diff --git a/jitter/ BCISpeller/BCISpellerV3.py b/jitter/ BCISpeller/BCISpellerV3.py index a07326bafd6c98d4cbadd4865c01cf88140bfb59..abe0d6cfafc96ddc77414a991300ff6e3569463a 100644 --- a/jitter/ BCISpeller/BCISpellerV3.py +++ b/jitter/ BCISpeller/BCISpellerV3.py @@ -189,7 +189,7 @@ inlet = StreamInlet(streams_counter[0]) #LSL Eyetracker data inlet_2 = StreamInlet(streams_eeg[0])# LSL EEG data fs = 250 # Sampling frequency -delay = 0.01 #Occular delay +delay = 0.060 #Occular delay fragment_duration = 4+delay # Fragment duration in seconds fragment_samples = round(fs * fragment_duration) @@ -214,7 +214,7 @@ while True: # If buffer is filled with data ready to be compared in CCA, and the start of the buffer is the start of # the Eye Tracking data (Eye Tracking trigger) - if (len(buffer) == fragment_samples) and buffer[0][0] == 1: + if (len(buffer) == fragment_samples) and buffer[0][0] == 1 and buffer[0][fragment_samples] <= 0: print(len(buffer)) fragment = np.array(buffer[:fragment_samples]) fragment_eeg = np.array(buffer_eeg[:fragment_samples]) @@ -247,6 +247,7 @@ while True: df['N'] = df['N'].shift(round(delay*fs)) df = df.iloc[round(delay*fs):] # Reset the index + df = df.reset_index(drop=True) N = df['N'] print(df.shape) @@ -254,7 +255,6 @@ while True: print(df.shape) print([(index, row['O1']) for index, row in df.iterrows() if pd.isna(row['O1'])]) - #N = np.arange(1, len(df['O1']) + 1) N = df['N'] frs = get_freqs(N) X = df[:][occ_channels]