxJCIiPj2eUj26uKmIiN+vc3eVOkzVYT3HZWczbmqzrt2s+aYSl2K/wwUoZDyGQ6rH+EFW1sKKHwMOiR699DqnXpJ9/Qn49EUlNSXOzM0vLFOxTbt0TETE59fPN3/uXDMX7pOckqRiEbHnp5CxxI465ZaUqFhicqKZW1xYvJ8jxKH07mlZFc4tNtYnIiIBo1i73+Fi5THC4aD9uJd/r+dHHBp9+vZUsZQ4+36SgF/H6yTbuXmFen28JSdo5sYF9OCZ8/M8M/dwwR07AAAAAAAALsXGDgAAAAAAgEuxsQMAAAAAAOBSbOwAAAAAAAC4FBs7AAAAAAAALuU/1Afwe/Tr1c2MT37pXhWLT0w2cxet+UXFXn7lazPX49HV+V967G4zNxrVldr79elm5v70c6YZR83J6NbFjF91UicVqx+wOzv8umabiiXG22+lcFTvnbZqnm7mloV0pfeu3TPM3IUL6HpUG7xwuj4/L3axOzt0qqfnol0FpWZuOJKgYsVSaObml+kuNxkZ9rihW9bBldHFPg+pAd0RxOOreEeQqFMDLaMDhFNXLOsHTsebncW4Odi6du9uxv8+sLOKxXvsTouzl29WsQapem4REQkZnbXO79XazI0a3de69rCPd+H8BWYcNSMp2V7zFhXq60ezJg3N3DSjG83mbXlmbrxfj724xDpmrj9dH9umLTvNXNQOr540X8XijI5WIiKRkL6m+ML2/QNWl7Ww3SRUjj6pjYot+n6lmfv2yfp46ZRVs5zm/lFPX6ti8R672/Br3+hOa4mhIjO3tEjPZS9ePNDMDQaNz1U9Ha5V8w6PaxV37AAAAAAAALgUGzsAAAAAAAAuxcYOAAAAAACAS7GxAwAAAAAA4FKe7OxspzKMtYJVBHTMq/eYuW3rp6tY3RZHm7lbVy9Usc35ZWbuC/9+3ojZx1BQrB8jPs4uNJZx7u0qRnHT6pPRVY+dG05ob+Ymii5iG5dkFyEsKdRFBHNzg2Zug4b1VCwasYvgBkO6CKHPa++9/vuH9SqWRYHTGvP6OT3N+MlH6mKBnmjAzI1P0rGWqalm7ur1u1UskJ5o5oZFj71o1C7mfcG0XBWbPUcXrUPlWdeqVKuYsYj4jWvCxacea+YWFxWo2Jgf7CJ/cV7j+bz29Wdwf328435cZObuKNBjjGtV9bHGzj1n24WsN+/YqmJt2h5l5q5dsULFNhXa46FxozQVSxbdDEJEpKRAXwPjkuy57KWpq1WMsVNzGhzZ0ozvXK8bhqSm2GMhHNXzSONSey0ya906FWtyRDMzNz1VP18obBf+LijU19HKFIZG5bx/hv2eDBqF0o3hISIioTI9X4T9Dh8xI/pB/HZdXbNZwDGntDJzV81co2L/N5HiydXFulbNfGOEmbt2yxYVa9nebmCzYtE8FcvaZM8NjRvq9W3nRnXN3J27dXH2OqnpZu55t7+mYm68VnHHDgAAAAAAgEuxsQMAAAAAAOBSbOwAAAAAAAC4FBs7AAAAAAAALsXGDgAAAAAAgEvZrVNqkUZGI5jjWtQxc+u276Ziqxf9ZObWi+ouHw3qGW1rROTNJ3T3qhJPsZnbQDeWEKe2Y82T2VerSc2tJkIeu8p6yJ+iYnk5+WauP14/sDfFPpdFYd0lrThoj4jEcLz+98Y4FRHpnMbYqSkPn6Or/veMtztdrdit40e10GNJRGT7Ln3OthSWmLkFYT0X+Xfrzm0iIqlxuvPapvxdZu4/OyeomNXlQMSd3QAOpXijwYxT95BhRgeswjK7JUjEaEw0+Fi72+N3c3UXpLP6djBzgx493/zphN5m7qeTZplxVI96+lTI7kLdwU5EpEmTJiq2Zd1aMzexvl6QtEq2u39GvUY8Yo/J+BQ9xwWidgetI1PtuRMV59QNKuDV52ft0sVmbrIxyHICLewnNNYta3ctM1MLRT/uhh26E42ISG6yvtY0rmt3e8zfMMmI2l1Nk5L19bKosMjMhc3qfiVid6RK0MuIPbkSZwTti2BRSK9t/fH2MQT8eowsmaY7w4qI+KL6QvzuQN0FWUQkGNRzls+hk+Xlk+msJSISb+warNhiv9/rNWitYlmZ8+3HTdVzXNc29jUl3qfHQ16e/X73iJFbYK+7k+Jq/ZZIhfDpEAAAAAAAwKXY2AEAAAAAAHApNnYAAAAAAABcio0dAAAAAAAAl6r9lYKMwls5Ifuwi39ZqmJ5uXYhrLKILvjWMN0uyrw7qgvJRfLsx/UZlcYKo3bRU6+HfbWa5PPoc+QXu3jyznx9jlMdzk80pAsWen32mCwp0c+XlmAXkyyL6tx4n1GRVUT8PsZOTUkI6PPTtqFRFFBEEhvUVzF/iV3wepNRiDSjuf246WmNVSw/Z7eZu2a7LuTe/Ui7gPPSfKvou10IHlVXr066GY+UFajY9hz7OpHg02MkPckeN02aNVMxb9TODRoFUnc5FBX0OFWBRrXwGtcqb8Se+wsK9fxSYqxnRERCOfo6kehQ+dQXNM691y5sGzFqnBYa1y8REXGKo8KKCgvNeN00XXA0Lcm+/uQX6kKkzRrahbTnfvOairXoPMB+3BI99hon2+c8zq+PrbTYzvX79XU40SiSLOLcoAQVV1ZmF6ptbKwltu2yx6MYxWfjEu2z06yVvlat224/rmeXXqMEfPY6Opyv57GwwwDxevX86DRdvXWyLvp7xfd/wILKRj19r1VhW0TC+VtVLDnJ/pydaJzPqNhjMlKs18IpKQ3N3IBPX1s359qNcTzWL+dCfDoEAAAAAABwKTZ2AAAAAAAAXIqNHQAAAAAAAJdiYwcAAAAAAMCl2NgBAAAAAABwqVrfFWtbia62HfbYnTvKSnNULLW+XeU60eis5S3dbOYGwrqSvy/eoQuSEWsYsLtbbCmm00hNWlugx84vkTQzNzFdV2Qv89jn2O/VZfNL7UYUEo3Xx7AtbFd6T0rVx+D122Mne9da+wlRZXeM0d0Pzj+1t507UHcK6d6prZl7XMuWKjbvV3vOWbppm4qd2N1+3EYR3fVoxcJFZu7d97+sYtnZ2WYuKqfU6KaxY4fdyeyj8bkq5gvYf2cpNVoQeQN2F4rUJN2h5tON681cn9FLJlxqzzclYa5VNWmHsc7ZkGNfJxo11OMkqb7ujiQiEizSsRKxz2Vckr42+q1OWSISMjrdxJXa3ba2Fh8enUYOpaQkuxvUbqO7y7YddmehkpCOT/jw32Zu/z//Q8VWf/+lmXvetQ+q2Cf/HWnm5pTozn+N+hxr5orRUbR+E3vsOnUNQ8W9U3SlGR834hEVizY9yszNaJOhYuvXzzZzC3boNcpFR7U2cwvjdAet3GULzNyBF45QsdkL5pm5qLygcf3ILbI7lN3ywmgVK8jVHUFFRKLGZyiP1+72+PRt56jYbY+/b+aWleSoWHKi/bgODfpchzt2AAAAAAAAXIqNHQAAAAAAAJdiYwcAAAAAAMCl2NgBAAAAAABwqVpfPNnj0YWa6kZ0ATYRkZKwLug3Y8LXZq5VI6lv/4FmbnJCoop5/bpgqYjITxPH6lyH7TO/QxFDVA+v8fJ+PX2hmeuL14Uf40MOFZGN81YUsgtEBjw6bgxpERFJ8+kfBB1yI1G7eCpqRpHXLirbq7UuIrgq0S4imrRzq4o1cyjC7q+ni7ut3bTJzF1bv66KdTj6SDM3PmL/Hqg6rzHRn3VqHzP3h2mZKva3dilm7oaQfq+PXrbTzL3gRF188tXJy83ce7o3ULE1Rfa88v7iXWYc1SPOmOfrNrEL/afF6UKVK1YuMXP9xuM2a93ZzA2V6UrLRQ5/+9u5eo2KWb+DiIiE+fthZSQbhZILi4wq2CKSnpauYm+//paZ+9mPs1SsXmiHmfv1hGtVrCDfLuY9v0xfa159/Dkzt3ELnev5cLyZW2ZcGr/9zM5NStbFwymoXEl+ey0Sl6avS/PqNDRzvTv0OD3hqI5m7rQcvZ7J32yPsR9Sy1Ssc9N+Zm6it9Z/rD3s3P7sR2a8pLhYxW5dppuTiIg08Ohzf28nu7D6rU99rGKhsL22vXGx/sxXX+zPdvcf08uMuw1XXAAAAAAAAJdiYwcAAAAAAMCl2NgBAAAAAABwKTZ2AAAAAAAAXIqNHQAAAAAAAJeqNeXDMzIyzHjR9EdVbPXWAjPX49fdaK5/6xcz9/tn/6xi0YDufiUissvoStIs3e58c8t/s1VswksXm7le0bmovIwu9thp0UB3FTmqTTMztzSsW3r8ONfuNJJuxNp3aGHmdmupj8GboLteiIi8OXa2irVKsLuv5YjuEoDqcfVFg1Ts+Vt1TESka7v6Kvby6Olm7k8Jeow9cM5xZm6cseceX1d3vxIRef9bPY8sirer/u8O2x0FUXFO16p//+cxFUvf+bOZO+tn3anhL6d2NXN3b9fn98Ol9rF5jM5cAYduRYNP6KJi+ZsWm7kf2mFUktPYufqENipWL2B3KMsp0p1Gfl5j5w7to+ennN32+ql5XJ6KFUXSzdw5K/X8MrRfYzO3TNabcdisDlhW1ycRka25OnfavDVmbsEvq1Rs4IirzNw6dRup2Af332/m/jBVr1vCQbu70Z8G6+toWpm9Hnr4uWfMuMXqgLVjh93xq0ED3Q3wj+aMk/W6Y9yLN5m5HTv0VbHXPvrQzM0O6HHa6ry/mLlxCdtULNpIjzsRkWWfj1OxBSX2nJcXYW1cHZyuVW/cdoGKpdWzO3r+9Z63VSyurr7WiYjklOhOnwl+3QFSROR/dwxRsasf/8bMTaivO4XuLthu5h4ufaq5YwcAAAAAAMCl2NgBAAAAAABwKTZ2AAAAAAAAXIqNHQAAAAAAAJeqNcWTnazYrAsFBlJSzdySkrCKff/JP83ctCJd/C/Ho/+9iEhBoS4El1Rkl1maOOpWFasXbxdaLha7wBwqya6hJs0a1VExn8NWZruGuuhbtsO7oyDsU7EeHZqaub6QLlYbjdrj7Ph2TVRs6Vq7yBdqTmGBLkjpr9PQzF2/K1fFPnj1MzP3vpt0wfa8/HwzN+LRx1BcqMediMjY199XsSuvONvMlYgdRsXZZ0Fk28KJKtb1qn+bucf/vE7FTnxuipmbVkdPcJcNOsbM9SbqSevC0442c//2ZaaKbdqy28wtFXvOQvVokKzXEzt324XOS6J63XBsz+Zm7m6jwGiyz55z/AE9OcSV6HlIROS4fi31cUX4O2F1SDYKJRcaxYFFRMJB/Zr3Tttk5i4p1mvei7v2MHOD2zao2H+NdbCIyCmtdLHabYt1YXYRkb6duqlYYt5WM9dxYWewXjM4Cwb1WDjqKHsNu8H4XPXBv140c69//G4VKyqxi7UnJeui2YGIfXV983HdmODiu+zPdhUfNdgfj8f+jHtky3oqtmaNLoQtIlInXjd/ebyF/lwmIuIri1exZun2ePB5dTzBZxfN/rzfUSq2Zq1etx9OuBIDAAAAAAC4FBs7AAAAAAAALsXGDgAAAAAAgEuxsQMAAAAAAOBSbOwAAAAAAAC4lCc7O/ugFxHPyMhQsejydmaup8MKFVvxme48JSJS6NXdsvKL7M4SAa/uAFEn3q7AXWwU20702S9bsU93wEpJCJi5GWc/oGLzMheYudijMmMnqetKFTu3v91Nxm9scYYdWgh5PHqceCN215iI0X3A47H3Uz3xepz4HXLfGr9QxbKys81cVM4Jx3VVsSKHBnZLP7tfxebH28knRvW4KTG684mIhEK6I4Hfb3cpmBzRHVOOM7oGiIh0OfdpFZu3IMvMha1XT7vjS6lxnbjytM5m7uk3Papiu0ffbuauKdRzQD2j+5WIiK/EGE9xujOFiEiiX3ecLO17k5k74nodz8xi3OxPZa5VccY6597BHczcrbv1ecsP6piIiD+qr2EOyxyJePX8Ys84IqWir1VJCYlm7htTflWxeVlcq5w6OVkrS69xbkRECov0+T2uj73Guem8k1Tsla9mmbkJRu+/CwbZHbSSA/rYCsvs9fEn0/X6Ns1rd43dVaC7Kc2cV/H1cZFDJzGI3H/rsSo2drLdvWrmnOkqtrm+3YGoS2m6ihXk2h2IioN63CQ5dBBemZanYu1L0szcrl2OU7HMLL1exv/Pvla1N3O9HfW16qt//93MjQb1ONkVtC9AqVKiYr6A/dlZvEbc6BYpIrKrWI+zNK89fi94SHeYzVzovnUOd+wAAAAAAAC4FBs7AAAAAAAALsXGDgAAAAAAgEuxsQMAAAAAAOBSdgXGGpZtFHn1dNDFm5wsnjPXjGccqwuC1anjUCnQ2NMqdiiQetwluuCox2MXs1vyqVHYOWQXNiwLOzwhHFV17Hw42S7aeOlpuuCg36l0ZNQulGz5dPovFc69cODRKhb2HPTa5n9402fpQns9++iCyiJiVsztWWbPOYWix03EKFIpIrK7pOJ77icZRTijIXvchM3SnKiMufPsYnpdjQKEdR2K9P3y0UMq1v7i18zcusY0FArb57HEuIi1bNXSzN25fZOKLf/gFjM36nC9g7OqXquaNG1gxgOBnSoW9ejGEf/vJyoSsXsCyBMT1qmY16EI+52nN1Ixn8O1yqHu7x9eYSWK+6bUsc9vcrI+P8VWFXcRSaubpGJ3/t8pFT6G9ES7kGmJOUbssXBzoxNVzOu1r3X3vPRFRQ/NXKnt3KnfJyIi9evXr/DjHq4efuZHFRvb1W4KkFyi1y3tNtsF+YtFj+kyezhKNKQnoqIS+7NS+6AuzB6N6GK7IiIRo2A89s+6Vnk72uPBUlRqn4skn54b6gecPj9Z2xH2xeOcf75RwSMTGfuvy4xHteeyw2V1zB07AAAAAAAALsXGDgAAAAAAgEuxsQMAAAAAAOBSbOwAAAAAAAC4FBs7AAAAAAAALnVIumJZrKrcIiIZRqeRUodmUtMnzdD//vgBZm5Ksq6yHrALvcuyL+9VsaCdKkGjrHb2rJkO2agOlRk7Tj6YuEjFUlPsyumDj+ukgw6dP4YN0pXlPU5F+42x8/5EuwMPDi6nRgtWA5Jch64k6UkOE4yh/yX/UrHsD++0jyGoB59T55soHWpqjPXSzvtlg5l7at0WKhYN1DFzoyHdccKhWZGcekI3FZu5YKmZ6/EY4zFsX9lozlc9KnOtKiyz38Tp9XVHqkTPRjN36+YdKubUJ/T+U/X1LuQwkXjL9PPVS6tr5tKkpuqcpm3rbRnnsKqvk6J/EI7Yf9v1Gufd6TTe8vhoFXv59j+buXGJes6JOPxyXmPScXodrA5jdL+qnKjDHF8a1Gc+GLS7V8Ul6M5rHoeL1WlnD1Kx77+bYOaWGF0+fU6jgTZ81SIry/7s0aWL8ZnG4VzkG2vh3fn2+vjIhsb6x2FMjvvXlUaqnWxFix3WOYcL7tgBAAAAAABwKTZ2AAAAAAAAXIqNHQAAAAAAAJdiYwcAAAAAAMClak3x5MpITEwx44F4XeRr7ZJlZm6fri1VLD49oWoHJiLb121SsRZN0qv8uKgeTmXVrMKAuYV2ga33JuiiYv64qu+RRowidU5FS6llenBFnSqARvV5r5doT6tlRgHA5CQ7d9nnumC7k4IyPaqjXrvCPHVMa471nizz2QXYI8bfVHZttwstDzylv4rtyLELEG7I0YWWW7Zubeau+GWJivkc6nuH7TBqkK9ssxmPM97a4YBdKLZt23QVizq2fqg4n9EBIFiqx56IyP+ua69iPR0aG8xzKC79R5KcnKxi+Xn5Ff73IYc3azhsrX7sK0JhRD+I1+Hi8dSt56pYUdi+/niNNXpZsb2aCRmrNatIsojI+nVrVezIFnqND2dOa2OfT1+rvF49RkVEwhE9tyTE2xeVH7+fWOFjS5TdKhbKswdk1KkKNGpMIGCvY30+PaqOSLA/Z+cX6+tHcqKdG6nEJ6DCEmPOiNNFvkUOn+Yi3LEDAAAAAADgUmzsAAAAAAAAuBQbOwAAAAAAAC7Fxg4AAAAAAIBLsbEDAAAAAADgUq7sitW4dRsz/vPPugNW80Z295D8qK623WrwE2aux6NLZQccOgTMfOPvKrZm8zozN+C3O6ag5nj9PjMeiVgdqezK6/6AHg/n1u9u5gZDuktA2Gs/7oTcpfq4xD5eKSm146gRXq/DefDq93AoYncESUrQ0+0pwx40cxON8vy7Hbbhv//wYRXbtNPuUONjL7/GWJeEEy66xcxte/ypKpYUb18PNm7TXR0Sj7HbN2wv1WOvbqLdAaJlcTMV63DrKDPXO6qXGUfldHHoBvXqVbpzVDBin7dSY35J9BabueGInrcufHu5mesz1jlORv+tnYoVltnHGxfQ1yqv0S0Fezh1fqowh4YxZcUFKhaIt89Zok+Pm91v6c5EIiLRYn1+A4n2ArnuNbpTVVGu3Q3Q6634xxM6YFUDj702SEzW801xoX2tivfHq9i/z7jMzE3w6M5rax3W3C999ZKK5e6yx41TJ1lUF/0Ce4zzLiJSlJujYtY6eE9cz0XnPPK6fQh6KpOEVDv1rdv/qmKhoiIzN1CJOac2Y5UPAAAAAADgUmzsAAAAAAAAuBQbOwAAAAAAAC7Fxg4AAAAAAIBLubJSUN30uma8f++jVKw0YlfSCkf0nlbm23eauVaZv8SALvwlIlKSs0XFOjdvaOZahXVRsxL89l5mSZk+nz6fnRs1ikx+tn2BmWvVo7SKcYuIRIP6GIJRuxAvDq55czLNeEYPXQx18Uf3m7mhiD7vkz98wH5CY4iEnPbhjdwLbnveTM2cv9B+DNSIgkUTzHjm0vEq1v/m18zckHGpKcyyi5MmRfUYKRW7GGvUKND99chLzNyIU0VWVAuPV5+LNM82Mze/TBeqDMSn2I9rXGs+ukwXahYRs+iuU41jq7FAMGxfqxLirOdiPNWUufMzzXiGUbj7pduHmbleowJt+lX2utsaIg7LbskP6ULLIz+aaebOmTPffhDUiMyFmWa8U0YXnTtrmv0gxmC47et37VQjNxBwKOBcvFnF/jR8hJmblZ1tHxuqh3Hetu3ONVPTUnVF40jQ/txbalw/vrxPNyMSEfNaZf17EZFQRDdQCnqti5LzNcxtuGMHAAAAAADApdjYAQAAAAAAcCk2dgAAAAAAAFyKjR0AAAAAAACXYmMHAAAAAADApVzZFSs5yWfGI9JIxUK7dZcqEZGC3brjRGpamplrFfgv1sX99zyfJ0nFug63q8JnU739oLvgFLsjyJgpy1UsHLE7z4SiOu7U6coKRx06goTNXDOVsVNLRIL6pEWNjiIiIhnDHlaxJR/fa+ZaY8Trscdju/N1Z63srCwzFwdXUcFuM16aWEfFMv93jZn7z9dnqNiUBWuqdFwiIt8/c4WKPfnpIjOX+aZmeY1WIzt3bDdzk9Pqq5gn7NDtsUivR+Li7HnEmrXCDtef7Tl6AdSgru7WJSLi8ehlpsPlEjXIGiGJifY5+9vD76nYK3fZHbSsU+nUTe3Wxz9RMeaWWs54s3q89sRw3MBBKjZz4kQzNxzW3YqiYncran7yBSqWlUmHz0PCOPXN0pPN1LXb81SsUZqd6zUmqNJgiZkbMdbHTp/BfHG6Y+SV979q5mZlHR5zEXfsAAAAAAAAuBQbOwAAAAAAAC7Fxg4AAAAAAIBLsbEDAAAAAADgUq4snhz0Ohx2NKxCKXUbmqlHn/e4/udGUdzqQHG42iMStQtvWxLi7NycgqB+XLP0ZOVYpb+oMVnbGefdb++Xz33/bhVrd96DVT4C5pfawZot8nV9SBERqZekr1VF+Q65yQkqVhzS/76yQhE9dhlLNSvL4fXtkpGhYp3r2PPIbX/WcZ9fX5P2/ECvaaJWlUoHTle1uikBFfM6FK+0GgBwXTv4rHMZcThnbz1yuYpdcd/bVT4G5hcXspqFOLyDZ4/9UsWOPq5/lQ+BcVOb6HMfjDpdU3RuTk6hmfn3Jz8yolX/XGU9wuFSJNkJd+wAAAAAAAC4FBs7AAAAAAAALsXGDgAAAAAAgEuxsQMAAAAAAOBSbOwAAAAAAAC4lCu7YnkjdquR1AbpKrZte0GFH5fK64e/qENXrPNO0V1JPp+cZeZWZje0qn3WnLqooPaKM7rziYiEjIGT/cm9Zm7Gn0fqXMaC69RP1d2DREQ25hSpWEJzu4OjNd8sWGjPTTh8XHFWFzP+9Kd6Hqjn0EFr1oZ1Kvb2dZ3N3PwSPW/F+ezuN0nGyrGszJ73rnp1mYrNzmQuO+iMDljBspCZGgjEqZjVKUvE7pbFterwFim13+seowXR4kkTzdyjTz1NxRg37hTnsT9XNW1UV8U2bsqzH8S41CxcyHj4PbhjBwAAAAAAwKXY2AEAAAAAAHApNnYAAAAAAABcio0dAAAAAAAAl3Jl8eRwWXGF4wlee+/KLgmIw17ELhYYMaocn3diJzP33YmLVGwhRd/+kLwePb+ErcEkIhJ15XSLCrLKSRY5FJmsq2uTSlok18yNxFfhoOAKRs1RKS211zl/GXiUinkc/kY3a4MuXHz5y0vM3LB1ENWAgqi1g9conhzn0N6hsNhuUII/HuuzUonDOjqFT1aHvWhUXyjCYXu+sFa8rRrYDSVQfbhjBwAAAAAAwKXY2AEAAAAAAHApNnYAAAAAAABcio0dAAAAAAAAl2JjBwAAAAAAwKU82dnZNdQLAQAAAAAAADWJO3YAAAAAAABcio0dAAAAAAAAl2JjBwAAAAAAwKXY2AEAAAAAAHApNnYAAAAAAABcio0dAAAAAAAAl2JjBwAAAAAAwKXY2AEAAAAAAHApNnYAAAAAAABcio0dAAAAAAAAl2JjBwAAAAAAwKXY2AEAAAAAAHApNnYAAAAAAABcio0dAAAAAAAAl2JjBwAAAAAAwKX8h/oAAAD7ysjIqHBudnZ2DR4JAAAAgNqOO3YAAAAAAABcio0dAAAAAAAAl2JjBwAAAAAAwKXY2AEAAAAAAHApNnYAAAAAAABciq5YAHCIdO/e/VAfAgAAAHBYsTrMHu6dZLljBwAAAAAAwKXY2AEAAAAAAHApNnYAAAAAAABcio0dAAAAAAAAlzrsiyf36N7NjCcG9J5W+yNTzNxwSVjFlm8uMnNnz19Q8YMD8IfRrXtXFYtGnfbWPSri9eoYAAAAUNOqWozY+veVfYyaetzDpdAyd+wAAAAAAAC4FBs7AAAAAAAALsXGDgAAAAAAgEuxsQMAAAAAAOBSbOwAAAAAAAC41GHVFWvQiQNUrEFyupl7RIpPxfxh++VIitfdaBLi7T2xU41jmDTtBzMXwOGnaze7On8krOcRjy9a4ceNSuR3HxMAAEBlZHTX6xlvRH9+EhGJRHQHYadenlGP8ZOovR6yOhNldHHogpTlvi5GtVFlukxVJtfjtT87d+veU8UyF8wzc7v36aNivjgz1Tw2fw01mK2pjl+VxR07AAAAAAAALsXGDgAAAAAAgEuxsQMAAAAAAOBSbOwAAAAAAAC41GFVPFkkoCJdW6eamfEBXfwrHLKLk3r8ev/riJD90u3aXbS/A4SLdOna1YxHI8Y4sWvJiehacpVysItuoXK69eimYlaRZCc+n50bMsZNNGrndu2ux+nCBQsrfAw4+Lob5yzqUDjSLD/pj7dTQyXGP7fHjRVdwLgBgD+cjK524Ve/V3+uCkWCFX7cqNPtAxHjCuSxr4FORWlROdVR3Le7Q9Fq8/m6dFGxxKQEM9fj0Yve3sf1M3PjjeVPJJhk5gatNZHjWqvizUy6Ga9lbfm8xh07AAAAAAAALsXGDgAAAAAAgEuxsQMAAAAAAOBSbOwAAAAAAAC4FBs7AAAAAAAALuXJzs6ueBnoWuL0kwaa8fp1dFVsr8/euwoZHbCSE0N2rtHlJhTRleJFRPxGd6St23LN3O+mTTXjcGZWdXfYnsxeWPEK5V2MSu+VaVLjWEzdayRHqv6Wq0z19cp0FKgtVd1rm65ddXV/EZHL+x+jYvHx9oD8deNWFdu8yZ4bouFSFTuxn30eI8Z4enWqfR4XLswy46gZxxrdr0RE7utcR8WapNgt9OJ9+vx64+0OEKFSfV3zix5LIiLBkJ6brplbYOb+OJ9uWQBwOMgw1rteo/uviEiCV7cgCjssYX0+/QHI43foNhzVn6HKysrsXGORH/EUmrlB+yFM2Vmsd0Xszwh+h+auIePc+x06b9ZJ0+uUiMMDJwR0t6ycAnt9bI2dOId1t0f0+C3YtdPMtVi/r5Pa8vmJO3YAAAAAAABcio0dAAAAAAAAl2JjBwAAAAAAwKXY2AEAAAAAAHCpWl88+aS+J6hYeqpduDgU1kW6fAGjmrGIlBTpClseh22u+IBfxcqCdqFLq5Cpx6GwVLBMxyfP/sE+iD8Yx4K/1kvpUOTLY1SyXjGpuZnb9sS1FTyyyrGOQUL22LHeiE5jcu0PrVWsxYmrHQ7CiNn17MzUrFpSEOxgscbeJcfq11tEpE68PmvJdRqauXm7t6nYrkJ7LGzcuFnFundqZeaGwrrou8drD5xXftBjpLYUfHO7jB66wPYD7dPM3D7N9TWsNGhfij1+fX7jA/ak5/fUVbGy4G4zt8yoDu9zmBiGTMhTMcZN7VGZAvmOrOKpxppKRMyLFePBfTJ69DLjfr8uuB6O6CKkIiI+n1GcPaILoYqIRKRExRbOYdzUFKtIsoiYf9IPiP1ZKRix5gA71xPV1yrHviJGEd2IQ6XayvQrsTA37VGZ64RT8WTrdU+uV9/MTaubqGJnnjzAzPWEdKHkcZPtpg15+TtUrE7dxmbu4AG6wcnE2UvM3LVLftXH5fD53XolnAotH+zxxx07AAAAAAAALsXGDgAAAAAAgEuxsQMAAAAAAOBSbOwAAAAAAAC4FBs7AAAAAAAALnVIumIdf3xvFfM5VJ72hXRV7VaN48xcv0/vUwVDukq7iIg/QXe6KnXodBU1uhjFOXQlkYg+hpDRKUtEZGeRPoaCMqPDgIgEg/r3mDlrhn0MLtPFqNReY4Oy4gXOJT7O7r5WWmZ0IXIYv9Go7iiQkp5k5hbl6ceNeB26BBidkKJGlxsREQnoMekJOnQ7MTidi8O108BpffR4vOLEo8zc+Dq6G0DObl2xX0TEFzHGiN1cwnzRww7n12+0Tos6jPNxP+uuWGNmZDocBCzWfCUi8qcjdax//Tpmbsij55Zwme48JSISCuvc+Hh7booz5qFia9yJiLdUd6gRv74miYjk+YIq9uxi49+LSGbm4Tkv1BZmpxunN7zB4zCjV+aaGx+vOySVOlxcs+fOqcQjo6Z0MTpgndDN7mZTUKrngdZH2HNOboGe4xrWsdexu3P1umVi5iozN/PHTDOOquvaVc8hEeOzi4iIGGtQr8N84/PpBU2rI+uZuW2PbKpiXY6yc9/+7EcV25ZnjzFrzX24rlWri9Uty+/wmcYKp9ZtYOYOHXqaig2/6Ggzd9umfBUrKdhu5o54Xn/2PTOjmZk7+OKBKvbp1KVm7gdvfKSPocRhX6AWd4bkjh0AAAAAAACXYmMHAAAAAADApdjYAQAAAAAAcCk2dgAAAAAAAFzKrpRYTXr2627GE63qS0bhYxGRaFKZiuU47Ec1t4rSBnWRPxGReik6vm1XkZlbGNGFI416yiIikpKiC8yVltllCXPyclQsEta/r4iYW3DHHa+L4YmIzJox136MWsp8dSozMu362GYhq+7de5i5Hdrryqdbt+aYuWs/flTFcvILzNycIj0eGqfZFXOjcXpQdRv2gJlbmKMLjWVmZ5m5VmG0g14x3UV8Xj0/5Uuqmbtjh36/lhTaxd2TvcabOMUe6CUhXRgwwSi4KyJi1YeP+u0JyqlIPaouIV6f92Oa6OL/IiJLt+nzm+5QrH11gR43revZ53ddrj6GTnXta8qGXTrWJNV+3GUl+tgiYbt4MqqHNW/vYb2H7Rk9wWsU6fbYhfPrpDRRMZ8Um7k5ubkqFoizH7e7Uex5QVbtKDJ5OOrWSzcnERHJ6NhQxfKjdiOH7q309W5zvj0WotGNKrZ1d5qZ26pJXRU7qUcXM7dbbx3PnGOvcWDL6OYwhxhv1UZNjOr/InL5Gceo2JLN9mel8wd2VrGtW40LjYh8O3e5ivU4xi6se1Srtir2wYQFZu7UmbpYe0Z3+3XIXvDHmoecril+c1loX1OsAtl10lLM3HOO1WOqRPQcICISidfPV5ivP3uLiNxz1bEqNucXe0xuzdOPcdZxekyLiHz4lo75HZoCzHf4vFUbcMcOAAAAAACAS7GxAwAAAAAA4FJs7AAAAAAAALgUGzsAAAAAAAAuxcYOAAAAAACAS3mys7NrdYOcAQN0hf/jj7art9dP1ZW5Aw7dq6Je3UqmJGgnB4t1949Aqt3tJNWnu1CURe2X+JNZi1RsxvRMM/dwZlVqd2gAJFGjSLrV/cqJ1aFDRKRzp/Yq9uLLj5u5CQE9zpok6C5VIiIrJi1Usdan2525NuXrfdZ64e1mbpeT/65iC7L1cznJcHgdKtMuqzKvu5tY47GJz66MX+DTL1gwbOfGhXVuiUPF/cR43XmgtMzuOhOJ6niSw/HmG+d34cLaW93fTX6c+7OKtWnU2Mxtf0RLFVtrvP9FRFIS9LkMB+wOEFFj7IU8Dm/qUIIKNTLGs4hIWanxuKm1eungKl2MOaeO3VxPWjRNV7GWHez5/KkR56jYsnV5Zu7WQt31qGOrZmZuJKC7+T1017/N3OlZumtSZiWuVYmJ9lqruNju0vRH17uvQ1es7kepWMf6jczc4uIcFWtf3+58s3JDoYqlJ9vXn5W5es5o0NzuOPnVlJkqNvsHuxMSKsda46Qm2h2E80v0WuToBnZno8Kc3SqWG7K7JxYH9OMmGmskEZE0rz42b736Zu7aretULLMSa9W6de3fbfdu/bvVZs5dFSvG79BB1WesLb3GGkVEZEDn1irWLlWvO0REvEl1VCwnaF+rQnn6+dIa2R3+xHiIjTlbzdQJSzeoWLDEYRPB+LBUW7o9cscOAAAAAACAS7GxAwAAAAAA4FJs7AAAAAAAALgUGzsAAAAAAAAupSvg1TJ+vz7EemnJZm6xUeQ4f+taMzdo1Ohq0KqjmVtUoh+3rKDUzI3mrlaxXLvmqZQ4FmWCVSS5OoQc6n2+/tx1KlaS3sTMbZCii/0dmWoXctvaVY9ff5Fd5KtIdIG4OnWbm7lxvqrtyTrVU6UcqojXqAM38MwTzdxPvp2hYtd2tYvvbTDG9BfZO8zc/hm6QPykuXpuERH5R8+G+rnK7DM5xuH5UHU3XneVik2dPM3Mzc3R15SHP80xc8uCOjcx0Z4g7xqqr42BN142c0tKdVXB9Q7XqgEvf6Jii7ZttpNRecacY68wRJp2PEbFnr5rqJ3s1ye0Qf16Zmr7VmU616cLnIqIlIT14779/K1m7lGn32YfWwWVBWtoMXCYatCwhRnfui5HxU626yFLvkePhQmZdvHYY1rrOSdzjX4uEZGejfW1cffWTWZug/q6cLdVZFxEJOswbeRwMH35v4fN+Nl/uUfFhh1hFy7f1FSvYT9aYhf6f37EpSp2/ePvmrn/OlaPsWWl9jG8urVqH2tLyvTYd6PKNDexCy3ba0hPQHe2iQvYC4ebh56lYt0b2fN5ekDH3820m8cc21WveVMbtTVzw5v1OqVBnH0Mbf/xlortKrWLf1svTzeH+akyxburA3fsAAAAAAAAuBQbOwAAAAAAAC7Fxg4AAAAAAIBLsbEDAAAAAADgUmzsAAAAAAAAuFSt6YrVu293M37R8W100KFqubdMd5n6YrFdkf3mAbrrzOZCuw9FXb9+3O0OjRreX6QraP/ztNZm7nerVtkP8gdjVW+3q7RXttJ7FxVbO/UNM3dNsa66/+M775u5P/p1K4nBQwebuXUb6w4kDRvaXZNmvakrsq8t1RXoRUSKIyEzXlFOXSSs170yr7mbOI2xC45vr2JJXrsyfnxUdwMY2s9+3Lxdi1Vs+lL72Dom6wkmy2e0zhGRM/vqLjl52/VziYh8dnieyoPKadw8fOXZKrZkyodm7rEn/V3FGu3IN3MjiXpu2ui3c70RPTcVb7Y7S/g262tjpKke+yIi0YhDuyxUC6/RYaPUY7csSizU5zNzjN19zeoUetRpPe3H9epxVhrdZeb+NEHPL2X59pj0hex5q6LijC4sIiLFoapdAw8HVpeoY3t1NXMTjOV+QaHdSaYooMdC88ZZZm6y0Z0obftGM7edMaYjefb4mJPI352rKqOrfa36btRIFTuioX0eUoyWfX86vp2ZmxDUn2netoeNNKqrx0Jqst2Fr2tX/RlqSPIWM/ed2brbY2XEB+LMeLEUVulxawOntYvfPPX2eDAaIsq5J/Uwc+v69DVhwtcrzNz4gH6+c/7cy8ydv1XvAaRF7K59K75coHMT7a2PgpDxwT7q1CtYxw929ysnzJwAAAAAAAAuxcYOAAAAAACAS7GxAwAAAAAA4FJs7AAAAAAAALhUrSme7CQnXxf/q5Nex8wtKdOFj6489Wgzd2tQFz6KROyizAnxuqBXoNCunnzfUF2YcMPOHDPXSz1KR9VSsNeo/RXnsQtkF0QaqNgjr79t5j7/xL9UbHuhXTiyUYIunrw93y76+Pd/v6piY//3gpnrWM+rig7XQsmV0TCg35j5m7eZuX8/u6+KnfLa92ZuXeO0Xz7QLlabHKfnomGndTRzr/1ivorlb7YLCDLl1JwO7eqr2NpN9rhZVbpVxS67yr6uJaekqlhSnJ0b9ehLuv/p/5i5iRE9ZxVG08zcnzboopipCXZxXzhzKl5p1UX3heyC7a8+eImKHXnmQ2bulyNvVLEmSfbYifPp2SFkrJNEREZ8+p2KPXn95WZuWUTnVobHw98fnSQZtWaLdmw2c7u20Q1DEo7T1y8RkbNT9Dzy/MfzzNwzTtfXsM0r1pm5wZNPVrG+EV18WUREJtoFwVEJDuvE9Rv0dSm3LMnMfevVf6rYmdc+aj9dVDeaGf3MrWZucqKe9D58YriZ+8zbP6hYdvZ6Mzeniqscr7dqxd7daEGWXvd372Jfq+rW0YXVIzn2tapBk4YqdlGWPpciIl/derGKxXvsdWx6cryKtaijx56IyNA5eu0y4e6/mbmhL+y1u5lb4cyDjysmAAAAAACAS7GxAwAAAAAA4FJs7AAAAAAAALgUGzsAAAAAAAAuxcYOAAAAAACAS3mys7NrqL+Os969uqtYcVZbMzdw9DIVu/mcLmZuXm6hisV77b2rYquAtseuqu0p1BW/nV60pOQEFSt16Orw6qSVKkZXourz3ydOULGXR+Waudnzp6jYorVbzNwmqboq/JGNGpu5pUFdoT8+zmE/Najj8XWMthcicmTbHiqWxdhxZHWjiS5vZ+Z6OqxQsav6NTNz2+ii/9Kw1O6ut9aYXnx+uzGh3+hQE3HYh28S0vX5N0Ts3JGTdDcMxk3lOHU2CsTHqdjr/xxi5v66TY+RBId5oSwaULFQ1O7J4I/qjh7hsN0lJNmvOwRGHBplPv3KeBWbOt/ukgNnTmMnTp9iCduNN2XH5MdVzBvW6w4REX+cPsclxjVJRMRrrJUiEXtNVBzSuekJ9uOmnXyPimVmZ5m5loSERDNeUuLQTekPpEc3vRYO+O3V6QtnHauDPj1niYhsCenznh8pMnPbNtVzxsotdvfRdqI7/G0P22Psw2XGtWqF7nAjwjXMSa+e9mclq63qO8/ebqamhHVnouZx9hhbV6rnhTiHT0vhbTkq5vfZ159mzXQXpFUldveqoTf/T8Uq87kqLS3djOfm5lT4Mdyme1djnDh8yA0b7YZbH9XczJ30r8tVrK7H7r5WFtBrmiKjy5qIiD9idbV2OOAC/RkqnGI/bvv/M7q9ldm5VtflkMMxHOzP9dyxAwAAAAAA4FJs7AAAAAAAALgUGzsAAAAAAAAuxcYOAAAAAACAS9mVqmrYnLkLVCyxSzcz1+/ThY/+84VdeO+a03QB5rBdX0vifLrIkcfh5Xj75032gxguO10fg/FUOAiuvXO6ir0yyi4mF+/VBRq7HXlEhZ+ruEQX2BYR8RlFTkuD9oDw+nUhw1CuXTyZIVU5VvEyTwe7kKml81FpZnztrzkqtsOhAKDFF7ILjv77B1040smtxzdRsbDTxIcqcyqEZxXG3bp2jZnbvEkbFYtG7LFgvdfjAnbR02uf+tSI2mPhhZvO1ZkOw2Z30C7WjOpRZhRKTvHbf3crNDo/RKXA4YF1yGsU2BYRiZjTlsOACOvxkFPo8LhVvFo5jUmIzM/Ua+EzB/YycxfuWq9iIYfC6tas06GRLnwsIrJ6o34Me9UiMi9XX9e8Ds1Flq7X626KJFfO3Hn2ZyXrWnXprc+aueOevE7FtpXa7+kEj1HUVuwxdv6/PjbjlrHP3aBiiQ7jpqr+iPONVfTXaZ1jFVpOT7fnhqgxEeyKOlyrQvqF9/vtk5G3fad+LvtRJbFBPZ1rFA8XEQlHKz6XLVhY8QYABxt37AAAAAAAALgUGzsAAAAAAAAuxcYOAAAAAACAS7GxAwAAAAAA4FJs7AAAAAAAALjUIemKZZkzN9OM9+7VTcW8Xns/6vWJq1SsQYpdVfvPJ3au8LFdebauIB81qog7+e+3i814wKHrBWqQU5MPoztEcbHd6So+MUnFHIakHN3rJBXLnjfDzI0Yldo9TgeMKqtMdyOn6vytWuuK+1u355q54VLdzcap5v4/+utOV8le+xiixthr2bqBnfvjZjOOmlFinnOR4q36WhVXr6WZm5icUOHne+wfQ1WsQZLdQStqjKfcDb+YuV6PU/cc1BSn7iy+QEDFtm3LMXMb1DW6lTg8bus//VPF1o17zMyNGvOWN85eTlb1ClZcXFzFR/hjcbpWndi5rooVl9oLl7w8o52ag2e/0XPGE0PamblHNE5Xsbp17WN44+eNFT4GVJ3H6AgkIjLsjv+q2HtP32jmJnt1tzyfwwTwzvO3qlh9PbX9v2PTa+Nzb3rRTq6inJycGnnc2sxpLVxRi1euM+NtWtRXsQULlpq5afXqqJjRfFFERE64420Vm/fyNWZuVEpVrGljfVwiYl+sXPgRjJ0FAAAAAAAAl2JjBwAAAAAAwKXY2AEAAAAAAHApNnYAAAAAAABcqtYUT3YSCuuiWeGQXeTLaxSD3JZvFzl+1ShoHKyG+pBeo8iXk5BUPBfVw6kOVtg4b4G4eDM3vySoYn6HUzln+hQVKymyCxOmBwpULJqvn0tEXFnQy93sPXB/QJ+Ipo2MgqUiMmftLhVLrHiNSilzmC9Sm+lCcLuKK/HAqDkee9yEwnrclG3bYOb6G+nz63WorJtuPF2oxC4+W2LEEwJ2oWXjMowa5jjFG5X66zfUhXFFRJql6bloy848M3f9uCcremjS5+LnVCw+LcXMtZZVVoF6EYff2eGFyMqqWsHPw1XE4c2aV6wLuQcS7I8AnU/oqWLBXHse+bxLxRuRLN2kC5kW++3xGIywyDmYSsvsQv9xPl0o/ZK7njdz6yXpuWlXTtXXsAWlDlV0K8hpvqmMqhYYdhun18x6Hbr26WbmFhXqBjQd2jY3c9dv1k1HAg6DZM4r/1Axe/SKlEXSVGztFrvBifXxPVSJRkm1BXfsAAAAAAAAuBQbOwAAAAAAAC7Fxg4AAAAAAIBLsbEDAAAAAADgUmzsAAAAAAAAuFTt74pldMAyml+JiIjPp38QdugQYNVYv6DF0WZuOKKzixy6X03aulLF/F77ZQ6V6g4BqGEO3WS8kd0qFvbY3Y0S/XpM/mvgdfbTGWMn32uPnf98+x99DGU77celLdZBVZiXb8abNdcdi/Lz7fZ6rVL0Pvqj3202c63pxeewDf/AObojTloi46M2CKTUM+PRoB5PDtOC2ZLq7y99a6Za05vH4XFfGH6qihUWFdrJDvMmao7Pr7vRiIjMX6LnjB6dm5q5v27epmKbblhj5oZCej0yPWqPh+lzZ6nY1EXrzdyeR6WrWCDe/t0sTZ+6xIynG11b/midayzRiN0fZvlm3X2qY1N7jbNjwxYVu2DsX83cnblGN5tUuxPS6lMnqtjSTXaHmoDf7tCHmmIvMNIaJKpY/i67Q9ruoO7GeeGRXc3cYFSP03XFRWbuw1+NUrG8PN1FVkSkzREtVOz/Y++/wySrqv/ve52KnXtyYJghgwI9GUkSBMyCIAgoIPhFggrmhIFkToBiBAOiqChJMAAqAhIkDMxMS84ww+Tp3F35PH94Xc/vd9/rs727vt099Ol5v/5cLE6dqbNr712761orlx3+fLP9lw+R8Wgrm2/q+beF5pxf/OFhF3vP4fNl7uRm34X44CO/JHMbsz62NtB87a5rLnCxF1br71XqE7Ai8D7Mn+//HStXrtQ3sYXxix0AAAAAAICE4mAHAAAAAAAgoTjYAQAAAAAASCgOdgAAAAAAABIq6uzsDJVsHBc6RMGqqYHCoN0F/09JiYLKITVd8zRAv22RuEawJqaITeRiXOPZ/A5fCKvz/jtkblzzBeKCdchF5dIoMCKaB3xxw72OfpfM/ced9+vXw4ipOeecN86Rua0tvrBgHJhHNotifw3ZwPwkrlGqBnKb20SuTv3Onx53Meac0aHGzXc/fJTMLVX8Z705sFZVar5SYD403YjOAuXAgIzLBf//q4FnZh/83l0utrJzhb4JBKkxEpIJ/NktH/nx8NRfvipz+/t8MdJMYBqJRXywqNpMmO170mX+tcq+4G5QaFtWx26Ueas+h73W73HOe/OOMnf2Dju5WLGk9j1aV7efW8zMii0zXewLP9eF4O+5e9mwXw/1UfPQ779/jsx9z8cvcbFIFEk2M6uJ9SMb6nYj7DCrWcYfeck3GwhsccYM8039jnnHG13svu+dKXOHBn3x/lDDELVMVKp6U7TJGlzsHZ+4SOZe/4fb9AsmDL/YAQAAAAAASCgOdgAAAAAAABKKgx0AAAAAAICE4mAHAAAAAAAgoTjYAQAAAAAASKhAb43x7ZQ3v0rGf/5n3/FlUDd1sJoqq11Pp4ZIJ9dEcqjZFlXWx7cX1w3I+NuOeIuLrbzvTpkb10Tt/pT+2O1wqO+g07ly5X+5Q2wpPb6hlZmZxbHvOtPcpDs7zJjiu1cNFHT3EIv9PNIUmKDSKT/JnXvj0zKXOWfLivL6bydpU53MfKcsM7PB0pCLtTT5Tg9muuNeaJHvEV0kPvLdv8lcxs0rILBxKKbKLpYPXGLn4y5wsUeuO18ni+5pLU2+A5eZmaU3u1Dkbyto5UrG05ZWEl1jB4b0IDv9Ej8PfPNE3ynLzCyK/BzXmNLtzT75g3+52L0PMRbGg8a870pkZnbltz/uYid++GsyN5PK+WCsr6t2M8+v9d2vzMxyeT/DDRX1dVmrxo9VL6xzsXJN72MP+vjPXeyuS04f9mtlAxudd37oUhe7/qaJ0f0qhF/sAAAAAAAAJBQHOwAAAAAAAAnFwQ4AAAAAAEBCcbADAAAAAACQUIksnlwWRR/NdI3j9gZdqGnTgC8aV9X13rAViMXoSQdyb7nhBhfb8zUHjPgeKPo2fvX06slh6iQfGxjUBZG/cOtLLpZJhSq2D19VVIJnLI0PRVFY9D/8+pPN+4LKZmbnfP8GHxTFteul5jfGzfinZoxiWXeJePovX3WxbV7/qVG+o/8Y+UyGMSUeUC2li2O/+2BfKPmUy58a8S0wv4xfLVlR+NjMKubnlt989xMy9+gP+KLKo/O1yhdKZiwlgd/nrF6zQWb+/rxjXWybI33x/3o9vGLra0DDL3YAAAAAAAASioMdAAAAAACAhOJgBwAAAAAAIKE42AEAAAAAAEgoDnYAAAAAAAASKpFdsSzW/YpOfssSF/vFn5cHLuKrdWcCbR0qIyzrTvX2ZJo1rV3G161f72K3/uEPMvcNb3+7izEekqexWU+VT73kJ4c5s4c/YWyNFfu3Ji2B7lXlnO9AUot1ZyP115cVzCETXmgWqfmti5UCuQ2RT375b75zjZnZnMM+M+x7UEK5rHfjw5Bo1tjcpHPTRf80P/yWnWXud/78tIvxzJNnQ7+OT2nxX4xyjfrTrr5CrWQsbLXimh8RqZQeOzWxV1r28w/J3AUnf8fFmHP+D36xAwAAAAAAkFAc7AAAAAAAACQUBzsAAAAAAAAJxcEOAAAAAABAQiWyeHKtXBx2/PiDdpC5l936lIstX0nxpa2VKvqWyeoiX9vNmjSm94LxJ0pVZby1RQQHdBHcQG12TGClKFBSNiq7UEu+UaemGDkTxWgUeFzY0eFi2Zqenyq17LCvq0YqBSknEDGNlAr6K0Aq7ccTfwWe2GqqKruZbez1A6e1NihzR9hnBhNM25TpLtY+abLM7e7u9UEG1P8KczUAAAAAAEBCcbADAAAAAACQUBzsAAAAAAAAJBQHOwAAAAAAAAnFwQ4AAAAAAEBCRZ2dndSdBgAAAAAASCB+sQMAAAAAAJBQHOwAAAAAAAAkFAc7AAAAAAAACcXBDgAAAAAAQEJxsAMAAAAAAJBQHOwAAAAAAAAkFAc7AAAAAAAACcXBDgAAAAAAQEJxsAMAAAAAAJBQHOwAAAAAAAAkFAc7AAAAAAAACcXBDgAAAAAAQEJxsAMAAAAAAJBQHOwAAAAAAAAkVOaVvgEAmEg6OjpkvLOzc4vlAgAAANh68IsdAAAAAACAhOJgBwAAAAAAIKE42AEAAAAAAEgoDnYAAAAAAAASioMdAAAAAACAhIo6OzvjV/omACCJQp2qhquxsVHGh4aGRnRdOmUBAEZLPWsd6w8AvDL4xQ4AAAAAAEBCcbADAAAAAACQUBzsAAAAAAAAJBQHOwAAAAAAAAmVeaVvAACSKiWOxtORzi1XfaxUEMGAdDrwHyh/DwAYJQv2XuSDx3xO5m5/0NdcLFRomaLKADC2+MUOAAAAAABAQnGwAwAAAAAAkFAc7AAAAAAAACQUBzsAAAAAAAAJxcEOAAAAAABAQkWdnZ30VMFWr2Op7+KQq2ZlbqlSHpN7UB0jOhYEukusoLvElrRgvn4OqiNVLdAVS+Wmo5xMrcYlkRu4rJrBA7krVjJuAABmHYsW6P9w7OddaLt9vixTX7jzMy627X5fkbmrPuEXK/YyADB6+MUOAAAAAABAQnGwAwAAAAAAkFAc7AAAAAAAACQUBzsAAAAAAAAJlXmlbwDYkkLFiJuyjS42WBka69v5f+joEPfG0eu4EKown1IVjavDr0dfR2owN5vx91CuUBN/PFu8ZL6LlUt1PLMoNDHUfCg0brJ+3Dz00Mrh3wNeEUsXL3axYrmegv51jJ3QFVJ+7KxYwdhJnJQeC9vu5Qslv3C/L6hsZjZn/y+52Kr7vqBfL6uLKgMARgdfGwEAAAAAABKKgx0AAAAAAICE4mAHAAAAAAAgoTjYAQAAAAAASCgOdgAAAAAAABKKrliYsFQHrKghLXNLBd8BKxINj8zMGnNZF4uzVZkb1xpcrDA4KHPVKWu2Wd9Dx/zhd9DqXN6p/wOkerqTrb7jYhfrL5Rk7snf/rOLtWf0FJwqd7vYRZ84VuZmYt/2aMc3flrmqn9bZyfjY6y8dtECGb/0o0e6WJz284qZWZTOuVhju+/iZ2Y2UPTzUGqwX+bWxLgJ3e9dD6+QcYydDtE5zczs5VsvcrHt3vo5mfvMH3zHoh3e9hmZu+qPX3WxuW/X3Y1e+ovvbrTtXrrj5PIHmF/GgwXi+WwXaFL14j/9+rHd/hfK3BfuOcfFtt9H5z5f8WOvY4keN53LGDfARNMxX69r6utWLPYooexAgz+zWHRwXDmx9zP8YgcAAAAAACChONgBAAAAAABIKA52AAAAAAAAEoqDHQAAAAAAgISa8MWTZSHUemXE+Ve1pnNFrSeKk46tjoWBZyxGdzSoixxX6ni9oWLZxWJdL9ci04WSFVUmrNg37P+dIsljqHzLuTK+4pmnXWznhfvI3B+f5MfpZ69cLnOPOGJfF3vpsUdl7owpLS52x/feK3MP+sDPZRwjp9aa51avkrmNubwPBqq1p1N+IosjPeFMb/UFmLsH9N9vyhU/4xz36Z/I3KmT212MdW30qDVsw+3f0smx33vE5aJMbfC1+61a0mMn3+zHTiVQ6D+d8vew7m++qLOZ2TQKtm9R8wN73u2/52PP/VMX3d7+4C+72PO3fVzmzjvgay72wkO66PZ2B37RxV5s/LzMpdD/+PX5sw+vI1uva3HKNzJJxXonrmrofunSm+q4B7wSFi1c6GKpSO9HUpF/yCv//YjMXbzIX7dW0WOnUvPXXbhIF3Be/vBKGU8afrEDAAAAAACQUBzsAAAAAAAAJBQHOwAAAAAAAAnFwQ4AAAAAAEBCcbADAAAAAACQUBOqK1bHfNUNQFdkVyLZl8gsrgQ6YAm5nO8s0bFkicztXLZs2NdFWKgb1ALRaST4JMUwyfqi/f+5hrjITttOlbk7b7eti+27fZPM/cGfHnKx9d2620moKRtGLi2Ou58b1M9hyWv2d7H1z/jnaGbWPneai/38nANk7strh1xsUqv//83M0lU/58yY5LsYYcvb9wLfNc3MLBP7Z5YJTDjl4oDPDfxNpljz8ZbYd/EzM4vzzS42VA6098OYisR8no713mX26z/lYqtv0x20Zh34MRfrulPnVsSz3/zPb8rc6a/31335L9+Wudiy9C7W7Lm7ffepbQ/4ksx9/h+fdLFZe+txs/pen7vN3r6rlpnZ6gd8d8nt9v2KzH3hKhnGFnbOWb4DVqGou8uq7lXpVKDbY9pfIxX6viY2Zed85GiZ+tVLrtXXwJhZsEB3mVK/HcmK525mVhZNrebvoTv8PfKI/863pGNPmSu2RFYzvdfqmL/AxTpXrpC54xm/2AEAAAAAAEgoDnYAAAAAAAASioMdAAAAAACAhOJgBwAAAAAAIKESWTy5o0MXVNKFknUpuXzKF0+qBXJbWnzR0nRckLk9fX0ulsnq6y4UxZ6Xr9SFgBE2f3FgPIgaXZNaWmTqB96+i4s9tlYXcjvt8EUudn/nSzL3tpVPuNisHXShsfPf5wst/+LWR2TuPcsfdbH5S/X7sPJBxlQ9VHHs9b2BwrbPbHKxwdpkmdvY66fbTdYmc+dM9QVzN0R67GZFSfCa+kdgi/va7CtkvFLza0KD6QLdlYqI51plbj7jn3txSBdPzuR8LDIRNLMT+BvQmFJFRwdEgW0zs12nNbjYhkCR/Y33XuRiHaL4spnZ/X/0BW/7C3rv0hD5e+ut6qKYGDtyL3z0Z2Tu3CVfc7FaUX+ud97/UheLAnNA674/d7F0KlC8f5EvlPzi7b74spnZdt/8qot1LNB7nM4V7HFG6vMferuMDwz6z3UUi0q3ZpaN/B4nSuk5ZPqkOS5WqQ7K3K4Nfp8VNehC/+d++CgXu/A718tcjBa9P57T7teJNb36u7OaX/IZfd1j3vwGF0s16r10pa/H50Z6/KbjibHPmRj/CgAAAAAAgK0QBzsAAAAAAAAJxcEOAAAAAABAQnGwAwAAAAAAkFAc7AAAAAAAACTUuO+KNV9U/W8O3PU2033XmNk7+G5HZmaffe+BLvbMOl1lfe2Ar+L9qnkzZW4l4zspXfrNn8nch59cJ+PDNXmS7r7T1d01ousmzcqHdEcE1THiXYe8SuZOmjzDxS7ax8fMzB5bt97FdmrX1dtTu2/jYi2DG2XuDo2NLva1k5bI3ANFVyy6X42SyH+GX73zq2XqjZ2rXKy3SVfnn5fxnWuiQBX+DS1zXaxYGpK5jxZ9J4m5uvGA5bPjfspPrFTKP8tKNi9zi1nffarmP/5mZhZ1+efeP6TXqtqA7/YQ13R3v3LNz1nbztHrmqV0hyaMnSVv+piM51v8czvw7V+Xuem0nxs26iZpts1B57hYJOZCM7PpYp+z+M3n6gtjzORzfh7Z5rCLZW62ON3FLp98ksydMcVPRoWy3uNUI9HhT9yXmVk267v2nWE/lbnPpJpEVHdNQn3OeO8bXWyKXqpspznNLtbx6l1l7rvedpiLPb2qV+bGYg7ZbuYkmRuJ7kg//P5PZO4/HvX7c4ytjd/4vYyvfWmDi2XSukta885+zln/rH69pkm+K2hDS6iDo1/w1j/q78vMbO5OO7mY7nc8vvGLHQAAAAAAgITiYAcAAAAAACChONgBAAAAAABIKA52AAAAAAAAEiqRlTSrgeOobXbZzcU+ddJrZG458tVFp0+dJnN339EXr5wkinmZmfX2+EJh3/zkMTL3sA/8QMaHq1DWBTTxH6rs4/6Ld5C5u072hfruuuWP+rqiRtecg3zRODOzhtiPs1qjrlLX9/QdLra5rItXZjmTHTOqBNtf/na7zI0m+znjgScfkLn/jvx0++59fBF3M7Ppbb7IZHHzJpl700P+9TZGen5KV/R4wsjV/COzMy/4lcydOm2Si23s0UXV8+KRVYd0ocA49sWTK7EeC3Gm6mKZwLSSrunXw9j54y8/L+N7H/NVF2ufqhsm5ETN6+Y+XQj7yZsucbFpTfq5X3zllS62W4MePEdedL+MY+SK5j/D+YenytzvH3Cai5X7dDHiivl9S2qqL75sZrabCBdNN554euVKF7ty0jtl7mseuMwHI91AAPVpaPB70JpaaMysYbb/XtV92Ntl7p/FV5JpA7p4clOTn4dqBT+ezcyub253sf0+9BGZe82JH5ZxjI7G3zzoYv+IX5C52+05xcWuW6ubBrVv9HPOG/dbLHO7B190sYY1vjmJmdk/B3yDk9bpa2XuPfe+7GKHdetC4YPv0o1txgO+HQIAAAAAACQUBzsAAAAAAAAJxcEOAAAAAABAQnGwAwAAAAAAkFAc7AAAAAAAACTUuO+KpU6eiuY7GJmZZbp99etn/647ghQKvhvAjNfqCty1aouLdVc2y9xH/vWU//+HdFX4THVkHWry2ZyMD9nAiK6bNB0LO2T8zkt8N7Kd5jTL3Gcf8+/ZqX/RXYhWfMp3Wvv3Jl/R3cxs4fa+mv8DG3znGjOzt/7Oj6m+b+luW+Vr/irjGL6ODj1u/vTdj7jYnq/ZXeZuFpX8z/ic7nZ3xLEHu9iUybrrzOQGPzX3y0yzX3/3zy524nH7B7IxUqFx85YD93Kx179mR5nbm25wsfO+/guZq/rWnHHMITJ38c6TXWzKlFky952fEuM0rdekquwVh3p1zNdjp/LQ91xsoKrf80nmu3906YYgto1Y7qaJbjRmZrOa/bOvyN6SZp++cpmL3frt9+qbMLpijZXWjF8nWtKNMndSnx8kq+58TOauyvl1bd4x+8ncZY/7doDtTbp71bN/f9rFXmjUe6dZYpyujZmHRoX4WA9U9feJvrW+U9Cy6/+mr5tvdaEPztC/H3jrgQtdbF1/n8z93e9ud7HJM/1aZ2YWBTqCYnTsNMd3gn346X/L3Lzoqvh4X4/MbW/0HdHKjz4rc5dM87m54mqZ+2iX/26Xn67HyM5yfknenMMvdgAAAAAAABKKgx0AAAAAAICE4mAHAAAAAAAgoTjYAQAAAAAASKhxUzw5VJBSle5L13Tx2S984G0udthZP5e5l374OBebkvIFLc3MalVfdK5SKcncL936kIudc+rhMrdYWynjw5VKjaz48kS34qn1LtYwyxczNjNb2+uLtt3y2XfI3IcrvnDXjFZfQNDMLCOOTttrutJl8YozXez2Z33hOoytpXts62IDm3VRv1229QX8Pv/RE2TunLlTXKw99mPJzKxPFJgbCkzXnz3/Qy42b47O/dGvbpdxjNxeu0x3sXyjXlN2bRKFKpv131lSRZ97wIJ5MrdW9qWWi2VdyHRJhx/nK/+9Vuaa6fkNo2PN6jUuVoz1eHjp/u+62Pb7f0TmrvP9JGz1LefJ3M39vjx7VNP38K/vne9ilWm6qQXGUMo/n+6iLrO/x7w5LnbkXb+SuZeeeryLVfQ0Ys1ZvxeuxLoQ72f+eY+LfeUjp8jczCMP6xfEsJ31/iNkPKr57w6lgv5O841zT3axWYd+Xuae9zH/vWrx7vNl7oBoYNM/pNeZrqt/72JHfdC/lpnZ8xG/VxgN6V89KOPVuX7P27jNRpmbafZ7ojuu+IPMfd9H/Vh94zZ6LqsO+jOA1OwZMve2r3zFxY75tJ/fzMzOONx/V3/hmSdkrnp/qiculblbGp8AAAAAAACAhOJgBwAAAAAAIKE42AEAAAAAAEgoDnYAAAAAAAASioMdAAAAAACAhBo3XbFCclkfK5V19fb2Bt+B5J4fniVzo8h3Jooi3WUqSqVdLI71W/fLL/mOOO2ZWOb6q9anWqVTiZlZNtAc7Ozv3+lit+84VebuNMMPtLZW3b2qddA/uWykn3Hfi5tcbG6sb/jpDU+6WFNOjzP6oY2caChiZmYzD/2Eiz17wxdl7lMv+rnohNfuKHOLqUYX6xvUrUYqogVJJq2f+sHb+3mvnNYdakY652xtVLfGDf/Sz3f6Pn92sZ+e8y6Zmyr5rg5XfurdMrcp7eemoeKAzE1n/ROuiq6OZmYfPvYQ/1rH6w/FOz+nu0uiTnqZsLmHf9nFCn/Xc86g6F51982609XMrJ9zUrG+iZpYVaJAbuO2PnebwD4HI9exQHcWisReIlfVz2H9Zr8X+fvXPydzd2nxHYvu3uS7jJqZzZrs9yhrev3/b2Z2w5fPcbFdW/QaeKnfDtGcr04tTXo+37jZ71smNeVl7tCgH2Nf/bEeN69r8tfVfSHN1vb6cZqq6Qd87HkfdbEDxWuZmd00uS3wihgNL631HVt3rR0sc5/Z+LyLXfb9r8rcWYXnXKynS3fpLJd9LJfW4/fT3/2hi80ovyBzN2/Uc5wynlc7frEDAAAAAACQUBzsAAAAAAAAJBQHOwAAAAAAAAnFwQ4AAAAAAEBCjfviyUVRJKkhpYuI9g+K5FQ1cGV/jVSgGlKcEUUFA29dgyjAXKzogmAjrQMXqPW81Xno4U4ZV4VPX//Z62Xuv770Vhfr7g+ce8a+8Gk5cEb6lovu8f+7vqr95Wv+HtKBarc8+pFbsWL44+bB2/4gc1/9huNdrL8Q+GTHBReq1vT8tPcxujih8uD1X3exKDBHVgLFUKF1dvoxMl2Mj5AosKgMldRz17n95te1dKTnm5PO/c2w7+1nnzvOv1ZgUWHUjA41nsz0nNMf52SuKmg8JdYlSssFnxtFes6Z86YvyLiy6uavuFiKZg5jpnPFShnvWOTHTW43XVT2+Vqvi0W1bpm7rsvPA9vObJe5aVGsebvJMtVe2OyLlt7fr+ec5xo3+uC4/8YyvvQP6s9kQ4N4I2Od29bmC7Cf2qznJiVQD9nKZb+Ptlh0yzGzD+7q7yGTCQ0G5qGxNFT2728qsN9sLr7kYxt0geKq2GWomJnZTPF9KxrolrnZ/GYfjMVZgZn19ehrKA3iu5kuGb/l8YsdAAAAAACAhOJgBwAAAAAAIKE42AEAAAAAAEgoDnYAAAAAAAASioMdAAAAAACAhJpQNeZj0Smkt3tI5k5qb/L/f+C6B5/xQxe74/tnytxI9CuqpvTbPNLORt3d3SO8wtanXNTxwz73Jxeb7gvxm5nZdV/2nZBCg+fab73bxdpzump/JMIHf+K3+sLYogaGdL37Z//5exdbtM8hMndjHBhQwsrf+q5YA5HuGFEp+TnupXt1Fy+MXD2djdKBSb4muqGFOuu15IffgeQXF5zg7yG40oi1qiY6leAVkRXdOM3MItH1JdTsrlpVHZL0dV++4TwfDExZkfmFNJPK62RsUZWKHgzbTmpxsbU9el2bM6PZBwODbPfjv+Zij1zzGZk7T3TWqpQC+6HZfo6McoE2oRixJtUpy8wGh/wcMjTQJ3PzDcPf4yx+x2ddbMW1vtuemdnQkB8LmaxeqyqVUCdkjJVAQzWrVPyYilK6a19VdDlL6y2vHfwF3/3z2q+J72X/uTsXyQeOPtQMl8QOxPxiBwAAAAAAIKE42AEAAAAAAEgoDnYAAAAAAAASioMdAAAAAACAhJpYxZNFkeJmUTDOzGxqiy8Ot7GnX+b+49L3u1gtUCzq2E/6ok7ZtgaZqy6hCnCa6QJOoWLPoeKeCCuLemtrB3TuGz93vYsVK4EBUUflrWqh7IMpffZak6MHYyUKVIeLRbHZB+65VeauH/DXmNEw8tJsg2k/7+VKYiyZWTJLwSVXJquLfdZq/jnkIv1sntvQ7WJzZ7YN+x4qgZVCFcVsbgwUwA3cG8ZOHOntWUo8zlJBL1ZR2s9P6cCYNL1VkgqimGk2zxjZ4kT92FwusDOMfHxWm28iYmY2vcHH13Xr/XHnVZ9ysVpRr5eHnH65i6WaWmVu6UC/94kHdWHc0L55uCbqnrm+T6R+Zk2Nfr5ozPsi2GZmA6IWd6v4/83MnvrLxcO+s54hP9ArZb3HaW8bfrMBjI6U2IOamTWIr75xpPcYlYJ/xqnAvuNPXzpOXCAw74n1rprShbdrokB8En/9ksR7BgAAAAAAgHGwAwAAAAAAkFgc7AAAAAAAACQUBzsAAAAAAAAJxcEOAAAAAABAQiWyK1Y2p2/7yRd6XWy3HSbJ3FWbulys9SJ93WK56GIPmO4QcP9jK1zsjkdWy9z9dp3lYtl8oGOFsO2X3y7jkegQMFGr/tcr1NylqcVXah/q98/dzKy/5Dsz/GqvE2VuqerbBGwKtFT7zHLfbWvOHD9GzMy6ntZjCmOjGqj6n8mIeEVX3J+c8ePmuO+slLmqvn9KNwSxn5692MVyTboTH82NtqxqrOfzOFYPU3d12H7WJBc74fO/HPY9NAbiP/6in7PinO4okg5058PY6e/ukfFso+9YlM3qz7vqSrLNOz4rc9NiqIqtj5mZbbzxiy7WNaRz04G5E2Mj1KGmUXSHGQp0Fnph/WYXO/NkPefkRfe2F2t6Lpt/sN+b7rLzjjL3gbl+5lq/e2ARFNb2LJXxrtVXDvsaE1WT+J5RDexbHn5knYvN322azJ3c7p/ZP499UObWCn7C2JzXz/fQn+7jYlfffL/MTfF7hVFRPVF/fqJf+ueZzWRlbrHi16p8Tj/jbNZ/L/rJhT+XuRmxVhWrenP7P+e9z8WGCjpXRaPApnnwXUtkfDzgEwAAAAAAAJBQHOwAAAAAAAAkFAc7AAAAAAAACcXBDgAAAAAAQEIlsqrdQFEXfDv7a792sVt//AGZWxW13fo+pq+rzr8Wptpl5u67zPfXLflCzUGh4qa6Fp1EoeSw9px+gzf2+iqRzboemHxEJz7wq2HfQ7WqiyfnYh/vpEjyuPC2w4+U8btuv8XFaoHz8lrKT7e//ICfL8xMVjmOAwVsS2Vf9HCgoAdvXMc8gpEbKpVkvCErnk+k54VSRRRrv/Akmavq/IUKZhfFuFm7vlvmVqvDL1qK0dHUoLdnJbEZSAUqq2/u9c/4pd99Ream0n6g1Gp6/MYFX9h5Wvt2Mrda1UVZMXwdoiGGmdm8r/pYNdbv9+JlF7jY3fM/J3Mjscv50S/0nKMmmBfX9cnU937+dy72h+hvMnd6v6iQukiP8w1XqeijMndrElzvRTy0v3jHh7/hYs/d+m19XbHWHHi1LjIbi9xq4AvQ4ICfhy757V9l7p576IYjGB2xGFTVQJX92at9Aeau7f8lc2tiUL7v3FP0Tcgqx3r8VsX8tP26A2RuHPszgLieL9/jBL/YAQAAAAAASCgOdgAAAAAAABKKgx0AAAAAAICE4mAHAAAAAAAgoTjYAQAAAAAASKhEdsUKFakuma9onRedhszM3vDJK1zsT5e8N/B64gUDrUZq0aBP1VeVVq6ko9VYuu2775Dxgz54nYtFgYHWU/RdJ1qzooNDQCowdjaLBiShsbOSzmdbVCHWZ+AHHvwGF7vjjltlrhohqUDnG12JX99DStzb8d+5T+bSMW/Lam9pkPGeviEXa27MydxIdNGrxQWZq5aqYGOU2N/bOZf+RuYybra8yU1679JVEF2PQp3PKv7pZyI9dky8XOgvf2uHWlxsu8POkrmMnZELvYeqW9aOl+h55LlPiQ3GH/Tr7fmur7vYo787J3yD/y87zNZdY9f0bvTBm/U1mr7lYy98Qucyxuqk5ovAQpHN+lkg9MVx7iFnu9iLf79Y5tZqfsJJBTpz7fK2j7vY/ntvL3PLZTo4jqn37OVjv35YptZq/lnEFd1p8Y3n/N7Fbvn6sTI3Fi3VQt/XXnf2ZS726McWyVz1wRh6t+/sNd7xix0AAAAAAICE4mAHAAAAAAAgoTjYAQAAAAAASCgOdgAAAAAAABIqkcWTQwVlVemkSkUUGjSzv/3gNBd77Wnf/9/f1H9RT/FkjK1STRczVUVH27P6GgVR+6u3ODYF20KFT7Fl1Yr6DLyxvehir33dm2Xutod/yV9XFBCsV00MEopJjg+RqkhrZpmUf2jlml6rTr1QFzQeKcbN+FYo6+1ZJu3HlKiRbGZmOx1xwWje0n/F2Nny1Hu+716LZa7cHweaAjx/0/kutu1bfaxe9YwRVRiaMTY6Bgp+v5pL6W8qqtdHJq1zX/zbRS7Wtv9H6ro35a2H7uxi5ZLecwd6k2AMld+tixEvWuTjd33nFJn7188f5WL7nvnjEd2XmZ4z/K59YuEXOwAAAAAAAAnFwQ4AAAAAAEBCcbADAAAAAACQUBzsAAAAAAAAJBQHOwAAAAAAAAmVyK5YwT4youx/IZDaJLqS3P2TD8jc177vB8N5qaBQLhX+t7y4rON//+H/uNjhZ/1M5kbiieYCrycaaNWFMTI+1Br0E95c8FNoW8uQzI3FuFmxkuc7kRUKutNVc6Pvzjc4FJgtxAKygnlhwotU2zIzy6TzLjZUDSxsAmvKxHbvAw/J+D6iW1Y1Hn4npFV/Ol/mqm5ZozHGGKdbVkM2LeO9A+IbV0p3pCqJaaj3bt8py8xs7mGfdLH999shfIP/L9mcvt+vXXL9sK+BsZUSE0kq0G04jv04u/ebp8jc/T51hYutZC/9/8cvdgAAAAAAABKKgx0AAAAAAICE4mAHAAAAAAAgoTjYAQAAAAAASKhxUzx5NAqlze/ocLEGUZDJzKxSG/4/XZUwpLBbMlVLurBtteTLbN9w4eEy9+DP3OhiyxgPE1tNzyNlMTu82N8qcyNVkRITWjrwzCtlX1Q5GxofDJutUirShbdTsY/nIl9QGfi/RWlfbDaXDUwuYtPLNJQ83/uR36vW6559lrpYqaoLF6tRogoqm5n1DPkCzF+n8PGEkkr779ldQ3pdmxL535mEfnkS19O9aCvEL3YAAAAAAAASioMdAAAAAACAhOJgBwAAAAAAIKE42AEAAAAAAEgoDnYAAAAAAAASKurs7KS+NAAAAAAAQALxix0AAAAAAICE4mAHAAAAAAAgoTjYAQAAAAAASCgOdgAAAAAAABKKgx0AAAAAAICE4mAHAAAAAAAgoTjYAQAAAAAASCgOdgAAAAAAABKKgx0AAAAAAICE4mAHAAAAAAAgoTjYAQAAAAAASCgOdgAAAAAAABKKgx0AAAAAAICE4mAHAAAAAAAgoTjYAQAAAAAASKjMK30DAID/p46OjmHndnZ2juGdANgaMOcAAMY71qr/jl/sAAAAAAAAJBQHOwAAAAAAAAnFwQ4AAAAAAEBCcbADAAAAAACQUBzsAAAAAAAAJBRdsQDgFbJgwQIZv/yMV7vYaT9+bKxvB8AEt2TJEhn/7Uf2dLHjL/n3WN8OAADOokWLXulbSCR+sQMAAAAAAJBQHOwAAAAAAAAkFAc7AAAAAAAACcXBDgAAAAAAQEJRPBkws46OjmHnRpGPxfEo3sz/pbOzc2wujC1u6d6LXeyqj8+XueVSzcUa8kzXAIZvr7188cnrPq2LJ1fKJRdrbsyO+j0BAPB/W7TINxKpxaHfnvgvYamU+GK2leIXOwAAAAAAAAnFwQ4AAAAAAEBCcbADAAAAAACQUBzsAAAAAAAAJBQHOwAAAAAAAAlFmxVsVToW6i5E6ogzk9Ifj0qlMvwXrKeFlriHjvm6W1fnSrpljVeLl+pndv4x81wsndFjoVoqu1gtqmPcAdhqLN3LdxQxM/v6u+a6WDbtO+6ZmZVLvitWLWbOAQCMjoWB72DVqo9F6eG3G45Nr2tbI36xAwAAAAAAkFAc7AAAAAAAACQUBzsAAAAAAAAJxcEOAAAAAABAQk2o4smLF/miTOVKoPiSqGlrceica/hFmXI5f+Fly1YO+//H6AkVHlZamvIu1j9QHP6LZdI6rsZfpMdkY85/HIcKunil+rdRUHnLW7TUFy099yhfsNTMbNspLS4W1fRYqMV+HqlU1KRltmgvP+89/ABzzni2ePFCF6uUh18ocEq2TcbT8aCLbQgUe89k/Hzz0MPLhn0PeGUsWbrQxb5y3LYyd970VhcrV/V+JhZzTjGwf1IF4h96kPVnPFu8cJGLlUN/262K557V64+VRdXTgEg0k1i58uFh//8AkmOR2OeoIskhadPrj9rRxDU9P80XxZpXLp/Y+2N+sQMAAAAAAJBQHOwAAAAAAAAkFAc7AAAAAAAACcXBDgAAAAAAQEJxsAMAAAAAAJBQUWdn5/BbcYwTi0SVazOzS/ae7mLzmnUJ7qas6AzR2Cxzq0M+Nx3rjkmDolz3O27bLHMfnuCVubeUjgWB7ldiZKca9FlmW813iBkIdCzK5bLDezEzS0W+W1ahqMdORhR1L+d0R5vKwPA/tnTLGrkFi/Wc87E37eiDpZLMjcyPm9fspiv5F4tlF1vxgr63KPZj4Vt3rJK5K+iWtUXtJTo1mpl96czjXWzTkL7Gug1+/Vi3vl/mZtJ+btl1t51lbkPGz4UX/+rPMvfe+/6pbw5jpmOpHjs3X3qGi2UCHT27uv04SfUtl7mlIT92Zux6qMyNY7+vesPHfixzV9zH+rMlzQ/MOS05P0aG/DJjZmb5Br8fKgXa2dRiv8eplQOd+ESsGunrrniIcQMkwYKFvjusmdmJ+7zaxZrEPGRm9uL6DS728stdMrdW8/PLa5furnNFF8jL73pU5i5/eGLsj/nFDgAAAAAAQEJxsAMAAAAAAJBQHOwAAAAAAAAkFAc7AAAAAAAACTXuiyd3dPjCuBcvnaZz23zxv0xaFyeNRcG2KKXPuarW4mI565O5lerw387X/XXAxTo7KRhXr2DxZPE4m9OqfJ9ZVRQSLekaxxbXfMXB0AlpJMZfLTBGVFSPXrOaKuwcSKZ4cn3UePrM63eTuX2Dfh6YPr1d5vZ0ieq4sa6Yu9duvujc7SuflLlNDTkXKxR18cof3eOLKjPnjA41br59zodkbiHKu1jTpKkyt2/dWhfbtFmPm6jq4y1TJ8vcXErMTWlfCNXM7IJvXe5iKx++W+aifh0L/dj5w7c/LHPbsv4Z5afosdOzfr2LpaKCzC2u8bmNc7aTuRWx/mTTehU87IMXuxhzzuhQc05jYM8b5RtdbM3ya2Vu7+pnXWzu6z4oc9VzzzU1yNzHb/ymiy067lMyd+Na9sfj1T577yXjsWjkMCiKspuZpRv8GhgXdG5Do8+97/4H/9stYox0zPdzzrtes4PMbcv68dAyyTc5MjPr6/brT9egaHJkZqtXvexii3bfXuaWK34vnA6sVT+84zkXS+Kcwy92AAAAAAAAEoqDHQAAAAAAgITiYAcAAAAAACChONgBAAAAAABIKA52AAAAAAAAEkq3CHoFLA50Njp+Jx9LWUnmPi0ahfT06g4QmWyTi0UZ3a0oqvrON+V0s8xNbe52sXybfpvPW+grvS9ZMF/mLluxUsYRJhqfWTmrO0aUiz6ei/Q4K6ezPhgHWlKlfFX39kbfncLMrGdgUFw2cF3VmcsPJ/wvTBWPt6fkO3SYmU2dMsnn9vTL3Djv54FaWbyYmd3xhO+A1ZrTY6Eiwk153d1o22bO8sdKY2Ori63q1c8hN3WSi730lO/0YGaWyvmJbLCi15S2Nt8d6eVe3WmkIrpiTc4HWgFiTLWKxzm1RX/eW2bOcbG1zz8mc7PiGVdiPQe0zZvtYgN9PTI3k/fzVqgr1qTAvIWRy4q3vBhozDr42HUu1tOlP++lsr/I47/9vMzd732+69njV+lOV4VJvqPtM3f+Rua2736EjGPL2ld0wDrlTXvI3M1Fvy9dtKvuyvjcWj+HzJ+n98YvrN0o7us1Mvfe++6XcYyO2eIRzW3Tc3++fYqL9XX7Z2lm1pLze6XmnL7uNpPmuVhafeEzs3xm+Mccu7Tp/VrSsMsHAAAAAABIKA52AAAAAAAAEoqDHQAAAAAAgITiYAcAAAAAACChxk3x5JBMyhfYWjQrJ3OXv9TlYgfuPEvmPtLti9pOTa2TuS/2t7vYq5t7Ze7ayFewnd6gCzgPlfy/Iw4Uhkb9YlFEsDTki7uZmTWkfYHH7bfbRuZObvJj8t7O52XunNYWF+sq6CJf2RZf0LvYo8eZIuop438hEgWr40H9Ge6u+bGQTukCbLWij6dNF09uKPpK8NVGXbC9WPFzWUOgkFwqVIwbI1YtVlwsX1ovc5u6/Fo1VPPP0cws1+cLnE5p8/OKmZnFftzMadLrZf+gzx0o6fERV3RBcIwS8XHt69cF2wdKq11s84AuOjpFVGVOq+L/ZlYs+eL9TY2++KWZWVaM1fWDeu/CnDN2qn7Ksd123kXmPrfsARcbqoqOI2aWafAFbzMZXxzezGz/w97sYqv79XjMrn7BxR5f2y1zTfzbMHYWL1wg44fuv8jFXhr0e1Uzs+MO9GPvxTW++YyZ2X7i5TasbdC58/1evL+i18AlHQtdbFnncpmL+kXm5/N+sQ82M+vfLBoPFfT+OJvx16ikdSX4aqw64+jfqajvgXGgRnJqgvzUZYL8MwAAAAAAALY+HOwAAAAAAAAkFAc7AAAAAAAACcXBDgAAAAAAQEJxsAMAAAAAAJBQ46Yr1kMrOmW8o6PDxX52/eUy98PHfdzFPnrjBv2Covx1U8Z3tDIzu+qis1zspHMulbk9vb6U/4wmXb19sNTtYg+tWClz8V/owum226te5WKlAd/5w8ysLd3mYkt04X/b3Os/NjMmTdXJLb4jzbwG3e5hcTzNxdZMmitzB9r9zd3/b9/1IiSX12O9VPQdeLY2m8Rb0Bvp7jDt4n2M8roLTFT0A3VAN0KyOOc7BGSz+pnFahYXXd7MzFYNrNIviBEriQ4zv73yapmbafDPd0NJf/aioh8kJdF90czswH0Xutjtdz2ir9vu2+g1DOpuajnRRWLv+X5tNjO7b6VeyxHWJ5aE/OxdZe77PvENF+sKdJ6JIz/nVCL997yrv3Kqix15wc9kblPBdwmsRbotY2+ZrlhjRS0fV533Dpk7o+D3PoVW/WxyuR4XK9V07nffvb0PZnU3z2zkB/q8bXUnpGyk4xgbcaw3vJPmzHaxwxbuLnMbJ/tuaq+ZpcfCuuf9WFi6QHde+/dqP7cs3U/vua/7y70yjtHx8qBfU1b16I6IU6b6776TWvTepSL2x8Wq/nLXP+jHzpRW3f0zJ7oyqs63ZmZP9QQ25AnDL3YAAAAAAAASioMdAAAAAACAhOJgBwAAAAAAIKE42AEAAAAAAEiocVM8OSQn7rC141iZWxRVRE++c4XMnWm+GNc3Dl4icz926bUu1ts3IHNPvv3fLjZVFIwzM/vBQQtkHHUK1GZ84vHHXWz23Hky933zd3SxTU/p627b4At6Ldu4Vubutc0cn3u/vy8zs455vnjdXqLIt5nZ3S2TXOz+QBFppVTWhS5hpqpxN07WhRwbRZHip597QuaqyXbuTnvI3KEhX8S2EOvCbl1rfUHkVOBDkY4pZDpWVEnATWVdjPhft9/oYt3r9IQzKJ77m4/9rMztXO4LqN/2t9/J3ELXsz5Y02Ps0GM/42L8VWj0qE/l60/w77mZWU1sJy54ThdFny4KGr9/x51k7nu/+isXqwz4IrpmZp9+er2LTY71PufMnbaRcYyCvC8YOneqLiJa6u5yscfuvFXmDomyzHsfcIzMbUj7wqkDJT0Wnrj3JhfbHJhzIlH4G2OnFutxc8N1t7jYk0+s1teo+Wf2zBN6P/SaJb44/LLlT8rcXXbzhfozsR4f6zbr72YYHSmxWE2foYtet6X8M3r2af39JyMe59xX6QYNWfPzS7mq55zNG15wsdDUIm43kdibAQAAAAAAJBQHOwAAAAAAAAnFwQ4AAAAAAEBCcbADAAAAAACQUBzsAAAAAAAAJNS46YrV0aGrX7941xUulu73HRnMzOa+6TwXi1r12dWaYruLZXK+K5GZ2TWXn+tiB77+NJkbt/mS4ZsH/GuZmeU4VxsdgUrmS/fY3cU2rHlG5g6V0y62516TZG76Bd+BJF4zVea+9Q17utjqF9bJ3FftPd3FojVDMvf2mui2U0fDo1xGf/RLJd/hYqIKzTkfONh3jckV+mRuJfK9kP76uH4PT9hvlosN9egODi1p/3q9tWaZe8ujPve9B82VuWXrlnEMX8d8PW6+esJ+LjZl5gyZO1Dxn98nn9koc49400IX+9PFgfXnqWUu1lTTE8OjL/qORwcfpLu0KQ+s7Bx2Lv4jNHZ+8ZVTXWz36Y0y942n/dDFBqf4ucXMrL8w6GINGdW/zey3F77XxY7+1GUyd/MUv6dprujuRul6FiZIoXHz7A1+bxoHurDOavT7zW2++bS+7uWHu1hDg94z9Hb718tPbZO5r/+678T35M/9a5mZpeOXZRwjd8D++7vYW/f3+2Uzs7898LyLnfSx42XuUG2yi33h5NNl7n4L5rvYykdFp0Yzu+C8t7tYtU/Pj+84wa+BqF9of3zWW/w4KRT1/niglnWxPz5WlLmnHuA7CPds1tedLPbHm6r6+/sNK/0aePZh28vcij0v40nDyQIAAAAAAEBCcbADAAAAAACQUBzsAAAAAAAAJBQHOwAAAAAAAAk1boonh8ydNcXFnn1JF5Rty/uiTFcs1QXB0rEv6Pfq3XaQuUOFgotNnzlN5v771Lf52HJdoK5outggRsfkjB8nk2bOk7l3Pvu4i13ylydlbrbRF4j76gdfJ3O3me0Lgp1xsi9cZ2b26V/c5mJD/TmZO203X5S1c8Xwi5lGEWe6IXnzn/e4oguOdhd7Xez1B/jiy2ZmPSX/eZ9uujhcbL4gZbaq570T3uQL3vYPbD1FsMeLGZP8Z3XD2k0yt6nm16pdF+8jczeuL7tYtdsXcDcza2/xReCLtQ0yd/rChS4WD+n5Jg4UqMfoWLjTTBd7bt1mmZtv8XuXH0/xz93MrFcUr9xjR713iUXx4+mteov40Gv8XumnL6yRuSX2OWMmzjW42KBYO8zMetL+Q/zENZ+Rudvk/HjKmi56WhRFmXNl0dzBzNb//Ssult6si8YX7CYZx8jVYv+Z3G672TK3fK/fBx+w0xKZW137vIt9o0UX0j75SL/e/fR3+pm3ty51sZ1mdsvcMvPN6AjUvB/o8XveXIMuXNzf53OPOnAXmdtV9s9tatoXPjYzs4yfy3JlvT8+/S2+CHTXoN/jTyR8uwMAAAAAAEgoDnYAAAAAAAASioMdAAAAAACAhOJgBwAAAAAAIKE42AEAAAAAAEiocd8VK9r5CBfb+PgtMve5f/t4X4+uql0xX1V75nTf7cjMrJr2HQJW/PMXMnfts+tcrDfWHWr2et0JMo46BTq23PnY8y727O8+KnNLhW1cLBfoQlSMfCeKWlZXWc9k/NnpTtP2lLkPLF7gYgMZ/1pmZtse/TEZH65abevqHNDR4Svjx0/o6vyp3Z5ysbP30x0jZrT45zutquecmqjkH0W69UAsuvY1pHW3k8Ze3z0nSuvrBhodoB6B+ea8X//TxX74rtfI3Dt+/CUXq/V2y9yeml8/2vJ66S7Ffq3KPf5NmZtq8J3eVjfq7hYNDJzRERg7C47z3YL+dNFZMvfKr5zmYn1Dej6PYr8uTQl0qSn2+a5Hl3/8eJm7pujnooa03uccdc4vZRx1CIybnd58nos9c/2nZW5vTYyFkt63rOn3zzJO6b8Dp5/tdrGybtJmNqfHhQaygU58gdfDyEXm9yg/ueZmmfvkdV92sbcdr7+7pMRvBW75id5zV4e6Xez6Sz8ucz/9sQ+5WBT4ULTKKP6bevbHkdgfn3nwdjJ3Wrv/bMeBfWw6559nVTfXs2rVb0gas4E1sNjvYg2Bk4+Jss1h5gQAAAAAAEgoDnYAAAAAAAASioMdAAAAAACAhOJgBwAAAAAAIKHGTfHkzs5OGVdFnX76ra/L3JM/8hkXy+YaZW5WFN7q6dVFT+cufJuI6jJLq5f/ycVCxbwC9fBQp3rGTqFvjcxtnT7FxWLTFQAz5otMWqw/SvPecbGMKy9e7wvEZUSROzOz2ghHT6Bm74Slxki0mx8fIVGTPgOvFX3Btmxm+G9ubLrg28V3rB32NT72Ol/4u1LS12XOGbl65ptX76qLbjes3uBi1Vkt+gUjP7cUq/pJnvzzf7tYWhT/NzP79XvnuVgmFShsuJXNF2OlnrFzzDk/krl/+povnjwlF3pAfv9TKJVl5pGf1a+n/OWS97tYrZId9v+P+tQzbl7eMCBz58/0n+18m24Y0iKml3Jg8XjHhX9xsVRgzrnhu77obstQn75wFKrAjJG6654VLrbXkiUyNysaRNz8U/9dK2Rau24AUoj9gJoeuMaV3zzTxVKB4tpzD/nwsO8N/zHS/fHabv0ZntPe7IOBvUtV7E5TgWXtR7e/POx7O+2gucPOnSj4xQ4AAAAAAEBCcbADAAAAAACQUBzsAAAAAAAAJBQHOwAAAAAAAAnFwQ4AAAAAAEBCjZuuWPUoV6oy/qtLfLesE045UeYWsk3Dfr11D1zrYj0V0RnJzIYGu13st9/9isylQ82WJwrxm5lZtbDO5+a3lbnNDcPv1rD+xpNcrJbVtf9T4t4Gu1cN+7XqUSqVxuS6SVJXN7WS7hbUmPNT6ICenqxJtCILzQFnHezHXqjnjBrTsW4GiC2sEOgAMXW675bVmtWf9Reff9LFsoFuEdef7LtQVCPdIS2q+OvOmTRV5tb0JTCG0oHF6qjPXO5iqTgnc3/7Nd+FKNTR85qv+84zmax+8MWqnw/fKe4LW97nv/t7Gb/0Y4e72Nx2/XmPS0M+GJhzfviND7rYtCY9bobEmF61qUdfmA3yFhXHulvejEl+57G5X++HmnJ+bxz6vjbnoE+42Np/fEPmtjf5e8hm9O8S6OA4OurZH1cD+4N1vb5D35RJuk90Y1rscANzwOmH7exiofVSzVsvb+7WuRMEv9gBAAAAAABIKA52AAAAAAAAEoqDHQAAAAAAgITiYAcAAAAAACChElk8uVro1vGMr5J01c9+JHOntqnqooGqp3UoVn1R2qZGXfaU2nBbXlzTBeLKFfE0cn0yd12fL7ydqoXGziT1ajLz4P/5potNaxl+FVxV1KxeoYJpW7tMSp+Bq3AmNBbyPjTYP/wi1qVQbbgGf+FUjdllPMgXn5HxFlFUOY7mydxD9vMFTodKhZHdmJk1pH3Fw/4+Xch01Y/2cbE5gfnmAeaQUZEO/NktFpWs40g3czj13J+52KZQdfd6iJ1jRS9r7HO2sHRab+tTKV/YdvOmbpk7tcnnVgNPcnLeP/hqqIGA2M5Mag0kUwR3i6qoPbCZWdVPRJMb9Rjr6u/3wZp+kM/++UIXGxzS61rjFF9wtxZoChB4OYwh0RckaFNXr4yrZSkTmkjqUBWbdHFUMKHwix0AAAAAAICE4mAHAAAAAAAgoTjYAQAAAAAASCgOdgAAAAAAABKKgx0AAAAAAICESmRXrKjRV0g3M4tLgy5WLeuuM93dPvbRm+7TLyiaI6WbdVntbx4x38WyaV1tPh3otIPRoSq159q2lblzp/rq66s2dMvcTM53jHjdyV/VNyFam6wr6Mr/jy1/ysVmt+rx++hq34kim/f3FTLj4jNkfKbodEOnLLNSST+HXEZ0SAuU3O/tHXCxnz7YJXPVFUQjJTMzO3Nf3zWppa1dJ2PE5ge6QT19yd4ulspOkbmDQ34stKR0R6quHv+5nnr+/TI3XfHzTRwYjwNfWehiqzfLVJsxSbxWhvVrLNVSge5GoqtiLdAFb/Og7xxz1G5LZG6l21+32K6ve9vTfk1obhJt/8xs46Du2IWx0Txluoyf/s3bXexn575N5vb4rbQt+dy3ZG426+eXoQE95zx16WkutnHzkMyN6Ke2RYXe7UefXuViu24/S+a25HMudu7hV8vcTMHPNwN53enqK38+xcWeeellmRvHE7zl0ThUq1RkvEF0ny6I525mlot9/PHVfjyZmcWxHyf6Dsx2n+e/27W1+H27mdXX3mscY2cGAAAAAACQUBzsAAAAAAAAJBQHOwAAAAAAAAnFwQ4AAAAAAEBCJbJ48ofPOlPGL7vs+y4WBwo19fT7UmEXHeGLX5qZmajnVarpUk3ZjL/ulKm6kGmtpguFYXTEohpcHOkCwy+t7naxbMsMmdvQ7K/x9ys+LXNVLa6+fl2Id58Fi12sYxddPOxvKzfJ+EhRKFlravBF4MzMqmKQRYHP9ZB47KcunSxz1dgNTRc1MchSuaxOxphJpfxzyNVWy9xSxc8hqUa9TqTFdTect5fMVaX/smk9cOLIj5Ep7XpLEKV8wXdVwBCjKGqQ4aGan0jSlVDpUz8i/vDksmHfQnGdjqfEy/VRJHlcuOgT75LxTet8ZfSGJj3G+rr7Xeyhr31S5qq1Kp/VfzNuavPjMbtWF0+OI/7uvCWtWKn3fksWLXSx7ru+I3NTYkm48KbjZK5aq2qxfuat03zDnDcd4b/vmZmtXLlSxjF2Zk3X+9gNm3tdTGxnzMysUvP/4VVz9ff3WEw6lcAaWKv66/aXAjehJrMEYuYEAAAAAABIKA52AAAAAAAAEoqDHQAAAAAAgITiYAcAAAAAACChONgBAAAAAABIqER2xSql8jL+vtPOdrHLv3+xzM23+6rY1UpV5qo62apTiZlZn3hLz/7GP2QuHYi2vLZmHR9ITXexcllXSC9teM7HuibJXFW9Pa9aZZnZnT8+ysV2e8+VMpexs2U1Z/Qz61djJBXo7NDmO2vFcWDOEZcN3IJl07670Zeue0LmMm7GTlo899XP+LnCzGzq3O1dLBv3ydyhgTYXy+R1Z72aGDelQKOHdZt9N5ptpuvub1HKj7FQdwuMjqsvOFrGj/3CNS4Wx777iJlZRaw1gYaeUjrUwUS1xdJTGXPOFtaSelnGK5N855q4NCBzhzItLtZY1fOTml4qgQZpa170e/dFp/5Y5jJuxgfVbSjK6q6bk/f5iIt1/fMSmRupbp6BrkS5V5/mYg89vFzmYstradTjIZ7i9y6bRacsM7NsVnQsrqNLVU43PLZK7MfZjcvWyNyVE2TO4Rc7AAAAAAAACcXBDgAAAAAAQEJxsAMAAAAAAJBQHOwAAAAAAAAkVCKLJ1ug+Gwu66v3ve/0D8ncafuf7GL5UXg3SqWai1EEbvzoL+ixE4kjzrjBF1Q2M9vphF+42G2fmTui+zIzO/D8ZS7G2BkfBov6DDydK7tYpaqruP3wH76oZXX4teGC1Ihm3IydUIG97Ts6XGzfGTmZe9U5fozEOtXSYl3LZBr+yx0Oz7R2P6ZTgcLfskIqxlQ1rZ+FKgbZkG6VuUMFX/DW71AwkfT06UKm2QZfLH1yoy6WfuiJX3Wx9T2Fkd2YmfUX/FzGWjW+qa9b1UBR296HfSHs/J6njvgeGCPjW6Gg97zptG/yMH2qL6hsZvbTf7zgYoF6/HVR++OJUiQ5hF/sAAAAAAAAJBQHOwAAAAAAAAnFwQ4AAAAAAEBCcbADAAAAAACQUBzsAAAAAAAAJFQiu2Jls80y3lesuNikpl6Zq0607l+2YiS3hQRozunq7UO+uZFlAl1JVEOAQ772ksxdNMd3knjgGT0mqfw/fkXm5xYzs1op72LlSAymAJ75xPatsw6W8Xd/404Xmz1Vt8X6w6N+vljz49fK3K4B30eiIaM7AbaJlysU9Dif+4F7XOzehxm7Y6kho/c5137zXS52wkevkLnqyQf/mieSa3V0Q2MuGx8yptefcsE/+aHmwFeAyD/4ex9YPpLbQkLFkd8zpyLdWy+V8uOm+MjlMje/x2kuxhySVHo8pCPfAatkA8O+KuPhf4df7AAAAAAAACQUBzsAAAAAAAAJxcEOAAAAAABAQnGwAwAAAAAAkFCJLJ4cZXSRycbMdBfbXGqXuXXUBMQEEtd0cdCGtK8cWYl1biQKCz78wG0yt6Ojw8UoCJY8UWDGSJsvjt1U0bm6hC0mCvXU+waHZO7579nLxVI1XYDwhkfudrFZp98lc+spdlsP5qwtr1LxhbDNzFJi2/abr50ic9/6iR+52Aqe5VYpa0UXa+zveQXuBEmSy/j5Jm26CUlVLmHsfCa6uFbS8djHGwOFljF6+MUOAAAAAABAQnGwAwAAAAAAkFAc7AAAAAAAACQUBzsAAAAAAAAJxcEOAAAAAABAQkWdnZ00iAIAAAAAAEggfrEDAAAAAACQUBzsAAAAAAAAJBQHOwAAAAAAAAnFwQ4AAAAAAEBCcbADAAAAAACQUBzsAAAAAAAAJBQHOwAAAAAAAAnFwQ4AAAAAAEBCcbADAAAAAACQUBzsAAAAAAAAJBQHOwAAAAAAAAnFwQ4AAAAAAEBCcbADAAAAAACQUBzsAAAAAAAAJBQHOwAAAAAAAAnFwQ4AAAAAAEBCcbADAAAAAACQUBzsAAAAAAAAJBQHOwAAAAAAAAnFwQ4AAAAAAEBCcbADAAAAAACQUBzsAAAAAAAAJBQHOwAAAAAAAAnFwQ4AAAAAAEBCcbADAAAAAACQUJlX+gaApJl+xDtcbMON18ncmUcd7WLrrr921O8JAAAAALB14hc7AAAAAAAACcXBDgAAAAAAQEJxsAMAAAAAAJBQHOwAAAAAAAAkFAc7AAAAAAAACUVXLExYU44+ysU2X3u9zJ1zlO90tfp63ekqSteGfQ+DUXXYucqcI31XLTOz1TfQWQsAAPx/6+joGHZuFIlYIDdWMRUM6OzsHH4yAOC/4hc7AAAAAAAACcXBDgAAAAAAQEJxsAMAAAAAAJBQHOwAAAAAAAAk1IQqnrxkyUIXq8rSbmam6t9mAudcZZ8cpUN34V/v4WUrQ8kYQ/lKqNyfpwolb3eML6hsZmY5/7HJHPlWmRqnfe6cY3RBZPn/h8avMPVofd3hvwtmG6+lKHM9lu611MUqpUCyml7iwNNR8UgX7c7n/GR03/33BW4C49Uxx75ZxvO7+jlgaGBXmdvQ9LiLlXp3kbm9Tz7iYrfecvt/uUOMV/MXLpTxuCqK9wemnM6VFLGdCOopkpyqY3MQ3ImoSst1VE8O3S9FlceHpUsWu1i5MvymIG1RVsZTKb+f6a5WZG4kxtjy5SuGfQ94Zey1ZJGLlUJjR85Fge/ksdgLB+ayTNr/h2XLJvbY4Rc7AAAAAAAACcXBDgAAAAAAQEJxsAMAAAAAAJBQHOwAAAAAAAAkFAc7AAAAAAAACRV1dnYOv3z9ODF/8XwZv+FN81xsl1xB5rY3+ara5VSjzK2WfVXtXE1fd0iclb3qujUyd8Uyqv6Phtlv192r1vzBd7qafaTOLcW+Gn9rPi9zB0RF9nKgmn+t7CvAT2vU46wmPok9Q0WZ2yC6bal/L0bHwa/ZS8Z/c+mXXSwKtMUaqDW5WGuL7hBQrfp5JCoNydwonXOxEz7+VZn7t7v+IePYsg564+tdLLdkqsw9ZuEhLvbHB38rc/s37uhi6Zl9MneoewcXa37mLpl76606jrET7G6kun+EdnH15Gb9mtL50MOBZIwHI+2AFWxeVU8rTaGOplh1oVPW2OlYukDGTzr8LS42UC7L3MKA38+sf3m1zM2l/f565o4zZW4m4ztrXX/L32Tuw/c+IOMYO/ssXSjjfzl0lovt3qb3x/ms6HTV2C5zK2L4NVT6Ze6Q6I4874b1Mvfe+ydGB2t+sQMAAAAAAJBQHOwAAAAAAAAkFAc7AAAAAAAACcXBDgAAAAAAQEKN++LJHfN9cbibXredzD1oG19ctFTRxWfzjb6QabmkCyJPnjzdxfr7NsvcOOULEMpKT2bW9stNLkZxuPqFiieXKr6Q26Y//UHmTj7uGBdLpXRh21TKn4duzojCX2ZW7PbxGQ1ijJiZqIdsUeDTua7LF2veJpeWuZGohPjyH67VF4Z1LFzoYv3ru2Vu96AvBFcu6c972vx42lzQc07H7nNcbMOqXplbLPrXyzf4gspmZnO238XFlj/8T5mLkTvwMxfL+FEn7elix7z+LJnbPOkJF3vx4QGZe+65/+NibzzlezL3hHf6de2K37wsc288+50udtvtd8tc1E8VwU3r6dyqaqkZjV1cVEelZRFm7zJ26imSHKp7PFYb/XTeF7aNxZpkZqZ3SSPH2KtPx0I/ns5411Eyt6z+/p9t1rmDfo/S3x1o+lD1381ybS0yN5sVY0w0MTEz+9U1N7tY54oHZS7qp76T//0N28rc/af7Zx+pLjFmlvaP2EqB2Szf6ItsR4W1Mrdax8SX/YX/Xp/EuYVf7AAAAAAAACQUBzsAAAAAAAAJxcEOAAAAAABAQnGwAwAAAAAAkFAc7AAAAAAAACSUbs/zCliwQFf9/8irfSwf6SrrdzznO4XUUnmZW636qv3ZjC6fHb20zuc2tcvcgVVdLtbYqu/hyoN8ZflFi/X78PBDyavMPRLzTjhOxl+86moXSwXaQLSIbg3Vd/ruV2ZmlvYV9u8+7kCZWhT9JdrT/TK3WvMfsb5mfZ46+ablLjazT3cfmN7W7WJrrqbT1WiIogYX2/9Lz8jc6sCgiPqOZWZmcdZ3qkoHWt/E8XoXyw7ogd5f9vNhLu27/v3nurrTG8ZGqVvP/dN2OMXFbnn+XzJ36D4fqzW/IHN7J33QxSq2SuZe8RffXXL2Ut2VJD/JfyZQv3q6G1Xr+Ki+dsm8wDX8Rd71Rn0PS/bc28X221OPh3Mv8etwx9KlMrfzQTrSjBXVyCzUSVM1mGkI5KoddkNerz9F0QWyKfDNYrCOMR3Ham1k/RoNkfm9yPr+wPefrJ/7i919MjcWLftyWb0GVnL+uplY7403DvkxlqoEusDyc4VREfpO/uE9fCxluvv0vWv853Uw0DEvMj9OMvnABBX57p21qmirZWax6MqWb9Jj55cH+31zEr+T8xEAAAAAAABIKA52AAAAAAAAEoqDHQAAAAAAgITiYAcAAAAAACChxk3xZFGP1szMmhp8ga0lM3URt4c2+H9OR5u+8OPrfe7cSboA7pM9vijT4tZefQ9TfeHU3Vp0Yamhqi+MW6v6AtBbI1Uk2cxs+uFH+WBWD+OUOLbM5/TYueMdC11s2rwdZW6xd7WLFfoKMrcQ+SJdpcgXrjMz637noS72gigaZ2b2mp/c6mLbHPkOmRupqomBgtOrr6cAc1zz7/lFe/5T5i7cbXsX2ziwUeb2V/xctMusKTJ3Va8fI9PzPTK3bL5g4dq1voi7mdmSK/RchLGxy3aquLbZn762wMVqZV0YtNIvimO3T5W5qaxfU/787Q0yt0FUTm1u21fmtu6uiw1iy1uyxw4uVol1sfRvfeANLnb/Yy/K3D/9w6+5M1tPkLnvO/zNLtZf1YWWF873xSeXrxy/hSeTJBbb21Sgm0St5j/DQ4FC/6pUerGo54Cd523rYms2dMvcfMXH9c7JLCO+FOi7Rf38exuX9bu7fZNv5PBCvx4L86b6vXhXl/5e1VP2uVWxRzIzy5b9viWQaiYa4+B/IfD+NuZ8keOD5+g5575VJRdbPEv/nuTBTf4F58/QjZIe2+zXu1dN1uPseVFNfrdpMtX6+vy/rVbVe7jxjF/sAAAAAAAAJBQHOwAAAAAAAAnFwQ4AAAAAAEBCcbADAAAAAACQUBzsAAAAAAAAJNS46Yq1ItAlYcGC+S520unHy9y5Tb6q+zODutNIc+Tr/vfFumPMtKrvOrMh0CSkJfZvaSGry4ufcvaPXWzFCrpF/DcbbrrexWYfeYzMHSj457mh4Kuem5l1iSPO6qpHZW5jm+8C0dquO4JMzfuOaqXAmFzT7SvIV3K6u5EaqU1+mJqZWSwK1r98A92vQlKi98ZxH/+Czo18V6veId3no6nix0I53iRzS2n/MDMVPXYtbnWhhpw+s28Z4VF+X1+fjLe2+nuA2RsP1WtK+qWFLtbYpXrRmMUF/57XMn4smZmVqn79Kc/cTuZmSn6cb2rU3R6jaQfIOMZOm26eaPMm+2f/1rccKHO7RBfIQ3abKXMfW+8/wz2bdCe+Z1L+HhbuNlfmxmoBwqhQ29Ao1uvE3J38c99uymSZe9hrF7nY6s16LBTEujZ7qh68PZt9x6J7O5fL3JeefcHFuvp0lxzUSXT+vO+vf5epd+T9utRY8XtVM7P7RSvarqredFTEtJDSW2ObkvHfoUqBrk2BpnCoUz3fyT/46ffJ3Fdl/f6ns1c/5MlpP490xXovPUv8JqUn1l3dapGfD3sC++OTTrnYxZL4nZxf7AAAAAAAACQUBzsAAAAAAAAJxcEOAAAAAABAQnGwAwAAAAAAkFDjpnhySKOowVZoa5O5DVVfWG3lQ3/RFy77Cluvee2hOlXUeuqTZevM/rXyzy5WHdLVvEq+ftmoyGT8Y61UdGGpCSHWVYPzWV+Mq+O5DTJ3px/6osyDs/eQuVnzRZW7H31C5h6waEcXu+1hXZS5fU9fsDBX1RXiTnpqtYt9dFtdvFIpHPg6GW+48x/DvsZEVYv9e/7IXTfJ3O339IXc37V4kszdlPbXvfmBtTL3wb/f6GLzDzlZ5v7PYv/cN0X6M3Hvg3r8D1elGqhuCDvhpLe62NKDdpG5Ow/6oqVNsV4QKmI8dtV0seoDd+13sYfufFrm7jTJr0v9PbpY4bI2XyQc/11HR8ewcyOxRdBlt82eKvpN0Q7T9VZuKPZ7oseLem541a5NLtbXpz/vs8U8UN5GF+Kt5QJVTjFiamdZEQ08zMyGenwR9miHeTL3ryuedLG7b3tQ5u4w289FfSU9bnbu8Huq1vapMrer73EZxygQE86Vl39Upr7lf77rYrVJep1oFEMvNaC/Kz33x++42ORIF2X+9m9+6GK7N+jfJRzzncdkHKOjQfRtKAaqXncX/DN68t6/ylxVDHufA/R38lTkbyKfbZS5//67PwNYLmdOs4Ie1onDL3YAAAAAAAASioMdAAAAAACAhOJgBwAAAAAAIKE42AEAAAAAAEgoDnYAAAAAAAASatx0xQp1kPjjpR9xsYYh3eGp2uS7PXzsp8/I3L9/+x0+GGhDMaPRl+t+qV/fwzk/fs7F/nrJkfrCv/SdB+qRSulq87Wav1/VKcssed2yZr9dPLdA040pL/hn/z+H6U5XNzyw3sU+9tkTZG4hM83FvnjkKTI3n/YdTEqxrsh+3uePcbFUWXeAO/2dZ7nYR/VlJbpfmXXM13PO6ofvd7H77++UuemUn3OO3FN/LvtiX8n/xgfyMrc42ONi2by+7lv29N1O+tqmy9zHl4mWBnVIB+YcmL35wJ1dLC77LlVmZju2+Hnhnn/5DkZmZtMzm1xs8l7NMve5p3pdbGjjOpn75Et+bsml/bgzM2vchb8BjSXR+My229aPJzOzGSn/ee+8dYXMLUR+U/Oq/XaXudmU7+A4pcGPPTOzv93gXy9O6/EbjVH3z4mqnm5qcusTDQSyffepg48+RGZGkZ9fHlu2XOa+ZtftXeyvnXrfffL/+G6cQ716A3f3nXfLuKLes85OvWZvTUJ7nBf//C0Xmz1V7zVbRbfh7oJ+Zi1T/bo2uar3DLN9Ez7r3ai/j5wrvivd/PV3ydyU0RVrNITmoUev/oyLlQcHZe5A1OBiZ/5UdwW+57vHulgqpb+3plN+/FXSeo/y/p8+4mJ3fF+PnYxNjDmD3RoAAAAAAEBCcbADAAAAAACQUBzsAAAAAAAAJBQHOwAAAAAAAAk1boonh8zM+mKf5aIuSFno9wWVbv/VR2Ruc8nnlgZ84Ukzs0ktjS7WXdJnYtf98AwXa0j5AlJmZsVaVcYRtuYP17nY7CNEQWUzi2q+sO3iPXRByp/+dbWLvX3H18jcwZ7nXeyLpgvEnXrUPi52w9260OXSGfu52KTGDTJXChSRfvnGa4d/DdjaAV8scIdd58jcm6672MVed7wuzDa56AslP/rQ7TK3segLYD5yzzUyd9GhR7lYrudlmdsVd8v4cEVRHRW6tzKTI7+crmnwc5CZ2aYNXS7228d1UcGzD1rgYq0VX0DXzKy1wY/dvp13kLnfv36Zix251y4ytxAojoixk7aCjP/wk35+2eN4Pw+ZmV35Ed8AYNYUXVi9UvSvV6joz/vFdz3oYue/++0yN47/JeMYuaqYj5saW2Ruper3mzs3zJS55c2+mUS1oueyIw+b72L/+PdTMtf6feOJKVU/F2Js9Xf593x1Sc/xK27+iovte+wFMrdXbFcf/vV5Mvfl9f77VipQAPcbJ73RxaJZi2RuJb5KxjE6evtKLjalWX/HzVb9/HTvb33xZTOzlpKvsj8U6WLaubTfS5djX7jbzOwfv/ioi7Wn9Lo2FE2M7+T8YgcAAAAAACChONgBAAAAAABIKA52AAAAAAAAEoqDHQAAAAAAgITiYAcAAAAAACChos7OzkAvnS2rY5Hv/GFmZqIS/82XfESmbqc6kPiGVv/hm85YX6Sr/rdlfbeTnqKunj2z3VfmLvTp3Pnv/46LLetcKXPxH9u842gXqwVG8NLBZ1xs9Rr9jK87/2QXO/bSq2Vuy5B/wYs/crjMbW3yY6evoG/4w1fe7GLTB3S3rfUbN7nYs3u8WubGJf9vXn2d7rC0Neno6JDxZjFn3HmzfzZmZuUeX7U/l9GTTi7tczcO+S5GZmbZyD/3csV3DTAzmzN9GxdLB7oJ7HLAAS62vI45p7dXdw5sa2sb9jUmqqOOONTFFh2iu84c1u+fe9vU2TK3LLqVbBrUz6HV/BgZKOgOENmc756TTxdl7o9X+45JP730TzIX/xGaXxTVbC4OrGsP/uxsFxsa1A1Oazn/3HIZ31HEzCwluibVRGdJM7O46ruVRjm9z9nvfZe62MrOTpmL+saNoncMZr87770udvb3fytzm0XsnPe9Rea2Nvqx0Cf2SGZm5175ZxfbJtCh5tFVfo7T/XC1TsZYcCy1tfi/6T/xS929ypr8iHp0QK8Tu+T83NLSqLsVlcXUkg381OC+QT+Pzc/4cWdmNufN57gYY6F+9cxDy698v4y3Nkxxsb6C7vaofmeS0o/Y8mKcFEp6z9uY9R27Kik90BYc+2UXeyiBY4df7AAAAAAAACQUBzsAAAAAAAAJxcEOAAAAAABAQnGwAwAAAAAAkFC64t4roPPhFTLescQXVU6XN8vczblZPjgQqg3t400ZXcRt8Zm++F/oqn+79CyfG+viYdXgVUYmk/GPtVLRhaWS5uXrrnWx2Uf5gspmZg817exi0+InZG6c9c/itx8/btj3NblJV/naJCo7NzfrcfazM490MZ1pdvRnr3AxVSTZjELJIaGCeqpoXN/Gl2Vu21RfHDeOdXG4ovi8t2d8YTczs8VvPFLGlQdv9c83Susz+7Gac2B2/Y1/d7Gv//IMmVsql1xsQ9/awJX9M2tr1fPNUK8vdJnWtXKtkvEFnCuBv/X0R6GChxgNoULJymDFP6M4owurW82Ph1BB5LS4ibSq6mxmQymxn6jyd8LxIFCL2FKN/j987+PHy1w1HNtEkWQzs0qzL8LuI//xnbOPcbF0oJDp0Z/56fBuDEH17HGsSTd9SIn3fM/AWFCGhvR3jx0O/9ywr/HSX77mYnEc2h1jNNQzdrqff0Tm1nZa6GJRqEK2+eL7mbQ+otjz3d8NXMN74Jcf8PelKnebmY4mDysxAAAAAABAQnGwAwAAAAAAkFAc7AAAAAAAACQUBzsAAAAAAAAJxcEOAAAAAABAQo2brlj1qAXOoxqt28dap8jcciXQKkS4//sfcbGc6arwhZy/t3JBdzsZqwL/E6UD1nCtud53yjIzm32U78CQCxTzb24W3UMquup+ToTjqq6nfuI5v3SxP33zPTI3yvt7KMpMs6zo4FYo+6ryGB1NWf18+7s2uFiuZarMbcyK7nj+kZuZ2Yo7/JiOq3q6jsWtFfq79YVHqK2tbUyuO1Hd+9DTMv420e2xf8MqmZsW80KoH8g3bn3Gxc4/fkeZG9X8eMq3TNcXXqc7UWLLKxT9PF+u6JViUqvvuhcHdh57n/49F7vr8g/K3EzG73MKxYnSU+SVpbrRyC5GAaIpqpmZNbX4rkfFQMeivLiGaPBpZmZHnHaRi/3xO++XuS0Nfg2M1bpoemlkhzN20pH+XlWp+Y6I6VRg4yI662UD43H1DV9ysaraXP/nv4iXCtwDtrg48J28+6nlLjZrj30D1/DrR+g78qNXn+1ipZoeO5HYLW1++sHAPUwM/GIHAAAAAAAgoTjYAQAAAAAASCgOdgAAAAAAABKKgx0AAAAAAICEGv/Fk0u+oFI+q4tmlau+9JEvF/cfD67pcrFtsoHKuvrVZPTp9S+5WFtaFxUMlQkbqYyonre1FVQ2M1tz/TUuVp6vixAWK+qMU5fS6i36YnJRoPDcLy84zsU2D+pCl9l0k4+Zfm7Fir+3TTddL3Mxcpm8nknyVT8XZWM9N0xJD7pYV6wLR6oqkZGVZOqCQz/kYm07L9LXFbNOPYU5Q1TBT5ilIv35TfmattY4dYbMXbt2yMXSaT3ffOxwX5S5b0DfW1dJjL2+XpmbL4//rcLWIpf1n+FMWs8jA0M+N7RW3fq9j7hYYKmyfOs0f19Rt8yNx2qjsxWp5y2sBSoM10Q54myT3ktXRDHuSuC611x0hosVAs0kmpv8OE2n9L9OraKBVFuxkvVnpOJUYI6v+GdWLuqJ4Xd/ucfF9th55ojuy8xs12392tg2Y+TXxejIimL6ZmYW+Q9s3wb/HdnMrH2Gb9zQGA2/XLroW2RmZj0FP5PMnD1b5k6U8v/8YgcAAAAAACChONgBAAAAAABIKA52AAAAAAAAEoqDHQAAAAAAgITiYAcAAAAAACChxn2rC1UFv2Z5mTtrtj+nWrd2k8xdPHuyi+3z4W/oexDNkRoD1fl3nryTi51+9J4yN50JdMQZoa2xA9bw6QfXIpoe9Q7orlj5nB9/b/vVfjK3p6vHxaptutL7/Sc+7mL9Q7pLTU3fGsZIS7vvAmNmZhXfXa+713dNMzPrT7W52MEHHiVza6JzTbfoVGJm9rvbnnKxGdOmyNyuJ+9ysXR++Of77VdeLOOqsxadssziQEugq//qn9lxh/m1w8ysvc13rjnslrfL3L4B3wKr2qDXg7+9/n4X21jWa2tTo2jjhTEV6oT0i5ufdLGT37iLzG3I+6ssP8evM2ZmNTG/rA909Hz7d1/nYp1PrpW5qUAXLgzfyjrm0qUL58v4pi6/l5jU1ixzazX/zI742d4yt3djt4ulpug5554zn3Gxv63w49nMLBX5eW/5iuUyFyM32K33mkOx/5rYLrqbmZkd++alLrbnKV+UuWnRkK0W6MK36sYvu1hXoGVfJDoxYfSotzfdrrtMbXj5BRebGq3T1233e4zdzv65zFXfyTOBvdbdl5zkYmteXi1zs5l6OmOPX6y4AAAAAAAACcXBDgAAAAAAQEJxsAMAAAAAAJBQHOwAAAAAAAAk1LgvnhyJgkgNjbpw18Oda1xsSrPOjTMlF7vvu5/WuaJS7c33+CJwZmbblHxByp/ct0Fft1qWcWXpAl+ctKjrGo7YRC56umLlShlXxV//9O336Yuk/Bv/x5Pulam6nJeONmd9Befjv3iVzJ3Iz2g8Giroz2q11upiDU36gzk4OORid991o8yNRHG4zd19MveAIw53sY994GiZ+81v+CKEo4HxqLVl9Gd99XRfObI4qAuOqkLpf3/TDcO+h2pNVKk0s94Bvzb+5qEn9EXSw1+rtjZq7RhLP7/hFhd7zxt3lbmqxv7Cr+hctSzFgb/9FSI/dj556e9l7ooVK/TrYUw8uFzvcRaLPeT1l5wlc+PYj5wbT/3XsO8hCuxxprb5Aqm/vFFfl0LJW1Y2F/o66OPptO7eUSj5NezRKy+UubGYnVoC3+1qNd+QIsrrhhZq7GL0qLd30mT9LLIl37wok9bjLJ/xa82yb79H5qp6/IUhv782M8tl/Jzz4obAfr4yMfY5/GIHAAAAAAAgoTjYAQAAAAAASCgOdgAAAAAAABKKgx0AAAAAAICE4mAHAAAAAAAgocZ9Vyx19FQ134nGzGzKbN+NptKlO1L1bNzoYpMC3WyU/XfPy/iy55e62OFT/ipz76yjenskmgz87JSZw/7/Q/7ninUjvsZEoHo45DO6m8xbP3mli133tVOGf+HAY3/d2d93MboNjRPZJhlOlX0l/ihwXl6p+er85dKAzFWdHZqb9XUf+NO3XWzxQW+VuYynLSzSa8rae9a7WNOr5sncb/39ZRf70Jvm6JcTE06og8mN/3rexf54ze0y96gz95NxbHm635B20BnfcbG7Ljt72P9/bFUZP+CEz7oYc8v4VhVTUVugC9Ghp3/Pxa69+P11vJoepQedeomLPRzo4oUtq71R7y829ftOV5XAV6Vqpt3FUtnhf68qVPRaNVhodrEd3q7nMeahLS+fD/xGZNarXah/7eMydd3Lfp+T6huUuWqfo7qsmZmt6+l2sRMvvkfmTpSxwy92AAAAAAAAEoqDHQAAAAAAgITiYAcAAAAAACChONgBAAAAAABIqHFfPLla8wWRcpE+j4ozvqBS83RdkPLQ0y9xsWyqVN/NCSlRJ6ws/g1mZhcd3uJiey3sGPZrPbOmV8Z3mt027FyEqYLVZmZ/vOR9Lvb6D/xgxK83UQp3TURRY1HG45IvsF01XSxwn7e+0///lcLIbiyAsTQ+/OIbd8j4mw/ey8UGA4X+T9vXNws483v3juzGzOyhOoqWXv8jXWwQW55alnKBndx9P/uIi+393ktGfA/MLxNDqBD3X6/4tIsdfPLXR/x6jJvxq1zSk0g2678X1WK9x9n5cF9UffgtYurDWBo/NgzomWRKgx8nTdvsLnP3OP5iF7vz/EUjuzEzO+TTy1xsoo8dfrEDAAAAAACQUBzsAAAAAAAAJBQHOwAAAAAAAAnFwQ4AAAAAAEBCcbADAAAAAACQUOO+K5bSWxqU8ZbsZBdraNK56kRr2cPD7xIyGlQHrB+cNHPE11UdsL58y5DMnejVwUeiEuhmlhHtsm79wQdk7htEtyze8+TJVPRUWW6r+mB/oNdI7OOMha1TWTRg3FDQnUaKJT/GLn6P7izxqV8/5mL3PbiivptDXbb0Z7ijQ3TODPyJLhX5Ney+Kz4sc/c55TsutpL5acJQu5liTc85DSmffccvPilzDzr5my7GupZANbGXMbPGnO/K2F8ZGPZlGQsTX1uuIuObhvIu1iS6rJnpJezA8x+WuUt3aHaxB5/tk7lb4/jjFzsAAAAAAAAJxcEOAAAAAABAQnGwAwAAAAAAkFAc7AAAAAAAACRUIosn16q6yFdv1RcNzlp2rG/nf+2B5b6okyyMOAq2xgJS9VAnnI2i8KSZ2WBFjz9MXJGuMWm5OO1ixWogWZavxNaoqbnRxVobddHtQtHPTr2DeowNFkNjDxNZFPgbXS0e/t/umJ0mtrSYXtLFgswtZBL51QAjENd0UVsrFn0spb9XMYdsnVKm9y6T835Mlev4PUnnSho//G/wix0AAAAAAICE4mAHAAAAAAAgoTjYAQAAAAAASCgOdgAAAAAAABKKgx0AAAAAAICEijo7OylkDgAAAAAAkED8YgcAAAAAACChONgBAAAAAABIKA52AAAAAAAAEoqDHQAAAAAA9/FyHgAAR1RJREFUgITiYAcAAAAAACChONgBAAAAAABIKA52AAAAAAAAEoqDHQAAAAAAgITiYAcAAAAAACChONgBAAAAAABIKA52AAAAAAAAEoqDHQAAAAAAgITiYAcAAAAAACChONgBAAAAAABIKA52AAAAAAAAEirzSt9AEnR0dAw7t7OzcwzvBAAAAAAA4P/gFzsAAAAAAAAJxcEOAAAAAABAQnGwAwAAAAAAkFAc7AAAAAAAACQUBzsAAAAAAAAJRVes/8uiRYtkfM1lB7jY7NP/Oda3A2CcmHXMMTK+9pprxuT1ph99tIttuPbaMXktAACA8Uh1JqYDMaDxix0AAAAAAICE4mAHAAAAAAAgoTjYAQAAAAAASCgOdgAAAAAAABJqqy2evOg1vlBy71Wvk7mVas3FmhrSo35PAF55oULJytzj3uliL139e33do/11a3E87Nfa7l3HyvgLv/ndsK+h/m1jVQAawCtrgSg6GkeRzI3FXESBUmDiGWkxYvX/13uNsbouhZaTSa9V+rcncey/k/OM/w9+sQMAAAAAAJBQHOwAAAAAAAAkFAc7AAAAAAAACcXBDgAAAAAAQEJxsAMAAAAAAJBQE74r1sKlusr6P8/f08Xyed0tojJQdrGa+arcAJIvNt8dJpfVXfCiyM8D2x+vu1dVMqIDVk3PORlx5P58oPvVvHf7zly1qu62VZFRbGn7LT7AxUSjBzMza8z5wZBKhf4m48fTYMGvX/+5iB8j9zx0V+C6GC8WLPR7mnSkt3LvO/10Fwv34fP/JdSlJhLT4crldCUBxpN6ukzV1ZFKb1vq6kjVMX++vsgwrztWxqrj19ZowQL1jPXgOe/CC11M7cXNzCIRnt8RGE9in7NyxcR+lvxiBwAAAAAAIKE42AEAAAAAAEgoDnYAAAAAAAASioMdAAAAAACAhIo6OzvDtfQSZsHSBS72j8+9WuduP9XFWtoaZW5/35CLTTv1nzI3nfGFoR68b4XMxfg2Xxb+Motr4iMTKCb3XypVDgsF20bHzGOOGXauKtiWT+sHHIn689WaLlEci7GQVkHTxXGrgcFUE+MxndVn9qWKqtCr/23rrrlGxjF8+yx8rYy3trS52JI9t5O5Uco/n1qsn29NjRFVadDMnnhivYt1dw3K3Dsf+rOMY+yEinh+4APvd7FypSpzYzG/RIHxYLEfZ1Gk54aUiP/oxz+Wuaxh48NeSxa5WKkcqNguppepqQaZmk77sbe+rNfArFhHH1z2sL4HSKNRELkuYgqIIr3+xDUxnkJ7YzXIQh0ERihYwLmOYs8IC42zC0VBZPX1ycz0Bjmw/qjclNgnhV7v/PPOlbkT5dnzix0AAAAAAICE4mAHAAAAAAAgoTjYAQAAAAAASCgOdgAAAAAAABKKgx0AAAAAAICESmRXrEVLdLeiaz6w2MXiSknmFkppFzv+gKzM7Rn0nULueESfiZVLvkPA8b94XOY+fD/dsuolq68Hjic7Vwy/wvnChWJMBT4ZVVFmPZMJdAkQ3Y0s0MFkuK9lVl/19no6IySpKvws0elqbR2dnGYcc7SMrxPPpyHv5wszsyjjuzi0RTmZ2zcw4K/bkpe5BfHcWyM9PxWrRRcrB7omDfpUmxno+PVf2lk4dNAy23uB74DV1N4qc994gF+rNou1w8xs06DvMNOU993YzMwqVZ/bnNG5ubwfIyseeELmrt2w1sWWLb9b5qJ+88Ucfcb7z5C5qZr/EFdrw2/LmM7rOadWLftYObQ99PNeOqe7Jv3oB75b1soErTNJs5foDmtm9tkzTnKxPtkl0ayvu+Bi69dukLmqQ9J2u86RuRmxWfv+r/8gc/91l+48C22kHbBCM0ha7G2rgXGTSovcqs5Ni9xaKFfso2uBDlrBrkvDlKQ98CthUYf/rnTBBRfI3Hy138Uqsd5LD5X8d/Wmtkkyt1rx38kj3YjPLPb7qjir92VfOO8LLrY8geOBX+wAAAAAAAAkFAc7AAAAAAAACcXBDgAAAAAAQEJxsAMAAAAAAJBQ4754csd8XxDsxjP2kbndg90uNnubKTJ37epeF2vMisqiZvamvfZ1sd/e8YDMzWV8Yaihgq7qdMY1vqgyhbv+I1gITlV4C1R9i0Rxtsdu3U7m7nHo88O+riqqHCrYlm/yBSUrBV+Y0MwsFtcQdQnNzOyRv8xzsd3e8IJOVv8OXXdOGq9jcu5x73SxUjU0nfl4KDOb9W9YpqoHQ1q8jwUbkrklX5vUprXoIm5lUfCtMauL4K7t8nNZe3OjzC2I+rzl2vAHw/prrh127tZmvyWHutj+C+bK3DVDfjCExmP3hj4X6yvpNaVtWouLpYb0ulYVhXFDReC71/v7LVR7ZO59K+6ScYTXtdPPOM0HAwWR40jMZYFi6ZHKDYy0lFhsYrUoBYSXS3+Nyy+7XOaO17VmvOpY6MfTFz/6fpk7aH79aJk0U+YOdPli6ZvX++L/Zmap2O9nGidNkrl50YSgFCga/+0fXuViKx+mYPtIiySHqALFZiY/2NXAniEjrlEJFETONvpmEJWC2CQF7i3SNXitXKpjc1uHrW1u6hBFks3MLrzgfBfLBGb/tNhL1wJfliriGlEgN5P1YycWxf9D19U7abN+sUH+8pfOl7njeTzwix0AAAAAAICE4mAHAAAAAAAgoTjYAQAAAAAASCgOdgAAAAAAABKKgx0AAAAAAICEChWHHje2Fc1dNhZ1N44Z06e72OZNXTI3P9VfuDikK3D/5n7fASub1ZX8W5ubRXRQ5u4xOVDWfStTV5V/9YgCjTtiUbn/VYc8P+zrtoqq/WZmfaLLWTrQEqQw4DtGTGvTHYu6B0suVon1hV/1hhd9MNTARHW6qaMTUuj5vNJV4V+6+vfDzp13gu+gZYH3Ni3eyKzosGZmVqj6Z1Yq6gfx7PlHu9gDPbpD2n7f+5OL3XyC77pkZnbAj253sfvOOkTmLv3O311sNZ2uRkVadCBKNekxNrvBz/3rXtLr2py5vtOVmtvMTH6u81P9/29mNtTrx25zg57z2if7+MZVepy/bunrXewfD/5V5k5kC0XHove//wyZmxHt9fr11GBXXPEz//+HJv+M3+JVAl1jVAesGY15mbu+7G/u1FNPlblp0VHwA4H3YeEi/54tf3j8dh95pWWz/rP9bJceC+3Tp7rYhpfWydxU2n/eq416HklHvrNjNfA34w0DfuyFuqmFOoJu7UL7rhF3ywo8CNUBa7JYv8zMuod87pQWPYfkGnzH2DlT9UN/ZKPvyFYO3HAU+XUt2N1PXKJz5dY33yxc4DtgfemLF8pctVaV/VtuZmYXXHiBi9UCnWtjsceORefOkObAGjiQ8Q/5c5/9nMxtyPlx/cULvihz1fq+fPn4GDtMnQAAAAAAAAnFwQ4AAAAAAEBCcbADAAAAAACQUBzsAAAAAAAAJNS4L56cSvnCR5W+IZn7tChqm834Al1mZtPK/kyrEjXJ3ElDvgBzb2O7zN1Y9NedEihIGSrICqtvZPrHbma6yNyC+brA3OzpvgDgmo19MveRX/jCW+t69Zic2uKffddAWeY2NvnxcMBp35a5qv7Y8rEqqjcBiGnEaoGCets8/riL/ei8Y2Xuoav7Xez+XXwRdzOz1IAvjhtl9Nzwr08c72KFrpdl7j1nHeRiXev12D362adc7A6ZiXrN3NEX3nu5q1vmlgc2uFjfkC7I3/CCv+5AVU96+daZLrZu3SqZm8r48T+5MSdz05P8/LhpcKPMjWvDL3g4kUWytqd+b6pFH/vT9bqo+bKfnO2vmpmsrytqnJZ79dyghl8uo8dDJPYuH//hH2Xuzrvs7mLtbX48mZmJ+uP4L+KqL2TaWvOFZs3Mpg885mJTm/TzrRT9dYuxnnNKsS+OWxPj2cwsV/H/IR0qplr1ayv+y35OzTd1fJ4yotC6mdluM33R7U1D+gF3bOs/173ie5mZ2ZJt/XeoHtPfwXbMr3exDX16HuvaIJqQBApDb42FkpVQAXOlVvbZF33jSzL3iyf4vWmlXzcTqpX8OGmYrNe11y6Y7WKdK/X+OFPz4+Gz371I5p50ii/q3zapTebW89na0jhZAAAAAAAASCgOdgAAAAAAABKKgx0AAAAAAICE4mAHAAAAAAAgoTjYAQAAAAAASKhx3xVr9aCvwL0pnidzi6LDTHObrvq/utd3Juqu+U4AZmaN6Wb/WqJrgJlZ2XwbiqFW3SXn311UZA8JVWlXjRlU96uQhsBR5swpU1zs+eu/LHOfeMFXdd9hF9+NxszsuXufdLE9D9xF5vatK7jYSzddInPnvPmjMq6o96cj0B1sPFd6H46Zx75TxodE54048I8VU4PN3GauzH2gwXcGagh0BEmbnzMGK7pDQK7Bt6hpSOtPxQzRzSLXoDtR9AbuDSM3KLp0PHTFh2RuV9p3a+wd8N0bzMx2SPvnO2C6Y8yg6FYyabLvWmNmtrHPr41NDXpLsPd7P+1i9y1bKXOVhoZGGS8UdDfBiaAiPoJV3fjMLrv8chdr0W217PVnfs/F8rFe2AZEh7KBsp73dpvrO9o8/bIeZ5PEJQYjfQ/3P+DHyWGHHSJzK4H3B1q16j8/nz9uT5mbbfL74yjSHbQaqz63EhhjxVjMGaEHmfZrYEuDHuc//LXuCrc1qaujaR17N/WOl4p6/RmK/Xeasw5dKHP3XbjAxa59fI3MfX7Qr1XHd+h9VqPoNvyr62+RuX9d77uPhtrtqff3vn/dJ3ObmnXHromgIr7OVgPdLT9/3nkuNivw/l589d/9dUVXrf/E/TW69NdsW7ij/7726PObZW6zGO3FwL/tG9/23bKOPfYYmSsaEo4b/GIHAAAAAAAgoTjYAQAAAAAASCgOdgAAAAAAABKKgx0AAAAAAICEGvfFk6OUL3L0lZvulrmvmjvbxf794lqZ2yYKKlUCBaCqsa+SVFbVpsysZL4oZkPg/CwTLBEMVSR5NEQ5XxTQzOzmb57pYhe8rD8e+7dOdrFZG33hVDOzQnubi93/xAaZ+/fJc1xsn6IvXGdmNjmti4IPW8KLJAeJIsn/4eMzn35KZsrCgn29Mjeb9c9h9Yp/ylw1pGfO30fmDhR9Ie1SQRekfORBX+yvP/CAmXHGTmOTL7I/GOlnVly/ycUe+sffZK4qUXzQ63Xx2ZnbbuNi/T26QPedt/zFxfKBNbA8MLL5plQWFckniFCB09NPP93F+gd0sVplKDNJxl961BekfPSRB/RFRIXHg9/5CZna1e3HybIH75G5hY1Pu1ipqMf6AUee4mL9otC4mX7PQu9vPU0TtiZTJukir+mKL477x+uvkblVsVIc9mZdRDQq++vmGvw+2Mzsr3/+rYvVAqtSahwXJ91S6hnjdRVaFhr1I7NbL/B74yczugvDq8SW+UPb6mLelbQfN1Nm6yYkD6/xhXF/vODdMnevd3/VxdaJIuNmZhb79W7jZl2Ed94EKJ7c0TFfxi+84AIX6+4RRajNTO2lu9P+e46Z2aN3+Pmlu3u1zK2JzgL7H362zO3q8vvxf91zp8zNFH1uHNhLLzzCz3E93d0y94ILLnSx8bJW8YsdAAAAAACAhOJgBwAAAAAAIKE42AEAAAAAAEgoDnYAAAAAAAASioMdAAAAAACAhBo3XbFC1aT33n66ix25eJ7M7YtaXezBZ1bJ3LJoNvSe1+wqc4/Zy1/3uZ52mfvBX9zmYi26sZH11+hRY6Yrho9GdfEF4hob7rpY5r783EYXu/Zm323IzOy6vK8A/9Xd/Tg1M3vjXtu62KpB3e7hh7f4qu7PT9HjbEPNd02qR+h9VO97krqPrLtWd/mYcczRIqo7AN36w/e6WFev7+BgZpav+bPxz/zqcZn7pwvf5mIvB+aA9sm+89rGapfM/cw1T7rYH79ypMxN/+5ZGcfwdczXc9Pmuy5yseeeWi9zp0/1z/fsnz8mc+/70ftcrKGpReZ2r/UdPfJiLJmZffjHy/1rXf5Bmdt81f0yPlzZrN5qFKtj1P5wnPr1VVfJ+N2XfdLFtpmj5/4B0T3kpn/5OcDM7LTjXu9id/zsozK3f6jbxco5/dx+f/uDLnbmcW+UuaoX37/u02vr/AULAtfYuoXmnMId33axoSG9NyiL7lXvvPRRmfvir9/jYjWx1pmZ/PNwJqU3vcdf8m8Xe/r3/6Mv++0V+vW2ciPtfmVmlhafyYV7zpC5taJfU/562zKZe1vkr3vGEQfL3Eh0aXv2Bd3F+I7bfNe/ZY16PG6uivFfG34b2KlTpgw7N3n0+6CiF13k5xYzsy+fcLCLTZrrv+eYmQ1W/Fr1wFO6K/A737zExW79ru+SaGY2+JyfG/JpvZe+/VE/5xzzZt2NVn0zu+XWW2Xufvu/VsbHA36xAwAAAAAAkFAc7AAAAAAAACQUBzsAAAAAAAAJxcEOAAAAAABAQo2b4smplC589L6lvvBjaUjn7rmTLwEV5fXZVUqcab17X10AtylVdDFR09nMzPadP8fFHntktU4OFLLCKBXsFWOqv0cXwX1+w4CLPXbVDTL3o2cd42LTpugxWSj44qCqcJ2Z2Z0//r2LXf5NXVjw+jEaOkkqlFyPqI73a3PBT4uZSTo3M+DLrd1wyRkyt6tSdrHWtgaZq2r9zZyub+IvF5/mYpt6u2VuwXwxO9QpMJZa035N2WGOLkjZvbnbxf79ty/K3EkF/4LF6mDg1vzckq/qNfCq75zkYvN22k7m9kRDMj5cKVFUE//H9BmNLtY31Cdz00N+fjrxmHfqC0d+/clksjJ1Vpvfa6Uq+rl/7VPnuNjG7nX6HuooXIr6dIu5IZ/VhYvTsY8/d9tXZG7rkF8nhkTRbjM955Sr+qvFU7de4GLT4pzMLcSsVfWopwlJRUzHhT49L6wXuZdf74sZm5l99dMnuFit2CtzY1FQf0pGz3k/vPafLva1z50sc8s13ZxkuKLAd9GJQf/b6vkXH7x0Bxe7Z5ku3j+lodnFdt5tD5n79PP9LjYjq+8sPWOWi2VrepydebL/DrXuxRdkbkr0cgjNQuN5lPCLHQAAAAAAgITiYAcAAAAAACChONgBAAAAAABIKA52AAAAAAAAEoqDHQAAAAAAgISKOjs7x0XLggUL5g879ydH6araM1p9lfVaVf/zqmlf03qgoqupNzX7869B3VzJ2kTHrkpG188+5tcPu9iKFSv1hVG37335tS7206t15fT7r/TdGn64ar3MfVveP8/d5vpuaGZm5ZrPzcR6TP51yHeHeF2D7kqy8F2fc7HlE7SjVT1mHuM7lpmZrbvmGhcLdYzIiKYi131Hd7pSJ+P5su9+ZWbWK7p8tOZ9Nxwzs0qX7xCQEXOWmVmq0c97A4E2YEd++AoXW8m4qUto3Ez3TYVs/c2668wLogtf35B+Zu1pP26aGgKdZMTQa8jrDjXrS369m9WoO+pMf/15Lra8c/hrVT6vu78Vi4VhX2M8UM/+9NNPl7mXXXaZi4Wag6nwM3/UXdJeFB3Vtsvpv9Gt8g09zaqi9YeZRaLdWxy43xlN/vU2xfoe9jvuW/66+rLSiSeeKOO/+tWvXGyidnUMzjlT/Of10d/pOac9659PSXTtNDOLzc8N6bzumpQWXYiqgX13lPb3G/rrcuOhn3axFSvZH4eExogiGlJZFHgSK67289CTgY59u4k9SmNDXuaWav71Ag3d7LaX17rYnoHxuPep33WxuI4Z57bb/iHj06dPG/Y1xgM1Hi648EKZe965fn0XTT7NzKwquhxe9/79ZW5faaOLzSvrReXZmt/nVAIdPbOiW5bq9GZmNrdRrFVifjMzO/FHj+uLDNMnPvEJGf/Wt/waOJZrFb/YAQAAAAAASCgOdgAAAAAAABKKgx0AAAAAAICE4mAHAAAAAAAgoXRVxVdAqGiwKqq8795TZe79yza7WKgYl/k6TdbSoKsvvfOy5YGLeL84wd9vRRUwxJg763N3udjlv9UF5mbNaHWxz7Xrgp9KoFagNYn6brEslWl2RJMvZJjJBO4hUChsa6eKJIeEipeponPv+NjPZO4N3zrFxQopPenkzMf7S2IiMrP3fMEXBg09899cfJqLBeosYxTUM242b9wgc5szU1ysqTVU4NE/zKGKrt6//dHfDFzDW/NHX4C9omupWrWucrdeqGjw1iZQN1++u7fc97TMPXjxPBfrK+nx0N4g/naX1sVM937XN1wsCkw6//q1LxI5KaVzx0V3joSrZ85pSOmxMFgUBdeDH0y/VsW6J4BNedPnxXV17to/fynwel6NkTNi9YybTKCgbEPKLwrzm5qGfQ+Doki/mdlgLOKBMfa6WbN8MDDG6imUrN6fgQHf2GCiqGcZrurHJmUa9HveVvMdJTZUfWMQM7PWlF+X0qLwsZnZsZf7xkMhv3nvQhdryes1cKLgFzsAAAAAAAAJxcEOAAAAAABAQnGwAwAAAAAAkFAc7AAAAAAAACQUBzsAAAAAAAAJNW66YtUjSuly3YftP83F7lu2WubGNd+uqBqoyP6LE3Z3sXygvngU+S43e+3nO6CYmdm1OoyxE2jcYZWaf27pSI+zcs2fh4aqze/01k+52BM3+e4jZibbhwQL09MwYotSzWXMzN75iZ+7WD4vWqGZ2c8uPGHYr/fL757pYnFVd9Aq1/xgOO7jPxn2a2HsZNO6Q1p3ucfFMqY7jaSyvjNeNtMoc3v+ep6L9esmOVYTLZpqobYkI1QoFMbkuhNZtawn+Zvvfd7F9t/ddx8xM0uZaMkZWKz+9v2TXawhpye+8sBGf1/3P6svPEJNdXTggVkp0IUobf4zGKf1e5tJD/+rwepbv+1i+cDeSY3ojA3qC9NJry6hDljDFXy7xbN8aU2fTJ053XeXTQX2Tvu+64su1vmbc2VuSex9clm9z5LqGEvNzc3DT54wRvaFIhtow1rI+P3PqtVdMndWi88NNP+0Hxy1jYtNyus5q1Lw3bKj7NisKW1tbWNy3Xrxix0AAAAAAICE4mAHAAAAAAAgoTjYAQAAAAAASCgOdgAAAAAAABIqkcWTU4E6T9VaxcWW7KmLCv5mmS/+NztQrFAJlZiMdvBFnZ7ZOCRzqX87fqh6g3Gg4lqh5Au55TP6aT5y3VdcrFL249TMLCtKJZfL+h5E/WaMoZqYW8zMiiX/3IuB3BPPv9rFhgqiuGmd1HyYCVTdZs7ZsvKNuhBjNvKFHwcH+2Xup777Txfbe0ffKCAkVDfyUz+51cV22mb41+3o6Bj+PUT6LlauXDnsa2xthnpWyXgc+cn/7k5dzDSdyblYoRAsyT9sfVX/PFtTgYKU6tHXMRENDASK60LKBorKZiP/pqcivVat6fYFTme16+ebraMwbaXq17ts8/goODoRheZoVWh58XydW6v5r4mzp+tntvM0X+h/Tbeem57//Tkiqr9ZHX72T10smjRd5kqB+Ua9P4GlylauHFlx6vGtnkrlounC0HqZmYv9WrXzdnqP0TR9kou9/Owmmdvoa3SrNgFmZtYl5pcpVf2dfKR6e3vH5Lr14ushAAAAAABAQnGwAwAAAAAAkFAc7AAAAAAAACQUBzsAAAAAAAAJxcEOAAAAAABAQo37rlixqGb+8osvytwlC3d2se4+Xe37NVP9hQ/5/rMyV10hFygiftMH211sux3mBa67TF8EYydQ8r6tIe1iPQO++5WZWS7ru4rs8lldob+3q8cH23UninVf8tdtb/fjycwsxZnsFpWdpJ9D1OOr4A8WddeZspjMTpz3Kplbi/0Y6a3q6/6je7WLpVJ67BYLOo6xUSjq97skuqE1NLTI3M+8a08XO/IDP9YvmPLzwppSQaY+9eQ6F5vapjvqPPPCCy6Wy/k5M2Tbi46X8SmiK4nq2LI1yrfoNaVa9l1mKsWSvkbjJBf7+S9vlrm1sp9fcoEWpB886xgX6928VuZmMnkXS6eH34WlMes7eyEsSuvPZangx0guq5/vnKl+vWt706dlbko8y2ygbeyqP37BxXr7dDfAbFrPRRi+eubSTEaPm+a8fw79BT1u/v2C72L06TOvkLl58XIPBtaqG//xRxeLG6fK3Oeff9rFsnWsVdN/rse56qA1cdYq9TyHP0cXYj/Hm5m1Nvr9yJCYh8zMutb470rvu+7fMjcS80sqcJrxm/cf5IM1Pc7SWf/vyNaxVjWPkxMVvh0CAAAAAAAkFAc7AAAAAAAACcXBDgAAAAAAQEJxsAMAAAAAAJBQ46TUT31e7NLxWucqF2vK6AJshYovFvWPs3bQ1xX1L/uG9JlYT9oX+rvq7mdkLra8h1eslPFZojDaUzd9Q+aqErZPfXXjsO+hpuvOWWPsC7ztduSnZO7yFSuG/XoYucqALngdR/6ZNYiCcWZmpf4hF/t1xRf6MzNLZ/w1RF1cMzPL1HxxtzmzdGHB3ufX64tgTMTiM21m1igKVRZq+gHnsn7s/fGyD4Ze0IWqcYNMXbT77i623767ydxbbr9Hv56g6tOrJghmySs+qe5XFdU0Mzv99NNd7LLLLhv2ax24eDsZv2e5nzMqVV+M28wsn/UP44Mnv17mqudWCRRsHxrwxSdfXK3XwErZ31slUFz3hBNPdLGfXPEzmZu0sTMmxDMrx3pb36gqe1b0ujY45Auc9t7yTX0P4rNdreoHHJmPD5kuvFoODRKMifsfWi7jc+cvcrHHrj1X5lZjv4Z947JTZG4c+8HbX9LNBo476mgXe3LD8PfcoyFp8009a9WFF17oYueeq5+x0tOv1590psnF+np18eSm1mYX+6VoHGFmFotlqb+g54vNRT9B5VN6zqmKtSowldknPvEJF7vga9+SuVt67PCLHQAAAAAAgITiYAcAAAAAACChONgBAAAAAABIKA52AAAAAAAAEoqDHQAAAAAAgIRKZFesfLpFxlet63Wx7We2ydyWVl+tu1rxXWvMzEw0NmnP6zYfAwXfsusLv3lS5q5cmawq6xOZeppr1w/I3ANOvcDFnrhJV0NX3WDSgePU7Q73VdaTVol/orr66++U8eM+/TsXS5uu+h81+C4QtVqge4gIhzoLieYS9tjzfTKX8bRlpbN+nTEzS8d+bsnKWchs+1nbuNjqbj2J1MQgyat2R2b2yG8+4GLz3vFFmcu42fJmtOlOI/sv2tnF7nhQ7zG6NvgueOmc7z5Sr3Q06GKXXv3PYf//qmOYme4axtj7L8SUkc/6zqxmZn1Dfjy1ZPU8EovurpVKv8ytiQ41oQ6Olcjvx6cf9nGZy3MfH8qx75wWBR7wklN957SVV31O5sZVP3jbmvVa9UKP/27H+Bg/dp/bKONPrvbrRHNLq8zt2rTBxZpadfcqpUnfgjVaj4sd9Z3hdxW+QHQMMzM7T3QNGy9jkl/sAAAAAAAAJBQHOwAAAAAAAAnFwQ4AAAAAAEBCcbADAAAAAACQUOO+eLKq+1js1QW2Gib7YlwvbdCFTN9z1VMulkrr69ZDFZKjSHIy5QIF4u76+fkutosofFyv8VJ4C14ciQrqZhZXfSzK6Gm1MOCLs4vpAhNIJrDExhlRSLuiR8O0N3/ZxcqVwshuLIA5qH6h96yjo8PF6ika/NIa/YxnbtPgYgcs3knmHnLad1xsc78vhjqW/ud9p7mY+veaMf5GQ7mi9y0ZES5W9J53+hs+62I1tdjVqSaKPfPMk6dY0mvVI9f6xiKvOuoLI349xsjoqGetqqdo8O0rfJFkM7NFr/aTzqqXde45f1nlYht6Rz7n1OPz5/rxq/69ZuN7TPKLHQAAAAAAgITiYAcAAAAAACChONgBAAAAAABIKA52AAAAAAAAEoqDHQAAAAAAgIQa912xlKhRxwc2t7vYtGk9+hqiGcBDy1eO5LaQYGo8zJrVKnOfX9vtYndfcZ7Mfe0pvsr6ynFcTR0BKd+JxszsmktOcrFjzv6pzFX9R0In62nRoa9cFS1FAsZzxf6tyUBRdzZqbZ7pYlHUK3MrdJLZKk2eMVfG16/13UNyLU0yt7vfdxVJyZnIrGZ+oJ36Pt3Fa/gzkdnPfuI7YDF+x1JZRjP5Nherlvv1JcQQWbGCZ7Y1yol2alEqMAOIcfPEDbq70quO9N2G2Bsn0x47zZHxhx5f62JN7bor1kbRASvUp1qNvi+c579r1euLF/jvcUlcq/jFDgAAAAAAQEJxsAMAAAAAAJBQHOwAAAAAAAAkFAc7AAAAAAAACTXuiyfXasMv05cR9QOLhUkyN7LV/8s7wkSUEtWTQ2Nv7gxfpDukniKTGL9qVV/YzcysFvtxc9U3Tpa5R3/0Jy62IoGF2TB81fKQjHd3+aLKJVEw2yxcQBATnJhbzMwmTZnnYhXT40w1BQitSaef5gslX3aZL3xcryQWn0y0WmCtKvni7FFgXYtjdi74L6o1Ga6lhv+VkhE2vtW170jp7D13mu1imYpeq8xeGvbLXXihL8h97rm+GHe9JspaxS92AAAAAAAAEoqDHQAAAAAAgITiYAcAAAAAACChONgBAAAAAABIKA52AAAAAAAAEirq7OykODkAAAAAAEAC8YsdAAAAAACAhOJgBwAAAAAAIKE42AEAAAAAAEgoDnYAAAAAAAASioMdAAAAAACAhOJgBwAAAAAAIKE42AEAAAAAAEgoDnYAAAAAAAASioMdAAAAAACAhOJgBwAAAAAAIKE42AEAAAAAAEgoDnYAAAAAAAASioMdAAAAAACAhOJgBwAAAAAAIKE42AEAAAAAAEgoDnYAAAAAAAASioMdAAAAAACAhOJgBwAAAAAAIKE42AEAAAAAAEgoDnYAAAAAAAASioMdAAAAAACAhOJgBwAAAAAAIKE42AEAAAAAAEgoDnYAAAAAAAASioMdAAAAAACAhOJgBwAAAAAAIKEyr/QNAAAAraOjw8WiQG4sYp2dnaN6PwAmtoWLFrhYKtJ/B65Vay62fMWKUb8nAMD/N36xAwAAAAAAkFAc7AAAAAAAACQUBzsAAAAAAAAJxcEOAAAAAABAQnGwAwAAAAAAkFB0xQIAYAvqWOg7XaVj/XeWw4843MUi1f7KdFcs1VXrPy/oQ53L6aA13u23+AAfjHWftMacH1PptB5ncc13NxooVPVNiEvc89A/dS7GTPCzLWRUV6vAn3Z36niDi6Wz+utCrVRxsUULfVet/yT7UCUWwQA6/AHAf8cvdgAAAAAAABKKgx0AAAAAAICE4mAHAAAAAAAgoTjYAQAAAAAASKios7MzUIYxeZYsXuhi5UqgMJuqNRgoXikrvulahZYRBSkfemhl4LoAkmyvpYtdrFQuy9woLSaNKKsvXPVFS6uxLmSaEwVSlz2wQl8XW1THfF3c9Ki3H+liFfHMzXRd3FDxZCUKrFXqP9z4hxtlKkVLt7x9Fr5Wxlta2l1s7wXby9xUyj/jaqDQck0UsY0Dg+eRR9e6WF/PkMy9Y9mfZBzDFyqSvNN8X+Q4Cj1fsY/N5wLrj5hfOn95m0xd8J5DxWvpCapU9nNcaHqKxf0+s/KvMpf5actqar5Oxqsl/3wni/2JmVlNVO8frJZkbn/h2DruDuPFokXzXaxSC/RsUl/Vs4HZQcwjIdmsH38PPfTQsP//JOIXOwAAAAAAAAnFwQ4AAAAAAEBCcbADAAAAAACQUBzsAAAAAAAAJBQHOwAAAAAAAAkVKE89vi1ZvEDGf3fAdBeb21yRuc0Nomp/o+82YWZWKfly3eliv8wtVn0V76VLfWVwM7MHH6Rb1ngW6kQhG6qNwuupU9YVdHsYFxYsXSTj7zn0EBfrCnQ3yjc2uNj6db67jJlZtsF3K2nKNetc0blm4Wv0nLP8fuacsaLmiyOOervMLTVMdbFMrShzW1vaXKx/08syNxX5MRLndWeJqujIduQ7jpC56t9GJ5rRs/cC3wGrob1V5h7yuqUu1l3Qnfg2Dfm9S2NWr1blqs9tyeuuSR37TXGx5fc9KnOXiO5ey5bfJXNRn0jtRmL9fKtl37VsqKy7EA0O+dydjt5f5pbjPhfLh1rxRWIvndbrGn92Hh8aGq92sVpZP98pKTH2ArnZtJ+zxBRkZma59K9drFR9t07GFhfq/tmU87FqFOholRVdGWPRZtrMrC3vY4MFmVqL/RlAxwJ9v50rJsaehqkTAAAAAAAgoTjYAQAAAAAASCgOdgAAAAAAABKKgx0AAAAAAICEijo7O0ej7uuYUUWZrjlolsxdOEUUnwwUkrPIx2spXeQrnfWFAlPlTTJXF//S97Dzdb0uRkHKV8bihQtdrBrr8RCJAoCPPfaYzN1zjz1cLK7pCnGqpFgUGDvLl1MEd6x0LPRzzslHvUXm9lX8GGlq1kVPi4NdLrZ+sy88aWbWvXmji83bdhuZ29DgC8kNDelCcn+8+Q4XY86pT6hQ4BFHHO5ipaouPpsSBf3iwGc9peKB2qSVqr9uKqV7JKi/6tQC96CKtP75z3+UuZ0rGU/12m/pYS722oVzZe6qPr/PyWT13+g2rfPzS39ZN5Rom9ziYlFBF/SuVvw4yWT0PXSv80VSi9VumfuvFRRVrseCDt9IZFO3XzvMzGbOnOFzN+p97KR2v+cd6OuRuW3tk/x1uzYHrjvZxbp7/LpoZtbe6q+7onOFzMXIzZz+exnvH/BrWFoUPjYz27zKF+OentUFuruGBvxr5URRXDNrrDa5WC3S81i2/WQZx+hQjRRygTZMmcZGF3v23t/I3N7Vz7nYrm/6qL5u2q81uSbfnMTMbPnvv+xi+570eZm7ab0fk0ncH/OLHQAAAAAAgITiYAcAAAAAACChONgBAAAAAABIKA52AAAAAAAAEoqDHQAAAAD4/7V3p1Fyl1Uex2/t3V3dne50drMSkEUTAmFRjhAgQgQhc8BtAEXA4cigDi64KwqjIDMu7IM4Ip4ZhaMRIUACCUEUAghk7TGZgEIIgZA9vVTXXjUvPL66v8fptjux/8338/JyqarU/9bzf+rpOvcCQEQNm6lYc47Uk0YuOsTHFoz3nfXNzGJirlBfn+7IXo/5bt3JtH4r1BSjRFJ3by/v6XWxdKNuGb4j6bu6X7kqL3NXr45eZ+7h6MgjZ8t4PZZwsWRcd90Xg2fM6vqM9IUX/LSsWYceLnNLCVF/gclc1arP7exkUtZQmC26/s87+XSZm20b5WLlvsDEvHiri6UyaZnb2+unirS2dMjcUs4/X938hBszsxXL73OxKHb9P1DUhLSFZy+UufWa/0zWa3rtX/LQfS6WjAVGXSX8Y4iQmZkViv4eOKE5K3N3lv1UxjNOPTfwGsQUlIR+vQ88sNjFOtdQY3/NicfMd7ETTpguc1Mxf423vqwnC2U6/D6nKurUzCwmJog2N+r1qafLT91rbtR7or1FP1Vnx6vbZW4h72+uv3l+ucyFnorV0KD3IrG4j0885FSdW/PXIVQ3CfG4xZKempQVU3LKVZ0bT/nae3ntIzJ39bq1Mo7+a2hcJOOJpP/+E9vt9zJmZrFWPzmty/ze+s/J/rtZuqhz+/b5GsuM1nWerPu1qVy9QL8GDNhsMRU0ntZ7gT0b7nexfbv1xNbuna+5WL1L3ydO/cStLvbsnXqCVmb6ES4WD+xdJh71IRfrXBu9vQu/2AEAAAAAAIgoDnYAAAAAAAAiioMdAAAAAACAiOJgBwAAAAAAIKICLRgPPNG3z8zMMknfQO3Y8fo8qnN7n4sdPVk3/9uwzzdPmtTcI3M39/hGpFOafONJM7OtorHuQa26gXNfscHFalXdPBlDQzU4NTMb3egbUnbry2YmHiId+CSd9M5jXSzWoGuymvdNxeLqycwsZoFGqxg09Y537/qjzF33nG/uVq/7WjIzG+c/7vZaXl/H+SfOdbGVD98nc5NJ0fS0XTc3VGYFGtd3rote07ihNpC/fKh72IZNviGgmdmulT93sVd26bV/dIdvSpus6hp75oV9LjZnpm6kXRNDAb54+xKZ27PPr00NWd8I1cz0Bwh/1YSZvtLe2Kf3GJVev+bkAveq9HY/zCFX8PskM7NM0xgXW7frdZ0rGqq2NfgmyWZm8Ta/Fu0RDd/NzOqhjSCkmNh3/PzbF8vcQsnfay78yh0yt1X0sC0l9b2qUPbxeN3Xh5mZ2n7FAo1MK2pwBPUxJGp5f91ffd03PjYzm9A+3sWaioHhMWW/yZnSoK9v0vx601XUr8Hi/n4X2xL4XjXGfwkTfbjxN1IfwRmTD5a5G595zsVqSb2ryqSbXCyd0nuX4046zcV25vWQiMSrW33ujh0yV8xfiiR+sQMAAAAAABBRHOwAAAAAAABEFAc7AAAAAAAAEcXBDgAAAAAAQERxsAMAAAAAABBRw2Yq1rr1egLL7Nl+Ysutt35V5nbU/FSRnUXdkf24uG/7nzE/+cPM7KCan/aQihX1a6j7rvATA+/yvLO/5mJrmUSzX9XuWC7jG1Zt8MGqroc97b51emOf7/BvZvaWKR0u1lvU007ScV+/uzbulbmzTniXi22SmRioqdOmuVjPHv15n9A2x8UOy+rW+j27/BSH3YmXZO4Tz/7BxTqaddf/mbWDXKxa0ROLxs7c42LPvOSfKygWmMY2QqeV1MSlDAx8sQcfeMDFmsxPejAzO2j+v7hYslrWD5zyj9FT1hNBajU/8SiR0LXQFvfXLF/Vk436Sn6KxOxj/OS2P78IHUZYX4+fyLn6js/L3O6K/3tcuaTXp9aEHwdTqen7WknUVPtoMcrPzPb2+nUgWdd/J5x70Rdc7Per18tcDIya8nn3fb+RucWir7Hzjp8sc7Nto12sICbUmpmlMn4vHa/o9Skb8zWy+bU3ZO69q/xEwdD3BAxMssHvV6dNHSdzx1X8PWHFY3pfmm3268WGwKSrctFP3Jv3vsNl7v8+4mthX0XfaN52il/fRsiwo2Hrls8vlPFt/+O/Vx08w68tZmZjpk1xsURS338Wfe1kF8sFpki2pfyUtM6tun5TMT3tLWr4xQ4AAAAAAEBEcbADAAAAAAAQURzsAAAAAAAARBQHOwAAAAAAABE1bJonhzSIXo49xV6ZW0v65FUrfENLM93rc/6CM2VuJuubVxYLuh3Xs488KKK64Wi5wLna/pS9Z7WL3bDlKZl73NG+cdfVa7bK3LZtvlHlZaeNl7nPbnrCxTp26Sapy/f6ZnItommpmdnhy3Mudtrrh8rc3vOOlnFoW7a84mId42fK3IuP8M0nq5t0I9NE3F/3jdUtMve6a3xz3S994bsy9/iWSf65unSNbezwS/4z1v/myeWKb0RnZpZK+AaaUTJrlm/Sb2Z29kLfFDBf8E3OQ+5b9D0ZX/D+q1ysuV3fJ7IZ/3ypXt2ctOf5RS5WD+Re+5MfudhRTfqedM4PHnaxQknX2MKz/Xs2e/Zsmbt+PU10zcyass39zk2U/Gdw5ZJfy9xa3dfU/DN0o8vmZv8a+nK6Hp586FcuFmqfXgw8BvovtD4lEv69ve8p3ZBfrdFF1R3ezBK2zcXKgWa1FhNXPlAMqbSvx1BjW/Wwofehs5OmygOxfdduF2uN6+bYL/yh1cVy8VEyt5rzjYvT6Yky930f9N/X1vxipcwdL7YdE+q+GbiZ2Z6uw1xslJ9hgv9H6LNmaV8n7/vUjTpVfIb31vVAiXhc7H/EMAgzs2njfP29vE03RG5p9XvenGjibmYWF5MxorjmcMcFAAAAAACIKA52AAAAAAAAIoqDHQAAAAAAgIjiYAcAAAAAACCiONgBAAAAAACIqGEzFSvUeXrvo992sWpFT50pVRtc7KM3+8lIZmar/vNiF0uortxmVqqKvv01PSHgYzc955/rR5fI3IT9XsYxNCa0+K77b2zWU4g623a62B/3ipFsZjZ5bMbFrvnFCpl7dIefaLNl73aZ+1zOd4tvmzha5h7cK+pPly8CZs3Wa87ji+5xsUs//nWZW8z5yQzzTvCTIczMKpv91JlfbdBn68dP8rUwJqHXvRNO2uyDW/SEtC2BtbO/UonQLSM0E2fkeXT5chlf/ehSF5uUCUy6ivsa6S3p6VWNzX4NaMjoCSZbC/4emAxMr7rqLv/v+PUNn5W5SVvmYn/oXCdzZ06f5mJ1NYbyTSi05tTW3OZiL2zWUz46Wvw1vuQ/9LVYe8eFLpZO6drJ9fg6aR6lp99cdLN/vrV36n1O6i72OfvLh0862MWqFf1Zu/9pPy0rNOkqLbY+TUk9+fDysw9xsU3b9fTEXz71RxdrC9xSunQYQ2DuQf6esnq5nwZqZpaI+RrZ+Du9h22O+TXrsFNPkLmPPun3Ig1iqpaZ2erf+31Wc7Oepzbn5NCcNQyFh2+8zMVmH9wuc//pCr+XfnijrjN1HHHIVL+XMDPr/OUnXGzF85tl7lmX3e5i4+N6371HfInSK9nwxi92AAAAAAAAIoqDHQAAAAAAgIjiYAcAAAAAACCiONgBAAAAAACIqGHTPDmkt9c3wspmG2VuQ8w3/3th+XUyd1TV54aaMhfKvqllNt0iczc9eq2LNZf14/aYbmqJgUn9TDfIrozy5d0xdbfMfXF31sUKz3bK3AkffKeLHdGxT+a+ttXXzoTp42Vuz28fcrFp550qcz9+ytku9urLvjGhmVlavD+lC46WuTBL7HnVxe763hdl7je++nkXu+NZ3fYxKzpSPnLLl2VusdjnYrff8GmZe87XfuJiiZyuhezUyS7WuV7XuRKL6WbANMc1mz7GN7V9batuMvnMirtc7MyzPiJz9+z2949VS38tc3M5H2ttbJW5N11xuYu1Tz9O5hZqUWwhOAwFPiZ78v5vbKm0ryczMyv5Zqbrl1wjU1ur/nFzFf0ZVsMj+gr6BW9Y9lUXa6n6e6iZWSlG7ewv7RlfC91F3RD5/e+a6WI/efJFmdtX9tf9w/Ony9xc3u9jJ7X75v9mZvOPnOhiT67fJnNVla7v7P+9CmGbXnjDxXr79N/5kxV/U7n9yQdk7s0fOdfFmrJ+gIiZWSLj90PFqYfJ3Nt+eIOLXfXhj8rcSt7vv3S7ePwt5r59iosV836/amb22U8ucLGVX/9v/cAlv+Ys/d77Zeq2Xf75jp85RuZe98lTXOz6n/ohR2ZmxR5f650RXHP4xQ4AAAAAAEBEcbADAAAAAAAQURzsAAAAAAAARBQHOwAAAAAAABHFwQ4AAAAAAEBExTo7O4fFOJNZs2b1O/eNpXoCREPW9z6vVf1ULTOzesyfaaUTCZlbLfqpDonAdJhSzU8kKOtUm/JuP1lidQQ7cP+9haZiNST9G18sFWTuF565zcXGz9ITqTryfpLE5hf0FKKSmGCSaR0lc5NTjvXPVdBTKz518IUuFqvpWi+KcJmpWDbnSL3mJEXdPPPTm2VuJuUnFhXLeh1J1X3tNaR0bkmsGamkzu3J+SW8XtWT+OZe+BUXG0jX/9Dwq8ByOCype83ChQtl7uLFiwf1XC+tfFzGu5L+nvLiDj09ZEajf9Nbss0ytyQuRCqtL876nJ/Yd1Srnh/y1iNPlvH+Ov3002V82bJlLhbFKRT9FdrntIrL2fU7f08yM+va6ae+lKv6gxkXH9hyQtdDRsRKFT1hKSkm/DVm9N8Jm+f5yYHrRvA1HixVI/VNh8jcxOF+f/CJk2fI3HrdX/d6YDBrOe6veyJw/0lkfLwa2Hc3lX3dVBK6dm98dJOLjeS1YX+YO3eOjJ//D36y8Nnn6AlE4/b6xamv5K+jmVmi2uNi5axaWcxaE3696C7pgmwzP4V4xpF6Ct/BC77jYk//Xk9Bwp8NZM2JHbrZxTYt+abOFZOfa2V9jSt1v+a0NeprXBNTsTJpvT71iXMBS+p71YwzrnKxzrVrZe5wxi92AAAAAAAAIoqDHQAAAAAAgIjiYAcAAAAAACCiONgBAAAAAACIqOTf+wX8RagpmmrqtHKZbmh50hnvE9H+n13lRaMnM7OJC77W78d445FrXSzQG850W0IMlXzFv/Ex040jW+rdLpZbc7/MzZl/3GIp0CywKBoW9u2QudW+pS62M1C+sRn6+RTR2zBQ6W8ua9f1f83J2Esyt1ac4GKpWKgfvb8QPSXfRNfM7PgLvhx4DG/13f/uYnXTzQ0HK0pNkoeD8ugpMj6q168BR03wDSL/zNdTpaI//++Yf5aLxQMXbc1vlvjc0rCYpTBiDWSfs3Obvk9UZJvjEH/tk3V9Uxl31tf79f+bmb2y+JsuVizrHQ37nIFRNRI7tP/DRVJJ/Y73FcV1D2xO4+K6J0RzUzOzW5b+qd+v7bJ5orEzBbLfrFq1VsbnHjPHxe5/bJHMvfvq831QNP83M6uIBtvNKb3eFPK+eX86sN50xfz+fO2afTK3XNGvDWGDXXMKO7fJeEfHGBeLp33j7pBK4J5yzKW3+qAYiGRmtnbR51ysWgx8A4rpBsxRwy92AAAAAAAAIoqDHQAAAAAAgIjiYAcAAAAAACCiONgBAAAAAACIKA52AAAAAAAAImrYTMUaiGpgcMcTS+51sRNPWyBzK5bu9/O9sfRb/v+v6qkklbLvtv30sl/JXOaP7F+qv3410DC/XPXZGSvK3KLonJ4KDCq5e9VmF3v/CdN0svmaSgY6vavaYWDR/pMv5GW8VPXTspKJDpmbymRdLBaYWLTx/ttcrKe3S+ZW6n7N6et+UebiwErG9fXtzYx2sXjvKzK3kte1pzyz6Mf+/0/pSQ+93dtdrNz4ln4/10A0NDTsl8cdyeqBv7vFav6+VE+NkrkNyf7/7e61R77vYsnAJCR1s4nXC/1+LgzMQKaphfaV2UZ/0cqBaZ5lP7DIAoP47NIT/X4mWQ+8CrFvTjf0f8Inhsaq59e62PHvOF7mNorNbTWwkU6Ke029pteQM678qYs9evPHZK6a8VkLfBGs881qSAxkzfnGLf67t5nZlRe918UOmq4nheYK/Z/Vu/TH/+xibRk9CTbX5++X27Zt1Q88QkqHX+wAAAAAAABEFAc7AAAAAAAAEcXBDgAAAAAAQERxsAMAAAAAABBRkWyeHK/pJkuq79FvH3lQ5haTvnnyqOTgOyeV4v6sLJnQ52eBtoQYoIFctWSgmWQi4a9GuaabjjanfBPCYl7X5HnHiWakFd14Li5eQ6WuG4KplqzB92GENAT7e0rFdGPQctXXU0/hVZl77fVLXWxic9PgXpiZLdvgm+BOntTe7/9fNcMbqFCjvTe7Qm6fjBfz/kNZtzaZe9PNP3GxsVMnDeZlmZnZERPHudikt7fo5AEtOF4+T2PdgcpkQg2n/RsfEw3Uzcx27PMN18e3N8tcuRkMdOSvln1D71S2TSfT1f+Aqgd2lqrhbai3di7l/0ND4HH1LklTq0A2rfc4OLDqge9VyZi67nrx7+7xq0gi8Pm//zsfd7FcTufWMo3+FdS6ZW49MJAC+0+9pr/TqDXntW07ZO6Esa0ulsroBaolq+5WuiZHNfnm7KlCYPMyQkqHX+wAAAAAAABEFAc7AAAAAAAAEcXBDgAAAAAAQERxsAMAAAAAABBRHOwAAAAAAABEVCSnYlUTfqKVmVmq5rtfx+o+ZmbWEvPxD9y+SubGRQPtSqCp9s8vPdrFkgn9GuJ0bx8SlQv8e25mlv7ZaherB84yx7W3udiOvftkbi5fdLHCxtdlbl1c4kSgdlKHT3Cx6WNG6WQ1GSWQ2Xve3MB/gaLex1xev7vZBnUx9bJ6zgmTXezb9/xB5tbFKIndBV93ZmZrfvukix1xyBiZu2K9r9NUsv9zTSbfep6MzxSTtZiUZdbX1Svj3TE/mai1MStzzz//TBf70KcvlrkJcSljJV27D951j4s1tuu6icX8AydC406ETFxPzUBYLKHXkbiYQFKt64lFk8b46Xhj33ulzFXDO0OXbfP9V7vY3m490iYVZ+rRgZRUG1YzK4uhR7XAn3azMX/hb3psW79fQ2hl+Mx7/DS/uti3m5klk9TNgZQMrDc9OV8LLc36O1hzza9DF33mFpnbJC7vzrKunHtu+ZyLFQuB71UjZbRRhDSPHS/jX7z1URf77hXvkbm9Ynt7+AXXBZ7RX+OsLgfbdt9lLrZr5+7Ao46MEcL8YgcAAAAAACCiONgBAAAAAACIKA52AAAAAAAAIoqDHQAAAAAAgIiKZPPks870zSTNzB5b8bCL1cr67CpX8LF7Lj1G5tbrvqFStaabLMVFE8N4o26Aqx4XQ0j0UAv1ib38bVe42NVP+AaRZmbq0jce8RaZWxfNuOqh5m5V36TuksM+I1NjcV/X1NPQUO/i2LYZMndfzysu1pcTXSrNzBL++n79At90OPQqkslWmTn/tAUudsihvlGzmdkTqzcFnm9wotQoWb3WWaL5s5nZwoULXWzx4sX9fq6OtG4oa1WxEFV0p9pSyT/GvbfdrR9XFG8mrZuQFvO+sXPLeN2BUDU4reh+vXba6ae72IOPLJO5UaqbAy1X0vGmlN+2id7WZmaWz/uNzo4l39fJauETjZrNzGo10eky0CS5XA2sh9gv+sq6GFSz2lhM74/7xDX71Cm+8bGZ3neI7YmZmRVKvp6yWd00vlKhbg6kp55+VsbnHOnvjY/f9gmZGxcL0V0/uLzfr6ES+F5VFGvLBVf/VOY+/7wfmoL96zufu1DGc7t2uFgxcOzQlfN7jI13fkk/oSiTlmZ9/0kk/f6pKd2oHzawHkbNyPhXAAAAAAAAvAlxsAMAAAAAABBRHOwAAAAAAABEFAc7AAAAAAAAEcXBDgAAAAAAQERFcipWPZmW8VPmn+FiK5YtkbnpjB/pkRDTJszkcCXT/bfNSmJUyHv+9QmZy0SQ/at0/tEulvqv52RuQhxxikEwZmZ27/Ovu9gH3zlVJ4vu7fHAUKxF4nGvXxAYdyL0/qP/92Jo9CXHyHh7m7+YudyLMvekd85zseee/ZN+QjXhrK4L577rP+Ri7/jknTKXNefAakzryS7thS4X67I2mTtu6mwXy+3b2e/XUAqsY20dftLb7KOP6vfjqolhZnpqGHU3cNkGvcvozvtxWa0ZfZ+oJfxeqVrx09DMzGpiIk08cLOqxFtcbPIZeoIj1/7AqgQ+73kRa0jp69so4sWqzo2JHXJoPmdzOuNi//aAvl9SN8NDTFzMUmBzvODTP3Sxx278uMxVW5xUUtfYuy+91sWoj+Ej1/eajGdaRrtYvktPCm1p8HulcjWwmIna2dMtRl2bWaXg741HXP4LmTtSaopf7AAAAAAAAEQUBzsAAAAAAAARxcEOAAAAAABARHGwAwAAAAAAEFGRbJ5cKutGga2ZoovNe7dvqGxm1r7gGheLx0Mt3/ov5nsnj5iGTCNB+SPHyvjsObNc7ANzp8vcD8z2TUd/vvLlQb0uM10nPYN+VAyFHd26idtb232zv47RU2TunI9+y8U+u3Da4F6YmV1y+1IXY80ZmND7NWuWXxcG0jR4++6KzJ04scHFKrlumTvvzHNdrLe3T+buL+8962wXU/9eM2pvqFTqunlyIuabTObLuunolDO+7GLVmm7oPRCizzLXfZjIi2ahZmaZFr8WFUtiw2pmtz72qosNfnesUTfDm9r5pAJN1R//wUUu9q7Lbx30a6BGhreubv0bkclj/D6lrTkrc2ec6xtkN6cGf6/qLfgKHun1xC92AAAAAAAAIoqDHQAAAAAAgIjiYAcAAAAAACCiONgBAAAAAACIKA52AAAAAAAAIiqSU7EsML1qX7HZxZoauvRDiNjadSO7UzbCqqL1fz2jO//X8n6SxHlz/KQsM7NfrPfTsqiz6BnbrCfU/HHfaBeb1rRJ5qpV6/uLX5G5k8f6qUmbdxZk7kjv8B9lo5p9fZiZbX19j4tlWhtlbq9Ybyzh68PMzKq+RtREq4F66MEHXIy628+qfsqnmVlD1tdUuaTnJ1bEorN+PddtJGtq0vcqNbmmsUXvpVWUz/ubU1PKT1lLmN4b94pxeStv/pjMfdenfuxi66mxSMo2pGV8y/a8i40drfc5atF5+rm1g3hVb178YgcAAAAAACCiONgBAAAAAACIKA52AAAAAAAAIoqDHQAAAAAAgIiKZPPkWEw37kokfJPJ3mJT4EGG8hUh6mJxXxDFomhaamaZmDgP1alWDcQRMXXRXdvMOrI+1l0ZL3PVkrOGZoEjnF4ARre2uVgpkRn0sy1cuNDFFi9ePOjHpXHqgVetlvR/6NvhY6pLsrHNeTOKVftkvKnB10iyqpueAn9RivmviZWEXlmSCZ+rRz7oBt2IpkRKN2xva/P1kKgHvhRxsxoy/GIHAAAAAAAgojjYAQAAAAAAiCgOdgAAAAAAACKKgx0AAAAAAICI4mAHAAAAAAAgomKdnZ00JwcAAAAAAIggfrEDAAAAAAAQURzsAAAAAAAARBQHOwAAAAAAABHFwQ4AAAAAAEBEcbADAAAAAAAQURzsAAAAAAAARNT/AXZQOH8UJ/ooAAAAAElFTkSuQmCC\n"},"metadata":{"image/png":{"width":1142,"height":1213}},"output_type":"display_data"},{"name":"stdout","text":"||A - A_noisyRecon ||_F for 500 images =  42.699617815418755\n||A - A_Recon ||_F for 500 images =  38.876361390036934\n","output_type":"stream"}],"execution_count":null},{"cell_type":"markdown","source":"The above plots show the reconstructions of the noisy images and the columns of $W$ interpreted as images. \n\nThe reconstruction of the noisy images $WH_{\\text{noisy}}$ is less noisy than the original noisy images, i.e. noise is removed when the NMF is applied on the polluted dataset with $d=64$. With $d=64$, $W$ consists of 64 columns which results in the NMF not learning that many features. The effect of this is that some of the noise is being overlooked and not saved in $W$. For larger values of $d$, $W$ contains a higher number of columns and therefore would have more space to save data, both features and noise. So for higher values of $d$ the reconstruction of the noisy images would contain more noise. By comparing the reconstructed images $WH$ for the noisy dataset and the original, unpolluted images we notice they are almost identical, which confirms how applying the $NMF$  with $d=64$ removes almost all the noise. However, the norm of the difference from the original images for both reconstructions are quite similar, they only differ with a value of about $3.8$. This is likely a result of the fact that the Frobenius norm does not take into consideration what is \"similar\" from a human point of view.\n\nIn the plot that represents the columns in $W$ interpreted as images, we observe as in task 2 that each column in $W$ contains some key feature of the original image. By comparing the columns of $W$ from task 2 and $W_{\\text{noisy}}$ interpreted as images it looks like the noise has minimal effect on $W_{\\text{noisy}}$. For most of the images, it seems as $W_{\\text{noisy}}$ detects the same features as $W$, with the exception of a few images where $W_{\\text{noisy}}$ clearly detects noise instead of a feature. This all indicates that executing NMF for d = 64 stores more actual features of the images, rather than the noise that the images contain. As the noise is spread arbitrarily across the dataset, \"on top of\" the original images, it is as expected that the NMF does not recognize it as important features of the dataset, thus not storing it in the columns of $W$.\n\n","metadata":{"tags":[],"cell_id":"f787f3bf9f3646bd81329d2c9ca2dfb8","deepnote_app_coordinates":{"h":5,"w":12,"x":0,"y":241},"deepnote_cell_type":"markdown"}},{"cell_type":"code","source":"def ex3c():\n    dList = [64, 96, 112, 128, 256, 512, 1024]\n    normListNoise = np.zeros(len(dList))\n    normList = np.zeros(len(dList))\n\n    for i in range(len(dList)):\n        Wnoisy, Hnoisy, opacityMatrixNoisy, normNoisy = NMFImages(noiseWithOpacity, dList[i], maxIterations)\n        reconNoiseReshaped = np.reshape(Wnoisy @ Hnoisy, (np.prod((Wnoisy @ Hnoisy).shape)//N, N))\n        normListNoise[i] = np.linalg.norm(imagesWithoutAlphaReshaped - reconNoiseReshaped, 'fro') #Faces64 is images without noise\n        \n        W, H, opacityMatrix, norm = NMFImages(faces, dList[i], maxIterations)\n        normList[i] = norm[-1] # Siste elementet i norm listen som er feilen ved siste iterasjon\n    \n    minIdx = int(np.argwhere(normList == np.min(normList)))\n    minNormD = dList[minIdx]\n    print('\"Best fit\" value of d = ', minNormD)\n\n    minIdxNoise = int(np.argwhere(normListNoise == np.min(normListNoise)))\n    minNormDnoise = dList[minIdxNoise]\n    print(' \"Best fit\" value of d for noise reconstruction = ' , minNormDnoise)\n\n    plt.figure(figsize=(13, 6))\n    plt.axes([0, 0, 2, 1])\n    plt.plot(dList, normListNoise, label = r'$||A - W@H_{noise}||_F$') \n    plt.plot(dList, normList, label = r'$||A - W@H||_F$')\n    plt.axhline(y = noiseResidual, color='r', linestyle='--', label = r'$||A - A_{noisy}||_F$')\n\n    plt.legend(fontsize = 18)\n    plt.title(f'A = Image Matrix with shape([24*24*3] x 500)', fontsize = 20)\n    plt.xlabel('Number of columns in W, d', fontsize = 18)\n    plt.ylabel('Frobenius norm of the error', fontsize = 18)\n    plt.semilogy()\n    plt.grid()\n    plt.show()\nex3c()","metadata":{"tags":[],"cell_id":"46fe9b5a0fc14ecb9fee04e466cd7d37","source_hash":"1945a4eb","owner_user_id":"c2406dbd-950c-4bc1-b1b5-47d2744c1a77","execution_start":1649449988353,"execution_millis":4116973,"deepnote_app_coordinates":{"h":5,"w":12,"x":0,"y":247},"deepnote_to_be_reexecuted":false,"deepnote_cell_type":"code"},"outputs":[{"name":"stdout","text":"\"Best fit\" value of d =  1024\n \"Best fit\" value of d for noise reconstruction =  128\n","output_type":"stream"},{"data":{"text/plain":"<Figure size 936x432 with 1 Axes>","image/png":"iVBORw0KGgoAAAANSUhEUgAAB44AAAH6CAYAAAD4AmHoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAC2DklEQVR4nOzddZic1dnH8e9Zi7tBDEICSSBIiOAQXIO7uxVa4K1CHVrqaLEiwaVQHIoHCAESnODaJrgUDRDZ8/5xns3OTnY3O8luZuX7ua7nmp3nPHLv7uzQ5jf3OSHGiCRJkiRJkiRJkiSp7SopdgGSJEmSJEmSJEmSpOIyOJYkSZIkSZIkSZKkNs7gWJIkSZIkSZIkSZLaOINjSZIkSZIkSZIkSWrjDI4lSZIkSZIkSZIkqY0zOJYkSZIkSZIkSZKkNs7gWJIkSZK0WEIIvw4hxBDChGLXUpsQwoFZfQcWeF4MIUxumqrqvGez/lkujhDCgyGE50MIJTn7qr7Pqu28YtbY2oUQZuT9vCcUu6bmIIQwIITwTQjhlGLXIkmSJDUnBseSJElSKxNCOCknJBhe7HryhRDezmpbvti1NBc5AWcMITxUz3HLhxAqq45thPtObozrtDTZa/DtYtfRmoUQdgU2BH4VY6ys5ZBLgd8At+Wdt14I4U8hhOkhhI9CCN+FEN4KIVwYQhjWwHuvFEL4Ovs7uWIRx04KIfy6jrFeIYRDQwg3hhBez4LGz0MIU0IIh+QG4ou4x4U5f991fg/Z33edf48hhA1DCJdnYfAnIYRvs5/NLSGETes47RzSz/nBhtTa2EIIE/KC6/ztD3WcVxpCOD6E8Fz2c/80hHBHCGHdeu7VIYTwmxDCK9nP5sMQwnUhhJH5x8YY3wHOA04IIQxqvO9YkiRJatnKil2AJEmSpMYTQgjAoUAEAnAY8MOiFqVCzAM2CCEMjzG+Usv4oaTf6zyax/+fOxu4BvhvsQupw43AY8B7xS6kLcneh34HvEr6HdRmUoxxci37bwD6AFOBK0mv9XWAQ4A9QwibxxgfrefeZcDlQG1hNVnYOyDGOLOO8eVijP/Jnu4GnEt6/TxAep33A3YGLgS2DiHsFmOsL+ydmNX+FdC5lvFBwKzarhFCKAd6xxirXr+bZNvjwP3A18BgYHtgYgjhlBjjL3KvEWM8J7vWr4GN6qpzKXgQmFzL/in5O7LXzzXArsArpPeZnsAewEMhhF1ijDfnndMOuAdYD3gCOAMYRPodbhtC2CTG+Hjerf4MHAv8Ajh8sb8zSZIkqRVpDv/QIEmSJKnxbAEsD0wCtgIOCCGcGGOcU8yi1GC3ATuSAuIf5Q6EEEqBg4DpQH9gwNIuLl+M8WPg42LXUZcY4+fA58Wuow3aDFgJOKm+ULUOpwGXxxjfzd0ZQjiRFEZfAKxaz/knAmuQ/n7OqGV8XeCOEMKfgT/lXL8b8Fvg4BDCajHGt0jB9/bA7bld01kt04BdSCHyDbUVEkLoA/wDuBZYhtqD2wuBriGEY4BPcs7dHDiTFLgeme3+Q4zx17XcZwDwFHBiCOGcnKC5OZlcW+112JMUGk8FNo0xfguQTWs+BfhHCOH+GOOXOeecQAqNrwf2qPp9hRCuBW4CLg4hrJr7e4wxvhtCuAfYO4Two+z9QpIkSWrTnKpakiRJal0Oyx7/QerW6w3sVLxyGi6btnRyCKFfCOHiEMIH2XSzU0MIG2THdAoh/DmE8J9sCtsXQgi71XKtbiGEH4UQ7g8hzAohzMmmvb0lhLBOPTXsE0J4Kpsa9cNsWtj+oZ4pnUMIW2ZTqH6c1fRGVmP3xfgxvAA8Sgr8y/PGtiUFxv+op/4DQwg3hBDezL6HL0IIj4QQ9s07rmpK3I2y57lTx07OOe7tbOsaQvhb9vXcrHux1nV5QwhnZPv+Vkt9h2Rj94RFTPMbQrg6O3bFvP2XZvvvy9vfJavtoZx9NdY4Dtm0ucBywHJ53/ekWmroHUK4IITwXs7r7aD66q7lGqtl38vb2TU+yl5jp9fyO646Z9cQwrQQwuyQpui9JgsH848bk/28n82O+zaE8FoI4a8hhB61HL/g5xFC2Db72/o6hPC/EML1+T/rnPM6hhB+FkJ4Jjv+qxDCoyGEver4tg/JHq9t6M+pSozxj/mhceaPwDfAqBBCrzrqHEvqHj0ZeK6O608BxgOjSX9vqwGbAi8CnYCRWWhMjPH+GOOt+VNtxxjfJ01zDDChnm/nguzxe/Ucsy2pQ/oW4G/Z93E91VNMH5Vz32/r+J7eIYWsJcAK9dyrQUIIO2evk8fyX6MhhFHZ6/LdEELfJb1XHaq+55/nfs8xxumk11QfUrBcVVOgOlz/cV44fDPwMLAytQf315B+73s25jcgSZIktVQGx5IkSVIrEULoR+qOezXGOJXUdQwtawrO7sAjpFDnalIn31jgrhDC6sB9wA6kztxLSdO0XhtCWDvvOiNJ3YmVwO2kQOYe0jSvD4UQtsq/cQjhx8AVpI7tS4FLgFWyerrXVmwI4VfAv4G1svucCbxOmh78kRBC14J/AikY7pN9n7kOI013e3U9555LCkUfAk4nhSLLAZeHEE7OOe4zUihVNSXvb3K2SXnXrCBNi7sjcDepi/Otemr4Ean78bgQwrZVO0MIq5B+Pu8D+9ax7m2uqmA4f+3WqufrhhDa5+zfiDSr1n3U7W3S91jViZz7fd+Ud2x30u9+HVIX46Wk4P7iEMIBi6gdSKExaVrhHUhTZv8NuA74CDgaaFfLaUeTXodvA38HZpCm6L03pOl4cx1GCrxeIb1eq6ZVPoH0+utSR2k7k77fWaTf56Ok7tnHQt666NkHIKYAvwfmAxeTfhZ9gKtCCKfkHR9If2fvxxjfqOP+iyOSpq0mq6OGEEIHUgD7DFDrurkLLhTjyzHGnYGzSO816wDHxhgPjTHOamA9c7PHebUNZh9W2BE4Isb4SW3HZLXMy6aTHk16v4HUnbx6jPGahnRsZwHuWsB3pNfCEokx/ov02luL9D5adZ+OpNdvO2CfGOOHBVx2WAjhmBDCiSGEg+v5kEJ7Ulf4bFLgm+/O7HGTnH1DSf8teLUq9G/AOVUeyR43X9Q3IEmSJLUFTlUtSZIktR4HAeVkwV+McUYI4Ulg4xDCsBjj6w29UAjhOOoIS+vwTIzxpgKOr8vqwPnA0TlTjd4DXEZaY/QRYELO1KWXk0LSn1Czs/oloH82lfICIYSBpClmTyMFvlX7VyAFJB8Da1atfxpC+ClwFbV0o4UQNgZ+TQrdtokxfpYzdiApyPsNcHyBP4PrSKHvYaTAsmoq2q2BS2KMX6Vsrlaj8sO6EEIFKTj5aQjhvBjjO1mtvw6pU3i5RUwhuyypG3OjGOPXiyo+xjgnhLAHKTyeFEJYA/gfqVOwPbB9jPGDRV2HFFZDCorPy76X4aQpuu8hBT3rsXDAfD91iDG+Tfq+D8ye/7qe+68OXEQK/uZn9z+d1Mn6E1J4uigHkL7nHWtZk7UHKRzLtxUwLsb4fM6xVwF7kQLo63KOPRX4XlV9OccfQpoC+WhSp26+icDEGONtOef8gPS6O4eaYf3ppFDzJzHG3Kmd25PC5xNDCNfHGJ/JhoaTQuXbaFy7AV2Ax3L/1nL8ARhC+vudV8/fCCGEEaS/99WBp0lrBZ8VQtga+HXWwVvf+WXA/tnTf9cyvhwpkL8i//dex7UOA35O+pDBSqQPVzwbQvg5cF1+eJx1Vm9H+jedgaTfZzdS+N1YU8f/HynA/WFI00L/mxQmjwR+G2N8oMDr7ZNtC4QQbgAOizH+L2f3UKAUeDPGWFso/1r2uFLOvqoPO7xax71rOweAGOPrIYTPgA3rrV6SJElqI+w4liRJklqBrMvvUFKH7WU5Q5OAQPUU1g11HPCrArYdF7f2PLOBH+V1o15F6urrAfwgb+rSh0mdmWvkXiTG+HltAUrWTXg9MCKEMDhnaG9SCHNWVWicHR+Bn1JLhyPw/ezxsPwgK8Y4idT5uA8FysLZq4DNQwjLZ7sPJoUpdU5TnZ27UIdntr7130nfX373bkP9X0NC45x7vk7qdO9N+l7OJnVTnhpjrK8jOPcab5J+txuH6hSwqv5fkn4nud/PpqQA8LGG1rkIs4ETckPZGOOLpA8vjAwhdC7gWt/k74gx/q+Oruszc0PjTNXvfXzeNf6THxpnLga+ALaso577c0PjzNnAG8AmWfBJNiX0vsATuaFxdu9vSQF6IP39VKn6u2q0dXZDCENI3cHzSN3U+eObAscCv8x+R/Vda33Sh0eeBUaRPghwH2kq42+Al7P71ecP2bl3xBjvyrt+CelDBV9R/R5Rn9tJHzDYnux7izHuSgr9f0PqIs83lvS+e1J2bjlwUIyxtmMXS4zxO1Kn+9fAZSGEHwIHkj6o89sCLvUR6T10VVLw34f0IZinSV3ut4aa09Z3yx7rWm+4an/3JTwn1/tAn7wZDCRJkqQ2yY5jSZIkqXXYhNSpdVdet9xVwF+BA0MIP48xzq317DwxxuUbv8QGeTXG+GVeLfNDCB8AnbIwMd87pClVawghrAf8gDQNbV/SlMu5BgD/zb4enT1Oyb9OjPE/IYSZpCmsc61Dmq52t1DLOsvZ/fqEEHrVN1VtHf5BWrPzkGw67EOA52KM0+o7KQvDf0IKUQcDHfIOWWid3Ab4ljrWi61PjPGaLNA7lNTNN4UUdhXiflJovgYpaNoEeC/G+FjWTb8pQAihDynIu7uhr/EGeC3G+EUt+6s+WNCDFA7W51rSa/CmbN3ae4FHFjGF8xOLuOcC2fqzR5A64lcmBWi5IVxdv+8H83dkf2dTSO8jo0nTmI8jfWAhhmxd6zxV69+OzNlXtf7w/2gE2TTMd5ICx+/FGB/NG+9O+oDM46T3ukWZCqySM6sAkD5sAnw/hPDXGON/6jo5hPB9Ujfuy8B+tRxyPGna9G3zOmnrcigwK8YYcz4oQozxnhDCqqQPX9QQYzwPOC8LOoeQ3isuCyGsF2M8Mv/4xRVjfC2EcCRp6vQ/k2Zk2LuODyvUdY0XSGtJV/kK+HcIYSrpwzXrkTqm6+3MbmKfZo+9SdO3S5IkSW2WwbEkSZLUOlStYzwpd2eM8dMQwq2kzq4dyKY+bsbq6hibt4ixGv/fJoSwE+l7/ZY0rfEbpM65SmACKdjJXS+2qmOtrimUP2Dh4LhXdt9FhaGdgYKC4xjjUyGEp0jTjz9GWqf42PrOyabbnkYKFx8mrUf8Oakzd3lSZ2Jta+ouyocNWWe1DteTgjFI3dwNDpwy95GC401DCM8CGwN35Iz9OITQjRQoB+pf37hQn9Wxv2r63NJFXSDGOC2EsAGpM3RXsqAxhPAK8JsYY23rVdd237rueS1pivY3ScHb+6R1biHNGlDX77uu1/n72WPV30NVCDwu2+qS231d1V29xN2bWWh8P2kq4h9kawHn+1tW52YNeX1lXd4z6xmvLzQ+hjQF9YvApjHGT/PGVyJNgX1JjPGOWi5R2/3qq2Uu9XRuZ13fLwE/yNa/PiKEcG+MsTHf5+8mda93Bf65qGm8GyrG+EU2BftJpA+WVAXHVe/z3Wo9sXr/Zzn7FuecXFUfsFloZgBJkiSprTE4liRJklq4rNtyx+zp1SGE2sIoSOFygwKFIq5x3FhOBuYAY2OML+UOhBDOJwXHuao6S/tRszuOnP35PgdKYow9l7DWulxAWtv3PFKgccUijj+BFKAdlE2VvUAIYS9ScLw4Fis0DiH0Jq0RXLWO72khhAdijB8VcJmq9Yo3y77uSXU4fD/wM1KYvMj1jYsl65DdLgv2xpDWMD4WuCqE8FGM8d7FuW62zu1OpC7mrXPXg82m/v1xPafX9noGWCZ7/Dzv8bQY40JTRNfhw+yxV71HLUIIYVnS73oEqdO4ttAYYE1S8PdyHesa7xNC2Ad4Nsa4Rv5gjPHABtZzHGlt9Bmk0PjDWg5bmRTWHxRCOKiOS72W1blT/ntmtgZ33Ysz1+9OUvf5BBrpA0LZFPGXkULjj4HDQwjXxBgfaozrk6axBuiUs+8N0oddVgghlNWyzvGK2WPuesavZI8LrWFczzm5epE+nPFpHeOSJElSm2FwLEmSJLV8B5CmRX6SNPVnbbYHNgshDIkxvtWAax5H6nJtqEuBmwo4vqkNA16oJTQuAdav5finSSHc+uSFj9l6r4NqOecxYNsQwirZdKyNrWqa8YHAZfnrKNdiWPZ4Qy1j+UF5lfkAIYTSxegGrlMWOF1Kmiq5an3tf5Cm092moR3MMcb3QwgvAhuQAleoDo4fIXXXbkrqOP4f6ffYEPNZeOryJpWtGTsVmBpCeI0UyO1ACn4XR9Xv+5ZawrXxLDxNea6FXg8hhFKq/zaqfo7TSF36GxRQ1wukn++IAs7Jr2Ug6e9wGHBkjPGCeg7/F7VP770ssA0piJxM9bT0i1PPT0jrGj8DbF7b+umZt0kflqjNtqRg/p+kD6q8vbj11KFqWvL818KS+BHp7+5K4I+k18NVIYTVF2P6/dqsnT0uWIIgxvhtNo31Btn2QN45W2ePue/Tb5B+vyvV8d+42s4BIFurfADpgwWLO7OCJEmS1GoYHEuSJEktX1Uwd3Rda+CGEE4Gfk6aNvikRV2wiGscN5a3gRVDCP1jjO/CgjDz16SuwHxXAb8Ejg0hXJKz/mkATqX2aYlPI4VB/wgh7Fp1nyohhE7AqjHGxxbnG4gxfhlC2Iq07uaTDTjl7exxAnBrTh1bUj1ddL6q8Gcw0JAPFDTUCaTQ7toY44VZHZsBe5DCqD8VcK37gWNIawW/VvW7iTF+E0J4FNidtIb1jdk0xA3xCbBaCKFDjLHJpqcNIawLPF3LPao6fmez+N7OHicAZ+Xcsy/w90Wcu0kIYbsY4205+44hrW/8QNV0zTHGD0MIVwL7hRB+Afw+/wMGIYShQGVVWBdj/DyE8AyL+fPNPqjxAOmDKwfnd8/nizH+to7rTCC9Bh+LMdb1+m9IPb8Afkv6G9wif3rqvFqeoY6/tRDCZFJwfGKM8fXFrGV8be/x2e/gxOzp7Ytz7VquuTZp2u3XgaOy96PjgXOBS0MIExsStIYQxsYYFwr2Qwj7kt4P5gDX5Q2fSwqNTwkhbJpNyU0IYVx2zkfkfEAmWx/6POD3wJ9CCHtUvReEEHbIrvUitaztTfU63vkBtSRJktQmGRxLkiRJLVgWjqwEPF9XaJy5iBQYHxRC+FUtHYqtzWmkKZ6fDiHcAMwF1iOFxrcCE3MPjjG+EUL4JSl4eDaEcC1pmt7NSdMjPwuslnfOfSGEn5KC5ddCCHeQwtfOpNBrI2AK1Z2yBYsxTing8HNIayL/M4RwPfAuMCq7/3WkwCXffcBuwL+y+r8B/hNjvHxxa87CnVNJP4sjcoYOJ4U0vwshPFRAoH4fKdTsS+ouzR+bkPN1Q92X1fLvEMJDpM7lZ2OMt9Z/WsF+TAppHyb9PL4CViF1QP6PNB354ppO6rreOevQnEIKpLcmTd37bj3n3grcGEK4kRQMrpGd9ylwdN6xx5Cm+v0tKUCeQlojuT8wkvRz3IuaHzy4gTQt9yYUHmROJq3J/SSwfAjh17UcMymb1rlJhRAOIH3f80nrhn+/lumw315UuN2I7g4hfEjqCJ9J+jedoaS/8TLSOuL3LOlNQgjdgatJ3eZ7xhi/BIgxnhdC2JS0XvcJpBkRFuX6EMI8Ulf4LNLa1+NIXfHzgCNq+V1eA+yc3efpEMKtpOmk9yCFvIfFGL/IO+dvwHbZOY+HEO4jfSBmN9IHNA6u44MlW2SPtc3UIEmSJLU5BseSJElSy1bVbXxhfQfFGN8OIdxLCkInAjc2dWHFFGM8P4TwHWnK7QNIgejDpGB1F/KC4+ycU0MIs0iByEHAl8BdpPDvbqrXQc49548hhEeA75Om+d2BFDi/QwoFr2rs760uMcbnQggbA6eQOqHLSIH3zsBn1B4cX0gKufckfZ9lpK68xQqOQwjdgGuzp3vGGKvWyCXG+EUIYQ9S2Hl1CGF0A6bfhhQkVgIlLDzV7H2k9aypZaw+p5DW8J5I+kBBKWlq7cYOjs8hBcRrkV4fZaTw7Bzgr1WdvYsjxjg/hLA96XvZhvQafIf0Oz2F1GFZl3+RXp8nkV4rc7N9P4sx1lgHNvu9bUQK/vcm/f20J4XHrwHHA/lh5UWk7v79KTw4Xj57HJNttZlM40/1XJsh2WMp6b2kNg8Ck5ZCLZBmRdiCNMXzRFJdH5CWCbgwxnhXI93nItLv4YQYY/5sB4eSfi+nhhAeXsQHliB1D29G+jvrTVrD+R3Sz+z0GOOz+SdkHcR7kaZ2P5i0Jvi3wEPAKTHGqbWc810IYXPgp6QPMhxPes++CfhVjHGhv4ds6YJ9SR8aeXQR34ckSZLUJgSXcJEkSZKkuoUQupLCmWdijOsUux5pcYUQDgQuAQ5q6i7ZEML5pA9tLB9jfD9n/6+BXwEbxxgnN2UNqubPfWEhhInALcB+McYril2PJEmS1ByUFLsASZIkSWoOQgh9QgjlefvKSNOxtqeVd2lLjeyXpPVr61pT/YEQQtXatGoiIYQZIYRICo2Vydav/w1pCu0ri1yOJEmS1Gw4VbUkSZIkJbsAv82m9J5JWtt4Q9Ia0s8AZxWvNKlliTF+EELYF1glhFCSs77s5LxDn1i6lbU555DWB6/ydpHqaG6WIXUb3xSdik+SJElawKmqJUmSJAkIIYwGfgGMB3plu98irf36xxjjl8WqTWoMS3OqakmSJElSy2NwLEmSJEmSJEmSJEltnGscS5IkSZIkSZIkSVIb16rXOO7du3dcfvnli12GJDUbX3/9NZ06dSp2GZLUpvleLEnF5fuwJBWf78WSVFy+D7dtTz755Mcxxj61jbXq4Hj55ZfniSeeKHYZktRsTJ48mQkTJhS7DElq03wvlqTi8n1YkorP92JJKi7fh9u2EMJ/6hpzqmpJkiRJkiRJkiRJauMMjiVJkiRJkiRJkiSpjTM4liRJkiRJkiRJkqQ2zuBYkiRJkiRJkiRJkto4g2NJkiRJkiRJkiRJauMMjiVJkiRJkiRJkiSpjTM4liRJkiRJkiRJkqQ2zuBYkiRJkiRJkiRJkto4g2NJkiRJkiRJkiRJauMMjiVJkiRJkiRJkiSpjTM4liRJkiRJkiRJkqQ2zuBYkiRJkiRJkiRJkto4g2NJkiRJkiRJkiRJauMMjiVJkiRJkiRJkiSpjTM4liRJkiRJkiRJkqQ2zuBYkiRJkiRJkiRJkto4g2M12IOvfsTMT2cXuwxJkiRJkiRJkiRJjays2AU0qVdegQkTau7bfXc4+miYPRu22Wbhcw48MG0ffwy77rrw+FFHwR57wMyZsN9+C4//3//BxInp3kccsfD4z38Om20GzzwDxx238Pjvfw/rrgtTp8KJJy48fvrpsMYacO+9cMopC4+ffz4MHw633gp//evC45dfDoMGwbXXwrnnLjx+/fXQuzdMmpS2TIzQZeZnbLvrr9hrwgiOe/VeOtx0w8LnT56cHv/yF7jttppjHTrAnXemr08+Ge67r+Z4r15wQ3bNn/0MHn205vjAgXDFFenr445LP8NcK60EF1yQvj78cHj11Zrja6yRfn4A++4Ls2bVHF9nHTj11PT1LrvAJ5/UHN90U/jFL9LXW28N33xTc3y77eCHP0xf57/uwNfeYr72FrjjDujYEc45B667buFxX3vp60W89tY47jjo3r3muK89X3vg+56vvZrjvvaa9LXXddddU92+9nzt5fN9z9ce+NpbCq+9NT77rOb/Jva1l772tbfwuO976WtfewuP+9pLX/vaW3jc156vPfC152uv5ngzfe0t+N/Evvba7muvDq07OFajCQFG9e/KdqstywUPv0l8/lUO+vxb+nVtT0kodnWSJEmSJEmSJEmSlkSIMRa7hiYzduzY+MQTTxS7jFbnxXe/4Pd3vMSU1z9mSO9O/GSrEWy5Sj9CMEGWmrvJkyczobZPjkmSlhrfiyWpuHwflqTi871YkorL9+G2LYTwZIxxbG1jrnGsgq3cvyuXHzKeSw4aR1lJ4MgrnmSP8x/j2ZmfFbs0SZIkSZIkSZIkSYvB4FiLJYTAxsP7cucPNuD3O63Kmx9/xQ5/f4TvX/00Mz+dXezyJEmSJEmSJEmSJBXA4FhLpKy0hL3XGszkH23MsZsM4+4X32fTvz3IqXe+xOffzC12eZIkSZIkSZIkSZIaoFUGxyGEiSGECz7//PNil9K6vPEAfPRqrUOd25Xxf1sM54EfTmDiav254KE3mfDnB7h06tvMnV+5lAuVJEmSJEmSJElSSxJjZO78Sr6ZM58vvp3Lp1/PYfacecUuq00pK3YBTSHGeCtw69ixYw8rdi2txrw5cOv3Yc5s2P8mWGbVWg9btlsH/rr76hy03vL8/o6X+NUtL3Dp1Lf56dYj2HzlfoQQlm7dkiRJkiRJkiRJrVhlZWRuZSVz50fmzc8eKyuZNz8FsfMqs8ds/8ufzqfstY+Zm3NM7njVddJ52TUrc/dVHztnXv33qq2W/HtW1TGvMi70vf1wi5U4ZpMVi/BTbZtaZXCsJlBWAfveCJftAJO2hX1ugEHj6jx81IBuXHnoWjzwyof8/o6XOfzyJxk/pCc/33Ykqw3svvTqliRJkiRJkiRJyhNjrA4xq4LLnIB0blUAW+d4bYFo2p8foNZ2ftq/8LXmzK9cKLStNYzNuVYteeuiTXu84FPKSwNlJSWUlQbKS0soK8kea3teUkJ5aQkdKkooLwmUlQbKSqu+LqlxrYrsnLKSbH/OtUYP7r4Y35wWl8GxGq73MDj4Trh0+xQg730NDNmwzsNDCGwyoh8brtiHa6bP5LR7XmX7sx9hxzX688MthzOwR8elWLwkSZIkSZIkSVpS8ysXDkoX1XG6IECtJwStq7t1zrzKnOsX1t260PUW0d3aFEpLQo1AtTocTeFqbYFpx4qyBc9rhLV5oe1C41XXKqs9oK36+oXnn2PsmNEL1bUgwK3lXqUlwVll2wCDYxWm+2A4+N9w2Y5w5W6w+2Ww0pb1nlJWWsK+ay/HDmv057wH3+DCh9/ijhnvc8j6QzhqwlC6ti9fOrVLkiRJkiRJklQE+d2tc+fVFaAuurt1Tp2h66K7W+dmIezcekLbOrtbs2vHpZO31tndmt+R2tDu1nSN6tC2tu7WGmFurefXDGPrPz99XVLS/MLWyndLGbd8z2KXoWbI4FiF67IMHHg7XLETXLM37HIhrLLTok9rX86PthzBPmstx1/ueoVzJ7/BtdNnctxmK7LX+MGUl5YsheIlSZIkSZIkSS1FQ7tbG7q2a63drXVOP1xAJ22dYW3z727t1K6s9u7VRXS3Vnen1t/dWte0xvkBq92tUvEZHGvxdOoFB9wKV+4O1x8Mc2bD6H0adGr/7h342x5rcPD6Qzjl9hf55c0vMGnq2/xs65FsNrKv/zGQJEmSJEmSpCUQY6yjo7Sh3a35HakN726ts5O2Ad2tc7N753bmFqu7dVEdpfV3t+af37Du1opagtaGdrdWHd8cu1sltRwGx1p87bvBfv+Ca/aBm4+GOV/DWoc3+PRRA7px9WFrc99LH/L7O1/isMueYO0VenLSNiuz6sBuTVi4JEmSJEmSJC2svu7WOfNrdp4W0t06t86AdtHdrdUBbS1drC2ou7XqmMXpbi0vq3v64EV1t9Y1fbDdrZK0MINjLZmKTrDXNanr+M4fwZyvYIMTGnx6CIHNVu7HRsP7cM30mZx+z6tMPHsKO40ewI+2HE7/7h2asHhJkiRJkiRJS6rQ7tZXPp1P+esf19ORWn9369x5DbhXfVMS1xLQFrO7tWKh0HXhjtKKshI6ltbsbq2osyO1Yd2ptQWtDeluLS/LzrO7VZJaHYNjLbny9rD7pXDTUXDfb1J4vMkvoIBPaJWXlrDf2suxwxr9OW/yG1w45S3ueP49Dll/CEdNGEqX9uVN+A1IkiRJkiRJS19ud+vceZU5XaTVnaMFre26iI7U2rpbc8+vGdAuurt1TnbO/MXpbp32eMGnNLi7taw6YC20u7W26YMb0t260PqtdrdKklogg2M1jtJy2Ol8KO8ID/81TVu95alQUlLQZbq2L+fHW41gn7WX4y93vcI5k9/g2ukzOW7zldhr3CDKSgu7niRJkiRJklqXhna31hWINqS7dc68yloC1oZ1t85tQNhbjO7W/GCzkO7W3GC00O7Wqu7U3KD1xRnPM2b0GvV2t1Y9X3Ce3a2SJDU5g2M1npJSmHgGtOsCj54N330F25+Z9hdoQPcOnLbHGhy03vKccvtL/OKmGUx65C1O3GYkm4zo6yfyJEmSJEmSChBj6grNn/K3od2tc/KD0gK6W+fOy113tbDu1jm1hK6L1d26GBbV3bpgf2nh3a3VHbGFd7emaY1beHfre6WstUKvYlchSZLyGByrcYUAW5wCFZ3hwT/A3K9hpwugrGKxLrfawO5ce/ja3PvSh5x6x0sccukTrLNCL07adiSjBnRr5OIlSZIkSZJqqq+7NbfDtOEdqenr1NFa3/TBtV9rzvyFA9bm1t1avV5r4d2tC/YX2N1afd7C3a2LWru1omzhcbtbJUlSW2RwrMYXAmz8M6joBPf8AubMTmsgl3dYzMsFNl+5HxOG9+Hqaf/l9HtfY+LZU9hp9AB+uMVw+ndfvOtKkiRJkqSmsTjdrQt3tDa8u3XuvPzu1QK6W+dX5tTTTLtbS0tq6UgNdC5fdHdreWnNLtaGdremsLXusLdFdbdKkiSpQQyO1XTW+34Kj2//P7hyN9jrGmjXebEvV15awv7rLM+OowdwzgNvcPEjb3H7c+9x6AZDOGrCMDq38+UsSZIkSWrZanS3zqu/o3RRa7s2rCO1lrVd51fmBLSFdbfmXm9pCIHqELOA7tZOCwWlDe9uTd2phXe31tdJa3erJEmSmgOTNjWtcYekaatvOgou3xH2+Sd06LFEl+zavpyfbj2CfdYazF/ufoW/P/AG106fyXGbrcSe4wZRVlrSOLVLkiRJklqEQrpb3/hsPp3e/nThaYQX0d06d1593auL6G7ND1ibcXfrwh2lDetuLS+rGbAW0t1a0YCw1+5WSZIkqekZHKvprb4HVHSEfx4El06EfW+Ezn2W+LKDenbkjD1Hc/B6Q/jd7S/x85tmMGnq25y4zQg2Ht7X/+MoSZIkSYtQWbno6YMXubZrQR2pVdeq6/xFX2tuXii7WN2tjz26WD+vxelubVdeQqd2ZQV3t6ZrLDx9cEO6WyvK6h+3u1WSJElSbQyOtXSMnAh7XwPX7AuTtoH9b4au/Rvl0qsP6s61R6zN3S9+wB/ufJmDJz3BesN6ceI2I1mlf7dGuYckSZIkVamvu3WhztI6Qs6FulsXCmgb3t2a29Vaa1jbDLtbyxfZkVp3d2tt3akN7W4tLw289OIM1lxj9YK7W8tLSyg1bJUkSZLUihkca+kZthnsewNctQdcvFUKj3sOaZRLhxDYcpVl2GREX6587D+ccd9rbHfWFHYePZAfbrkSy3br0Cj3kSRJktQ45ldGvpk7n9lz5vHd3Nq7Wxeecrjh3a2559c9/XDt16q+XiN1ty6mQrpbq563Ly+hrMDu1rReay3TDzegu7V8oXOaf3drxUcvs8GKSz4LliRJkiS1NgbHWrqWXw8OuBmu2AUu2TqFx32GN9rly0tLOHC9Iey05kDOeeB1LnnkbW5//l0O22AFjthoKJ3b+ZKXJEmSGiLGyLdzK5k9Zx6z58zn27nzmT0nbd/MTfu+mTM/C3+z/XPmLXj+zYJjq76elx6z59/Nq2yy2nO7WxvWkVp7d2v1+YV3t5bndbE2tLu1vKx63O5WSZIkSdLSZIqmpW/AGDjwdrhsxxQe73cjLLt6o96iW4dyfrbNSPZdezn+dNcrnHX/61w9bSYnbL4Su48dSFlpSaPeT5IkSVraYozMmV+5IKCtGe7OqxHqLjhm7jy+XfB1TqA7t5Jv5sxbKPAtVPvyEjpWlNGhvJSOFaV0qCilQ3kpvTtX0LGiI+2z/VVjHbPxduWl9Xa3lpeV5EwZvOhO2hAMXCVJkiRJKpTBsYqj3ypw8L/h0u1h0kTY93oYNL7RbzOoZ0fO2ms0B6+3PL+7/SVOvPF5Jk19i59tM5IJK/XxH5QkSZLUpObNr8wJaKs6dOfldOjmhrvzagmA0/G5YW7ueYWuT1tRWlId2OYEt906lLNs1/Z0rCilfUUpHRcEv2ULjql5Xs1wuGNFKe3LSpvVdMSSJEmSJKkwBscqnl5D4eA74bIdUvfxXlfDChs1ya1GD+7BP49ch7teeJ8/3PkyB10ynfWH9ebEbUaycv+uTXJPSZIkNX+VC9bZzcLdLKT9pkZXbs0plvOnX84Ncqu7f9OUzYWuhVtaEuhYI6Qtyzp0y+jVud2Cbt3qzt2Fu3s7VpTVCIVzx5x5R5IkSZIk1cXgWMXVfTAcdCdcvhNcuRvsfhkM36pJbhVCYKtRy7LJiH5c+fh/OOO+19j2rIfZdc2B/N8Ww1mmW/smua8kSZIWX4yR7+ZV1ph+eXYtIW3NDt2qYytr7e7NDXwLXWc3BBYEux0qSulYXrYglO3WoXxBYNuxoqzOaZlr6+Ktuk5FmcGuJEmSJEkqDoNjFV+XZdKax1fsDNfuAztfAKN2abLbVZSVcNB6Q9h59ED+Pvl1Jj3yNrc99x6HbbgCR2y4Ap3a+WchSZLUUDFG5s6PC7p1Gzz9clWn7tya3b3f5nT9Vo3Hwpp2a6yzmxvY9upckX1dVkvnbh2B7oJj0li7shKXO5EkSZIkSa2SCZmah449Yf9b4Ko94IZDYc5sWHO/Jr1lt47lnLjNSPZdazn+dNfLnHnfa1w97b9su+qyrDesN+OH9KRbh/ImrUGSJGlpmDe/Mq9Dt2rd3MoFUyrXDHxrC4Cr939bY2rnJVxnNyek7dahnGW6tqueajkLdavX3C3LmY65eq3d3AC4Q7nr7EqSJEmSJC0Og2M1H+27wr43pK7jW46BOV/D2kc2+W0H9+rI2XuvycHr/29BeDxp6tuUBFh1YHfWHdqLdYf2YuxyPelQUdrk9UiSpLanap3d2tbIXdB5u2BfZXUXbzZevf7uwl2838yZz5z5hU3HnLvObm5QW7XObs3gtpZpmWt0+uZ092YBsOvsSpIkSZIkNT8Gx2peKjrCXtfA9QfDv38Cc76CDX+4VG695uAeTDpoPN/Nm8/T//2Mqa9/zNQ3PuEfD73JuZPfoKK0hNGDu7Pu0N6sO6wXqw/s7hp0kiS1EVXr7OYHtAuHtLVMv7ygQzeNffjJN5zy1IM1unu/nVv4Oru54e2CdXPLS1mma3leV27t0y93yKZyrhEAl5fRvqKEilKnY5YkSZIkSWprDI7V/JS1g90uhZuOgvtPTuHxpr9K/0K6FLQrK2XtFXqx9gq9OAH4+rt5TH/7U6a+8QlT3/iY0+97ldPuhY4VpYxbvifrDu3FesN6M3LZrpQ6LaIkSUUzJwt2a0y1nBvq5q6/m9Otmz/9cvUUzGkq52+yzt8CZ2OmXVnJgm7cDjnBbZeKwMB+nelQXkaHiuq1eDvW6O4ty3tec1pm19mVJEmSJElSYzM4VvNUWgY7nQ8VnWDKaWna6q3+CCVLv8O3U7syJgzvy4ThfQH4bPYcHnvzkyxI/oRT73wZgG4dyll7hZ6sO7Q36w3rxdA+nf0HXUmScsyvjAtNv5y/ru43tXXxzl14vd2q7t7c9XfnFZjslpeGWkPaLu3L6Jets1tj+uVsmuUOFdXdvQvOy7p1qzp325eX1vmBssmTJzNhwpjG+JFKkiRJkiRJjcbgWM1XSQlsd1oKjx89O4XHE89MoXIRde9YwVajlmWrUcsC8MEX3/Jo1o38yOufcNcLHwDQp0u71I08tDfrDO3FoJ4di1m2JEmLVFkZ+XZefphbHejmhrTV4e68Wvalbt3868yZV9h0zCWBBd26HfM6b3t0rKheN7e85vTLtU7LnBPqVgXE5a6zK0mSJEmSJC1gcKzmLQTY4hRo1xUm/z5NW73zhVBWUezKFujXtT07jh7AjqMHEGNk5qffMPWNtD7yI69/ws3PvAvAoJ4dFoTI6wztRd8u7YtcuSSppVl4nd2cqZbnzufbqi7e3EC3xvq782vt+K2aovmbufMLrik/pK3qxO3bpf2CDt2OFaW0zzpyc9fTrT6vrJYAuNR1diVJkiRJkqSlyOBYzV8IMOEnqfP47pNg7jew+2VQ3qHYlS0khMDgXh0Z3Gswe44fTIyR1z78iqmvf8wjb3zC7c+/xzXTZwKwUr/OrDu0Nxuu1Jv1hvWmXVlpkauXJDWGufMr65x+ueY6uvMWDoDnLjz9cs3z5i32Oru5IW2HilK6d6ygf/fcrty8aZnLq44toUMW+NYMd8toX26wK0mSJEmSJLUWBsdqOdY9JoXHtx0PV+4Ge10N7boUu6p6hRBYqV8XVurXhQPXG8L8ysgL736edSN/zDXT/8ukqW/TpV0Zm63cj61HLcOGK/WhfbkhsiQ1lfmVsUagu3BIOy8n3J2fd0wtXbzZtarC3bnzF3+d3Q4V1dMxd25XRp/O7WpMv1zrtMzlOWvsZl297StK0vXqWWdXkiRJkiRJknIZHKtlGXtQCo9vPBIu2xH2vR469Ch2VQ1WWhJYbWB3VhvYnSM3Gsp38+Yz9fVPuHPGe9z94gfc+PQ7dKwoZZMRfdlm1WWZMLwPHSv8M5XUtsQY+XZuZY0wdkGIW8u6uVWB7kLr7+Z3/GZh73dLsM5u7hq7HbOu3arpmHPX021fXj398sLn1ZyW2XV2JUmSJEmSJDUHJlJqeVbbHco7wvUHwaTtYL8boXPfYle1WNqVlbLxiL5sPKIvv5tfyWNvfsIdz7/P3S+8z23PvUf78hImrNSXrVddhk1G9KVL+/JilyxJxBiZM7+y/umX87pyZ8+dl7f+btVau5XVXbw55xUqN5jN/bpPl3Z0qOhYM7jNpl1un7P+bvV5ZQsFwO3KnI5ZkiRJkiRJUutncKyWaeR2sNc1cM0+cMnWsP8t0G1AsataIuWlJWywYh82WLEPp+w4imlvfcqdM97jzhnv8+8X3qeirIQNV+zD1qOWYbOV+9GtgyGypLrNm1+ZE9A2bPrlhnT3Vn09v8CFdiuydXZrTKtcXkb3DuX079Y+L/Aty1uTt2rN3epQt0POOrvtykoocTpmSZIkSZIkSVoiBsdquYZtmrqNr9odLtkK9r8Zeq5Q7KoaRWlJYJ2hvVhnaC9+PXEVnvzv/7jz+fe5c8Z73PvSB5SXBtYb1pttRi3L5iv3o0enimKXLKlAlQvW2c3C3bnZers1unJrTrFcM9ytGermBsTfLMY6u2UlISekLVsQ2uavs5s/VXN1uFv3tMyusytJkiRJkiRJzZ/BsVq25daBA26By3eCi7dO4XHfEcWuqlGVlATGLd+Tccv35OfbjuTZWZ9x54wUIv/4hucovTGwzgq92HrVZdhi5WXo06VdsUuWFluMkcoI8yormTc/Mq8yMr8yMm9+JfMqY7avkvmVkbnzs7HK6rH5lZG5lZXMz86teWzuNdLz6muke+R+vdCxlXGh61bVU1Xngvvk1D63lutWPS9ECGTdumXVHbhZSNu9Y3naX6ObNye4rSihQ/nC5+VOy+w6u5IkSZIkSZLUthkcq+XrPxoOvAMu3xEmbQP7/gv6r1HsqppESUlg9OAejB7cg59tPYIX3v2CO55P01mfdOMMfnHTDMYP6cnWo5Zlq1HL0K9r+2KXrEZSWVkdWM7LAsy5NcLL2oPQ/PDymQ/m8fVz7+UFn3FBUFtb8DqvlsC06j51hqKLCHgX3L+WY4ulvDRQWhIoLymhtDRQVhIoKylJ+7KxspISyrKx0pJAWWkJ5aUltC8PlJfmHluSnR8oyz23JFBamu5RVhqqp2XOC3wXhL05Y66zK0mSJEmSJElqSq0yOA4hTAQmDhs2rNilaGnptzIcdCdctgNcOhH2uR4Gr1XsqppUCIFRA7oxakA3frTlcF754EvueP597nz+PX51ywv8+tYXGDO4B1uvmkLkAd07FLvkRhdj7cHj/JwgND8UrRmQ1uwOXSh8nV9LJ2kDOlYXed0GdLfW6FitrCQ2Zp769FMNPnRBQJqFpFXPq0LS6hC1JCdcTSFpu/KyGoFpncfmXLfq6/quW1cQW1/Au6De7B75xzqNsiRJkiRJkiSprWuVwXGM8Vbg1rFjxx5W7Fq0FPUaWh0eX74j7HkVDN242FUtFSEERizTlRHLdOWEzVfi9Q+/5M7n3+eOGe9z8m0vcvJtL7L6oO5sM2oZNhreh/LSkhrdovlha30dqzWCzrzu0kVOzTu/ZqC70LH59886X+fWcd0CZ/ptNCWB2kPUBYHnws+rjq1a63WhY0vrCWcXCkwXcWyNILZmiPr0U0+yzlrjaw+Da3Tapn12uEqSJEmSJEmS1Da0yuBYbVj3QSk8vnxHuGp32O1SGLFNsata6ob17cKxm3bh2E1X5K2Pv+bOGe/x7xnvc+qdL3PqnS832X3LS2t2geYGprV1glZ1flaUldCxNP/YmlP91gxj6zg277r1HltrcNuwMLikBXenfvp6KSv161LsMiRJkiRJkiRJUjNjcKzWp0s/OPB2uGIXuHZf2PkCWHXXYldVNEN6d+LoCcM4esIwZn46myf/8z9CoNau2PoC3vwOVqf6lSRJkiRJkiRJaj0MjtU6dewJ+98MV+8JNxwKc76GMQcUu6qiG9SzI4N6dix2GZIkSZIkSZIkSWpmSopdgNRk2neFfa6HYZvCrd+HR88pdkWSJEmSJEmSJElSs2RwrNatoiPseRWMnAh3/Qwe/DPEWOyqJEmSJEmSJEmSpGbF4FitX1k72HUSrLYnPHAK3Psrw2NJkiRJkiRJkiQph2scq20oLYMdz00dyI+cAd99Bdv8BUr87IQkSZIkSZIkSZJkcKy2o6QEtv0bVHSGqWfC3Nmw/dkpVJYkSZIkSZIkSZLaMBMztS0hwOa/hXZd4IHfwZyvYZeLoKyi2JVJkiRJkiRJkiRJReM8vWp7QoCNfgxbngov3QLX7AVzZhe7KkmSJEmSJEmSJKloDI7Vdq1zNEw8E16/D67cDb77stgVSZIkSZIkSZIkSUVhcKy2bcwBsMuF8N9H4bIdYPanxa5IkiRJkiRJkiRJWuoMjqVVd4U9Lof3n4dJ28Hn7xS7IkmSJEmSJEmSJGmpMjiWAEZsC3tfB/97G85ZB565CmIsdlWSJEmSJEmSJEnSUmFwLFUZujEc+TD0WxluOgqu3hO+fL/YVUmSJEmSJEmSJElNzuBYytVrKBx4O2x5Krw5Gf6+Fjz3T7uPJUmSJEmSJEmS1KoZHEv5SkphnaPhyCnQe0X416Fw7b7w1YfFrkySJEmSJEmSJElqEgbHUl16rwgH3wWb/xZeuyd1H8/4V7GrkiRJkiRJkiRJkhqdwbFUn5JSWO8HcMRD0GN5uP4g+OeB8PUnxa5MkiRJkiRJkiRJajQGx1JD9B0Bh9wDm/wCXroNzlkLXrq12FVJkiRJkiRJkiRJjcLgWGqo0jLY8IdwxIPQZdm07vENh8HsT4tdmSRJkiRJkiRJkrREDI6lQvVbBQ67HyacCC/8C85ZG175d7GrkiRJkiRJkiRJkhabwbG0OErLYcJPUoDcsTdcvQfceBR881mxK5MkSZIkSZIkSZIKZnAsLYllV4fDJ8OGP4LnroVz1oHX7i12VZIkSZIkSZIkSVJBDI6lJVVWAZv8HA69B9p3hSt3gVuOhW+/KHZlkiRJkiRJkiRJUoMYHEuNZcAYOPxBWO84ePoKOHddeOOBYlclSZIkSZIkSZIkLVKDguMQQqcQwi9DCFs2dUFSi1beHjb/DRx8N5S1h8t3hNtOgO++KnZlkiRJkiRJkiRJUp0aFBzHGL8GTgQGNW05UisxaBwc+TCscww8cXHqPn7r4WJXJUmSJEmSJEmSJNWqkKmq3wCWaapCpFanvANs+Ts46E4IJXDpdnDHj2HO18WuTJIkSZIkSZIkSaqhkOD4HOCwEEKvpipGapWWWweOegTWOhKmnQ/nrQ//ebTYVUmSJEmSJEmSJEkLlBVw7JfAp8ArIYRLgdeA2fkHxRgva6TapNajohNs/UcYsR3cfDRcsjWs8z3Y5OepM1mSJEmSJEmSJEkqokKC40k5Xx9fxzERMDiW6jJkAzjqUbjnl/Do2fDqXbDTeTBwbLErkyRJkiRJkiRJUhtWSHC8cZNVIbUl7TrDdn+DkRPhlmPhoi1g01/Auj+AkkJmj5ckSZIkSZIkSZIaR4OD4xjjg01ZiNTmDN0YjpwCt/4A7v01vPUQ7HQ+dO5b7MokSZIkSZIkSZLUxix2e2MIoXcIoXdjFiO1OR26w26TYLvT4T9T4bz14Y0HilyUJEmSJEmSJEmS2pqCguMQQv8QwqUhhM+AD4APQgj/CyFMCiEMaJIKpdYuBBh7EBx2P7TvDpfvBPf9FubPK3ZlkiRJkiRJkiRJaiMaHByHEAYDTwD7AW8CV2Xbm8D+wLQQwqCmKFJqE/qtAoc/AKP3hYf/CpO2hc9mFrsqSZIkSZIkSZIktQGFdByfDPQAtosxrhlj3C/bxgDbAj2zYyQtropOsMPZsMtF8MELaerql24rdlWSJEmSJEmSJElq5QoJjrcAzokx3pE/EGO8EzgX2KqxCpPatFV3hSMehB7Lw7X7wB0/grnfFrsqSZIkSZIkSZIktVKFBMc9gNfqGX8N6L5E1Uiq1msoHHI3rP09mHYBXLQZfPx6sauSJEmSJEmSJElSK1RIcDwLmFDP+IbZMZIaS1k72Or3sNe18Pk7cP6G8Ow1xa5KkiRJkiRJkiRJrUwhwfE/gd1CCKeGELpV7QwhdA0h/B7YHbi2sQuUBAzfCo6cAv3XgBuPgBuPhO++KnZVkiRJkiRJkiRJaiUKCY5PBh4FfgJ8HEL4TwjhP8AnwE+BqcApjV+iJAC6DYD9b4GNfpq6ji/YCN57rthVSZIkSZIkSZIkqRVocHAcY5xNmqr6COBu4Otsuws4HNg4xvhNE9QoqUppGWz8Mzjg1tRxfOFmMO0fEGOxK5MkSZIkSZIkSVILVtaQg0IIHYDdgFdijP8A/tGkVUmq35AN4KhH0pTVd/wQ3pwMO5wNHXoUuzJJkiRJkiRJkiS1QA3tOP6OFBaPbsJaJBWiU2/Y+zrY4hR49d9w3gbw38eLXZUkSZIkSZIkSZJaoAYFxzHGSmAm0LVpy5FUkJISWPdYOPhuCCVwydbw8F+hsrLYlUmSJEmSJEmSJKkFafAax8ClwH4hhHZNVYykxTRwDBz5MKy8Pdz3W7hiJ/jyg2JXJUmSJEmSJEmSpBaiQWscZ6YCOwPPhBDOAV4DZucfFGN8qJFqk1SI9t1g10tghQlw50/gvPVgp/Nh2KbFrkySJEmSJEmSJEnNXCHB8T05X58BxLzxkO0rXdKiJC2mEGDMgTBwPFx/EFyxM6x/PGx8EpSWF7s6SZIkSZIkSZIkNVOFBMcHNVkVkhpXv5XhsAfg3z+BKafB24/ArhdB98HFrkySJEmSJEmSJEnNUIOC42xd47eA92KMrzVtSZIaRUVH2P4sGLIR3HocnLc+bH92WgdZkiRJkiRJkiRJylHSwOPmA/cBWzdhLZKawqq7wpEPQc8V4Lr94Lbj4euPi12VJEmSJEmSJEmSmpEGBccxxnnA+6R1jJu9EMLEEMIFn3/+ebFLkZqHnivAwXfDOsfAE5fAaaPgjh/BZ/8tdmWSJEmSJEmSJElqBhracQzwT2D3EEIh5xRFjPHWGOPh3bp1K3YpUvNRVgFb/g6+9ziM2hmeuBjOHA03HgkfvlTs6iRJkiRJkiRJklREhYTAFwIdgXuyjt4RIYTB+VsT1SmpsfQZDjueAz94FsYdBi/eDOesDVfvDTOnF7s6SZIkSZIkSZIkFUFZAcfOACJpuuoJ9RxXuiQFSVpKug2Erf8AG/4Ipp0Pj58Pr9wOy28A6x8HQzeF0CJmp5ckSZIkSZIkSdISKiQ4/i0pOJbUmnTqBRufCOseC09eCo+eDVfsAsuuDusfDyO3hxI/DyJJkiRJkiRJktSaNTg4jjH+ugnrkFRs7brAusfA+MPguWthyunwzwOh51BY7wew+p5Q1q7YVUqSJEmSJEmSJKkJFLLGsaS2oKwdrLk/HDMddrsU2nWGW78PZ6wOU8+C774sdoWSJEmSJEmSJElqZAUFxyGELiGEX4YQpoQQXgshrJPt753tH9E0ZUpa6kpKYZUd4fAHYb8bodcwuPvncNoouP938PXHxa5QkiRJkiRJkiRJjaTBwXEIoQ/wBPALoBewAtABIMb4MXAAcHgT1CipmEKAoZvAgbfBoffB8uvDQ39KAfKdP4HPZha7QkmSJEmSJEmSJC2hQjqOTwGWAdYCNgBC3vjNwKaNVJek5mjgWNjzSjj6cVhlJ5h+IZy5Btx4FHz0SrGrkyRJkiRJkiRJ0mIqJDjeDjgnxvgUEGsZfxMY1ChVSWre+o6Anc6F7z8N4w6FF26Ev4+Ha/aBWU8WuzpJkiRJkiRJkiQVqJDguDfwej3jlUD7JStHUovSfTBs/Uc4fgZs+GN4+2G4cBOYtB28cT/E2j5jIkmSJEmSJEmSpOamkOD4fWBoPeOjgf8uWTmSWqROvWGTk+D4F2Dzk+Hj1+DyneCCCfDCTVA5v9gVSpIkSZIkSZIkqR6FBMd3AIeEEJbNHwghrAXsT1rnWFJb1a4LrPd9OO45mHgmfPcF/POANI31U5fBvDnFrlCSJEmSJEmSJEm1KCQ4/g0wD3gaOJW0zvEBIYSrgYeAd4E/NnqFklqesnYw5gA45gnY9RIo7wi3HAtnrA5Tz4bvvip2hZIkSZIkSZIkScrR4OA4xvg+sDbwOHAwEID9gN2Bu4ENYoyfNkWRklqoklIYtTMc8RDsewP0Ggp3nwSnrQIP/B6+/qTYFUqSJEmSJEmSJAkoK+TgGONMYIcQQldgOCk8ft3AWFK9QoBhm6Vt5nSY8jd48I8w9SxY8wBY9xjoNrDYVUqSJEmSJEmSJLVZBQXHVWKMXwDTG7kWSW3BoHGw19Xw4Usw5XSYdgFMvxBW2wPW+wH0WanYFUqSJEmSJEmSJLU5haxxLEmNp+9I2Pl8+MEzMPYgmHE9/H08XLsvvPNksauTJEmSJEmSJElqUwyOJRVX98GwzZ/huBmwwf/Bmw/BPzaBS7eHNx6AGItdoSRJkiRJkiRJUqtncCypeejcBzb9BRw/Azb/LXz0Mly+I/xjY3jxZqisLHaFkiRJkiRJkiRJrZbBsaTmpX3XtNbxD56D7U6Hbz6D6/ZP01g/fQXMm1PsCiVJkiRJkiRJklodg2NJzVN5+7T28bFPwq4XQ1l7uPl7cOYa8Og58N1Xxa5QkiRJkiRJkiSp1TA4ltS8lZTCqF3gyIdhnxugx/Jw18/g9FEw+Q8w+9NiVyhJkiRJkiRJktTiFRQchxAGhRAuDiHMCiHMCSFsku3vk+0f1zRlSmrzQoAVN4OD7oCD74ZBa8PkU+G0UfDvE+Hzd4pdoSRJkiRJkiRJUovV4OA4hDAEeALYBXgBKK0aizF+BIwFDm3sAiVpIYPXgr2vgaOmwsjt4PHz4IzV01TWH79W7OokSZIkSZIkSZJanEI6jn8HVAKjgH2AkDd+B7B+I9UlSYvWbxXY+QL4/lMw5kB4/no4exxcux+8+3Sxq5MkSZIkSZIkSWoxCgmONwPOiTHOBGIt4/8BBjZKVZJUiB7Lw7Z/geOehw1OgDcfhAsmwGU7pK9jbW9ZkiRJkiRJkiRJqlJIcNwVeK+e8QqgbMnKkaQl0LkvbPpLOP552Ow38MGLcNn2cOGm8NKtUFlZ7AolSZIkSZIkSZKapUKC45nAKvWMrw28vmTlSFIjaN8N1j8udSBvdxrM/gSu3RfOWQuevhLmzSl2hZIkSZIkSZIkSc1KIcHxv4CDQwijcvZFgBDCLsBuwHWNWJskLZny9jD2YDjmSdjlIiitgJuPhjNHw2Pnwpyvi12hJEmSJEmSJElSs1BIcPw7YBbwOHAFKTT+aQjhUVJg/Czw10avUJKWVGkZrLorHDkF9v4ndB8M//4pnDYKJv8RZn9a7AolSZIkSZIkSZKKqsHBcYzxC2Ad4EJgLBCAzYHhwDnAxjHGb5uiSElqFCHASlvAwXfCwXfBoPEw+fdw+qpw10nwxbvFrlCSJEmSJEmSJKkoCuk4Jsb4RYzxBzHGPkA/YBmgV4zx2CxYlqSWYfDasPe1cOQjMHybNHX16avBzcfAxy7XLkmSJEmSJEmS2paCguNcMcaPYowfxhhjYxYkSUvVMqNgl3/AsU/CmAPguevg7LFw3f7w7jPFrk6SJEmSJEmSJGmpKCv0hBDCisCKQC/SdNU1xBgva4S6JGnp6jkEtv0rbPQTeOwcmH4RvHgzDN0E1j8elt8gTXUtSZIkSZIkSZLUCjU4OA4h9AMuJa1rDLWExkAEDI4ltVyd+8Jmv05h8fSLUoh86UQYMDbtG74NlCz2ZA2SJEmSJEmSJEnNUiEdx2eTQuNzgfuBT5qkIklqDtp3gw1OgLWPgmeuhEfOhGv3gd7DYf3jYNXdoLS82FVKkiRJkiRJkiQ1ikKC482B82KMxzRVMZLU7JR3gHGHwpoHwgs3wpTT4Kaj4IHfw7rHwuj9oKJjsauUJEmSJEmSJElaIoXMt1oCPNtUhUhSs1ZaBqvtBkc9AntfB10HwJ0/htNHwYN/hm/+V+wKJUmSJEmSJEmSFlshwfHDwOpNVYgktQghwEpbwiF3wUH/hgFj4IFT4LRRcPfP4Yv3il2hJEmSJEmSJElSwQoJjk8Adgoh7NJUxUhSi7LcOrDPP+HIKbDSVvDo3+GM1eCW78MnbxS7OkmSJEmSJEmSpAarc43jEML9tez+CrguhPAu8CYwP288xhg3bcT6JKn5W2ZV2PUi2OTnMPVMePpKePpyWHkHWP94WNbJGiRJkiRJkiRJUvNWZ3AMrADEWvb/N3sc3PjlSFIL1nMIbHcabPRTeOwcmH4RvHAjDN0UNjgBllsvTXUtSZIkSZIkSZLUzNQZHMcYl1+KdUhS69GlH2z+m9Rt/MRF8Ni5MGlbGDgO1j8hTWtdUshKAZIkSZIkSZIkSU2rwclFCGFwCKFDPeMdQgh2IUtSlQ7dYYP/g+Oeh23+Al99ANfsBeeuC89eA/PnFrtCSZIkSZIkSZIkoIDgGHgL2Kme8e2zYyRJuco7wPjD4NinYKcL0r4bj4Az14THL4A5s4tbnyRJkiRJkiRJavMKCY4XtTBnCbWviSxJAigth9X3gKOmwl7XQtdl4c4fwemrwkN/hm8+K3aFkiRJkiRJkiSpjSp0kc36guGRwGeLX4oktRElJTB8Kzj4LjjwDug/Gu4/BU4bBXf/Ar58v9gVSpIkSZIkSZKkNqasvsEQwgHAATm7fh5COKyWQ3sCo4AbG7E2SWrdQoDl10vbe8/BI6fDo2fD4+fBGnvDut+HXkOLXaUkSZIkSZIkSWoD6g2Oge7AkOzrCPQBOuYdE4GvgIuBkxqzOElqM5ZdDXa9GDY+CaaeBc9cCU9dBivvCOsfn8YlSZIkSZIkSZKaSL3BcYzxDOAMgBBCJXBcjPGqpVGYJLVJvYbCxNNhwk/h0b/DExfDC/+CYZunAHm5dVOnsiRJkiRJkiRJUiNq8BrHMcYSQ2NJWkq6LANbnAzHz4BNfg7vPg2TtoGLt4RX7oTKymJXKEmSJEmSJEmSWpEGB8eSpCLo0AM2/BEc9zxs/Wf44l24ek84bz149lqYP6/YFUqSJEmSJEmSpFbA4FiSWoKKjrDW4fD9p2Gn8yFWwo2Hw1mjYdo/YO43xa5QkiRJkiRJkiS1YAbHktSSlJbD6nvCUY/CnldD535wxw/htFHw0F/gm8+KXaEkSZIkSZIkSWqBDI4lqSUqKYER28Ah98CBt8Oyq8P9J8Ppq8I9v4IvPyh2hZIkSZIkSZIkqQWpMzgOIQwOIXRYmsVIkgoUAiy/Puz3LzjiIRi2KUw9MwXItx0Pn75V7AolSZIkSZIkSVILUF/H8VvATlVPQgj3hxA2bfqSJEmLZdnVYbdJcMwTaTrrp6+As9aE6w+B92cUuzpJkiRJkiRJktSM1RcczwXKc55PAPo1aTWSpCXXayhsfyb84DlY53vw6r/hvPXgyt3o9tmLxa5OkiRJkiRJkiQ1Q4vqON4+hNAtZ19s4nokSY2l67KwxSlw/AzY+OfwzpOMfuZncNGW8OpdEH1LlyRJkiRJkiRJSX3B8Vmkqao/DSHMJ4XGV4QQ5tezzVsqVUuSGq5DD9joR3DcDF4bdhh88Q5ctTucux4890+Y71u3JEmSJEmSJEltXVldAzHGc0IILwKbA8sCBwBTgDeXUm2SpMZU0ZF3Bm7HinudCs9fD1NOg38dCvefDOt9H9bYB8o7FLtKSZIkSZIkSZJUBHUGxwAxxsnAZIAQwoHA+THGq5q8KklS0ykthzX2gtX2gFfvhIf/Brf/H0z+I6x9FIw7BNp3W/R1JEmSJEmSJElSq1HfVNX5hgA3NVEdkqSlraQERmwLh94LB9wGy4yC+34Dp42Ce38NX31Y7AolSZIkSZIkSdJSUm/Hca4Y438AQghdgc2AFbKhN4F7YoxfNn55kqQmFwIM2SBt7z4NU05P26PnwOh90zTWPZYvcpGSJEmSJEmSJKkpNTg4BgghHAr8FegMhGx3BL4KIZwQY7yokeuTJC1N/UfD7pfCx6/D1DPgqcvgyUkwahdY/zjot0qxK5QkSZIkSZIkSU2gwVNVhxC2By4APgKOBzbPtuOBD4ELQggTm6JISdJS1nsYbH8WHPdcWvf45dvh3HXhyt3hv48VuzpJkiRJkiRJktTIClnj+MfAS8AaMcYzY4z3ZduZwJrAy8BPmqJISVKRdO0PW/4Ojp8BG58Es6bDxVvCxVvBq3dDjMWuUJIkSZIkSZIkNYJCguPVgUkxxq/yB7L1jS/NjpEktTYde8JGP04B8lZ/gM/+C1ftBuetD89fD/PnFbtCSZIkSZIkSZK0BAoJjsMixm07k6TWrqJTmrr6+8/ADufA/DlwwyFw9hiYfhHM/bbYFUqSJEmSJEmSpMVQSHD8LHBgCKFT/kAIoTNwYHaMJKm1K6uA0fvA0Y/DHldAh55w+wlwxmow5XT49otiVyhJkiRJkiRJkgpQSHD8Z2Ak8FQI4XshhI2z7RjgSWBEdowkqa0oKYGRE+Gw+2H/W6DvSLj3V3DaKLjvt/DVR8WuUJIkSZIkSZIkNUBZQw+MMd6UhcR/BM6iemrqAHwNHBNjvLnxS5QkNXshwAobpe2dp2DKafDw3+DRv8Po/WDdY6HHcsWuUpIkSZIkSZIk1aHBwTFAjPGcEMJVwObAkGz3m8A9McbPG7s4SVILNGBN2ONy+Pg1eOQMeHISPHExrLorrHcc9Fu52BVKkiRJkiRJkqQ8BQXHADHGz4B/Nn4pkqRWpfeKsMPZMOFnqfP4yUnw3LWw0tawwQkwaHyxK5QkSZIkSZIkSZlC1jiWJKlw3QbAVr+H42ekEHnmY3DR5nDJNvDavRDjoq8hSZIkSZIkSZKalMGxJGnp6NgTJvwUjn8BtjwV/vc2XLkLnL8BzLgBKucXu0JJkiRJkiRJktosg2NJ0tJV0QnWORq+/wzs8HeY+y1cfzCcNQaeuCQ9lyRJkiRJkiRJS5XBsSSpOMoqYPS+8L3HYffLoUN3uO04OGN1eOQM+PaLYlcoSZIkSZIkSVKbYXAsSSquklJYeXs47AHY/2boMxzu+SWcPgruOxm++qjYFUqSJEmSJEmS1OoZHEuSmocQYIUJcMAtcNj9MGRDePivcPqqcMeP4LP/FrtCSZIkSZIkSZJarbJCTwghdASWB3oBIX88xvjQkpclSWrTBoyBPa6Aj15N01Y/cTFMvwhW3Q3WPw76jix2hZIkSZIkSZIktSoNDo5DCJ2A04D9gfLaDgEiUNo4pUmS2rw+K8GOf4eNfwaP/h2enATPXQPDt4H1T4BB44pdoSRJkiRJkiRJrUIhHcfnAfsANwIPA/9rkookScrXbSBsdSps8EOYdgE8fh68cgcsv0HqQB66aZrqWpIkSZIkSZIkLZZCguMdgItijIc1VTGSJNWrU6/UfbzusfDUpTD1bLhiF1hmNVj/eFh5Byhx4gtJkiRJkiRJkgpVUsCxc4HpTVWIJEkN1q4zrPM9+MEzsP1ZMHc2XH8QnD02TWc977tiVyhJkiRJkiRJUotSSHB8P7BWUxUiSVLBytrBmvvD96bBbpdCu65w6w/g9NXgkTPhuy+LXaEkSZIkSZIkSS1CIcHx/wGbhhB+EEIob6qCJEkqWEkprLIjHD4Z9rsR+qwE9/wCThsF9/8Ovv642BVKkiRJkiRJktSsNXiN4xjjf0MIJwKXAX8OIbwHzF/4sDi0MQuUJKnBQoChm6Rt1hMw5TR46E8w9SwYcwCscwx0H1TsKiVJkiRJkiRJanYaHByHEA4ELgLmAK8A/2uimuq6/wrASUC3GOOuS/PekqQWaOBY2PNK+OgVmHI6TL8wbavuDuv9APqOKHaFkiRJkiRJkiQ1G4VMVX0S8AwwKMa4Roxx49q2Qm4eQrg4hPBhCGFG3v6tQgivhBBeDyH8FCDG+GaM8ZBCri9JEn2Gw07nwvefgXGHwgs3wjlrwTX7pK5kSZIkSZIkSZJUUHA8ALgoxtiYC0VOArbK3RFCKAX+DmwNrAzsFUJYuRHvKUlqi7oPgq3/CMe/ABv+GN6eAhduCpO2gzfuhxiLXaEkSZIkSZIkSUVTSHD8CtCzMW8eY3wI+DRv93jg9azDeA5wDbBDY95XktSGdeoFm5wEx8+ALU6BT16Hy3eCCybACzdB5fxiVyhJkiRJkiRJ0lIXYgM7rEIIuwFnAONjjLMarYAQlgduizGOyp7vCmwVYzw0e74fsBbwK+B3wObAhTHGU+u43uHA4QD9+vUbc8011zRWqZLU4n311Vd07ty52GU0K6FyLsu8/wCDZt5Ix2/eZXaH/vx38M580G8CsaS82OVJaoV8L5ak4vJ9WJKKz/diSSou34fbto033vjJGOPY2sbKCrjOSOAd4KUQwo3AW0B+W1aMMZ68eGXWL8b4CXBkA467ALgAYOzYsXHChAlNUY4ktUiTJ0/G98XabA6VJ8NLt9Dx4b8x4pWzGfHuv2Cd78GYA6Gd/yNKUuPxvViSisv3YUkqPt+LJam4fB9WXQoJjn+d8/W+dRwTgSUNjt8BBuU8H5jtkySp6ZSUwio7wco7pjWPp5wGd58ED/0Z1joCxh+RprmWJEmSJEmSJKkVKiQ4HtJkVdQ0HVgxhDCEFBjvCey9lO4tSWrrQoBhm6Zt5vQUID/4R5h6Fqx5AKx7DHQbWOwqJUmSJEmSJElqVA0KjkMInYADgMdjjHc11s1DCFcDE4DeIYRZwK9ijBeFEI4B7gJKgYtjjC801j0lSWqwQeNgr6vgw5fhkdNh2gUw/R+w2h6w3nHQZ6ViVyhJkiRJkiRJUqNoUHAcY/w6hHAicExj3jzGuFcd++8A7mjMe0mStNj6joCdzoONT4SpZ8NTl8EzV8GIbWGDE2DAmGJXKEmSJEmSJEnSEikp4Ng3gGWaqhBJkpq97oNhmz/B8TNgwx/C2w/DPzaBS7eHNx6AGItdoSRJkiRJkiRJi6WQ4Pgc4LAQQq+mKkaSpBahU2/Y5Odw3AzY/GT46BW4fEf4x8bw4s1QWVnsCiVJkiRJkiRJKkiDpqrOfAl8CrwSQrgUeA2YnX9QjPGyRqpNkqTmrX1XWO/7MP5weO4aeOQMuG5/6LUirPeDtBZyWUWxq5QkSZIkSZIkaZEKCY4n5Xx9fB3HRMDgWJLUtpS3hzEHwuj9UsfxlL/BLcfAA7+HdY+BNQ+Adp2LXaUkSZIkSZIkSXUqJDjeuMmqkCSpNSgphVE7wyo7wev3wZTT4K4T4aE/w/gjYK0joGPPYlcpSZIkSZIkSdJCGhwcxxgfbMpCJElqNUKAFTdL28xpKUB+8A8w9azUmbzO96DbgGJXKUmSJEmSJEnSAoV0HNcQQugNEGP8uPHKkSSplRk0Hva6Gj54Ma2B/Ph5MO0CWGVHGLIhDBwPvVeCkpJiVypJkiRJkiRJasMKCo5DCP2BU4EdgC7Zvi+Am4GTYozvNHqFkiS1Bv1Whp3Ph41PTJ3Hz/8zbQDtu8GAsSlkHjgOBo5N+yRJkiRJkiRJWkoaHByHEAYDjwHLAM8AL2RDKwP7A5uHENaOMc5s7CILFUKYCEwcNmxYsUuRJKmmHsvBtn+Brf8En7wOs6al6axnTYfJfwAiEKDPCBg0LnUkDxoPvVa0K1mSJEmSJEmS1GQK6Tg+GegBbBdjvCN3IISwNfCv7JgDG626xRRjvBW4dezYsYcVuxZJkmpVUgJ9Vkrb6H3Tvm8/h3eehJnTU6D84s3w1GVprH331IlcFSQPGAPtuxatfEmSJEmSJElS61JIcLwFcE5+aAwQY7wzhHAusHejVSZJUlvTvhsM3SRtAJWV8MlrWUdy1pn8+r3ZwQH6rpzXlTwMQiha+ZIkSZIkSZKklquQ4LgH8Fo9468B3ZeoGkmSVK2kBPoMT9ua+6V933wG7zxR3ZU840Z4clIa69AjWyN5fAqUB4yBdl2KVb0kSZIkSZIkqQUpJDieBUwAzqtjfMPsGEmS1FQ6dIdhm6UNUlfyx6/kdCVPh9fuTmOhJHUlDxyXOpIHjodeQ+1KliRJkiRJkiQtpJDg+J/Aj0MIbwF/iDF+DhBC6Ar8FNgd+EPjlyhJkupUUgJ9R6ZtzAFp3zf/g1lPVk9vPeMGePKSNNahZ3WQPGg89F8T2nUuXv2SJEmSJEmSpGahkOD4ZGAD4CfAD0MI72b7+wOlwCPAKY1bniRJKliHHrDiZmkDqJwPH71S3ZE8axq8dlcaCyXQb5XqdZIHjoOeK9iVLEmSJEmSJEltTIOD4xjj7BDCBOAgYEdgSDZ0F3ATMCnGOK9xy5MkSUuspBT6rZy2MQemfbM/hVlPVHclP3ctPHFRGuvYO+tKztZLHrAmVHQqWvmSJEmSJEmSpKZXSMcxWTD8j2yTJEktVceesNIWaYPUlfzhSzW7kl+9M42F0tSVXLVO8qBx0GOIXcmSJEmSJEmS1IoUFBxLkqRWqqQUlhmVtrEHp32zP4VZ01NH8qxp8Ow1MP3CNNapT+pKrlovuf+aUNGxePVLkiRJkiRJkpZIQcFxCKETsDewItALyG81ijHGQxqpNkmSVEwde8JKW6YNsq7kF7MgOQuUX7kjjZWUQb9RNbuSuy9nV7IkSZIkSZIktRANDo5DCOOB24De9RwWAYNjSZJao5JSWGbVtI3L/nP/9ScpRK5aK/npK2DaBWmsU98sSK7qSh4N5R2KV78kSZIkSZIkqU6FdBz/DagAdgfujzF+2jQlSZKkFqNTLxi+VdoA5s+DD1+o2ZX88m1prKQshc4Dx1cHyt0H25UsSZIkSZIkSc1AIcHxGOD3Mcbrm6oYSZLUwpWWwbKrp238YWnfVx/ldCVPh6cvh2nnp7HO/ao7kgeOh/5r2JUsSZIkSZIkSUVQSHD8BfBJUxUiSZJaqc59YMQ2aYPUlfzBjOqO5Fm5XcnlqSt50FppneSB46HbQLuSJUmSJEmSJKmJFRIc/wvYEjiniWqRJEltQWlZ6izuv0ZOV/KHOUHydHhyEjx+bhrrsmzNruRlV4fy9kUqXpIkSZIkSZJap0KC458Ad4UQzgJOB96MMcYmqWoJhRAmAhOHDRtW7FIkSVJDdO4LI7ZNG8D8uakreeZ0mPl46kp+6ZY0VlKewuOqdZIHZV3JkiRJkiRJkqTFVkhw/BkQgfHA0QBh4WkjY4yxkGs2iRjjrcCtY8eOPazYtUiSpMVQWg79R6dtrcPTvi8/yNZJzrqSn7gYHssmQunSv3pq60FZV3JZu+LVL0mSJEmSJEktTCEh72Wk4FiSJGnp69IPRk5MG8C8OfDB86kreda09PjizWmstCKFxwPH56yVPKB4tUuSJEmSJElSM9fg4DjGeGAT1iFJklSYsgoYMCZtHJn2ffl+1pGcBcnTL4TH/p7Gug6s2ZW8zGrpGpIkSZIkSZKkgjqOJUmSmrcuy8DK26cNUlfy+8/XnOL6hRvTWGk76L9G9TrJA8dD12WLVrokSZIkSZIkFZPBsSRJar3KKmDgmLStfVTa98W71SHyzGkw7QJ49Ow01m1QzSB5mVXtSpYkSZIkSZLUJhgcS5KktqVrf1hlx7QBzPsO3nuuuit55uPwwr/SWFl7WHaNNMX1oLVSmNylX5EKlyRJkiRJkqSmY3AsSZLatrJ2WTA8Dtb5Xtr3+TvV6yTPmgaPnw9Tz0pj3QdXr5M8cFzqSi4tL179kiRJkiRJktQIDI4lSZLydRsA3XaCVXZKz+d+C+8/l01xPQ3+MxVmXJ/GyjpA/9EpeK4KlDv3LV7tkiRJkiRJkrQYDI4lSZIWpbx9CoQHja/e9/msbGrrLEx+9ByoPCONdV+uep3kQeOg3yi7kiVJkiRJkiQ1a40SHIcQ2sUYv2uMa0mSJLUI3QambdTO6fncb+G9Z6qD5Lcehuf/mcbKOsCANdPU1lWBcuc+RStdkiRJkiRJkvI1ODgOIWwNrBVj/HXOvqOBPwAdQwjXAQfEGOc2epWSJEnNXXl7GLx22gBihM9nZkHy9PT46NnwyLw03mNI9TrJg8ZD31Wg1MlgJEmSJEmSJBVHIf86+SPgw6onIYSRwBnAG8BbwB7ANOD0RqxPkiSpZQoBug9O26q7pn1zv4F3n0kdyTOnwZuT4blr01h5p7yu5HHQqXexqpckSZIkSZLUxhQSHI8E7sh5vgfwDTA+xvhFCOEq4AAMjiVJkmpX3gGWWydtkLqSP/tvdUfyrGkw9UyozLqSe65QvU7ywPHQd2W7kiVJkiRJkiQ1iUL+5bEH8HHO882A+2OMX2TPJwPbNFJdkiRJrV8I0GO5tFV1Jc+ZDe8+nXUlT4c37oPnrkljVV3JVeskDxwHnXoVr35JkiRJkiRJrUYhwfHHwHIAIYQuwDjgxJzxcqC08UqTJElqgyo6wvLrpQ1SV/L/3q7ZlTzldIjz03jPoSlIrgqT+46EEv8nmSRJkiRJkqTCFBIcPwocGUJ4Adg6O/fOnPFhwHuNWJskSZJCgJ5D0rba7mnfnK9TV/LMaSlQfu0eePbqNFbRJa8reSx07Fm8+iVJkiRJkiS1CIUEx78CHgCuy55fGmN8ESCEEICdsnFJkiQ1pYpOsPz6aYOsK/mtNLX1rGkpUH74b9Vdyb1WzILkcemxzwi7kiVJkiRJkiTV0ODgOMb4YghhJLAe8HmM8aGc4e7AaaR1josuhDARmDhs2LBilyJJktT0QoCeK6Rt9T3Svu++ylkreRq8cic8c2Uaq+gCA8ekjuRBWVdyhx7Fq1+SJEmSJElS0RXScUyM8VPg1lr2/w84o7GKWlIxxluBW8eOHXtYsWuRJEkqinadYcgGaYPUlfzpm9XrJM+cDg//BWJlGu+9UhYkj0uPfUZASUnx6pckSZIkSZK0VBUUHEuSJKmFCgF6DU3bGnulfd99Ce88VR0kv3I7PHNFGmvXLacreRwMGAsduhetfEmSJEmSJElNq8HBcQihEoiLOCzGGA2jJUmSWoJ2XWCFjdIGqSv5kzeqp7eeNR0e+lPWlRygz/DqdZIHjk9dynYlS5IkSZIkSa1CISHvZSwcHJcBQ4G1gOeAZxqnLEmSJC11IUDvYWlbY++077sv4Z0nU0fyrGnw0q3w9OVprH231Ik8aHwKlAeOTfskSZIkSZIktTgNDo5jjAfWNRZCWBe4BTiqEWqSJElSc9GuC6wwIW0AlZXwyes1u5In/4H0+cKQ1kauWid50FrQa5hdyZIkSZIkSVIL0CjTSscYp4YQLgH+CGzUGNeUJElSM1RSAn1WStvofdO+bz+v2ZX84s3w1GVprH33nOmtx8GAMdC+a9HKlyRJkiRJklS7xlyP+DXsOJYkSWp72neDoZukDbKu5NeyjuRpKVB+/V4WdCX3XTmnK3l86koOoZjfgSRJkiRJktTmNWZwPAH4phGvJ0mSpJaopAT6DE/bmvulfd9+DrOeSFNbz5wGM26EJyelsQ49sjWSx6dAecCYNEW2JEmSJEmSpKWmwcFxCGH/OoZ6ApsBWwMXNUZRkiRJamXad4Nhm6YNUlfyx6/U7Ep+7e40FkpSV/KCKa7HQ6+hdiVLkiRJkiRJTaiQjuNJLJhfcCHzSKHx8Y1QkyRJklq7khLoOzJtYw5I+775H8x6MguSp8GMG+DJS9JYx15ZV3IWJvdfE9p1Ll79kiRJkiRJUitTSHC8cS37IvAp8FaM8evGKUmSJEltUocesOJmaQOonA8fvVLdkTxrGrz67zQWSqDfKtXrJA8cBz1XsCtZkiRJkiRJWkwNDo5jjA82ZSGSJElSDSWl0G/ltI05MO2b/Sm882T1FNfPXQdPZKuldOyddSRn6yUPWBMqOhWtfEmSJEmSJKklKaTjWJIkSSqujj1hxc3TBllX8stZkDw9Pb56ZxoLpakruWqd5EHjoMcQu5IlSZIkSZKkWtQZHIcQfkmaivp3McbK7PmixBjjyY1WnSRJklSfkiwc7rcKjD0o7Zv9aXWIPGsaPHsNTL8wjXXqk7NW8lrQfzRUdCxe/ZIkSZIkSVIzUV/H8a9JwfEfgTnZ80WJgMGxJEmSiqdjT1hpy7RB6kr+8MWaXcmv3JHGSsqg36iaXcndl7MrWZIkSZIkSW1OfcHxEIAY45zc55IkSVKLUlIKy6yatnGHpH1ff5JC5FnTUpD89JUw7YI01qlvFiSPS4/9R0N5h+LVL0mSJEmSJC0FdQbHMcb/1PdckiRJarE69YLhW6UNYP681JU8axrMzALll29LYyVlKXQeOL46UO4+2K5kSZIkSZIktSr1dRxLkiRJbUNpGSy7WtrGHZr2ffVRTlfydHj6cph2fhrr3K+6I3ngeOi/hl3JkiRJkiRJatEKCo5DCJ2AvYEVgV5AfptFjDEe0ki1SZIkScXTuQ+M2CZtkLqSP5hRvU5yja7k8hQ6V62TPHA8dBtoV7IkSZIkSZJajAYHxyGE8cBtQO96DouAwbEkSZJan9Ky1Fncfw0Yf1ja99WHOUHydHhyEjx+bhrrsmzNruRlV4fy9kUqXpIkSZIkSapfIR3HfwMqgN2B+2OMnzZNSUsuhDARmDhs2LBilyJJkqTWrHNfGLFt2gDmz01dyVXrJM+cBi/dksZKK2CZ1RgaloXen6ZAudvA4tUuSZIkSZIk5SgkOB4D/D7GeH1TFdNYYoy3AreOHTv2sGLXIkmSpDaktBz6j07bWoenfV9+UGOt5P6z7oLrb01jXfpXT209aK003XVZu+LVL0mSJEmSpDarkOD4C+CTpipEkiRJapW69IOR26UNmHL/PWw0vGdOV/J0ePHmdGxpBSy7Rja9dTbNddf+xatdkiRJkiRJbUYhwfG/gC2Bc5qoFkmSJKnViyXlMGBM2jgy7fzy/Wyd5CxInvYPePTsNNZ1YE5X8nhYZjUoqyha/ZIkSZIkSWqdCgmOfwLcFUI4CzgdeDPGGJukKkmSJKkt6bIMrLx92gDmzYH3n69eJ3nWdHjhxjRW2g76r1HdkTxwPHRdtmilS5IkSZIkqXUoJDj+DIjAeOBogBBC/jExxljINSVJkiTlK6uAgWPStvZRad8X79UMknO7krsNqhkkL7OqXcmSJEmSJEkqSCEh72Wk4FiSJEnS0tZ1WVh5h7QBzPsudSXPnAYzH0/bC/9KY2Xtof/ommFyl37Fq12SJEmSJEnNXoOD4xjjgU1YhyRJkqRClLWDgWPTts7Rad/n71SvkzxrGjx+Hkw9M411H1y9TvLAcakrubS8ePVLkiRJkiSpWXFaaUmSJKm16DYAuu0Eq+yUns/7Dt57Npveehr8ZyrMuD6NlXVIXcmDxlUHyp37Fq92SZIkSZIkFVVBwXEIoRTYB9gC6Af8OMb4dAihBzARuC/G+E7jlylJkiSpYGXtUiA8aHz1vs9nVa+TPHMaPHoOVJ6RxrovVz219aBx0G+UXcmSJEmSJEltRIOD4xBCR+BuYF3ga6Aj0CMb/gL4A3Ax8PNGrlGSJElSY+k2MG2jdk7P536bupJnTUtB8ttT4Pl/prHyjguvldy5T/FqlyRJkiRJUpMppOP418BYYCdgKvBB1UCMcX4I4V/AlhgcS5IkSS1HeXsYvFbaAGKEz2fmdSWfDY/MS+M9hlSvkzxoPPRdBUpdAUeSJEmSJKmlK+RfeHYDLogx3hxC6FXL+OvAHo1TliRJkqSiCAG6D07bqrumfXO/gXefqe5KfnMyPHdtGivvBAPWrNmV3Km2/7sgSZIkSZKk5qyQ4Lg/8Gw947OBLktWjiRJkqRmp7wDLLdO2iB1JX/23+qO5FnTYOqZUJl1JfdcoXqd5IHjoe/KdiVLkiRJkiQ1c4X8680nwIB6xlcB3l2yciRJkiQ1eyFAj+XSVtWVPGc2vPdM9RTXb9wPz12Txqq6kqs6kgeOsytZkiRJkiSpmSkkOL4POCiE8Jf8gRDCEOBg4PLGKkySJElSC1LREZZbN22QdSX/B2ZOz6a4fhymnA5xfhrvNSyvK3kklJQWrXxJkiRJkqS2rpDg+DfAE8B04GogAluFEDYHjgS+A05t9AolSZIktTwhQI/l07babmnfnK/h3aeru5JfuxuevSqNVXTJ60oeCx17Fqt6SZIkSZKkNqfBwXGM8fUQwqbAxcBvs90/zB5nAPvFGGc2cn2SJEmSWouKTrD8+mmD1JX8v7dyupKnwcN/y+lKXjELkselxz4j7EqWJEmSJElqIoV0HBNjfBJYPYQwChgJBOC1GOPTTVGcJEmSpFYsBOi5QtpW3yPtm/M1vPNUFiRPh1f/Dc9cmcYqusDAMdkU11lXcocexatfkiRJkiSpFSkoOK4SY5xB6jKWJEmSpMZT0QmGbJA2SF3Jn76ZpraeOS0Fyg//BWJlGu+9UvX01oPGQ+/hUFJSvPolSZIkSZJaqIKD4xBCf2AisEK2603gthjjO41ZmCRJkiQRAvQamrbV90z7vvsK3n0KZj6eupJfvgOeviKNteuW05U8DgaMhQ7di1a+JEmSJElSS1FQcBxC+AXwc6A8b+isEMLvYoy/abTKJEmSJKk27TrDkA3TBqkr+ZM3qtdJnjUdHvpT1pUcoM/w6nWSB45PXcp2JUuSJEmSJNXQ4OA4hHAM8BtgOnAa8GI2tApwPPDLEMInMcazG71KSZIkSapLCNB7WNrW2Dvt++5LeOfJ1JE8axq8fBs8fXkaa98tdSIPGp8C5YFj0z5JkiRJkqQ2rJCO42OBacD6McZ5OfufCyFcDzySHWNwLEmSJKm42nWBFSakDbKu5Ner10meOR0m/wGIpK7kESlIrupK7jXMrmRJkiRJktSmFBIcDwbOyQuNAYgxzg0hXAn8odEqkyRJkqTGEgL0XjFto/dJ+779InUlz5qeAuUXb4anLk1j7bvnTG89DgaMgfZdi1a+JEmSJElSUyskOP4v0KWe8S7ZMUUXQpgITBw2bFixS5EkSZLUXLXvCkM3ThtAZSV88lrNruTX72VBV3LflWHQuNSRPCjrSg6hmN+BJEmSJElSoykkOD4b+HEI4aIY43u5AyGEAcCRNJOO4xjjrcCtY8eOPazYtUiSJElqIUpKoM/wtK25X9r37ecw64nqruQZN8KTk9JYhx7ZGsnjU6A8YEyaIluSJEmSJKkFqjM4DiHsn7frc+AD4OUQwhXAy9n+kcA+wKvAF01RpCRJkiQVRftuMGzTtEHqSv741awjeVoKlF+7O42FktSVvGCK6/HQa6hdyZIkSZIkqUWor+N4EgvmZFvIUbXsGwNcAly25GVJkiRJUjNUUgJ9R6Rtzeyztt98Bu88kaa2njUNZtwAT16Sxjr2yrqSszC5/5rQrnPRypckSZIkSapLfcHxxkutCkmSJElqqTp0h2GbpQ2yruRXUkdy1XrJr/47jYUS6LdK9TrJA8dBzxXsSpYkSZIkSUVXZ3AcY3xwaRYiSZIkSa1CSQn0HZm2MQekfbM/hXeerA6Sn7sOnrgojXXsnXUkZ+slD1gTKjoVr35JkiRJktQm1ddxXK8QQm+AGOPHjVeOJEmSJLVCHXvCipunDaByPnz0cvU6yTOnwat3prFQmrqSq9ZJHjQOegyxK1mSJEmSJDWpgoLjEEJ/4FRgB6BLtu8L4GbgpBjjO41eoSRJkiS1NiVZONxvFRh7UNo3+1OY9UTqSJ45DZ69BqZfmMY69akOkQeOh/6joaJj8eqXJEmSJEmtToOD4xDCYOAxYBngGeCFbGhlYH9g8xDC2jHGmY1dpCRJkiS1eh17wkpbpA1SV/KHL2VB8vT0+MrtaaykDPqNqtmV3H05u5IlSZIkSdJiK6Tj+GSgB7BdjPGO3IEQwtbAv7JjDmy06iRJkiSprSophWVGpW3swWnf15+kqa2rupKfvhKmXZDGOvXNguRx6bH/aCjvULz6JUmSJElSi1JIcLwFcE5+aAwQY7wzhHAusHejVSZJkiRJqqlTLxi+VdoA5s+DD1+s2ZX88m1prKQMllk160jOAuXug+1KliRJkiRJtSokOO4BvFbP+GtA9yWqRpIkSZLUcKVlsOxqaRt3aNr39cepK3nmtPT49OUw7fw01rlf1pG8VgqTl10DytsXrXxJkiRJktR8FBIczwImAOfVMb5hdowkSZIkqVg69YbhW6cNsq7kF6qD5Jm5XcnlKXSuWid54HjoNtCuZEmSJEmS2qBCguN/Aj8OIbwF/CHG+DlACKEr8FNgd+APjV+iJEmSJGmxlZbBsqunbfxhad9XH+WslTwdnpwEj5+bxrosW71O8sDx6Ty7kiVJkiRJavUKCY5PBjYAfgL8MITwbra/P1AKPAKc0rjlLR3/396dx1dV3/v+f30zkjAkQBhkUOMAiKBoKUXrQI+1Az9rq8cBr55f9aqcW221lVrPpVL1VI+3Tlg951Zaq7anh1Mo1qq93vpQEa1WRZMQOVIBsYwiEIZACFOSdf9YO2Ene2dgCIHk9Xw81mPvvdZ3fdd37eB2wzuf77eyspKKigp2797d0UOROoWcnByKioooKCjo6KFIkiQpnR79YMTEeAOo3QPr/mvvOsmr5sNfn4uPZebAwFP2rpM8NFGVLEmSJEmSOpU2B8dRFFWHECYA1wDfAIoTh14E/gA8FUVRzcEdXvvbuXMn69atY8iQIeTl5RGckk06IFEUsWPHDlavXk1ubi7dulmdIkmSdNjLzIZBp8Xb5ybH+7ata1yV/N4T8Pb/jo/1HBRPbT30c4mq5FMgK7fjxi9JkiRJkg5Ym4LjEEIecCmwOIqiXwC/aNdRHUIbNmygX79+5Ofnd/RQpE4hhEB+fj5FRUVs2LCBoUOHdvSQJEmStD96DoCTLog3iKuSP124d53k1fNh0bPxscwcOGpM46rkXoM6bOiSJEmSJGnftbXieBdxWHwz8E77DefQ27lzJwMHDuzoYUidTs+ePdm4cWNHD0OSJEkHS2Y2DD493j73j/G+bZ8mBcnvwruPw1v/Gh/rNSSuSh4yLg6SB54CWTkdN35JkiRJktSiNgXHURTVhRBWAb3aeTyHXE1NDVlZ+7LUs6S2yMrKoqbmiJu9XpIkSfui50A46WvxBlCzG9YtjIPk+jD5g2fiY5m5MGjM3orkIeOg11EdNnRJkiRJktTYviSmvwL+IYTw0yiKdrXXgDqC6xpLB5//XUmSJHVBWTkw+DPxNv5b8b6taxPrJCeC5Pm/2FuVXDA0DpIHjoIeA6FH/8Q2APKLINNf8pUkSZIk6VDZl7+F/wW4GFgQQvjfwFKgummjKIpeP0hjkyRJkiQd6XodBSO/Hm8ANbvitZLr10leNR8++H2aEwPk941D5IZAOREqd0963qM/5PWBjIxDeluSJEmSJHU2+xIcv5T0/KdA1OR4SOzLPNBBSZIkSZI6qaxcGDI23rgh3rd7O1Sth+0boGpdYqt/vh62r4eVy+LnNTtT+wyZcYDcvV8iTB4APfrtDZa7J4XM3QrA2XEkSZIkSUqxL8HxNe02CkmSJElS15XTHfoUx1tLogh2bYsD5Kp1caBc/7wq6fn6RfFjXU1qH5k5TQLl/k2qmgfsDaBze7TP/UqSJEmSdBhqMTgOIYwDPoqiaFMURb86RGOSJEmSJClVCNCtV7wVndBy27o62LmlcbC8vUnIXLka1pRAdQVEdal9ZHdvpnI5qbK5e7/4WHZeu9yyJEmSJEmHSmsVx28B/wDMBAgh9AB+DtwdRdGidh6b2sGECRMAmDdvXpv2q/Pxz4AkSZK6hIwMyO8Tb/1HtNy2rhaqN6ZWLidPnV3xESx/E3ZsSt9HbkGakLmZaubM7IN/v5IkSZIkHaDWguOmCz/lApOAxwGD4y7o0ksvZc6cOZx33nm8/PLLh+Sab7zxBmeffTZ33303P/zhDxsdKysr4/TTTwegqqqK7t27Nzp++eWXM2fOHBYvXswJJzRfkbBnzx727NlDfn5+m8a0detWCgsL+dKXvsSf/vSntG1GjBjB2rVr2bJlC8E11CRJkqTDV0bm3nC3NbV7kgLl9WkqmtfDpwvjNZp3VabvI69PM5XLTULm/L7x2CRJkiRJOgT2ZY1jdXHz5s3j6aefpri4mPLy8kN23cLCQiAOa5t68MEHG55XVlY2Co5XrlzJ008/zYUXXpg2NH7zzTf5+c9/zssvv8zatWuJooiCggLOPPNMrrzySq644goyMjLSjqm0tJQoihg/fnza41u2bGHJkiWcc845hsaSJElSZ5KZDb0GxVtr9uxIBMpJlctVSc+3b4DV78Zt9lSnnh8yIL+oSaBcX7ncpKI5r3c8lbckSZIkSfvJ4FhtUltby80338xVV13FwIEDuf/++1m9ejVDhgxp92vXB8eVlY1/W3/NmjXMnj2bU045hffff5/KykoGDdr7jzePPvootbW1TJkypdF5W7du5dprr2XOnDmceeaZfOc732HEiBFkZWXxySef8Morr3Ddddcxffp0fvvb36YNnUtLSwH43Oc+l3bM8+fPJ4qihmpoSZIkSV1Qdh70PibeWrOrKrVyuWlVc8WS+LF2d+r5GdmJKbLTVC43DZtzexoyS5IkSZJSGByrTWbMmMFHH33ECy+8wNy5cwFYsGBBhwbHjz76KCEEpk6dyqRJkxodr6qq4he/+AXjxo3jrLPOati/bds2zjnnHDZu3Mi8efM499xzU643efJkVq5cybXXXsu5557L66+/zvHHH9+oTUlJCQDjxo1LO+Z33nkHwOBYkiRJUtvk9oi3vse33C6KYOeW1Mrl5JB521pYWx7vj2pT+8jKa32a7Pp1mnPatpyPJEmSJOnI15bgeGIIYWDieT4QAZeGEMakaRtFUTT9YA1Oh4dNmzYxbdo0fvCDHzB48GBGjx4NxMHxBRdc0O7X79GjB1lZWY2C4e3btzNjxgyuuOIKRowYATQOlp988kkqKyu55ZZbGvU1efJkKisree+99xgwYEDD/m3bttGjRw9CCFRVVdGnTx9eeOEFLrzwQq666ireeuutRv2UlpYyePBgNm/ezObNm1PG/PrrrwMGx5IkSZIOshDiaanzekO/YS23rauDHZtSK5eTK5o3/Q1Wvg3VG4n/ut9ETs9Wpsnut3dfVk673LIkSZIk6dBoS3D83xJbsn9spm0EdIrg+K7nP2DRJ6lr6nakkYN6ccfXTj7k1502bRp5eXnceuutAJx00klkZWWxYMGCQzaGgoKCRsHwE088wZYtW5gyZQo9e/YE4nWFAerq6vjpT3/KMcccwyWXXNJwTklJCbNmzeKNN95oCI2feeYZvvvd77Jy5Up69erFzTffzIoVKwgh8NRTT/H4449TXFzMvHnzmDBhAhBXMy9ZsoS6ujpOPPHEZsecn5/fEGpLkiRJ0iGXkQHdi+JtQCt/l6ytgeqK1JA5eers9X+Fj1+LK57T6VbYfOVy8v78Ish0AjRJkiRJOty09je1LxySURxkIYSvAV9Ltzat9s3ChQuZMWMGTz75JPn58RRlubm5DBs2rMXgeMuWLTz88MNtvs5NN91Enz59mj1eWFjI1q1xkF8fDH/5y19m9OjRbNq0Cdhbcfzcc8+xbNkyHnroITIzMxv6mDlzJmeccQZnnnkmAIsWLeLyyy/nnHPO4f7772f37t1Mnz6dxYsXNwTOgwcP5vOf/zwvv/xyQ3C8YMEC6urquPbaa/nKV76SMtYNGzZwww03MGbMGDIyMtr8HrRm3Lhx/OhHPzokVd6SJEmSupjMLOg5MN5aU7MrzVrMTabO/qQsPra7Kk0HIRFop6lcbjR19oC4svog/r1KkiRJktS8FoPjKIpeO1QDOZiiKHoeeH7s2LHX728fHVHZezi66aabOO644xg/fjwfffRRw/6jjz6aF198kW3btjVU/CbbsmULd911V5uvc9VVV7UaHK9fvx6AZ599lmXLlvHYY48B0KtXL2BvcDx9+nQKCgq47rrrGvXxzjvv8MUvfrHh9WOPPcaQIUN44YUXyMmJp1T76le/SnFxcaPzBg4c2HBt2Lu+8aRJkxr1V+/FF18EDv401fPnzz+o/bVVXV0dBQUF1NXVEUJo2D979mwmTpzYIWOSJEmS1IGycqFwaLy1Zvf2vRXM29c3qWiuny57Wfy8Zmfq+SFzb6Vy08rlplNndyuIp/KWJEmSJO0X54ZSs373u98xb948AIYNS792Vnl5OWeddVbK/mOPPZYoSrM+1n4qLCxk6dKlADz44IOceuqpDaFtVlYW+fn5VFZWUlpayuuvv95oCut669evZ9CgQQ2vly1bxtixYxtCY4C+ffumTC+9YsUKvvCFvcX3paWlAJxyyilpx1peXg50nvWNFy9eTFVVFRUVFfTt27ejhyNJkiTpSJLTHfoUx1tLogh2bU2tXK5/Xr9/3QdxAF1Xk9pHZm6TQLlf2qmzM2t2tM+9SpIkSdIRzuBYae3YsYPvf//7nH/++UyePDnl+IIFC7jnnntYsGBB2uD4YCssLGTbtm28/fbbvPnmm/z6179udLxXr15UVlYyffp0srKyuPnmm1P6KCgoaFgHGeCoo45qqB6ut2vXLpYvX87IkSMBKCsr4+233+a+++5raFNSUsLAgQPp379/2rG+//77QOPg+JlnnmHatGlceeWVzJgxg40bN/Ltb3+be++9t6HN448/zoMPPsiaNWsYPnw4jz32GJ/5zGcAeP7555k6dSoLFy4EYN26dXzve99j7ty5VFVVMXToUObMmcPJJ5/MM888w7/8y7+wdOlSBg8ezKOPPsrf/d3ftfoeN6f+fg2NJUmSJLWbEOKK4W4FUNTKslN1dfE6y03XY06eOnvLKlj9Xhw+0/iXms8GeKd785XLyWFz9/6Q3a2dblqSJEmSDi8Gx0rrvvvuY9WqVTz//PNpK2tHjRrVEBwfCoWFhURRxF133cWQIUOYNGlSo+MFBQUsWrSIP//5z1x66aUMHZo6ZdrJJ5/MX/7yl4bXV1xxBb/85S/53ve+x7e+9S327NnDj3/8YyoqKqiqquI3v/kNU6ZMYdKkSQ3heHV1NR9++GHaKarrlZeXk5uby8kn753uvKysjGXLlnHUUUexdOlSysvL+exnP8uUKVMoKirioYce4oknnuD3v/89w4cP5+GHH+biiy9m+fLlhBAoLS1tFERPnjyZUaNGsXz5crKzsykpKWHo0KHMmDGDe++9l9mzZzN27FhmzZrF5ZdfzurVq8nNzd2v976kpIRRo0bt17mSJEmSdNBlZEB+n3jrf1LLbetqoXpjo8rlZe+/xfH9e+ydOrtiKSx/E3ZsSt9HbkGatZjTTJ3dvR9kZh/8+5UkSZKkQ8TgWClWrlzJT37yEy6++OJmp2M+/vjjyczMPKTBMcCf/vQn7rvvPrKzG/9lvFevXsydOxeAKVOmpO3joosu4rLLLuPjjz/muOOO47zzzuOOO+7g7rvv5uGHHwZg4sSJXHrppcyePZu5c+dy00038cMf/rChj/Lycmprazn11FPTXmPXrl18+OGHjBkzhqysvf95lZWVcc0113D11VcDcNJJe/9xY/Pmzdx555289tprDfuvvvpqpkyZwrp16xg4cCClpaWNpstesmQJI0aMYM+ePXTr1o1x48ZRWVnJrbfeynPPPce4ceOAOBz/9re/zbJlyxqqqPdVSUkJ8+fPb/gZALz55puNgnFJkiRJOixlJK2RzGgAVm05iuMnTEhtW7M7rlBOrlxuVNG8AT5dCFWvxNNqp5PfN33lcqOpswfEoXdGZrvdtiRJkiTtD4Njpbj11lvZuXMnd9xxR7NtsrOzKS4u5oMPPqCmpqZRSNoe6kPLnj17pp06u6CgAIBzzjmnYXrnpi688EJGjx7NNddcw0svvUROTg533nknN9xwAx9++CGDBg3ihBNOYPHixUybNo2TTjqJzMzGf5FvbX3jRYsWUVNTk7K+cVlZGTfeeGPD6/LycgYMGEBRURF//OMfKSoq4rTTTms4XlFRQVZWFkVFRQ3n33LLLQ3Hf/WrX3H33Xdz9NFHc+aZZ3LPPfewfPlyqqqq+MY3vtHo2rt27SIvLy/teFtTV1dHWVkZM2fO5OKLL96vPiRJkiTpiJCVAwWD4601e3bsDZW3pwmZq9bD6vmwbR2kW1M5ZCSC5DSVy40qmvtDXu94Km9JkiRJamcGx0oxa9YsZs2a1Wq7pUuXHoLRxG6//XZuv/32Zo+/9NJLrfYRQmDmzJmcccYZTJw4kZkzZ9K/f/+Grd7w4cNZsWIFb7zxBueee26jPm688cZGAXBTp512GlHUeP2sDRs2sGbNGsaOHduwr7S0tCEorqiooHfv3o3Oefrppxk/fjxZWVlUVFSwevVqxowZ03B83LhxPPfcc1RXV3PDDTdw2223cdlll3H22Wfz2muvtfpetNWSJUuoqqpqqGCWJEmSJAHZedD7mHhrSRTB7qrUyuWkqbOpWgcbFscBdO3u1D4yspuvXO6R9Lx7P8jtacgsSZIkab8ZHKtLGTZsGK+++ioXXXQRJ5xwAtdddx0TJ06kuLiYjIwMlixZwnPPPcdTTz3F2WefnRIc74+ysjKOOeaYhuphoNGaxePGjWPRokW8++67jBkzhmeeeYYHH3yQ559/vqFtcXFxQ1X1008/zciRIxk+fDjV1dWsW7eOz3zmM4wdO5abb76ZV155hb/7u79j165dlJWVMWDAAI477rj9GntJSQmDBg1iyJAhB/guSJIkSVIXFEIc5ub2hL7Ht9w2imDnltTK5eSps7d+Ap8siMPnqDa1j6y85iuXG63H3B9y8tvjjiVJkiQdwQyO1eWccsoplJeX88gjj/D4448zffr0RsdPPfVUHn30Ub75zW8elOuVlZWlTJ9dVlbGxIkTARg5ciSPPPIIl1xyCRs3buTUU0/l2Wef5YwzzmhomzyN9VtvvcV3v/tdNm3aRN++fZk0aRJ33nknOTk5PProo9xwww2sWbOGvLw8Tj/9dH75y1/u99hLSkqsNpYkSZKkQyGEeFrqvN7Qb3jLbevqYMem1Mrl5IrmTR/DyrehuiJ9Hzk9kwLlfk2C5iYhc1bOwb9fSZIkSYcdg2N1ST169GDq1KlMnTqVVatWsXr1agCKi4sZOHDgQb3WbbfdlrKvrKys0evrr7+e66+/vk3nP/DAAzzwwANp215zzTVcc801+znSVA899NBB60uSJEmSdJBkZED3ongbcHLLbWv3wPaKxpXLjcLm9bD+r/DxPNhZmb6PvN7pK5d7DGi8v3sRZGQe9NuVJEmSdGgYHHcx8+bN26f9XcHQoUMZOnRoRw/jkPHPgCRJkiR1IZnZ0OuoeGvNnp2JiuX69ZibTJtdtR7WlMRtdlel6SDE4XGjtZjTTZ09IA6jMzIO+u1KkiRJ2n8Gx5IkSZIkSYLsblA4NN5as6sqESynmSa7PmTeuCx+Xbsr9fyMrES4nKZyuWHq7EQA3a0gnspbkiRJUrsyOJYkSZIkSdK+ye0Rb32Oa7ldFMGuramVy00rmj/9r/h1XU1qH5m5zazFnGbq7Jzu7XO/kiRJUhdgcCxJkiRJkqT2EUJcMdytAIpObLltXR3s2JwIlJuEzFXr4/1bVsLqd+N1m4lS+8ju3nzlcv3zHv3i4Dm7W7vcsiRJknSkMjiWJEmSJElSx8vIgO59463/SS23ra2B6o1p1mJOmjq7YiksfyMOo9PpVrB3zeWGquU0U2d3L4rXipYkSZI6OYNjSZIkSZIkHVkys6DngHhrTc3uxusvp1Q0r4e15XGbXVvT95Hft0nlcpOpsusD6Py+cQAuSZIkHYEMjiVJkiRJktR5ZeVAweB4a83u6kSwnFS5nBw6V62HVe/EjzU7Us8PmXGFcrrK5UYVzf0gr3c8lbckSZJ0mDA4liRJkiRJkgBy8iHnWOh9bMvtogh2VzVeg7n+efLU2es/jB/r9qT2kZmTCJb7pVYuN61ozulhyCxJkqR2Z3AsSZIkSZIk7YsQILdnvPU9vuW2URSvs9y0cjl56uyta+CTsrhNVJfaR1Ze85XLPQYktsTz7Lz2uWdJkiR1egbHkiRJkiRJUnsJAfL7xFu/4S23rauF6k2plcvJYfOmj2HlW1C9MX0fub3SrMWcZurs7v3iabwlSZKkBINjSZIkSZIk6XCQkZmoHO7XetvaPbC9onHlcqOQeT2s+wA+fhV2VqbvI69385XLyVNndy+KxyZJkqROzeBYkiRJkiRJOtJkZkOvo+KtNXt2JoLl+umy1yVNnb0u3r+mJA6b92xPPT9kQH7fJoFyuqmz+8dhdEbGwb9fSZIktTuDY0mSJEmSJKkzy+4GhUfHW2t2VSVNk91kLeb61xUfxY+1u1LPz8hKBMtpKpd7NAmcc3vFU3lLkiTpsGBw3MVMmDABgHnz5rVpvw4e33tJkiRJknTYy+0Rb32Oa7ldFMVTYDetXG46dfanC+M2dTWpfWTmNrMWc5qps3O6t8/9SpIkqYHBsfbJpZdeypw5czjvvPN4+eWXD8k133jjDc4++2zuvvtufvjDHzY6VlZWxumnnw5AVVUV3bs3/kvE5Zdfzpw5c1i8eDEnnHBCs9fYs2cPe/bsIT8/v01j2rp1K4WFhXzpS1/iT3/6U9o2I0aMYO3atWzZsoXgb89KkiRJkqTOJATIK4y3ohNbbltXBzs2J6bIblLJXP988wpY/W68bjNRah85PZIC5SaVy00rmrNy2+GGJUmSOj+DY7XZvHnzePrppykuLqa8vPyQXbewsBCIw9qmHnzwwYbnlZWVjYLjlStX8vTTT3PhhRemDY3ffPNNfv7zn/Pyyy+zdu1aoiiioKCAM888kyuvvJIrrriCjGbW5CktLSWKIsaPH5/2+JYtW1iyZAnnnHOOobEkSZIkSeraMjKge994Y2TLbWtroLqicajcNGzesBj+9jrs3JK+j24Fe9dcbgiYk6qY6wPo7v0g038elSRJquc3I7VJbW0tN998M1dddRUDBw7k/vvvZ/Xq1QwZMqTdr10fHFdWVjbav2bNGmbPns0pp5zC+++/T2VlJYMGDWo4/uijj1JbW8uUKVManbd161auvfZa5syZw5lnnsl3vvMdRowYQVZWFp988gmvvPIK1113HdOnT+e3v/1t2tC5tLQUgM997nNpxzx//nyiKGqohpYkSZIkSVIbZGZBz4Hx1pqaXUlTZaeZJrtqPawtjx93b0vTQYD8Pk0ql9Osx9y9P+T3jQNwSZKkTszgWG0yY8YMPvroI1544QXmzp0LwIIFCzo0OH700UcJITB16lQmTZrU6HhVVRW/+MUvGDduHGeddVbD/m3btnHOOeewceNG5s2bx7nnnptyvcmTJ7Ny5UquvfZazj33XF5//XWOP/74Rm1KSkoAGDduXNoxv/POOwAGx5IkSZIkSe0lKxcKhsRba3ZXNz9Ndn34vOnteF/NztTzQ2aiUjlN5XLTqbO7FcZTeUuSJB1hDI7Vqk2bNjFt2jR+8IMfMHjwYEaPHg3EwfEFF1zQ7tfv0aMHWVlZjYLh7du3M2PGDK644gpGjBgBNA6Wn3zySSorK7nlllsa9TV58mQqKyt57733GDBgQMP+bdu20aNHD0IIVFVV0adPH1544QUuvPBCrrrqKt56661G/ZSWljJ48GA2b97M5s2bU8b8+uuvAwbHkiRJkiRJh4WcfMg5Fnof23K7KIJd21Irl5MD5+3rYf1f4+d1e1L7yMxJql5uUrnctKI5p4chsyRJOmwYHDfn//4TfLqwo0fR2MDR8NX/dcgvO23aNPLy8rj11lsBOOmkk8jKymLBggWHbAwFBQWNguEnnniCLVu2MGXKFHr27AnE6woD1NXV8dOf/pRjjjmGSy65pOGckpISZs2axRtvvNEQGj/zzDN897vfZeXKlfTq1Yubb76ZFStWEELgqaee4vHHH6e4uJh58+YxYcIEIK5mXrJkCXV1dZx44onNjjk/P78h1JYkSZIkSdIRIATo1iveilKXL2skimDH5tTK5eSpsyvXwCdl8bGoLrWP7PzmK5e7NwmZs/Pa554lSZISDI7VooULFzJjxgyefPJJ8vPzAcjNzWXYsGEtBsdbtmzh4YcfbvN1brrpJvr06dPs8cLCQrZu3QrsDYa//OUvM3r0aDZt2gTsrTh+7rnnWLZsGQ899BCZmZkNfcycOZMzzjiDM888E4BFixZx+eWXc84553D//feze/dupk+fzuLFixsC58GDB/P5z3+el19+uSE4XrBgAXV1dVx77bV85StfSRnrhg0buOGGGxgzZgwZrn0jSZIkSZLUOYXEGsn5faB/K8UDdbVQvTG1cjn59cZlsOIvsGNT+j5ye6VZiznN1Nnd+0FWzsG/X0mS1OkZHDenAyp7D0c33XQTxx13HOPHj+ejjz5q2H/00Ufz4osvsm3btoaK32RbtmzhrrvuavN1rrrqqlaD4/Xr1wPw7LPPsmzZMh577DEAevXqBewNjqdPn05BQQHXXXddoz7eeecdvvjFLza8fuyxxxgyZAgvvPACOTnxl+mvfvWrFBcXNzpv4MCBDdeGvesbT5o0qVF/9V588UXgwKeprquro6CggLq6OkLSlEWzZ89m4sSJB9S3JEmSJEmSDqGMzL2Vw4xquW3tnqTq5aQq5oZ962HdB7DsVdhVmb6PvN7NVy4nT53dvSgemyRJEgbHasHvfvc75s2bB8CwYcPStikvL+ess85K2X/ssccSRdFBG0thYSFLly4F4MEHH+TUU09tCG2zsrLIz8+nsrKS0tJSXn/99UZTWNdbv349gwYNani9bNkyxo4d2xAaA/Tt2zdleukVK1bwhS98oeF1aWkpAKecckrasZaXlwMHHhwvXryYqqoqKioq6Nu37wH1JUmSJEmSpCNEZjb0GhRvrdmzM7VyuWHq7MTzNe/Fj3uqU88PGZBf1KR6OV3YPCAOo12PWZKkTs3gWGnt2LGD73//+5x//vlMnjw55fiCBQu45557WLBgQdrg+GArLCxk27ZtvP3227z55pv8+te/bnS8V69eVFZWMn36dLKysrj55ptT+igoKGhYBxngqKOOaqgerrdr1y6WL1/OyJEjASgrK+Ptt9/mvvvua2hTUlLCwIED6d+/f9qxvv/++8CBB8f11zE0liRJkiRJUlrZ3aDw6Hhrza6q1MrlplNnVyyNX9fuTj0/IzsxHXYL02TX78/tZcgsSdIRyOBYad13332sWrWK559/Pm1l7ahRoxqC40OhsLCQKIq46667GDJkCJMmTWp0vKCggEWLFvHnP/+ZSy+9lKFDh6b0cfLJJ/OXv/yl4fUVV1zBL3/5S773ve/xrW99iz179vDjH/+YiooKqqqq+M1vfsOUKVOYNGlSQzheXV3Nhx9+mHaK6nrl5eXk5uZy8sknH9A9l5SUMGpUK1MXSZIkSZIkSW2R2yPe+h7fcrsogp2VqZXLyVNnb1sLn74f749qU/vI6tbiNNm9KlfDpmPi1znd2+d+JUnSPjM4VoqVK1fyk5/8hIsvvrjZ6ZiPP/54MjMzD2lwDPCnP/2J++67j+zs7EbHe/Xqxdy5cwGYMmVK2j4uuugiLrvsMj7++GOOO+44zjvvPO644w7uvvtuHn74YQAmTpzIpZdeyuzZs5k7dy433XQTP/zhDxv6KC8vp7a2llNPPTXtNXbt2sWHH37ImDFjyMo6sP+8SkpKmD9/fsO9A7z55psHHEhLkiRJkiRJzQoB8grjrV/65esa1NXBjk2plcvJFc2bl8Oqd6B6IxAvbXc6QNk/xX3k9Ehad7lJ5XKjqbP7Q1Zuu922JEkyOFYat956Kzt37uSOO+5otk12djbFxcV88MEH1NTUHHBI2pr68LRnz55pp84uKCgA4JxzzuEzn/lM2j4uvPBCRo8ezTXXXMNLL71ETk4Od955JzfccAMffvghgwYN4oQTTmDx4sVMmzaNk046iczMzEZ9tLa+8aJFi6ipqTngaarr6uooKytj5syZXHzxxQfUlyRJkiRJktQuMjKge1G8DRjZctvaGqiugKp1vP+XVzjluAGpU2dvWAx/ex12bknfR7fCpKmykwLlpusx5xdBpv/0LUnSvvL/nkoxa9YsZs2a1Wq7pUuXHoLRxG6//XZuv/32Zo+/9NJLrfYRQmDmzJmcccYZTJw4kZkzZ9K/f/+Grd7w4cNZsWIFb7zxBueee26jPm688UZuvPHGZq9x2mmnEUVRG+6oZUuWLKGqqopx48YdcF+SJEmSJElSh8vMgp4DoedANvXdDKdNaL5tza40azE3mTr7k7J46uzd29J0ECC/bzOVy01C5rw+cQAuSZI6Z3AcQvga8LUTTjiho4eiw8ywYcN49dVXueiiizjhhBO47rrrmDhxIsXFxWRkZLBkyRKee+45nnrqKc4+++yU4PhQKSkpYdCgQQwZMqRDri9JkiRJkiR1mKxcKBgSb63ZvT0xRXZ90Jy0FnP91Nkr34qf1+xMPT9kJqbIThMqN506u1thPJW3JEmdVKcMjqMoeh54fuzYsdd39Fh0+DnllFMoLy/nkUce4fHHH2f69OmNjp966qk8+uijfPOb3+ygEcbBsdXGkiRJkiRJUityukOf4nhrSRTBrm2plcuNqprXwfpF8WNdTWofmTlNAuX+zU+dndujfe5XkqR21CmDY6k1PXr0YOrUqUydOpVVq1axevVqAIqLixk4cGAHjw4eeuihjh6CJEmSJEmS1HmEAN16xVtRKzNV1tXF6ywnB8vbm4TMlathTUm8bnNUl9pHdn7zlcv1z+srnbPz2uWWJUnaVwbHXcy8efP2aX9XMHToUIYOHdru1/G9lyRJkiRJko4AGRmQ3yfe+o9ouW1dLVRvTK1cTp46e+MyWPEX2LEpfR+5BWnWYm5m6uzM7IN/v5IkJRgcS5IkSZIkSZK0PzIy94a7ranZHVcoNw2Zk8PmTxfGr3dtTd9HXp9mKpebhMz5feOxSZK0DwyOJUmSJEmSJElqb1k50GtQvLVmz4694XLTabLrn69+N37cU516fsiA/KImgXJ95XKTiua83vFU3pKkLs/gWJIkSZIkSZKkw0l2HvQ+Jt5aEkWwu6r5abKrEs83LI4D6NrdqX1kZCemyE5TudwwdXbieW5PQ2ZJ6sQMjiVJkiRJkiRJOhKFEIe5uT2h7/Ett40i2LkltXJ5e9LrbWthbXkcPke1qX1kdWumcjnN1Nk5+e1yy5Kk9mNwLEmSJEmSJElSZxdCPC11Xm/oN7zltnV1sGNTauVyckXz5r/BqnegeiMQpfaR0zMpUG5Sudxo6ux+kJXbLrcsSdo3BseSJEmSJEmSJGmvjAzoXhRvA05uuW3tHthe0bhyuenU2ev/ClXzYGdl+j66FaZOk909qYq5PoDOL4JMYw1Jai9+wkqSJEmSJEmSpP2TmQ29joq31tTs2hsqb08TMleth0/K4sfdVWk6CJDft5nK5SZrM+f1iQNwSVKbGRxLkiRJkiRJkqT2l5ULhUPjrTW7tzepXE4OmBPTZW9cFj/W7ko9P2QmpshOU7ncdOrsbgXxVN6S1MUZHEuSJEmSJEmSpMNLTnfoUxxvLYki2LU1tXK5aUXzug/ifXU1qX1k5jQJlJuux5w0dXZuj/a5X0k6DBgcS5IkSZIkSZKkI1MIccVwtwIoOrHltnV1sHNLIlBOqlyuX4u5ah1UroI1JfFrotQ+srs3X7mcHDh37w/Z3drjjiWp3RgcS5IkSZIkSZKkzi8jA/L7xFv/k1puW1sD1RvTrMWcNHV2xVJY/gbs2Jy+j9yCNGsxp5k6u3u/eK1oSepgBsddzIQJEwCYN29em/brwPh+S5IkSZIkSdIRKDMLeg6IN0a33LZm996K5e0b0lQ0r4dPF0LVK/G02unk9Wm+cjn5dX5fyMg86LcrSWBwrH106aWXMmfOHM477zxefvnlLj8OSZIkSZIkSVIXl5UDBYPjrTV7dqRWLlc1qWpeNT9+rNmRen7IiCuUGwXKSVXM3ZOm0c7rHU/lLUltZHCsNps3bx5PP/00xcXFlJeXd/lxSJIkSZIkSZK0T7LzoPcx8daSKILdVY1D5qr1qVNnb1gcv67bk9pHRvbeCuamlcsNU2cnnuf2NGSWZHCstqmtreXmm2/mqquuYuDAgdx///2sXr2aIUOGdMlxSJIkSZIkSZLUbkKIw9zcntD3+JbbRhHs3JJauZw8dfa2T2BteRw8R3WpfWTlNV+53HTq7Jz8drllSR3P4FhtMmPGDD766CNeeOEF5s6dC8CCBQsOeWB7uIxDkiRJkiRJkqTDQgjxtNR5vaHf8Jbb1tVC9abUyuXkiuZNH8PKt6B6Y/o+cnomBcpNKpeTp87u3j+exlvSEcPgWK3atGkT06ZN4wc/+AGDBw9m9OjRQBzYXnDBBV1uHJIkSZIkSZIkHZEyMhPBbj8YcHLLbWv3wPaKxpXLVeugasPeoHn9X+HjebCzMn0f3Qqbr1xO3p9fBJlGVlJH879CtWratGnk5eVx6623AnDSSSeRlZXFggULuuQ4JEmSJEmSJEnq9DKzoddR8daaPTsT4XL9FNnrU6fOXlMat9ldlaaDAN2L0lcuN5o6e0BcWZ2RcdBvV5LBccsmTEjdd9llcMMNUF0NEyemHr/66nirqIBLLkk9/q1vweWXw6pV8A//kHp8yhT42tdg8WL4x39sfGzevH2/hwO0cOFCZsyYwZNPPkl+frxuQW5uLsOGDWsxsN2yZQsPP/xwm69z00030adPn4M+jv01btw4fvSjH1nJLEmSJEmSJElSa7K7QeHQeGvNrqpEsJxUxbx9Q+OQeeOy+HXtrtTzM7ISQXKayuWmU2d3K4in8pbUJgbHatFNN93Ecccdx/jx4/noo48a9h999NG8+OKLbNu2jZ49e6act2XLFu666642X+eqq65qMTje33Hsr/nz5x+0vtqqrq6OgoIC6urqCEn/I5s9ezYT0/2SgiRJkiRJkiRJR5rcHvHW57iW20UR7NqaVLncZJrs+nWa1/1XHDzX1aT2kZnbJFDu1/zU2bk92ud+pSOIwXFLWqrwzc9v+XhRUcvHhw5t+fjw4R1SYZzsd7/7HfMSYxg2bFjaNuXl5Zx11lkp+4899liiKOrwcRxJFi9eTFVVFRUVFfTt27ejhyNJkiRJkiRJUscJIa4Y7lYARSe23LauDnZsbn6a7Kp1sGUlrH43XreZNPlFdvfmK5eTw+bu/eMKa6kTMjhWWjt27OD73/8+559/PpMnT045vmDBAu655x4WLFjQroHt/ozjmWeeYdq0aVx55ZXMmDGDjRs38u1vf5t777234bzHH3+cBx98kDVr1jB8+HAee+wxPvOZzwDw/PPPM3XqVBYuXAjAunXr+N73vsfcuXOpqqpi6NCh/Pa3v2X8+PG89tprjBs3DoCamhpGjx7N3Xffzd///d/v872WlJQwcOBAQ2NJkiRJkiRJkvZFRgZ07xtvjGy5bW0NVG9MrVxODpk3LIHlb8RhdDq5BWnWYk4zdXb3fvFa0dIRwuBYad13332sWrWK559/nlNOOSXl+KhRoxoC28NtHGVlZSxbtoyjjjqKpUuXUl5ezmc/+1mmTJlCUVERDz30EE888QS///3vGT58OA8//DAXX3wxy5cvJ4RAaWkpp59+ekN/kydPZtSoUSxfvpzs7GxKSkooLi7m9NNP57333msIjv/t3/6Nfv367VdoDHFwPGrUqP06V5IkSZIkSZIktUFmFvQcEG+tqdmVWH85KVRuVNG8Ada+H7/evS19H/l901cuN5o6ewDk94GMzIN7r9I+MjhWipUrV/KTn/yEiy++OG1YC3D88ceTmZnZrsHx/o6jrKyMa665hquvvhqAk046qeHY5s2bufPOO3nttdca9l999dVMmTKFdevWMXDgQEpLS/nCF77QcM6SJUsYMWIEe/bsoVu3bg1B8fjx43nvvfcA2LRpEz/+8Y958cUX9/t+S0pKmD9/PoWFhQ373nzzTU4++eT97lOSJEmSJEmSJO2nrFwoGBJvrdldnRQqr29S0Zx4veqd+HnNjtTzQ0YiSE5Tudyoork/5PWOp/KWDjKDY6W49dZb2blzJ3fccUezbbKzsykuLuaDDz6gpqaGrKyD/0dpf8dRVlbGjTfe2NCmvLycAQMGUFRUxB//+EeKioo47bTTGo5XVFSQlZVFUVEREAfPt9xyS8PxX/3qV9x9990cffTRnHnmmdxzzz2MGTOG8ePH88///M8A3HnnnVxwwQUN013vq7q6OsrKypg5cyYXX3zxfvUhSZIkSZIkSZI6SE4+5BwLvY9tuV0Uwa5tiUrmdXsrl+uf1+/f8GEcMtftSe0jI7v5yuUeSc+794PcnobMajODY6WYNWsWs2bNarXd0qVLD7txbNiwgTVr1jB27NiGfaWlpQ1BcUVFBb179250/tNPP8348ePJysqioqKC1atXM2bMmIbj48aN47nnnqO6upobbriB2267jRdffJHx48fz17/+ldLSUn7961+zaNGi/b7XJUuWUFVV1VDNLEmSJEmSJEmSOqEQoFuveOt7fMttoyheZ7lp5XJyVfPWNfBJWRw4R3WpfWTlpVQuH7uhGrova7Iec/84/FaXZnCsTqWsrIxjjjmmoXoYaLRm8bhx41i0aBHvvvsuY8aM4ZlnnuHBBx/k+eefb2hbXFxMQUEBEIfKI0eOZPjw4VRXV7Nu3bqGquKhQ4fSv39/LrnkEm655RYGDRq03+MuKSlh0KBBDBnShukuJEmSJEmSJElS5xdCvPZxfh9gRMtt62qhelNq5XJyyLxxGax8i2OrN8KK36b2kdMzKWDulxQsD2i8TnP3fpCV0y63rI5lcKxOpaysLGW66LKyMiZOnAjAyJEjeeSRR7jkkkvYuHEjp556Ks8++yxnnHFGQ9vkaazfeustvvvd77Jp0yb69u3LpEmTuPPOOxuOjx8/nnfffZfvf//7BzTukpISq40lSZIkSZIkSdL+ychMhL39gFEtNn1t7sucO3Zk41C5UUXzBli3CJbNg12V6TvJ693CNNlJ6zR3L4rHpiOCwbE6ldtuuy1lX1lZWaPX119/Pddff32bzn/ggQd44IEH0raNooiVK1dy7733kp9/YNM3PPTQQwd0viRJkiRJkiRJUltEGVnQa1C8tWbPzqRQOWmq7O1Jz9eUxM/3VKeeHzIgv2+TQLl/42my6yua83pDRsbBv2G1mcFxFzNv3rx92q/mPfTQQ3Tr1o0rr7yy2Ta+35IkSZIkSZIk6YiV3Q0Kj4631uyqan4t5vqpsyuWxvtqd6Wen5GVCJb77Q2TR34dhn3p4N+X0jI4lvbRe++9x3nnncewYcOYM2cOIYSOHpIkSZIkSZIkSVLHyu0Rb32Oa7ldFMHOytTK5UZVzevg04UwYCRgcHyoGBxL+2js2LFUVjYzp78kSZIkSZIkSZKaFwLkFcZbv2EdPRolcaJwSZIkSZIkSZIkSeriDI4lSZIkSZIkSZIkqYszOJYkSZIkSZIkSZKkLs7gWJIkSZIkSZIkSZK6OINjSZIkSZIkSZIkSeriDI6BKIo6eghSp+N/V5IkSZIkSZIkSUeOLh8cZ2VlUVNT09HDkDqdmpoasrKyOnoYkiRJkiRJkiRJaoMuHxx369aNqqqqjh6G1Ols27aNbt26dfQwJEmSJEmSJEmS1AZdPjju168fGzZsoLq62ql1pYMgiiKqq6upqKigX79+HT0cSZIkSZIkSZIktUGXn0e2W7duDBgwgE8//ZRdu3Z19HCkTiE3N5cBAwZYcSxJkiRJkiRJknSE6PLBMUBBQQEFBQUdPQxJkiRJkiRJkiRJ6hBdfqpqSZIkSZIkSZIkSerqDI4lSZIkSZIkSZIkqYszOJYkSZIkSZIkSZKkLs7gWJIkSZIkSZIkSZK6OINjSZIkSZIkSZIkSeriDI4lSZIkSZIkSZIkqYszOJYkSZIkSZIkSZKkLi5EUdTRY2g3IYQNwIqOHockHUaKgIqOHoQkdXF+FktSx/JzWJI6np/FktSx/Bzu2o6JoqhfugOdOjiWJDUWQngviqKxHT0OSerK/CyWpI7l57AkdTw/iyWpY/k5rOY4VbUkSZIkSZIkSZIkdXEGx5IkSZIkSZIkSZLUxRkcS1LX8vOOHoAkyc9iSepgfg5LUsfzs1iSOpafw0rLNY4lSZIkSZIkSZIkqYuz4liSJEmSJEmSJEmSujiDY0nqJEIIQ0MIr4YQFoUQPggh3JzY3yeE8FIIYWnisXdifwghPBJC+CiE8H4I4fSOvQNJ6jxCCJkhhLIQwh8Tr4tDCO8kPnNnhRByEvtzE68/Shw/tkMHLkmdQAihMIQwJ4TwYQjhryGEM/xOLEmHVgjhe4l/m/ivEMJ/hhC6+Z1YktpXCOGJEML6EMJ/Je3b5+/BIYRvJtovDSF8syPuRR3H4FiSOo8aYEoURSOB8cCNIYSRwD8Br0RRdCLwSuI1wFeBExPbZOBnh37IktRp3Qz8Nen1T4DpURSdAGwGrk3svxbYnNg/PdFOknRgfgr8KYqiEcCpxJ/HfieWpEMkhDAYuAkYG0XRKCATmITfiSWpvT0FfKXJvn36HhxC6APcAXwOGAfcUR82q2swOJakTiKKorVRFJUmnm8j/geywcDXgV8lmv0K+Ebi+deBX0ext4HCEMJRh3bUktT5hBCGAP8f8HjidQD+DpiTaNL0s7j+M3oOcF6ivSRpP4QQCoBzgF8CRFG0O4qiLfidWJIOtSwgL4SQBeQDa/E7sSS1qyiKXgc2Ndm9r9+Dvwy8FEXRpiiKNgMvkRpGqxMzOJakTigxrdNpwDvAgCiK1iYOfQoMSDwfDKxKOm11Yp8k6cA8DPwAqEu87gtsiaKoJvE6+fO24bM4cbwy0V6StH+KgQ3Ak4klAx4PIXTH78SSdMhEUbQGeABYSRwYVwIl+J1YkjrCvn4P9vtxF2dwLEmdTAihB/A08N0oirYmH4uiKAKiDhmYJHUBIYQLgPVRFJV09FgkqYvKAk4HfhZF0WnAdvZOxwf4nViS2ltiStOvE/8yzyCgO1arSVKH83uw2sLgWJI6kRBCNnFo/B9RFP0+sXtd/XR7icf1if1rgKFJpw9J7JMk7b/PAxeGEJYDvyWeju+nxFM+ZSXaJH/eNnwWJ44XABsP5YAlqZNZDayOouidxOs5xEGy34kl6dD5IvC3KIo2RFG0B/g98fdkvxNL0qG3r9+D/X7cxRkcS1InkVj/55fAX6Moeijp0HPANxPPvwk8m7T//w+x8UBl0rQlkqT9EEXR/4yiaEgURccCk4C5URRdCbwKXJJo1vSzuP4z+pJEe3/7V5L2UxRFnwKrQgjDE7vOAxbhd2JJOpRWAuNDCPmJf6uo/yz2O7EkHXr7+j34ReBLIYTeiRkkvpTYpy4i+P9gSeocQghnAX8GFrJ3Xc2pxOsczwaOBlYAl0VRtCnxl7d/JZ4uqhq4Joqi9w75wCWpkwohTAC+H0XRBSGE44grkPsAZcBVURTtCiF0A/6deF36TcCkKIo+7qAhS1KnEEIYAzwO5AAfA9cQ/+K834kl6RAJIdwFXA7UEH//vY54jUy/E0tSOwkh/CcwASgC1gF3AH9gH78HhxD+O/G/KwPcE0XRk4fwNtTBDI4lSZIkSZIkSZIkqYtzqmpJkiRJkiRJkiRJ6uIMjiVJkiRJkiRJkiSpizM4liRJkiRJkiRJkqQuzuBYkiRJkiRJkiRJkro4g2NJkiRJkiRJkiRJ6uIMjiVJkiRJbRJCiEIIT3X0OPZHCCE/hPBICGFlCKE2hLD8EF//2MT7d+ehvG5HCiE8FUKIOnoc7S2EMO9Q/3mSJEmSpPZgcCxJkiRJHSiEMCERKEYhhOubaROFEP54qMfWydwGfAeYBVwNfLcjB6P9E0L4H4n/Hq5Lc2xS4tiqZs79MISwJYSQ2f4jlSRJkqQjj8GxJEmSJB0+7gwh5HX0IDqp84GFURTdGkXRv0dR9IeOHlAXcD1wsP88v5p4nJDm2BeAGmBICOGE5AMhhKOA4cDrURTVHuQxSZIkSVKnYHAsSZIkSYeH94BBWAkLQAghM4SQfxC7HAhsOoj9qRVRFO2JomjnQe5zMbCW9MHxBOA/icPjpsfrX887mOORJEmSpM7E4FiSJEmSDg+zgRLgthBC39YaN7fecAjh6sSxCUn77kzsGxlCeDiEsDaEUB1CeCWEMDzR5uIQQmkIYUcIYXkIYXIL1/5iCOHtRB+fhhB+GkLokaZdQQjhJyGEj0IIu0IIG0II/xlCOK6ZMX8xhDAthLAM2Alc1sp7kBVCuC2EsCiEsDOEsDGE8EwIYXTTvoFi4NykacHvbKnvxLl/n1i/dkviXhcn1knOSWrTPYRwbwhhWeIePw0h/DqEcEwb+q+fpvzqNMdS1geuX0s3sV7yM4lxbU607RFCyAghTA0h/C3xfpSGED7f3DVDCNeEED5IjHtFCOEHacZxZgjh/ybua2cIYU0I4YUQwvg23F+6e3gqcf2CEMLPQgjrE/2+GUL4XGt9JrwKDA4hnJjU71HAMOD/EP939IUm50xIOne/hBB6hxB+EUKoCCFsT/w8PrO//UmSJEnS4SarowcgSZIkSQIgAv4JeAn4IXBLO1zjV0AV8C9AP2AK8GIIYRpwH/Az4AngWmBGCGFRFEVvNOnjdOAS4BfAr4kDupuAUSGE86MoqoM4NAb+Ahyd6PMD4CjgBuCdEMLYKIpWNOn7ASA70fdWYHEr9/MfxOHyS4mxDwRuBN4KIZwdRVEZ8DrwD8B0oAK4J3Hu+y11HEK4B5gKLEqcuxY4Hvh74EfA7hBCNvAi8HlgDvAgcCLwLeBLiXtc3co97KvuwFzgNeI/L58F/jvQDdgIfA54lPh9/D7wfAjhmCiKtjXp538AA4BfAluAq4CfhBBWR1E0M/EeDCd+bz8FfgqsS5xzFnAq8PYB3MeLwAbgn4G+xH/e/08IoTjNWJt6FfhvxGHw0sS+CYnH14j/jF7V5JwJwGagfH8Gm/Sz/izw78T3PgZ4mfh9lyRJkqQjnsGxJEmSJB0moih6OYTwEnBDCOGnaYLVA/UpcGEURRFACKGCOBD8N+DkKIpWJfbPAlYRh7BNg+PRwEVJawT/7xDCT4nD48uA3yb2/zNwHDA+iqKGsC7EVdILgbuAq5v0nQecFkVRdWs3EkI4P3G92cCkpHuqr9x+BDg7iqKPgY9DCHcD66Io+k0b+h5HHBq/CkxMnm45hPBPSU2vJg6N74+i6AdJbV4G/gjcSxxaH0xFwH1RFN2feP1YCKE38XtRCpwRRdGexDj+CjxLHLLOaNLP0cBJURRVJto+AawAvgPMTLT5MpAPXBFF0fyDfB+lURTdUP8ihLCI+GeZbqxN1VcNf4H4lwwgDoYXR1H0aQhhHvCDEMKwKIqWJFUjP1v/iw374Rri0Pifoyi6o8m4pxO/d5IkSZJ0RHOqakmSJEk6vNwG5AA/boe+H6kPWBP+nHh8rj40BoiiaANxte+JpFqcFBrX+1+Jx4sAQggBuJK42ndNCKGofgO2E1drfilN3z9rS2icfC3gnuR7SoTUzwNnhRD6tbGvpq5MPP7Ppmv0RglJY6gjDoiT2/wfYAHw9RDCwf57dy1xRXGyPwMBeKw+NE7aD+l/jk/Wh8YAiff97SZt649/PYTQ7YBGnWp6k9dzE4/pxtpIFEXLiH+xYULS7gnE1cYAbxK/TxOSjsEBTFMNfCPR54NN9v+MuDpekiRJko54BseSJEmSdBhJTK/8n8CVIYRTDnL3Hzd5vTnx+Lc0bTcTTyHc1F+b7oiiaC3xdMf1axf3S5z7JeLpiJtu5xNPedzUkhZH31gxcWibMh7iabHr2+yPE4mnDm9tWuNi4JMoijanOfYB0JO4QvhgWts0zKaZn2PSuNL9HJv+WYB4yuXktr8lnop5KrAphDA3saZ0q+s3t0Gj60dRVD/dc6vreye8ChwVQhieVFH8WqKvrUAZe9c5npB4nHcA4z2O+L1vFBJHUbSL9O+lJEmSJB1xDI4lSZIk6fBzO1AD/GQ/zm1pSaLafdwf9uP6yee9TBwSp9u+nOa8tlYbHwpRYmvvazSnuZ9jcz+rlo6l+zm21A8Qh6JRFJ1PvG7yvYlz/hn4MIRwUYsnt973gf6Zq68enkDj9Y1Jen5uUpuNtLKutSRJkiR1da5xLEmSJEmHmSiK/hZC+BlwcwhhQjPNNgF90uw/Ls2+g+mkpjsSFZ+F7K283EBcgdwriqKX22kcHxP/MvRJpAaCIxOP6Sqp22IJ8FXgVKCltX0/Br4SQiiMomhLmjFsBSpaOH9T4rEjfo5tlljfeD5ACGEocTXv3cAzHTis5HWOK4FlURStSTr+GjAlhPAF4mrk3zeZpn1ffQx8KYTQK7nqOISQS/yzSld1LkmSJElHFCuOJUmSJOnwdDdx8HhfM8eXAGeEEPLrd4QQegPXtPO4hocQvtFk322Jxz8ARFFUB/wHMC6EcEm6TkII/Q9wHH9IPP7PxJrK9f2OAi4E3kis1bw/ZiYe/yWEkNP0YNL1/kD89+p/anL8q8BpxGtH17Vwnb8RV5Z/scn5ZwLj92vkB1FiTeqmVhP/YkC6sPuQiaJoBfH7dy6N1zeu92fiqczvTLyed4CXfBbIBKY02f8toNcB9i1JkiRJhwUrjiVJkiTpMBRFUUUI4X7gx800+VfgN8DcEMK/E1f8Xg+sAAa249AWAr8JIfwCWEpc8XkJcXA3K6ndD4HPA7NDCLOBt4HdwDHARKAEuHp/BxFF0UuJficBvUMIfyS+7xuBncBNB9D3/BDCT4gD8dIQwizgU+I1jS8BxhFXVD8FfBO4LYRwLPA6cAJwA7COeG3glq5TFUJ4CrguhPCfxOHmicTh//vEFc8d6fYQwpeAPxKHtAH4GjCC5n+h4VB6FfjvxD/3e5IPRFG0JYTwPnBOUttGEtX8rwK/iqLo6lau9SQwGfhRCKEYeIv4lwMuBZbhv69IkiRJ6gT8i40kSZIkHb4eIg4hj2p6IIqi/wghDAK+nWj3MfH6s3XEa9K2l1LgFuKg7n8QV0X/KzA1ubo2iqLKEMLniSs0LwO+Tlxduxp4A3j8IIzlysR4rgYeBLYTB9jToihaeCAdR1H0TyGEcuL39wfElcWrgBdIrMUcRdGeEMKXidekvhy4mDhQ/h1wexRFq9pwqe8RB7IXEb9HJcTh7GQ6Pjj+A/GfvcuAAcAO4l8WuB74ZccNq0F9cAypFcf1+8YQV0h/kOZ4z8TjmjTHGomiaHcI4XzgfuAbwN8D7xKv1/0AcGzbhy1JkiRJh6dwYEv8SJIkSZIkHXlCCA8R/9LBCVEUbWqluSRJkiR1eq5xLEmSJEmSuqIvA/cYGkuSJElSzIpjSZIkSZIkSZIkSerirDiWJEmSJEmSJEmSpC7O4FiSJEmSJEmSJEmSujiDY0mSJEmSJEmSJEnq4gyOJUmSJEmSJEmSJKmLMziWJEmSJEmSJEmSpC7O4FiSJEmSJEmSJEmSujiDY0mSJEmSJEmSJEnq4gyOJUmSJEmSJEmSJKmL+3+lISxEyRnNDQAAAABJRU5ErkJggg==\n"},"metadata":{"needs_background":"light","image/png":{"width":1934,"height":506}},"output_type":"display_data"}],"execution_count":null},{"cell_type":"markdown","source":"Above is a plot showing the reconstruction error for the noisy images and the orginal images respectively, after conducting the NMF algorithm for ranks $d=\\{64, 96, 112, 128, 256, 512, 1024\\}$. \n\nIt appears from the plot that the reconstruction error for the noisy images as a function of $d$ yields a \"U\" -like shape, while the reconstruction error of the original images as a function of $d$ yields an \"L\" -like shape. The reconstruction error for the noisy images reaches a point of minimal value at approximately $d = 128$, which is the \"best fit\" and provides the lowest reconstruction error. In other words, this choice of $d$ provides the optimal balance between learning more of the features of the original images, while at the same time avoiding learning too much of the noise. This rank corresponds to a reconstructed dataset 33% the size of the original, meaning the NMF has reduced the size of the data considerably while at the same time removing noise from the dataset. \n\nAs the value of $d$ is smaller, i.e. less than $128$, we observe underfitting. Our algorithm may manage to not capture too much noise, but it is unable to capture the complexity of the data beacuse there simply is not enough columns in $W$ to do so. For larger values of $d$ ($d > 128$) we observe the phenomena called overfitting. Our algorithm learns more noise aswell as more features, instead of just fitting the features. $W$ will be able to store more data, and thus store more of the noise. The more noise the reconstructed images contain, the more they differ from the original images. This is reflected by the plot in that the reconstruction error increases slowly, but surely. As $d$ increases the reconstruction error will converge towards the dotted line, and eventually tangent it. This dotted line represents the difference between the original images and the same images containg (all) the added noise. After the reconstruction error has reached its minimum, this dotted line can be interpreted as a kind of upper limit for the error. For large values of $d$ the NMF algorithm will learn almost all the noise, but it cannot learn more noise than what is orignally added to the images. So as long as the algorithm learns essentially all the \"features\" of the images for larger values ​​of $d$, then this horizontal, dotted line can be interpreted as an upper limit on how large the value of the reconstruction error can ever be (disregard the smaller $d$). However, due to non-negative constraint, the NMF algorithm will not always be able to make perfect reconstructions of the images, no matter the value of $d$. Therefore it is not entirely correct to call it an upper limit, but in our situation this size sort of acts as an upper limit for the reconstruction error.\n\nAs discussed earlier we notice an \"L\"-like shape when the reconstruction error of the original, unpolluted images is plotted as a function of $d$. For small values of $d$ the graph decreases rapidly, and for large values of $d$ the graph flattens out. This a consequence of the fact that there exists a limit to how presice a NMF reconstruction can be. At some point the reconstruction error converges to the same value even if $d$ is increased further.","metadata":{"tags":[],"cell_id":"b5ef472ec8b64876b9bb41659071962c","deepnote_app_coordinates":{"h":5,"w":12,"x":0,"y":253},"deepnote_cell_type":"markdown"}},{"cell_type":"markdown","source":"### Conclusion\n\nData manipulation provide different ways of interpreting datasets. This project has examined the Lee and Seung's multiplicative update mehtod for non-negative matrix factorization, and the method has been applied on the Cryptopunk dataset. In a broad scheme of things our result can be devided into three comprehensive measures: $\\textbf{I)}$ the compression of datasets using NMF, $\\textbf{II)}$ the ability of the NMF-method to extract underlying features in a dataset, and $\\textbf{III)}$ the ability of the NMF-method to remove noise and irregularities from a dataset.\n\nThe consistent/general trend of the NMF-method for decomposing the Cryptopunk dataset is that higher rank approximations yield reconstructions that are more representative of the original dataset, with respect to the Frobenius norm. However, perfect reconstructions were not obtained, even when the resulting dataset was larger than the original - which is likely a result of the limitations of the method due to the non-negativity requirement. We observed the methods ability to extract underlying features of the dataset, and for increasing rank, higher detailed features decompositions were learned, yielding more representative reconstructions. However, as a result of the method being purely mathematical, it does not care whether the features are interpretable from a physical point of view. This can be a disadvantage if the ambition of the NMF is to extract the constituating features, however, this may not always be the case. \n\nFor the polluted dataset containing noise, we found that NMF can be a tool for removing noise and irregularities. When denoising the images, the different rank approximations yield varying quaility reconstructions. For lower rank approximations, the method learns too few features, hence producing a bad reconstruction, i.e. underfitting, however, for higher rank approximations, learning more features means learning more noise, resulting in a bad reconstruction, i.e. overfitting. By comparing the reconstructions of the polluted dataset with the original, unpolluted, dataset, using the Frobenius norm, a minima - a rank that minimises underfitting and overfitting - can be determined. The rank of the reconstruction that produces this minima is the rank of the NMF that produces the best possible reconstruction for the NMF compared with an unpolluted image, however, in order to find this minima, knowledge of the unpolluted dataset is necessary, meaning that optimal results really can only be obtained by a supervised implementation, which can be a constraint for the method. ","metadata":{"tags":[],"cell_id":"7add93b2465f443e9d4d019f30042d5a","deepnote_app_coordinates":{"h":5,"w":12,"x":0,"y":259},"deepnote_cell_type":"markdown"}},{"cell_type":"markdown","source":"<a style='text-decoration:none;line-height:16px;display:flex;color:#5B5B62;padding:10px;justify-content:end;' href='https://deepnote.com?utm_source=created-in-deepnote-cell&projectId=4ef5e390-8b2f-4899-9a1e-a699c66a5da5' target=\"_blank\">\n<img alt='Created in deepnote.com' style='display:inline;max-height:16px;margin:0px;margin-right:7.5px;' src='' > </img>\nCreated in <span style='font-weight:600;margin-left:4px;'>Deepnote</span></a>","metadata":{"tags":[],"created_in_deepnote_cell":true,"deepnote_cell_type":"markdown"}}],"nbformat":4,"nbformat_minor":0,"metadata":{"deepnote":{"is_reactive":false},"orig_nbformat":2,"deepnote_app_layout":"article","deepnote_notebook_id":"f84749fe423c4facaab6e0a8948bc498","deepnote_execution_queue":[]}}
\ No newline at end of file